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Abstract

The recently introduced notion of a quantum group is discussed conceptually and

then related to deformed harmonic oscillators ("q-harmonic oscillators"). Two devel-

opments in applying q-harmonic oscillators are reviewed: q-coherent states and the

q-symplecton.

1 Introduction

It is not unfamiliar in physics that a new theory appears in the form of a 'deformation'

of a previous 'classical' theory; thus, for example, quantum mechanics can be considered to be

a deformation of classical mechanics (which is recovered in the limit that the 'deformation pa-

rameter' h _ 0), and Einsteinian relativity to be a deformation of Newtonian relativity (which

is recovered when the 'deformation parameter' c _ c¢). Recently this notion of deformation

has been applied [1,2] to symmetry itself, leading to the concept of a 'quantum group' as a

deformation of a classical (Lie) group with a deformation parameter denoted by q. This new

development has had numerous important applications in both physics and mathematics [3,4].

Since harmonic oscillators have played a fundamental--and pervasive!--rSle in the applications

of symmetry in quantum physics, it is not surprising that the concepts of quantum groups, and
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I__ ¢

deformations, are important here also, and hence relevant to the present conference. Accord-

ingly, it is our purpose to discuss here deformed harmonic oscillators ("q-harmonic oscillators"),

deformed coherent states ("q-coherent states") and the deformed algebraic structure (based on

harmonic oscillators) called the "q-symplecton".

We will begin by discussing, in conceptual and motivational terms, the simplest of quan-

tum groups--SUq(2), the q-deformed quanta/rotation group--to set the stage for introducing
deformed harmonic oscillators, and then the remaining topics mentioned above.

2 The Quantum Group SUq(2)

The commutation relations for the three generators {J_., Jq__,J_} defining the quantum

group SUq(2) are given by:

[jq j,i (2.1)z, +J =

Jq rql _ qJ: - q-J" IR+.
+,,,_, q½ q_½ , q 6 (2.2)

These defining reiations for SUq(2) differ from those of ordinary angular momentum (SU(2)) in

two ways:

(a) the commutator in (2.2) is not 2J, as usual, but an infinite series (for generic q) involving

all odd powers: (jq)1, (jq)3, .... Each such power is a linearly independent operator in the

enveloping algebra; accordingly, the Lie algebra of SUq(2) is not of finite dimension.

(b) For q ---+1, the right hand side of (2.2) becomes 2Jz. Thus we recover in the limit the

usual commutation relations for angular momentum.

The differences noted in (a) and (b) are expressed by saying that the quantum group SUq(2)

is a deformation of the enveloping algebra of SU(2).

The deformation parameter q occurs in SUq(2) in a characteristic way, as q-integers denoted

by [n]q such that:

q-_ _q-_'
N, ---

q½ -q-½'

_ = qLC_J2 + q_r._ +... q-£_7//, n E 2_=. (2]3)

These q-integers, [n]q obey the rule: [-n]q = (-1)In]q, with [0]q = 0 and [1]q = 1. Note that

[n]q = [n]q-b so=that th e defining ...............relations (2.1) and (2.2) are invariant to q *-+ q-1.
The quantum group concept involves much more than just deforming the commutation

relations of the classical group generators. Actually an interesting new algebraic structure is

also imposed, that of a gopf algebra [5]. Let us first define this new structure and then discuss

itsmeKning: :_ ::: " -

Consider an associative algebra A, with a unit element, 1, over a field say, iT. Then the
algebra involves the operations:

multiplication: m : A ® A ---, A, and, (2.4)

unit: 1 :(T --+ A, (2.5)
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subject to the familiar axioms of associativity and the compatibility of addition and multiplica-
tion.

We can extend this algebra to become a Hopf algebra if we can "reverse the arrows" in

(2.4) and (2.5) above, that is, if we can define two new operations:

co-multiplication: A : A _ A ® A, and, (2.6)

co-unit: e: A _T. (2.7)

Since for a quantum group the algebra A is a group algebra, it is reasonable to require that one

have a third new operation:

7: A _ A, (2.8)

called "antipode", (the analog to the inverse in the group).

