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Abstract

Operator angle-action variables are studied in the frame of the SU(2) algebra, and their
eigenstates and coherent states are discussed. The quantum mechanical addition of action-

angle variables is shown to lead to a novel non commutative Hopf algebra. The group
contraction is used to make the connection with the harmonic oscillator.

1 Introduction

Action-angle variables in quantum mechanics one known to lack, in the operator level, some of

properties of their classical analogues [1,2]. Especially the exponential phase operators for the

harmonic oscillator, occuring in the polar decomposition of the bosonic creation and annihilation

operators (an operator analogon of the polar decomposition of a complex number), lack the unitary

and satify the weaker condition of one side-unitary or isometry operator. Based on the mathemat-

ical fact that, unlike in finite dimensional Hilbert spaces as the Fock space of harmonic oscillator,

in finite spaces an isometry is equivalent to a unitary operator, we have in recent works, suggested

a group theoretical construction of a unitary phase operator by introducing action-angle variables

for the SU(2) algebra and going over to their oscillator counterparts via the InSnfi-Wigner method

of group contraction [3-6]. In this report we will briefly review and then expand this work with

respect to two aspects: first, a set of coherent states will be introduced along the lines of the

displacement operator creating the usual coherent states from the vacuum state and second, we

will show that addition of spins in terms of their action-angles (polar) operators, unlike the usual

addition in terms of the step (cartesian) operators, involves a genuine no commutative, no co-

commutative Hopf algebra structure and relates interestingly the phase operators subject to the

subject of quantum groups.

2 Action-angle Variables and States

Let us start with the SU(2) action-angle operators

J_=e'" J_+J-=__J+e'" (I)

(2)
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where

2j

J+= _--_¢m(2j-m+l)]J;m+l><J;m] , J_--J_ (3)
rn _ O

2j

J3 - y_(m -j)]J;m >< J;ml (4)

and

2j

e_¢ = _ [J;g >< J;g+ 1[ , (5)
t=O

mod(2j + 1), and hh + = h+h = 1 with h m e_¢, h + m e-_'_ the unitary angle operator. Then

from the fact that h, generates the cyclic group Z2j+1 acting as a cyclic permutation in the weight
space of the algebra we can construct phase states

[¢;k >= F[J; k >=
1 2j

v/r23,.._-_ _ wk'_IJ;n > (6)

through the finite Fourier transform FF + = F+F = 1, which maps action eigenstates to angle

eigenstates and conjugates the respective variables, where w = expi(2_r/2j + 1). Indeed, if g :=

w3_+ja then FgF + = h, FhF + = g-] and g(h) acts as step operator in the angle (action) state

basis, i.e,

hlJ;n>=[J;n+l > , h[¢;m>=w_[_;rn> (7)

while

g-'l¢;n>=}¢;n+l> , glJ;m>=w'_lJ;m> (8)

mod(2j + 1) and h a'i+_ = g2j+_ = 1, (notice that the state [d; n > and 14; m > where denoted as

In > and t_,- > respectively, in Refs. 3-6). The noncommutativity between the action and the

angle variables is best expressed by the formula

= h9 (9)

which resembles the exponential form of the Heisenberg canonical commutation relations (CR) as

were originally written by Weyl with the association that here the action operator J3 is a finite

version of the position operator and the angle operator stands for the momentum operator. By

virtue of this analogy we may interpret eqs. (7-8) ks the translations along the two different

directions of the phase space of our problem, which due to the module condition is a lattice

torus, pararnetrized by the discrete action and angle values. Also eq. (9), exhibits the unusual

noncommutative character of two succesive translations along different directions. Moreover, the

effect of group contraction which is discussed below, is to increase the density of the lattice points

until the continous limit j --. oc. Furthermore this association to position and momentum suggests
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that we should look for the "number states" IN; rn >, m = 0, 1, ..., 2j in our finite system. Indeed

by diagonalizing the finite Fourier transform FIN; m >= if"IN; m >, we find the number states

IN; m >, related e.g. with the orthonorma] action states as:

2j

Ig;k >= _ [J;m >< J;m[g;k > , (i0)
m=O

with expansion coefficients given in terms of the Hermite polynomial, Hk with discrete argument,

< J;mlN; k >= _ e- ,_'r+_(P(2i+_)+_)2Hk 27r .(p(2 + 1)+,.) (11)

This situation is akin to that of the harmonic oscillator numberlrt:ates which are similarly eigen-

states of the usual Fourier t_ransform operator which conjugates position and momentum operators,

a fact that stems from the property of the oscillator eigenstates exp(- 1 x2)Hk(z), to be their own

Fourier transforms. Especially the vacum or lowest number state is,

_j

IN;0 >= _ w]"203(im]i(2j + 1))lJ;rn > (12)
m=O

where 0a is the theta-Jacobi function [7]:

oo

Oa(zlr)= _ e"'2+°+'''°2 (13)
8 OQ

Having the action [J;m >, the angle [_;n > and the number states [N;k > as were given

above, we can further built, as have been outlined in Ref. 4, the quantum theory of action-

angle variables by introducing the corresponding coherent states acting on the vacum IN; 0 >,

with a displacement operator. Such an operator is furnished by the unitary traceless elements

J,_,,,2 "- w"_2/2g "_h''2' where J+ = J-,-_,--;2 = J2j+t-,,_,2j+l-,,2, with (ma,m2) pairs
• -- ml ,frl2

belonging to the square index-lattice 0 < rn],m2 <_ 2j with boundary conditions and the (0,0)

pair excluded.

