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Abstract

It is shown that the system of two coupled harmonic oscillators possesses many interesting

symmetries. It is noted that the symmetry of a single oscillator is that of the three-parameter

group Sp(2). Thus two uncoupled oscillator exhibits a direct product of two Sp(2) groups,

with six parameters. The coupling can be achieved through a rotation in the two-dimensional

space of two oscillator coordinates. The closure of the commutation relations for the gen-

erators leads to the ten-parameter group Sp(4) which is locally isomorphic to the deSitter

group 0(3, 2).

1 Introduction

Since the classical mechanics of two coupled harmonic oscillators is known to every physicist, there

is a tendency to believe that this oscillator problem is completely understood and that nothing

new can be learned from it. We are writing this note because there are so many new lessons

to learn from the system of coupled oscillators. The system shares symmetries with a number

of physical models of current interest, such as the Lee model in quantum field theory [1], the

Bogoliubov transformation in superconductivity [2, 3], two-mode squeezed states of light [4, 5, 6],

the covariant harmonic oscillator model for the patton picture [7], and models in molecular physics

[8]. There are also models of current interest in which one of the variables is not observed, including

thermo-field dynamics [9], two-mode squeezed states [10, 11], the hadronic temperature [12].

From the mathematical point of view, the standard approach is to construct a suitable repre-

sentation of the symmetry group after writing down its generators. The symmetry group in the

present case is Sp(4) with ten generators [4, 6]. However, it is extremely difficult to study physics

in terms of ten parameters. We should somehow start with a smaller number of parameters.

For example, let us consider the three-dimensional rotation group with three generators. We

need only two generators to describe rotations [13]. The third generator is produced during

the process of constructing a closed set of commutation relations. For the coupled oscillators, a

reasonable approach is to start with simpler groups describing two uncoupled oscillators. We can

then introduce an additional generator to couple the two oscillators. The number of generators

of the resulting group may be larger than the sum of those for the two starting groups plus the

additional generator to couple them.
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The process of constructing a larger group from two smaller groups is quite common in physics.

We are quite familiar with the "direct product" and "semi-direct product," where the number of

generators is the sum of those for the two smaller groups. We shall use the word "construction

of the group by soldering two subgroups," when the resulting group has more generators than all

those for the starting groups and the additional generator(s) to couple them. We need this new

word "soldering" in order to reduce the number of input parameters in physics.

The soldering process takes different forms. We can construct the three dimensional rotation

group by soldering the one-parameter rotation group around the x axis and another rotation group

around the y axis. The resulting group has three generators. As we shall see in this paper, we

can construct the 0(3, 2) deSitter group by soldering two 0(3, 1) Lorentz groups. In this case, we

solder them by observing that the two 0(3, 1) groups share the same rotation group. We start

with nine generators, but the resulting 0(3, 2) deSitter group has ten generators.

Since the symmetry group of each uncoupled oscillator is the three-parameter Sp(2) group, and

since it is likely that one more group operation is needed to couple the system, we start here with

seven generators. We shall see in this paper that the resulting group is Sp(4) with ten generators.

It is easier to study physics with seven generators than with ten.

It is also shown in this paper that the Sp(4) symmetry does not exhaust all possible symmetries

of the coupled oscillator system. It is noted that the group Sp(4) is a subgroup of a lager group

SL(4, r). Possible physical implications of this larger symmetry group are discussed.

In Sec. 2, we shall study linear canonical transformations in the four-dimensional phase space

consisting of two pairs of canonical variables. It is noted that the symmetry group is Sp(4) which

is locally isomorphic to the O(3,2) deSitter group. In Sec. 3, we shall see how the 0(3, 2) group

can be constructed from two (3 + 1)-dimensional Lorentz groups. In See. 3, we shall construct

the symmetry group of two coupled oscillators from the symmetry group of each oscillator.

Section 5 contains a new parametrization of the coupled oscillator system which is consistent

with that of the symmetry group. In Sec. 6, we discuss the quantum mechanics of the oscillator

system and the unitary transformations which correspond to canonical transformations in classical

mechanics. In Sec. 7, we discuss physical applications of the formalism developed in this note.