These three new operations must satisfy the requirement that A and e are homomorphisms

of the algebra A and that _, is an anti-homomorphism. In addition, the operations must satisfy

the compatibility axioms:

Associativity of co-multiplication: (id ® A)A(a) -- (A ® id)A(a),

Antipode axiom: m(id ® 7)A(a) = rn(7 ® id)A(a) = e(a)l,

Co-unit axiom: (e ® id)A(a) = (id ® e)A(a) = a.

aEA (2.9)

(2.10)
.(2.11)

• For a physicist, the introduction of such complicated and heavy algebraic machinery "out

of the blue" is very disconcerting. Certainly it requires motivation. The obvious question is:

"why a Hopf algebra"? Let us try to answer this.

Physicists are already very familiar with the algebraic approach to symmetry in quantum

mechanics; what is needed is a physical reason for "reversing the arrows". What this really

means, in effect, is that all one needs is a simple motivating physical example.

Here is that example. Consider angular momentum: there is a natural, classical, concept

for adding angular momenta, which is taken over in quantum mechanics. Consider Jtotal as

the total angular momentum operator which is to be the sum of two independent constituent

angular momenta J1 and J2. Writing the total angular momentum operator Jtotal as an action
on the two constituent state vectors we have:

Jtotall¢)total= Jli_0)x ® 1[X)2+ 1]¢p)1 ® J2]X)2,

where we have been careful to use a precise notation for the tensor product ® of the two

independent systems.

Writing this same result in an abstract formal manner, we discover that what we have really

done by "adding angular momentum" is to define a co-multiplication:

A(J) = J®l+ 1®#, (2.13)

where J denotes a generic angular momentum (defined as obeying the commutation relations).

In other words: The vector addition of angular momenta define$ a commutative co-product

in a Hopf algebra. One sees accordingly that a (commutative) Hopf algebra structure is not only
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very natural in quantumphysics,but actually implicit, and in fact essential--unfamiliar only

because unrecognized. The remaining Hopf algebra axioms are required to make the structures

compatible and well-defined, and in a sense analogous to group concepts.

What we wish to emphasize is that the deformation of the algebraic structure in a quantum

group is only part of the basic concept--requiring the additional Hopf algebra structure, which
is natural to quantum mechanics, provides an important constraint on the freedom to deform
the commutation relations.

One can now understand intuitively from our example the fundamental significance of

quantum groups for physics: one now has the new possibility of defining a non-commutative

co-multiplication, as actually occurs for the quantum group SUq(2). This means that:
(i) the fundamental commutation relations are changed ("deformed"); that is, one has kine-

magic svmmegr v breaking. (Recall that Hamiltonian perturbation theory is dynamical and

leaves commutation relations (which are kinematical) invariang);
(ii) the "addition of q-angular momentum" depends on the order of addition.

There is one other feature of the commutation relations for SUq(2) that deserves comment:

the relations (2.1) and (2.2) single out d,q and thus appear to break the rotational symmetry.

For generic values of q this seeming result is incorrect: the degeneracy structure of q-group irreps

is in fact preserved, a consequence of the Rosso-Lusztig theorem. (We take this opportunity to

note that reg. [6] is misleading on this particular point.)

For completeness, since we have eml_hasized the importance of the complete Hopf algebra

structure, let us give explicitly the remaining Hopf algebra operations for the quantum group
svq(2):

A(d_) = d,q ® 1 + 1 ® d_, (2.14)
dq

A(J_) = J_ ® q:-/- +q-_4 _-q ®J_, (2.15)

e(1) = 1, e(d ) = e(J,q) = 0, (2.16)

7(d_) = _q=F½j_, 7(Sg) - -Jg. (2.17)

3 q'Boson operators

In order t_understand the meaning of the deformed commutation relations (2.1) and (2.2)

it is natural to look for representations of the operators J_:, J_ as finite-dimensional matrices.

For the usual angular momentum group, there is a standard way to do this: one uses the Jordan-

Schwinger map [7], which maps the 2 x 2 matrices {aT+, Jz} of the fundamental irrep into boson
operators.