The following interesting properties of these operators suggest them as the Glauber displace-

ment operator of our case; first they constitute an orthonormal set of (2j + 1)2 _ 1 elements obeying
the relation

< J_,Jn >:= Tr J,_Jn = (2j + 1)_,t+_,6 ,

where e.g. Jm = J,m=2, and further,

J,_J_ = w-½"ax_ J,,a+_

and

=

and finally

[J_a, J_] = -2i sm 2--_-_mj+

(14)

(15)

(16)

(17)

43



mod(2j + 1), while rfi x 6 = mln2 - m_nl. With the aid of these operators we now introduce

coherent states ]l'>, for the action-angle system by acting on the vacum:

_j

I[>:= J_N;O >=w] tzt_ _ wtz_+_O3(imli(2 j + 1))lJ;m + g_ >
m,_O

(18)

These are now coherent states defined on the lattice phase space which is the appropriate phase

space of the quantum action-angle variables. They involve the Jacobi thets functions which are

also appearing in the case of the ordinary coherent states when, looking for a complete subset out

of the over complete set of coherent states we lattice the phase space. Elsewhere, the normalization
and minimum uncertainty properties of the states will be studied in detail.

3 Quantum Angles Addition

Let us now turn to the case where there are several action-angle degrees of freedom and search

for the way we combine them quantum mechanically. The similar problem for the "cartesian"

generators di, with [Ji, Jj] = 2ieqs, Jj, is the fundamental theme of addition of spins and customanily
is solved by tensoring the generators,

AJ_:=&®I+ l®J_ (19)

which again satisfy the commutation relations, [md_, AJi] = 2ieokAd k. In our case, for the "polar"

generators g = w (A+il) and h = w v{J3+il)F* with wgh = hg we must find an appropriate tensoring

(coproduct in the jargon of Hopf algebras), which provides such Ag and Ah that wag = Ah. Two

such coproducts we have found,

_g=g®g , _h=h@l+g®h (20)

and

Ag=g®g , Ah=h®g+g-l®h (21)

which both have the remarkable property of not been the same under permutation of their com-

ponents involved in the tensor products. This is distingly different to the usual addition of spins,

where there is no sence of order in the tensoring the spins. Technically speaking we have here

a natural case of no co-commutativity unlike in eq. (19), where the product is co-commutative

[8-11]. We end here this discussion, as we intent to expand it elsewhere, by saying that it is also

possible to show the Hopf and quasi triangular Hopf algebra structure of the above tensoring and

then to find the R-matrix and to verify the Yang-Baxter equation.

4 Contraction to the Oscillator

Before we came to conclusions let us mention that as was shown in Ref. 3 via the group contraction

that the SU(2) action-angle variables can be contructed to those of the oscillator and the dynamical

aspects of this procces could be exemplified by studing the Jaynes-Cummings model. We illustrate
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now thisideabe contractingthe SU(2) generatorsto the oscillatorgeneratorsin the Bargmann

analyticrealization.In the spaceofanalyticpolynomialsofdegree2j the SU(2) algebraisrealized

a.S_

2d
J+=-z _zz ÷z2j

d d

J- = d--; ,/3 = ZTzz - j (22)

where z is the complex label of the spin coherent states, and geometrically stands for the projective

coordinate of the coset sphere SU(2)/U(1) ,._ S 1. Transforming now the generators like J± -_

J±/v/_ "] and J3 "* J3 +jl we find in the large j limit, the oscillator generators in their Bargmann
form as follows:

"-_ = 2j d(.cr_'yz) + _ = a+ (23)

J_ d d
-- = a (24)

and

d dr,,=-

J3 + j = d(v z) oT = g (25)ao_

where v_Z ,,_a isthe complex variableof the Glauber coherentstateswhich isnow becoming

the coordinateof the tangent phase planeof the harmonic oscillator.One can furthershow that

the overlap,the completeness relationand allother notionsof the spin coherent statescan be

contractedto theirrespectiveoscillatorcounterparts.Moreover in Ref. 5 has been shown how a

q-deformed oscillatorwith q deformationparameter to be rootof unitycan be employed to define

action-anglesvariablesin a finiteFock Hilbertspace and a number of theirpropertieshave been

worked out. In such an approach we have shown [5],thatthe contractionmethod issubstituted

by the limitprocedureof undeforming the q-oscillatorto the usual ocillators.

5 Conclusion

In conclusion, we have shown that the quantization of action-angle classical variables can be

developed in the framework of the SU(2) algebra in a manner which allows for the classical

properties of these variables to find well defined operator analogues. Interesting relations to

the quantum groups and Hopf algebras axe naturally emerge from the present method of angle

quantization which will be pursued further, together with the introduction of the Wigner function

for the action-angles variables and the star and Moyal product defined between functions of the

phase space of our problem.
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