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Abstract

We discuss the equivalence between the q-deformed harmonic oscillator

and a specific anharmonic oscillator model, by which some new insight into

the problem of the physical meaning of the parameter q can be attained.

1 Introduction

Recently there has been a great deal of interest in the study of quantum groups.

Of particular interest here is the development by Macfarlane [1] and independently

by Biedenharn [2] of the realization of the quantum group SU(2)q in terms of the

q-analogue of the quantum harnomic oscillator. Although many aspects of the q-

deformation of the bose harmonic oscillator algebra have been investigated, still one

of the most appealing issues is perhaps the physics behind the parameter q. Here

an attempt is made in this direction.

We show that the q-deformed harmonic oscillator model can be used to describe

a specific anharmonic oscillator. Thus a q-deformation can be understood as an

effective anharmonic deformation, where q is proportional to the strength of the

harmonicity. The anharmonic and the q-deformed oscillator models are presented

respectively in section 2 and 3 and their equivalence is therein discussed. The

latter can in turn be used to examine interesting non-classical features induced by

a q-deformation during the time-evolution of a SU(2) coherent state. This is put

forward in section 4, and discussed in [3]

2 Anharmonic oscillator

The anharmonic oscillator we wish to discuss has the hamiltonian

H:_ = Ho + f__N3 = N + 1 t_ N3= + --
_o Z o.Jo

(1)
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where Ho is the free hamiltonian of the simple harmonic oscillator whose funder-

mental frenquency is w0. N =btb is the number operator, whereas bt and b are

respectively the lowering and raising bose operators. H_ is in units of w0 when H0

is in units of w0. The anharmonic term is taken proportional to N 3, and the anhar-

monicity parameter is positive: specifically we take here # _= Wo72/6. In the limit of

small anharmonic deformations the hamiltonian in Eq.(1) can be discussed in terms

of

2(btb + 1) 2 7-1
= V_' [1 + "7 -_-: _.i ] 9t-y = sinh 7 (2)a.y

It is readily seen that in this representation

H._ = fl.y(a_a.y + 1/2) (3)

is indeed equivalent [4] to H_ in Eq.(1).

States of our anharmonic oscillator can be constructed as quantum states for H_.

First note that the vacuum ]0}._, defined as a.y]0). _ = 0, is the same as the vacuum 10)_

for the harmonic oscillator. However, eigenstates of the number operator N_ = a_a.y
substantially differ from those for:the harmonic Oscillator: The former can be defined

as

InL_ (a;)" (4)

while the normalization condition ._(mln)- , = 5,,,, determines the c_,.y's:

.),2n23 '2k2 - 2 T -n ___
c,_.y=nIa_'_fl(l+-_-----.31. ) =n.a._ [(1+2-_.)21!, Co,_ 1 (5)

k=l = :

Itere we will be concerned, in particular, with coherent states. In the basis {ln)-_} (n =

0, 1,2,...) these can be expressed as [5]

oo ¢_n c_ ot2n

I_>w = C.) _ _]n).y, C_7== Z (6)
n=O _/Cn,'V n=0 Cn,"r

Where C_ derives from the normalization condition _ (c_l_)_ = I. The resemblance of

the la)_'s with coherent states of the harmonic oscillator is resdily seen: however, we

should stress that only in the limit 7 -4 oe the anharmonic and harmonic oscillator

models are exactly the same.

3 q-deformed harmonic oscillator

Let us recall the (b, b*) bose operators for the harmonic oscillator introduced earlier.

They satisfy the Weyl-Heisenberg algebra

[b,b )]= 1 [N,b )] = b? N = b*b (7)

Macfarlane [1] and Biedenharm [2] have discussed a deformation of this algebra so
that

aqa_ -- qa_aq = q-N [N, a_] = a_ (8)



and, in particular, its realization in terms of a q-deformed harmonic oscillator. The

parameter q [6] characterizes the strength of the deformation.