Let us recall how this works. One begins with a realization of the operators J±, J, in terms

of a pair of commuting bos0n creation operators (al' a2) and annihilation operators, (_1,_2),

and defines the Jordan-Schwinger map:

J+-'* al"_2, J- -'* a2_l, J, _ ½(al_l -a2_2)' (3.1a, b,c)

This map preserves the angular momentum commutation relations (that is, the Jordan-Schwin-

get map is a homomorphism) and from this map one can explicitly construct all unitary irreps
of SU(2).
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Is there a q-analog to the Jordan-Schwinger map? There is indeed! (Refs. [8,9,10]). The

basic idea is to construct q-analogs to the boson operators. To do so introduce the q-creation

operator aq, its Hermitian conjugate the q-destruction operator a-q, and the q-boson vacuum ket

vector [01 defined by the equation

a-q]0) =0. (3.2)

Instead of the Heisenberg relation, [_, a] = 1, let us postulate the algebraic relation:

a-fqaq _ q½ aq a-fq= q-Y_-, (3.3)

where Nq is the Hermitian number operator satisfying

[N q, a q] = aq, [N q, a_] = -a_, with Nq[O) - O. (3.4a, b, c)

This algebra is a deformation of the Heisenberg-Weyl algebra, which is recovered in the limit

q ---* 1. (Note that the q-number operator N q is now no longer the operator a_ as in the

Heisenberg case.)

Orthonormal ket vectors corresponding to states of n q-quanta are given by:

In), - ([n]q!)-½(a')"lo),

with: Nqln)q = nln)q.

It is now easy to define a q-analog for the algebra of the generators of the quantum group

SUq(2). In the language of q-boson operators, one defines a pair of mutually commuting q-bosons

q and a_i obey equations (3.3), (3.4) and, in addition, theq for i --- 1, 2. That is, for each, i, a ia i

relations:
q _-4/for i # j: = = [a,,a,l = 0. (3.7)

The generators {J_, J[, Jl} of SUq(2) are then realized by

q_ jq q=q 1 qJ_ _ ala2, --* a2al, J_ ---*5(N 1 - N_). (3.8a, b, c)

The construction of all unitary irreps of the quantum group SUq(2)--for generic q--is now
straightforward [6] but will be omitted.

Remarks: (1) We have emphasized in Section 2 that the Hopf algebra structure--more

particularly co-multiplication--is an important constraint on possible deformations. Let us note

that the deformation of q-bosons given by eq. (3.3) does allow a (non-commutative) co-product

to be defined. However, as shown by Prof. T. Palev (private communication), a complete Hopf

algebra structure is not possible.

(2) The deformation given in eq. (3.3) can be put into many differently appearing, but

equivalent, forms. For example, if we define A q = aqq¼ N' and "_ = q¼N'aa_, then eq. (3.3)
becomes:

-_A q = qA_] q + 1, (3.9)

a form often found in the literature.
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4 The q-Harmonic Oscillator

We have motivated the introduction of q-deformed bosons as a way to implement the

concept of a quantum group.
Let us now examine the q-harmonic oscillator on its own merits. From the q-boson operators

a, _ we can define q-momentum (P) and q-position (Q) operators in the same way as for boson

operators. That is, we define:

/ h aq
Q - vV2m_( + _)"

The commutator [P, Q] is then (using (3.3)):

i[P, Q] = h['Sq,a '] = h([Y + 1], -[glq). (4.3)

The eigenvalues (N --* n) of the right hand side are therefore

hCOSh(¼(2n + 1)log q)
_([. + 1], -In],) = cosh(¼logq)

(4.4)

One sees that the Heisenberg uncertainty in the q-harmonic oscillator is minimal (and indepen-

dent of q) only in the limit q --* 1; the uncertainty increases with n for q _ 1.

