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Abstract

A review on the current efforts to approach and to surpass the fundamental limit in

the sensitivity of the Weber type gravitational wave antennae is reported• Applications of

quantum non-demolition techniques to the concrete example of an antenna resonant with

the transducer are discussed in detail. Analogies and differences from the framework of the

squeezed states in quantum optics are finally discussed.

1 Introduction

The importance of detecting gravitational waves, as frequently pointed out, consists not only

in verifying one of the most direct and astonishing predictions of the simplest metric theory of

gravitation, i.e. General Relativity, but also in the possibility to open new windows on phenomena

in the Universe in which only violent releases of gravitational energy occur [1]. Gravitational waves

have not yet been directly observed because of the extreme smallness of the energy released in

actual detectors even if they are emitted by astronomical systems. The hypothetical sources

which are strong candidates for emitting gravitational waves, according to our understanding of

them due to information collected via the electromagnetic astronomy, are divided into two classes

based upon the time evolution. Impulsive sources can be catastrophic events such as supernovae

explosions and collapsing binary systems• The frequency spectrum of gravitational waves of this

kind is flat up to 10 3 Hz, these impulsive phenomena having a characteristic duration of the order

of milliseconds. One expects a perturbation of the metric tensor h _ 10 -21 - 10 -is for events in

our Galaxy and h ._ 10 -23 - 10 -21 for events in the Virgo Cluster. Periodic sources can be pulsars

if they deviate substantially from axia _.symmetry. The expected frequencies range is in this case
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between 10 -2 and 102 Hz, while h _ 10-2; - 10 -2s. The efforts to detect gravitational waves

have been concentrated from the very beginning on the impulsive events because of the larger

expected perturbation to the metric tensor. It turns out that the modulation of the space-time

induced by a gravitational wave on an extended body can also be seen as a production of a force

field in it. Detecting the gravitational wave is therefore translated into the problem of detecting

this small force of geometrical nature and the displacements produced by it in a test mass. The

displacement induced in a body of reasonable sizes, _ 1 m, has therefore an amplitude of the

order of 10 -21 if the event is due to a supernovae in the Virgo Cluster. The accuracy required

to measure such a small displacement is so high that the quantum nature of the detector has to

be taken into account because the De Broglie wavelenght of a macroscopic test mass is of the

same order of magnitude of the expected signal due to the gravitational waves. Here we report on

the status of the art of the measurement techniques developed to allow monitoring of a class of

gravitational wave detectors in a quantum regime. After a brief introduction for schematizing the

detectors of gravitational waves and the sensitivity limit due to the fundamental noise in part 2,

we introduce, in part 3, the quantum non-demolition measurement schemes for overcoming these

limitations. The applications of stroboscopic and continuous quantum non-demolition schemes

for a gravitational bar antenna resonant with the transducer are described respectively in part

4 and part 5. Conclusions deal also with the analogies and the differences from the quantum

optics framework and the importance of this topic for understanding quantum mechanics applied

to single macroscopic degrees of freedom repeatedly monitored.

2 Weber gravitational antennae:fundamental sensitivity

limits

The gravitational wave detectors devised so far are based upon monitoring of the distance between

two masses localized at different points. The equivalence principle requires a non-local, extended,

structure of a gravitational wave detector because it is possible to nullify locally the effects of a

gravitational field by means of a suitable choice of the reference frame.
Let us consider two masses in free fall: what is then measured is their variable distance which is

supposed to be much smaller than the gravitational wavelength. The effect of a gravitational wave

coming along z axis with proper polarization is to increase of h/2 the distance along y axis and

to decrease by h/2 the distance along x axis. A classification of the gravitational wave detectors

divides these into non resonant and resonant detectors if the two masses are respectively free or

elastically coupled.

In non resonant detectors the distance between the two masses is measured by means of

interferometric devices. The arms of the interferometer proposed so far are of the order of Km and

use of multiple reflections allows an increase in the physical path by several orders of magnitude.

In this contribution we will not be concerned with this kind of detector but we shall instead

consider the resonant detectors (Weber type gravitational wave antennae), the quantum limit in a

interferometric antenna being enforced by the shot noise and the momentum fluctuations imparted

by the photon flux to the central mirror of the interferometer [2].