We explore in this section the connection between q-deformations and anhar-

monic deformations of the harmonic oscillator. We will first study the effect of a

q-deformation on the states of the harmonic oscillator, similarly to what was done

in the previous section for the anharmonic oscillator model. By recalling that the

q-operators can be realized in terms of the bose operators of the form [1, 2]

l_]qb; -t /[N + 1]q
aq=V N+I 4=ov ;y , (9)

where [x]q - (q= - q-=)/(q - q-l), we first construct the quantum states for the

q-harmonic oscillator. The q-deformed vacuum is defined as aqlO>q = O, and since

aq is a function of b and power of btb, [O}q and the vacuum 10> of the harmonic

oscillator turn out to be the same. Eigenstates of the number operator Nq = a_aq
can be defined as

(al)',{o> c,,,,{n)q (io)
=

With the choice of Cn,q =- [_qv., where in]q! = [n]q[n - 1]q... [1]q, the set of eigen-

vectors {In)q} (n = 0,1,2,...) is orthonormal (q(rnln)q = 5m,n) and generates the

Fock space for the q-deformed oscillator. On the basis {In}q} (n = 0,1,2,...) one
can express the coherent states of the q-deformed harmonic oscillator as

I_}q = Cq,.,=o£ Cv/_,qIn)q Cq = [expqc_2] -'/2 (11)

where the factor Cq is again set by the normalization condition q(a{a)q = 1. Here

cxpq stands for the q-exponential, i.e. expq = _.,,°_=ox/[n]q!. Again note that as q _ 1

this q-deformed model exactly reduces to that of a simple harmonic oscillator.

A connection can be established between coherent states of q-deformed harmonic
oscillator and coherent states of the anharmonic oscillator in the sense that there

exists a condition under which the la)q's and the [a).y's are equivalent. Namely, for

oscillator displacements a and -_ (or q) such that [3]

(_(a + 8) < In -z q,/4 (12)

we have {a)q --, {a)_, provided 3' = lnq. An analytic proof of this equivalence

is beyond the aim of this paper and will be reported elsewhere [3]. However, we

can compare here the probability number distribution for the {a).y's to that for the

{(_)q's, that is, Pg(a) = I<nl_>.,I * and P_((_) = I<_l_)ql _. Owing to the definition
of probability as overlap over the same state In), equal distributions would infer

the equivalence of the states la)_ and {a)q. A numerical evaluation is reported in

Fig.1 for values of q and _ respectitively conforming and not conforming with the
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condition (12). In this latter case P_(a2) is strongly shifted with respect to P_2(a2),

whereas in the former case the two distribution are nearly the same.

In conclusion, for appropriate displacements (a) and anharmonic couplings (p)

coherent states of an oscillator with anharmonicity ,,_ N 3 (N is the number of

particles) are correctly described in terms of coherent states of the q-deformed Lie

algebra of SU(2), where q _ exp(tt/Wo) 1/2. This result is particularly important

because the parameter q can be given a direct physical meaning: it is proportional

to the square root of the anharmonic coupling strength.
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FIG.1. Probability number distributions for coherent states (la)q,, lo_>q2)

of a q-deformed quantum oscillator and for coherent states ([a)_,, [c_)_)
of a quantum oscillator with a third order anharmonicity in the par-

ticle number. From their equivalence one can infer the equivalence

between the corresponding states, which holds depending on whether

the oscillator parameters satisfy (_1 = 4, 71 = 0.05) or do not satisfy

(el = 10, 71 = 0.1) the condition (12), respectively. Hereq = e_. P2°(a)

is a reference Poission (q0 = 1 distribution with a = 7.
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4 q-deformation and non-classical harmonic os-

cillator

The equivalence we have established between anharmonicity and q-deformation of a

harmonic oscillator is a very helpful one: not only does it provide the q parameter

with a definite physical meaning, but also dose it turn out to be useful for inves-

tigating and attaining a sound physical interpretation of interesting non-calssical

effects induced by a q-deformation during time-evolution of a SU(2) coherent state.

The most important of these effects is a q-dependent self-squeezing: i.e. a reduction

of the uncertainty expactations of the two orthogonal components (quadratures) of

the oscillator field below their vacuum values that varies with q. A q-deformation

does also alter the minimality properties of an initial mimimum uncertainty co-

herent state, but not its possionian counting statistics. The connection between

q-deformations of the harmonic oscillator and these rather interesting phenonena is

however beyond the purpose of this paper and will be discussed elsewhere [3].
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