The q-harmonic oscillator Hamiltonian is defined from P, Q according to

p2 rnw2

_- 2--_+ _ &,

hw.q q
= -_-(_ a + aqa-_). (4.5)

From (3.3) we find

"H = 2_-([N + 1]q + [Nlq), (4.6)

showing that the eigenvalues of 7"l are

E(n) = _([n + 1]q + [n]q). (4.7)

The normalized eigenstates In) are:

In) = ([n]!)-½(aq)"lO). (4.8)

The energy spectrum for the q-harmonic oscillator is uniformly spaced only for q = 1,

the undeformed case. For q large, one sees that the spectrum becomes exponential: E(n) ,-.,

h_q_(1 + o(,'-)).
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5 Coherent States

It is natural to ask, once one has defined q-deformed bosons, whether or not coherent states

exist for this new harmonic oscillator structure. The answer is yes [11], as one might expect.

Let us review this structure briefly here.

There are two key characteristics of the (usual) coherent states, as identified by Klauder

and Skagerstam [12]:

(a) continuity of the coherent state Iz/ as a function of z.

and (b) the resolution of unity:

1 = J Iz)(zl du(z), (5.1)

where the integration takes place with respect to a positive measure dis(z).
The best known examples of coherent states, which certainly satisfy these two charac-

teristics, are the canonical coherent states generated by the (usual) creation and annihilation

operators a and 6. These canonical coherent states are defined by [8]

_o Zn

= e-I:l,/1 _ _ In), (5.2)
rl=O

where in) denotes the orthonormal vectors generated by the creation operator a.

We can immediately write down q-coherent states [z)q by replacing the boson operator of

(5.2) by its q-boson analog, and replacing the exponential in (5.2) by the q-ezponential function

expq:

Iz), = (exp,(Izl2))-½expq(za*)lO)q
oo zn

= (exp_(1:12))-{' _ _1"),. (5.3)

These states satisfy:

_qlz)q= zlz)q, (5.4)

showing that the q-coherent state Iz)q is an eigenstate of the annihilation operator a-i with

eigenvalue z and, since z = q(zla-ilz)q (assuming the states Iz)q are normalized), the label z is

the mean of a_ in the state Iz)q. The definition (5.3) is not a unique q-extension of (5.2), for we

x of exponential functions in [13]; this would introducecould have chosen any one of the family eq
explicit q-factors in equations such as (5.4). We outline below how the particular q-harmonic

oscillator model of Section 4 (above) leads naturally to these q-coherent states. (The states (5.3)

were first considered in Ref. [8] and subsequently also in Refs. [14-17]. In fact, as with many

q-analogs of classical and quantum concepts, some q-generalizations were obtained before the

appearance of quantum groups [18]).

Let us now consider the two characteristic properties of coherent states, continuity and

completeness. (a) The continuity properties of lz)i, as a function of z, follow immediately from

the continuity of the deformed exponential function, expq in (5.3).
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(b) The resolution of unity within the Hilbert space, in terms of the states Iz)q, has been

considered by Gray and Nelson [15] and also Bracken et al [17]. The q-analog of Euler's formula

for F(x) is required, and is expressed in terms of the q-integration defined in [13]:

eeXpq(-x)z"dqz = In]q! (5.5)

where ¢ is the largest zero of expq(x) (note that, unlike ez, expq(x) alternates in sign as z
-c_). A natural restriction is Izl 2 < ¢ and then, with the help of (3.5), the resolution of unity

can be derived [17],

1 = ] Iz), ,(zl d_(z) (5.6)
P

d

where the measure dl_(z) is given by

d_,(z) - _ expq(Izl2)exp,(-Izl2)d, lzl2dO, (5.7)

where 0 = arg(z). It follows from (5.6) that an arbitrary state can be expanded in terms of

the states ]z)q. (In fact, q-coherent states are overcomplete, for an arbitrary q-coherent state is

non-orthogonal to Iz)q, for any z.)

Coherent states arise naturally within the framework of the harmonic oscillator of Section 4,

by defining boson operators from position and momentum operators, Q, P, putting dimensional

factors to unity:

1 iP). (5.8)a' = _(Q - iP), a'5q = 7_(Q +

Conversely, we can use these formulas to define momentum and position operators and so, given

q-boson operators, these formulas also provide convenient q-analog definitions of q-momentum

and position operators [8].