Resonant antennae are typically cylindrical bars of materials having low internal dissipation.

The materials used are silicon, sapphire, niobium or a particular aluminum alloy (A1 5056) and
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the mass of the antennae is a few tons.

One can show that the motion of the ends of a cylindrical bar of mass M and length L

oscillating in its fundamental longitudinal mode is equivalent to that of a harmonic oscillator of

mass M/2 and equivalent length 4 L/Tr _. If x is the displacement from equilibrium position the

equation of motion of the Weber oscillator is

= Lti(t) (1)
To

where To is the damping time, w0 is the proper frequency and h(t) is the amplitude of the incoming

gravitational wave. Th e forcing term due to the gravitational field is proportional to the distance
between the two masses. From this formula one can calculate the cross section for tl_e transfer

of energy from the wave to the antenna and one finds that this is proportional to the mass of

the antenna and to L 2. The proper frequency w0 is chosen to be tuned with the frequency of the

expected wave (103Hz) and the corresponding wavelength is very large compared to the size of the

antenna. To amplify the extremely small oscillations coupling of the bar with another oscillator

of very small mass is used [3],[4]. In this case a system of two coupled harmonic oscillators is

obtained in which the energy is continuously transferred back and forth from M to rn via beating.

If the dissipations in the two oscillators are made negligible the amplitude of the oscillations in the

second resonator is increased by a factor l/v/- _ with respect to the first resonator, where # = re�M,

provided that the frequencies of the two uncoupled oscillators are made coincident. The motion

of the transducer is transformed into an electric signal by means of a variable capacitor and an

amplifier schematized as an ideal amplifier of gain A and two noise sources generators with current

and voltage spectral densities respectively Sin and SVn. The sources of noise are the thermal noise,

i.e. Brownian motion of antenna, which gives a contribution KBT to the energy of the oscillator,

being KB the Boltzmann's constant and T the thermodynarnical temperature of the antenna and

the amplifier noise, which is expressed by means of the parameter T,_ = (SV, SIn)1/2/KB, called

noise temperature of the amplifier. This last noise has two effects: it contributes directly as an

additive noise source at the output and it acts on the transducer leading to an increase of the

temperature. In other words every transducer is at the same time an actuator and the amplifier

noise gives rise to a back-action force acting on the mechanical oscillator.

If we define a noise temperature Tell as the temperature which corresponds to the minimum

detectable energy Eefl = KB T_f! transferred to the bar by an impulsive signal with an output

signal/noise ratio equal to 1, we find, using a Wiener algorithm in the data analysis [5]

where Q = aJ0r0 is the quality factor of the mechanical system, fl is substantially the fraction of

energy transferred to the electromagnetic circuit by the bar through the capacitive coupling and

t0 the impedance matching factor defined as

SV,, 1

_o - SI,_ Zo" (3)

For the antenna of the Rome group contlnously operating since one year at CERN one has a

thermodynam!cal temperature of _ 4.2K; the other parameters are Q __ 5 • 10 6 and an amplifier
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noise temperature T, -_ 10-TK [6]. It has been possible to achieve this last result making use of

a SQUID amplifier. So one gets for T, fl a value of .._ 10#K, which is not far from the quantum

limit temperature

hw

TQL = _ --_ 10-SK. (4)

One expects that the force with which a gravitational wave acts on the antenna is by many

orders of magnitude below the thermal noise even at thermodynamical temperatures as low as

10inK which is the temperature at which the third generation antennae will operate. However,

due to the particular features of the data analysis based on the variation of energy in the oscillator

in the time, the quantum regime is reached earlier than as expected by (4). By writing the amount

of energy which is exchanged during the measurement time At between the harmonic oscillator

and the thermal reservoir and the quantized energy introduced by the measuring apparatus is

easy to show that the quantum regime is obtained when the following condition is satisfied

KBTAt
--<<h (5)

Q
This can be also shown by reasoning in terms of displacements instead of energy. The variation

of the length of the bar due to a gravitational wave with amplitude h is, according to (1)

Al h

T---2" (6)

Because typical values for h are h = 10 -21 (which corresponds to a supernova explosion in

the center of the Galaxy) taking L = 1 m, one gets from (5) a variation of the length of the bar

AL _ 10 -19 cm which coincides with the standard quantum limit (i.e. the root square mean of

the position of a harmonic oscillator in his fundamental mode)

(7)

It follows therefore that if we do not overcome this limit no information can be obtained on the

evolution of the harmonic oscillator.