Finally, in Sec. 8, we discuss scale transformations in phase space and their implications in

measurement theory.

2 Linear Canonical Transformations in Classical Mechan-

ics

For a dynamical system consisting of two pairs of canonical variables xl,pl and x2, p_, we can

introduce the four-dimensional coordinate system:

(_,, _, _a, 774) = (z_, z_, p,, p_). (t)

Then the transformation of the variables from r/i to (i is canonical if

MJ_I = J, (2)

where
0
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and
0 0 i 0'_

j= 0 0 0 1J-1 0 0 0 "

0 -i 0 0

For linear canonical transformations, we can work with the group of four-by-four real matrices

satisfying the condition of Eq.(2). This group is called the four-dimensional symplectic group

or Sp(4). While there are many physical applications of this group, we are interested here in

constructing the representations relevant to the study of two coupled harmonic oscillators.

It is'more convenient to discuss this group in terms of its generators G, defined as

M = exp (-laG), (3)

where G represents a set of purely imaginary four-by-four matrices. The symplectic condition of

Eq.(2) dictates that G be symmetric and anticommute with J or be antisymmetric and commute
with J.

In terms of the Pauli spin matrices and the two-by-two identity matrix, we can construct the

following four antisymmetric matrices which commute with J of Eq.(2).

o,) 1(o o)J1 =-- _ __O.1 0 ' J2 = _ 0 er2 '

J3=- o ' Jo=-{ z o "

The following six symmetric generators anticommute with J.

i (0 03) ,_ __ i (_ 0 ) _ (K,=:_ _3 ' 2 -I ' I(a=--_

(4)

and

( ) i(O I) Qa=i(;1 0 ) (5)i -a3 0 Q2=_ I 0 ' 2 -alQI = _ 0 o-a '

These generators satisfy the commutation relations:

[Ji, Jj] = ieijkJk, [Ji, Kj] = ieijkKk, [Ki, Kj] = [Q,, Qj] = --ieijkJk,

[Ji, Jo] = O, [K,, Qj] = i6,_Jo,

[Ji, Q3] = iei_kQk, [K,,Jo] = iQi, [Qi,Jol = -iKi. (6)

The group of homogeneous linear transformations with this closed set of generators is called the

symplectic group Sp(4). The J matrices are known to generate rotations while K and Q matrices

generate squeezes [6]

It is often more convenient to study the physics of four-dimensional phase space using the

coordinate system

((1, _2, _3, _4) -- (Xl, Pl, x2, P2)- (7)
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The transformationfrom (r/i, r/2, r/a, rt4) is

(i000)_2 = 0 1 0 r/2
_3, 1 0 0 r/3

\ _4 0 0 1 _4

and the J matrix becomes

1oj= 1 0 0
.0 0

0 -1

In this new coordinate system, the rotation generators take the form

(8)

i 0

___:/(; 0)
__O- 2 '

The squeeze generators become

0 0-2 "

(9)

i (01 o) K2=i (o 3 o) g3= _ (0 0-1)ga= 5 -0-1 ' 2 0-3 ' -2 0-1 0 '

(10)

i(-0-3 0)Q2=i(o _ 0) Q3=i(0 o3 ) (11)Q1 = _ 0 0-3 ' _ 0-1 ' _ _3 "

When we deal with canonical transformations of functions of the coordinate variables, we have

to use the differential operators. The rotation generators are [6]

{( °)}i o (p_o_p_N

---- q-_{(Xl_pl --pl_xl) -- (Z2_p2

: q'_ {(Zl_ 1 PI_I) q- (X2£ --P2£) ) '
(12)

J3

J0

and the six squeeze generators are

K_ = -5 x,_--
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_ _! 0

K3 = +_ xl +p_ + x2b-_p1+pl ,

Q1 = +5 xl -pl - z_-_x2-p_ ,

---- --- P2-- ,Q2 xl +pl + x2_-+

_!
Q3 = 2 { ( z2 0_l + xl o-_: ) - (p2 0_i + Pl o_2 ) ) . (13)

It was noted that there are two convenient coordinate systems in phase space, namely those of

Eq.(1) and Eq.(7). The above differential forms are applicable to both coordinate systems. They

of course satisfy the commutation relations given in Eq.(6).