Alternatively, one can define a q-harmonic oscillator by starting with SchrSdinger's equation

and replacing the derivative by a finite difference operator which provides an alternative form

for the deformation. We use the following q-derivative,

Vqf(x) = f(xq) - f(z)
x(q- 1) ' (5.9)

and the q-harmonic oscillator states are now determined by the equation

1 2_(-v, + qx_)¢(x) = E¢(x). (5.10)

Effectively, we have chosen q-momentum and q-position operators Qq, Pq satisfying

qQqPq - PqQq = i, (5.11)

with the realization Qq = x, Pq = i_Tq. (This is yet another realization different from (3.9) for

the deformation.)



Solutionsof the differenceequation (5.10) have been given by several authors [19,20], and

involve q-extensions of the Hermite polynomials. The ground state ¢0 is given by

(-)"q-_:"
¢o(_)= _ ,

ricO

(5.12)

where [2n]q![ = [2n]q[2n - 2]q... [2]q. Upon using the identity [2n]e = [2]q[n]q, we can identify

the function (5.12) as one of the family of q-exponential functions given by Exton [13].

The eigenstates Cn of the deformed SchrSdinger equation (5.10) are labelled by an integer

n, and the energy levels are En = ½12n + 1]q. (For comparison, note that in the model defined

in Section 4, the energy levels are different: E, = ½([n + 1]q + In],) = ½12n + 1]q,/=). The

eigenstates of (5.10), ¢,, take the form

¢,(x) = H_(x)¢0 (zq-_), (5.13)

where ¢0 is given by (5.12) and H_(z) denotes a q-extension of the classical Hermite polynomial,

with the explicit formula:

.._ r _(=-+l)-t.,rx q ' (5.14)
" '

r_O

where the coefficients C_ are given (for even or odd r) by

c_,,= (-)"q_"+''/_[2,_]_[2,- 4]_...[2n-4m +4]_

C2m+i= (_)mq(2.+1),,q_[2n _ 2]q[2n- 6]q... [2n- 4m+ 2]q.

(5.15a)

(5.15b)

From the explicit eigenstates one can identify q-boson operators which step between the eigen-

states ¢,(x), from which one can form the q-coherent states of this model of the q-harmonic

oscillator [20].

6 The q-Symplecton

The idea behind the symplecton construction has a close relationship to harmonic oscil-

lators. In the Jordan-Schwinger realization of angular momentum one obtains uniformly all

unitary irreps in terms of two independent harmonic oscillators. This naturally suggests the

question: can one do better and realize all irreps uniformly in terms of one harmonic oscillator?

The answer is (of course) yes--this is the symplecton realization [7,21], which uses the creation

operator (a) as the spin-½ "up" state and the destruction operator (_) as the "down" state. This

implies that there is no longer a vacuum ket i0) annihilated by _. Instead we define a formal

ket [) and seek to interpret both a[) and _1) as non-vanishing vectors.

Operators in this symplecton calculus will be defined as polynomials over (a, _) with com-

plex numbers as scalars. State vectors will be defined as operators multiplied on the right by

the basic formal ket, i.e.,

Iv)---o.I), (6.1)
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where Iv) is a vector and O,, the operator creating this vector. The action of the generators on
state vectors will be defined as commutation on the relevant operator Ov, that is,

J.(l,))- [J,, (6.2)

To be completely explicit we are considering (for the undeformed symplecton) a single boson

operator a and its conjugate _ obeying:

[_, a] = 1, (6.3)

all other commutators zero. The generators of SU(2) axe realized by:

1 a2 (note the sign!) J_ ---* ½_2, J0 -'* ¼(a_ + _a).J+ ---, -_ , (6.4)

It is easily verified that this realization obeys the desired commutation relations:

[J0, J+] = +3"+, [J+, 3"-] = 2,/o. (6.5)

Note that the action of these generators on symplecton state vectors, verifying the commuta-

tion relations, succeeds precisely because of the Jacobi identity. Using commutation under the

generators, the labels J and M can be assigned to define characteristic polynomials TTM. The

angular momentum irrep eigenvectors are then given by the set of vectors _M I)"

The adjoint polynomial (pM)adj is defined by:

(_)_J = (--1)J-M_; M, (6.6)

with _ taken to be adjoint to a. The adjoint (dual space) vector to "PMI) is defined as (1(79M) adj.