In these conditions one can find a method to measure the position of the quantum oscillator

and to see if an external force has acted on it. However in doing this one must take into account

that the position operator :_(t) does not commute with itself at different times. Indeed with a

measurement of :_(t) at time t one puts the oscillator into an eigenstate of _(t); if one repeats

this measurement at the instant t + r one puts the oscillator into another eigenstate. It turns out

that it is not possible to know if the change in k(t) is caused by a very weak classical external

force or by the demolition of the state due to the previous measurement. What is needed is

therefore a measurement which does not prevent the execution of the next measurements of the

same observable avoiding the demolition of the projection of the state on that observable. This is

possible in non-relativistic quantum mechanics as we will discuss in the following considerations,

because this theory makes limitations only on a simultaneous, perfect knowledge of two canonical

observables.
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3 Quantum non demolition measurements

The introduction of the quantum non-demolition measurements (QND) dates back to an article

by Landau and Peierls [7] in 1931. However only recently, after understanding the role of quantum

mechanics in the fundamental limits to the amplifier sensitivity [8],[9] and under the request to

surpass the quantum limit in detectors of small displacements [10],[11], the problem has been

studied in detail [12],[13]. The idea of a QND strategy is to perform a series of measurements

of one observable of a single object in such a way that the act of the measurement itself does

not affect the predictability of the result of the next measurements of the same observable. In

order to do this the observable, the instants of time in which it is observed and the interaction

Hamiltonian should be all carefully chosen for a given dynamical system. For instance, a first high

precision measurement of the position of a free particle implies a large dispersion in the possible

values of measurements of momentum. If a second measurement of position is made, due to the

Heisenberg evolution, the result will have a large dispersion too. Instead, if a measurement of

momentum in a free particle is made at a given instant of time, a second possible measurement

will give the same result due to the constant value of the momentum between the two consecutive

measurements, provided that the interaction due to the first measurement has not demolished

the state. This simple example shows the route to define quantum non-demolition measurements.

Only particular observables which satisfy a commutation relation at different times ti and tj are

allowed to be monitored in a QND way, i.e. if

=0. (8)

Moreover, we must also take into account the perturbation on k(t) induced by the measur_g
apparatus which is coupled to the observed system by means of the Hamiltonian operator Hi.

To avoid changes in the expected value of the observable during the measurement the following
condition must be satisfied:

A

[_.(t),H,] =0. (9)

This condition assures that the interaction Hamiltonian is simultaneously diagonalizable with the

measured observable, no changes are induced in the measured observable during the measurement

time in which only the interaction Hamiltonian will be responsible for the time evolution. A

sequence of measurements performed under conditions (8) and (9) will give always the same result.

This is a definition of a QND measurement. If the instants of time in which it is satisfied (8) are

discrete the QND scheme is named stroboscopic or, in a realistic configuration with a duration of

the measurement small with respect to the characteristic timescale of the motion of the observed

system, quasi-stroboscopic [14],[15],[16]. Otherwise, having a continuous set of instants of time,
the QND scheme is named continuous.

In the case of a single oscillator one introduces the two components of the complex amplitude

xl = Re[( + ,m )e ] (10)
= 1m[( + i )e ]

such that Y'(t) = Xa cos wt + X2 sin wt. Their properties are
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A

dX1 dX2 ....

(a) d--7-=- d_ - 0 _ [X,(t),X, (t + ,)] = [X_(t),X_(t+ ,)] = 0 (11)

By using (a) and (b) we get

(b) [X'l(t),X'2(t)] = i____h_h. (12)
tTt(aJ

.--. ih
[k(t),k(t+r)]=-[X1,X2]{coswt sinw(t+r)-sinu_t cosw(t+r)}= sin wr. (13)

mw

This means that to do a QND measurement of the operator k(t) in a single harmonic oscillator

one needs the Hamiltonian (here 0 is the variable of the measuring apparatus which couples with

the oscillator)

H; = E0 6(t- --_)k(_ (14)

such that the interaction between the system and the measuring apparatus is turned on only when

k(t) commutes with itself, that is why this kinds of measurements are called stroboscopic Q.N.D..