It is remarkable that these operators are also applicable to the Wigner phase-space distribution

function which is constructed from the SchrSdinger wave function [6]. It is also remarkable that

there are unitary transformations on the wave function which lead to canonical transformations

of the Wigner function in phase space [6].

3 Construction of the 0(3,2) deSitter Group by Solder-

ing Two Lorentz Groups

In Sec. 2, we constructed the ten generators of canonical transformations acting on two pairs of

canonical variables. The mathematics is straight-forward, but it is not too comfortable to study

physics with ten independent parameters. We can have a better physical picture if we can study

the problem in terms of concrete physical examples with smaller symmetries.

The deSitter group 0(3, 2) is known to be locally isomorphic to the group Sp(4). Indeed, as we

shall see in this section, the notations for the generators of Sp(4) given in Sec. 2 are the natural

notations for the deSitter group. Thus, one way to study Sp(4) is to study O(3, 2). In this section_

we shall study O(3, 2) by constructing it bysoldering two 0(3, 1) Lorentz groups.

In the space-time of (x, y, z, t, s), where x, y, z are three space-like variables and t and s are

two time-like variables, we can consider two O(3, 1)-like Lorentz groups in the spaces of (x, y, z. t)

and (x, y, z, s) respectively. The generators of rotations applicable to the three-dimensional space

of x,y and z are

/i000i)0 -i 0

Jl= i 0 0 , J_=

0 0 0

0 0 0

00i00/ /ii0000 0 0 0 0 ' 0 0 0 0

-i 0 0 0 0 , J3 = 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

(l_)
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The Lorentzboostsin the subspaceof (x, y, z, t) are generated by

K l oooii)(i°°°i//i°°°i/0 0 0 0 0 0 i 0 0 0

0 0 0 0 , /£2 -- 0 0 0 , K3 = 0 0 i .

i 0 0 0 i 0 0 0 i 0

0 0 0 0 0 0 0 0 0 0

(15)

These three boost generators, together with the rotation generators of Eq.(14), form a closed

Lie algebra for the Lorentz group applicable to the four-dimensional Minkowski space of (x, y, z, t).

The same is true for the space of (x, y, z, s) with the boost generators:

Q1

i 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

i

0

0 ,

0

0
/ioooi/0 0 0 '

Q_ = 0 0 0 , Q3 =
o o o

i o o
O000i/0 0 0 0

0 0 0 0 .

0 0 0 0

0 0 i 0

(16)

The above two Lorentz groups have nine generators.

commutation relations, we end up with an additional generator

/i00000 0 0 0

Jo = 0 0 0 0 ,
0 0 0 -i

0 0 i 0

If we attempt to form a closed set of

(17)

which will generate rotations in the two-dimensional space of s and t. These ten generators form
a closed set of commutations relations.

We started with two 0(3, 1) Lorentz groups. Each Lorentz group has its own rotation subgroup.

In the present case, both Lorentz groups share the same rotation subgroup. This is how these two
groups are soldered.

It is remarkable that this set of commutation relations is identical to that of Eq.(6). The

group 0(3, 2) is locally isomorphic to Sp(4). The group 0(3, 2) occupies a very important place

in relativity and elementary particle physics simply because it contains two Lorentz groups as

its subgroups. The local isomorphism between 0(3, 2) and Sp(4) enables us to study this group

in terms of linear canonical transformations in classical mechanics or in the Wigner phase-space
picture of quantum mechanics.