The crucial problem in this (undeformed) symplecton construction is the proper definition
of an inner product for the Hilbert space of the irreps. Omitting details [7], the answer is

obtained from the multiplication law for symplecton eigen-polynomials.

THEOREM [21]: Let _ and 7_ff be normalized eigen-polynomiaJs of the generators Ji. Then

these polynomials obey the product law:

a+b

= c,b,c pa+_ (6.7a)

c=la-bl

where

(clalb) - (2c + 1)-½. A(abc),

[ ]½

and ¢-,b_c is the usual Wigner-Clebsch-Gordan coet_cient for SU(2)."-'/3a

(6.7b)

(6.7c)
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Usingthis theoremit is now easyto understandthe inner product (#[u): one appliesthe
product law to the polynomialsO_adj and O_ and then projects onto the J = 0 part. The

Wigner-Clebsch-Gordan coefficient (for J = 0) quite literally defines here a metric!

Remark: It is clear also that one can extend this structure by adjoining additional symplec-

tons. That is, one considers a symplecton having n "internal" states: al, a2,...,an and their

conjugates al, as,..., _,. Just as the adjunction of a boson with n "internal" states suffices to

realize SU(n), so does an n state symplecton suffice to realize the structure Sp(2n).

An important consequence of the symplecton construction is the definition of a new invariant

angular momentum function: the triangle coefficient A(abc), eq. (6.7c). This triangle function,

A(abc), has gratifyingly simple properties. It is a function defined symmetrically on three

"lengths" or "sides" a, b, c, which (from the properties of the factorial function) vanishes unless

the triangle conditions (that the sum of any two sides equals or exceeds the third side) are

fulfilled. The symplecton realization of angular momentum yields the triangle rule of vector

addition in a particularly graphic way.

The triangle function is clearly a rotationally invariant function defined on three angular

momenta; as such, it fits very nicely into the series of invariant functions defined on 3n angular

momenta: (6j) [Racah coefficient] and (9j) [Fano coefficient]. The Wigner coefficients are often

called "(3j) symbols", but in view of the fact-----emphasized by Wither--that these coefficients

are coordinate frame dependent (i.e., involve magnetic quantum numbers) one might consider

the triangle function as the more appropriate to designate as the (3j) symbol.

The triangle function obeys the following transformation law, Ref. [21]:

A(acf)a(bdf) = (2f + 1) _ A(abe)_(cde)W(abcd; el). (6.8)

It is quite remarkable that the Racah function appears here as a tetrahedral function coupling
four triangles by pairs.

Having reviewed now the symplecton construction it is time to return to our main theme:

can one define a deformed symplecton ("q-symplecton") using a single deformed harmonic os-

cillator? The answer (of course) is yes, but there are some surprises [22]. We will develop the

deformed structure using finite q-transformations, which provides further insights into the de-

formation process [23]. (The infinitesimal approach--which obtains the q-generators {J_} using

a single q-boson, the q-boson analogs to eqs. (6.4)--was developed earlier in ref. [24].)

Let aq and -dq be q-boson creation and annihilation operators obeying:

1

-dqaq -- q_aq-dq = 1. (6.9)

This q-commutation relation is invariant under the transformation of q-spaces [23]:

where:

(6.10)

ux = q½zu, vz = q½zv, yv = q½vy, (6.11a, b,c)

yu = q½uy, uv = vu, (6.lid, e)
--t 1

xy-q 2vu =yx-q2vu = l. (6.11f)

79



The adjointto (a,_)is: [q¼_,-q-¼a) and obeys:

/ \

with:

z* = y, u ° =-q-½v, v ° = -q½u, y* = x. (6.13a, b,c,d)

Let us denote the q-symplecton eigenpolynomials by: Q_n. Then Q}n is a polynomial of

order j + m in a and j - m in _ and defined to transform as:

QT(a',$) = u, (6.14)
I1

Here d_,m(x, u, v, y) is the q-rotation ma_riz which obeys:

J

× (6.15)

where qC::: are q-WCG coefficients. It follows that the set {Q_, m = -j,-j + 1,... ,j} is an

irreducible tensor of rank j. Moreover Q_ is a q-symmetric function:

([j _Jm]) ½ Q_ = q-Ci+'_(i-")aJ+'n'_J -"

+ q- cJ+"_J-m_+½aj+,,*-l-aa-_j-,',-1 + ...