For a component of the complex amplitude, X'-'I, a QND interaction Hamiltonian should be

[12]

Hi = EoX,_l (15)

that is approximately obtained by using the interaction Hamiltonian

Hi = 2E0 coswmt :_O (16)

provided a low-pass filter at wc << wm is used. For practical reasons a different pumping scheme

is used, namely an up-conversion around an electrical frequency we such that the interaction
Hamiltonian is now

= Eo cos ,_0t cos._mt k _ = @[cos(_0 + wm)t + cos(._ - ._)t] _ _ (17)

which allows an approximate measurement of Xx if a filtering around we is performed with a

selectivity such that the terms oscillating at we + 2win are made negligible. It has been pointed

out that the continuous approximate QND measurement scheme of one component of the complex

amplitude is obtai_led as a first order approximation of the corresponding strobosco2.ic scheme [17].

If we start from the interaction Hamiltonian of a stroboscopic measurement of X1 expressed in

terms of the physical observable

H"_ = Eo cosw_ t _ 6(t- n_)X10 = Eocoswet _-'_(-1)"6(t- n_')k 4 (18)

we will see that, by Fourier expanding the Dirac-distribution, it is obtained

_i = E0cos_ot _ cos(2,_+ 1)_t_ 0
Irl

(19)
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that, at the first order, is

Hi = Eo cos we t cos _lt_ 0 (20)

i.e. the usual approximate scheme for monitoring of X1. Thus knowing a QND stroboscopic

strategy it is simple to write the corresponding QND approximate continuous strategy. This

property will be particularly useful in the following considerations, where the more complicated

but realistic case of two coupled harmonic oscillators will be treated.

It has been pointed out that also in the classical regime, i.e. when the amplifier is not quantum

limited, the QND measurement schemes provide a better sensitivity because one phase of the signal

is shielded by the back-action force of the amplifier. A quantitative model in the classical limit

has been developed in [18]: it turns out that by writing the noise temperature as

= a- (21)
aJe r

for a standard 'amplitude and phase' monitoring is r < 1, and for a QND/BAE scheme r may

be greater than unity. This is due to the squeezing of the electrical noise into one mechanical

phase. A generalized uncertainty relation for the two classical conjugate observables due to the

back-action of the amplifier noise is introduced as

KBT,,
AX1AX2 __ (22)

2mwmwe

which may be obtained through a replacement on the right hand side in the standard quantum

uncertainty relationship
h

AX1AX2 _-- 2mwm (23)

of h with KBTn/a;2. If a squ_zing factor p such that AXx = pAX2 is introduced (p _ 0 means

a noise-free measurement of X1) the minimum burst noise temperature can be written as

2 2
mwmAX 1 1,,_ wl

Tb- 2 __ _l,,_-p (24)

showing that the r figure of merit has a dynamical interpretation in terms of a squeezing factor.

Recently, an interpretation of the back-action evasion strategies in which they are seen as an

alternative to the usual impedance matching for maximizing the signal to noise ratio has been

discussed [19].

The description of the QND measurement suggests how to measure small forces below the

standard quantum limit. By means of a simple integrationof the Heisenberg equation in presence

of an external force F(t), one gets for the QND operator X1

A _ ^f F(t)Xl(t) = Xa(t0) - I _sin _t' dt'. (25)
J,o 7r_co

A sequence of measurement of Xa will then give as a result a sequence of eigenstates linked to the
value of the external force
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_(t,r) = _(t0)- _/ F(t'---)sin wt', dt'. (26)
-'to

By means of successive measurements it is possible to study the form of F(t) simply inverting (26)

rnw d

F(_-) - sin-_t _(to, t) t=, (27)

The singularities for t = nrr/w correspond to a null information on the force acting on the

harmonic oscillator on some instants of time. This can be compensated by using a second oscillator

(i.e. a second antenna) with complex amplitude _ + i_ which has eigenvalues

 ir(t)if(t, r) = ((to) - --sin wt', dt' (28)
my3

here obviously the singularities are in t, = (2n + 1)r/2w.