4 Construction

pied Oscillators by Soldering two Sp(2)

For two uncoupled oscillators, we can start with the coordinate system:

(_,, _, _3, _) = (x,, p,, x_, p_).

of the Sp(4) Symmetry Group for Cou-

Groups

(18)
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Sincethe twooscillatorsareindependent,it is possibleto performlinearcanonicaltransformations
on eachcoordinateseparately. The canonicaltransformation in the first coordinatesystemis
generatedby

1( °.2 00) B, = i (O" 3 0) C1 =i (;1 0) (19)A'=20 ' 700' 2 0 "

These generators satisfy the well-known commutation relations:

[A1, B1] = iCl, [B,, C1] = -iAl, [C1,A_] = iB1. (20)

It is also well known that this set of commutation relations is identical to that for the (2 +

1)-dimensional Lorentz group. Linear canonical transformations on the second coordinate are

generated by

_(00) ____(00) ___,(0° 0) /_,_A2=2 0 0.2 ' 2 0 O"a ' 2 o"1 "

These generators also satisfy the commutation relations of Eq.(20). We are interested here in con-

structing the symmetry group for the coupled oscillators by soldering two Sp(2) groups generated

by Al, B1, Cx and A2, B2, (72 respectively.
It will be more convenient to use the linear combinations:

A+ = A1 + A2,

A_ = A1 - A2,

These matrices take the form

_(; 0)A+ = _ 0.2 '

_(o_ 0)A_ = _ -0.2 '

C+ = CI + C_,

C_ = CI - C2,

i (aa 0) C+= i (O 1 0)B+=_ 0 _3 ' 2 0., '

,(o_o) __ _(o_o)B_=_ 0 -a3 ' =2 0 -0.1 "

(22)

(23)

The sets (A+, B+, C+) and (A+, B_, C_) satisfy the commutation relations of Eq.(20). The same

is true for (a_, B+, C_) and (a_, B_, (7+).

Next, let us couple the oscillators through a rotation generated by

i(O I -I)Ao = _ 0 " (24)

Then, Ao commutes with A+,B+,C+, and the following commutation relations generate new

operators Aa, Ba and Ca:

where

[Ao, A_I = iAa, [Ao, B_] = iBa, [Ao, C_] = iBa, (25)

( ) ( °_) _(oo_)1 0 0.2 B3 = i 0 , C3 = _ 0.1 0 " (26)A3 =2 0.2 0 ' 2 0.3
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There are now ten generators. They form the closed set of commutation relations of Eq.(6), if we

identify these matrices as

A+ = -J0, A_ = -J3, A3 = -J1, A0 = J_,

B+ = K2, B_ = -QI, B3 = Q3,

C+ = Q2, C_ = K1, 6'3 = -K3, (27)

where the J, K and Q matrices are given in Eq.(10) and Eq.(ll).

In this section, we started with the generators of the symmetry groups for two independent

oscillators. They are A1, Bx, Cl and A1, B1, C1. We then introduced another generator A0 to solder

them up. This processes produced three additional generators A3, B3, C3 which are -J1, Q3, and-

/(3 respectively. It is remarkable that K3, Q3 and J0 form the set of generators for another Sp(2)

group. They satisfy the commutation relations

[Q3, K3] = -iJo, [K3, J0] = -iQ3, [Q3, J0] = iK3 (28)

This symmetry group will play the major role in decoupling the coupled oscillator problem.

5 Reparametrization of Coupled Oscillators

Let us consider a system of two coupled harmonic oscillators. The Hamiltonian for this system is

H=-_ m Pl+m2P2+A'z_+B'z_+C'x_x_ . (29)

where

A' > O, B' > O, 4A'B'- C a > 0. (30)

By making scale changes of x_ and z2 to (m_/m2)X/4x_ and (m2/mx)_/4x2 respectively, it is possible

to make a canonical transformation of the above Hamiltonian to the form [14, 15]

with m = (mxm2) 1/2. This transformation is generated We can decouple this Hamiltonian by

making the coordinate transformation:

sin(a/2) cos(a/2) ) ( xlx_ "

Under this rotation, the kinetic energy portion of the Hamiltonian in Eq.(31) remains invariant.