(./+m)(./- m) ± t .. . (j- m)(j+m) - -

+ q • T_y(a, a) +... + q " nJ-ma _+m. (6.16)

Here g is the least number of transpositions needed to put f(a, "a) in normal-ordered form.

Example: [4]½Q_ = q-la3"a + q-¼a2"aa + q_a'aa 2 + q]'aa 3. (6.17)

As is clear from our review (of the usual symplectons), the major task is to prove a product

law for the deformed q-eigenpolynomials, Q_.

THEOREM [23]: Let Q'_' and Qj,"," be normalized q-eigenpolynomials. Then:

m' m" J'J"i
Qi' (a,'_)Q.f, (a,'d) = y_ N(j'j"j) " ,C,,,,.,,m " QT(a,'ff), (6.18)

J

i'J"1
where: qC,,_,,,,,, m is the q-Wigner-Clebsch-Gordan coet_cient, and N(jtj"j) is a scalar function

of q dependent only on j',j",j.
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N(j'j'j) obeys the recursion relation:

([2j"][2j + 1])_N(j'j"j)=(_'-j" +j + 1],[j' + j" - j]q)½

xN(j',j" x •-_,3+½) N(j+½,!,j_2 ,

+ ([j' + j" + j + 1]q[-j' + j" + j]q)½

xN(j',j" x • (6.1o)

The determination of the coefficient N(j_j"j) is very difficult. It helps to see a few special
cases. We find:

N(j 0 j)= 1, (6.20)

N(jl,j2,ja + j2) = 1 (6.21)

N(j,},j-½) = -q-¼F(2j)
([2j][2j + 1])½' (6.22)

with: F(n) =_ [1] + [2] +... + [n], F(0) = 0. (6.23)

We remark that the appearance of the function F(n) is characteristic of relations involving the
q-symplecton [23].

One can prove the further property, at this stage, that the function N(j r, j", j) is symmetric

in the first two indices. One of the surprising properties [23] is that the (q-rotationally invariant)

function N(j',j',j) is not symmetric under q ---, q-X.

These results show that N(jt,j",j) is not the proper q-analog to the triangle function

A(a, b,c), despite the fact that the q-symplecton product law seemingly appears to define

N(j',j',j) in the proper form. It has been shown in Ref. [22], that the proper way to proceed
is via the definition:

/F(2c)![2a+ 1]![2b+ 1]!
A,(abc) =_-(-1)'+*+CN(abc)q_ V _F(_cTI. (6.24)

This q-triangle coefficient has the desired symmetry. As shown in Ref. [22], Aq(jaj_ja) is totally

symmetric in if_ arguments jx, j2, j3--precisely the same property possessed by the (undeformed)

triangle coefficient A(jlj_j3) in (6.7c).

Moreover, it is now possible [22] to obtain the proper q-analog of (6.8):

Ao(acf)A(hdf) = [2f + 1] Z Aq(abe)A,(cde)Wq(abcd; e f). (6.25)

Let us conclude by citing the product law for q-eigenpolynomials in the proper form now

to show the desired q-analog structure [22]:

a+b

Q_Qf = Z [2c + 11-½ A,(abcl(ba,Salca +,81}Q_+". (6.26/
,:=lo-*[
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Note the surprising appearance of the q-WCG coefficient involving q-1 as the proper form to

show the analogy.

Space is lacking for more than this brief survey of the q-symplecton and the associated

subtleties of q-analysis. More detail can be found in [22], and related discussions--from the

aspect of Weyl-ordered boson polynomials--is given in [25] and [26].
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