Thus we can achieve the decoupling by diagonalizing the potential energy. Indeed, the system

becomes diagonal if the angle a becomes

c
tan a = _. (33)

B-A

This diagonalization procedure is well known.
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We now introduce the new parameters K and q defined as

A + B + _/(A - B) 2 + C 2

K = _/AB-C2/4, exp(-2q) = x/4AB_C2 , (34)

In terms of this new set of variables, A, B and C take thein addition to the rotation angle a.
form

A = K

B = K

A = K

the Hamiltonian can be written as

Ct e_2_ ? 2)e_' cos 2 _- + sin 2 ,

e2n sin 2 _ + e -2n cos 2 ,

(e -2" - e2_) sin a. (35)

K

where yx and 712are defined in Eq.(32), and

(qq;) (cos(a/2) -sin(a/2): \sin(a/2) cos(a/2) )(_:)"

(36)

(37)

This form will be our starting point. The above rotation together with that of Eq.(32) is generated

by J0.

If we measure the coordinate variable in units of (mK) 1/4, and use (inK) -1/4 for the momentum

variables, the Hamiltonian takes the form

u = <0q, + + (3S)

where w = y[-K/m. If 7/= 0, the system becomes decoupled, and the Hamiltonian becomes

H= g"(p_+ x_) + 2w(p] + x_) . (39)

In Sec. 8, we will be dealing with the problem of what happens when no observations are made

on the second coordinate. If the system is decoupled, as the above Hamiltonian indicates, the

physics in the first coordinate is solely dictated by the Hamiltonian

-, = +4) . (4o)
It is important to note that the Hamiltonian of Eq.(39) cannot be obtained from Eq.(38) by

canonical transformation. For this reason, the Hamiltonian of the form

H'= w (e_nq _ + eny_)+ w (enq _ +e_ny_) (41)

may play a useful role in our discussion. This Hamiltonian can be transformed into the decoupled

form of Eq.(39) through a canonical transformation.
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6 Quantum Mechanics of Coupled Oscillators

It is remarkable that both the Hamiltonian H of Eq.(38) and H' of Eq.(41) lead to the same

Schr5dinger wave function. If yl and y_ are measured in units of (inK) 1/4, the ground-state wave

function for this oscillator system is

1

= { ÷ }
The wave function is separable in the Yz and y_ variables. However, for the variables Xl and x_,

the story is quite different. If we write this wave function in terms of xl and x2, then

1 1 en(x lc°s -x2sin )_
¢(x,,x2) = _exp -_ _-

+e-'(xlsin _ + x2cos )2 . (43)

If r/= O, this wave function becomes

1 x_)}. (44)¢O(ZI,X2) _- _exp(--_(xl2+

For other values of 77, the wave function of Eq.(43) can be obtained from the above expression by

a unitary transformation.

A,,,,m2(a, Tl)¢ml (z, )C_(x2), (4.5)
ml rrt2

where era(x) is the m th excited state wave function. The coefficients A._lm2(q) satisfy the unitarity
condition

IA._,_(_,_)12= 1. (46)
rrt I rn2

It is possible to carry out a similar expansion in the case of excited states [16].

As for unitary transformations applicable to wave functions, let us go back the generators of

canonical transformations in classical mechanics in Eq.(12) and Eq.(13). As was stated before, they

are also applicable to the Wigner phase--space distribution function. The canonical transformation

of the Wigner function is translated into a unitary transformation of the SchrSdinger wave function.

There are therefore ten generators of unitary transformations applicable to SchrSdinger wave

functions [6, 4]. They are

J1 = -_ a a2+a a 1 ,

K1 = -4 a a +alal-

1 (a_a2 a_al),j_= _ -

atat- ,
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[(2 =- "_ a a -- ala 1 --}-a a -- a2a2 ,

i( a! a_a_ )Q,1 = -4 a! -a,al- +a2a2 ,

= _1( o o! )Q2 4 a!a! + ala 1 + + a_a2 ,

i (a_a_ ala2)03 = _ - (47)

where at and a are the step-up and step-down operators applicable to harmonic oscillator wave

functions. The above operators also satisfy the commutation relations given in Eq.(6).

7 Wigner Functions and Uncertainty Relations

The Wigner phase-space picture of quantum mechanics is often more convenient for studying the

uncertainty relations. Unitary transformations in the SchrSdinger picture can be achieved through

canonical transformations in phase space. It has been known that canonical transformations are

uncertainty-preserving transformations. They are also entropy-preserving transformations [17].

Are there then non-canonical transformations in quantum mechanics?

In his book on statistical mechanics [18], Feynman raises the issue of the rest of the universe

in connection with the density matrix. Feynman divides the universe into two parts. We make

measurements in the first part, but are not able to measure anything in the second part. The

second part is Feynman's rest of the universe. Indeed, the density matrix plays the essential role

when we are not able to measure all the variables in quantum mechanics [19, 20].

In the present case of coupled harmonic oscillators, we assume that we are not able to measure

the x2 coordinate. It is often more convenient to use the Wigner phase-space distribution function

to study the density matrix, especially when we want to study the uncertainty products in detail

[15, 18].

For two coordinate variables, the Wigner function is defined as [15]

W(Xl,X_2;Pl,P2) --= (l)2/exp{--2i(plYl -_-p2Y2)}

× _'(x, + yl,z_ + y:)¢(xl - vl,x_ - y:)du, dy:.

The Wigner function corresponding to the oscillator wave function of Eq.(43) is

W(xl,x2;pl,p2) = exp -e'(x, cos 7 - x2sin 2

(48)
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13' G' 2 Ct-e-n(z, sin_+z2cos_) -e-'_(plcos-_-p2sin )2

-en(plsin 7 +p2c°s )2 . (49)

If we do not make observations in the x2p2 coordinates, the Wigner function becomes

W(271, Pl) = / W(z1, ._2; Pl, p2)dx2dp2. (50)

The evaluation of the integral leads to

1 } 1/2W(zl,z2;pl,p2)- r2(l+sinh2_sin2a)

x exp - cosh r1 - sin 77cos a cosh r/+ sin r/cos a "

This Wigner function gives an elliptic distribution in the phase space of zx and pl. This distribution

gives the uncertainty product of

(Ax)2(Ap) 2 = _(1 + sinh 2 r/sin 2 a). (52)

This expression becomes 1/4 if the oscillator system becomes uncoupled with a = 0. Because xl

is coupled with z2, our ignorance about the z2 coordinate, which in this case acts as Feynman's

rest of the universe, increases the uncertainty in the zl world which, in Feynman's words, is the

system in which we are interested.

In the Wigner phase-space picture, the uncertainty is measured in terms of the area in phase

space where the Wigner function is sufficiently different from zero. According to the Wigner

function for a thermally excited oscillator state, the temperature and entropy are also determined

by the degree of the spread of the Wigner function phase space.

8 Scale Transformations in Phase Space

In addition to the ten generators given in Eq.(10) and also in Eq.(11), we can consider the scale

transformation in which both the position and momentum of the first coordinate are expanded

and those of the second coordinate contracted. The Hamiltonian given in Eq.(38) suggests such a

transformation, and the transformation can be generated by

0)s0= -i •

This matrix generates scale transformations in phase space. The transformation leads to a radial

expansion of the phase space of the first coordinate [21] and .contracts the phase space of the

second coordinate. What is the physical significance of this operation? As we discussed in Sac.

7, the expansion of phase space leads to an increase in uncertainty and entropy. Mathematically
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speaking, the contraction of the second coordinate should cause a decrease in uncertainty and

entropy. Can this happen? The answer is clearly No, because it will violate the uncertainty

principle. This question will be addressed in future publications.

In the meantime, let us study what happens when the matrix So is introduced into the set of

matrices given in Eq.(10) and Eq.(ll). It commutes with J0, J3, K_, h'2, Q_, and Q2. However, its

commutators with the rest of the matrices produce four more generators:

[So, J,] = _ a2 ' 2 '

1( 0 al) [So, Q3]=l( 0 0 °.3 ) (54)IS0, I_'3] = _ -o"1 0 ' 2 0"3 "

If we take into account the above five generators in addition to the sixteen generators of Sp(4),

there are fifteen generators. They form the closed set of commutation relations for the the group

SL(4, r). This SL(4, r) symmetry of the coupled oscillator system may have interesting physical

implications.
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