4 QND quasi-stroboscopic scheme for coupled harmonic
oscillators

The current generation of gravitational wave antenna of the Weber type operates by means of

an antenna coupled to a small mechanical resonator. In such a way the energy deposited in the

antenna by a gravitational wave burst is transferred to the transducer. In the case of an ideal

transfer of energy, i.e. with both a perfect tuning of the two uncoupled frequencies and negligible

dissipations during the beating period, the amplitude of the oscillations in the transducer is larger

than that in the antenna by a factor equal to the square root of the ratio of the equivalent masses

of the two resonators. All the detectors operating in coincidence as described in [6] were equipped

with a resonant transducer and the same is also planned for the third generation of gravitational

wave antennas cooled at 50 mK now under development. It is therefore important to generalize

the previous considerations on the QND schemes to thissituation, as already outlined in [20]. As

we have seen, it is possible to schematize the gravitational cryogenic antenna and the resonant

transducer with two coupled harmonic oscillator having masses respectively rn, and rn_ (with

m_ << 1). The two coupled mechanical oscillators are described by the Lagrangian_=mx

L = _m_:x + -_myy - - -_muwu (y - x) 2 = T - , (29)

where the normalized coordinates _ = _x and 7/= v/-m--_yhave been introduced, together with
the matrices T and V

2 2

v = ( +
\ -v,'-ffw_ w_ )' (31)
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As we have already cited to obtain the maximum coupling the two oscillators should have the

same frequency w_ = wu = w, i.e. they should be tuned. In this case one finds the solutions

( "we _=wo 2 1+_4- 1+ (32)

whichwecanwritemoreeasilyintroducinga+=_+@a(l+ 4) obtainingw_:w_(l+o±).

The normal coordinates E-_ corresponding to the eigenfrequencies w+ axe linked to the physical

coordinates by means of an orthogonal matrix

_/_++2 ¢_/_++2 ¢-_'_ "
Let us introduce the complex amplitudes of the normal modes

._ =E+cosw+t- _ sinw+t

(34)

which satisfy the relations

[_¢,y¢]= _ix [x_-,2"_-]= _ix (35)
t.O+ W_

as well as

We can also rewrite the Hamiltonian H of the system as

(36)

The commutator [_(t).- k_), _(t + r)- &(t + r)] is calculated by writing _ and & in terms of the

complex amplitudes X_,z, X_a of the normal modes which are integral of the motion and by using

the same computation procedure which led us to formula (13). Using (35),(36) we obtain, finally,

the expression

wz ]
ih [_o_ sin w+r + - sin w_r

[_(t)- &(t),_(t + r)- 3:(t + r)] = Mw#_ [w _ --_ "

This quantity becomes, in the limit # _ 0

(3S)

ih w_ + w 2

[_(t)- 3c(t),_(t + r)- 3c(t + r)]- 2rn_w w 2 -
sin (or cos wsr (39)
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where & = _ -- " /2-- 7_ + 4 _ w and _os = = _v_" Eqns. (38) and (39) show that2 2

the commutator of the operator 1) - :_ with itself at different times is time dependent and it

has a characteristic beating behaviour. We have seen that in a quasi-stroboscopic scheme for

a single harmonic oscillator the commutator is zero each half a period of the motion and the

stroboscopicity is defined whenever measurements with a duration small compared to the period

of the motion ar e performed. This implies a measurement time, a duty cycle, very small and a

consequent small value of the effective electromechanical quality factor. In the case of a double

harmonic oscillator this drawback is less pronounced because the commutativity is assured every

half of a beating period for a time of the order of a period of oscillation. Thus quasi-stroboscopic

QND schemes already proposed as a generalization of the conventional BAE scheme based upon

a continuous monitoring [17] and already tested on a single oscillator system [21] can be adapted

to this situation. In the case of a single harmonic oscillator the duration of the measurement must

be small compared to the period of the harmonic oscillator T, in the case of two coupled harmonic

oscillators this duration is of the order of some periods of the uncoupled oscillator, although the

interaction must be turned on every quarter of a beating period. The interaction Hamiltonian for

a two coupled harmonic oscillator system is therefore

A nTB _ nTBHi = Eo _[O(t - m + ) + O(-t + --7- + )](1) - k)_ (40)
2 , 2

where TB is the beat period and AT is of the order of the period of a single harmonic oscillator.

Practical values are TB --_ 40ms andAT __ 2ms. To calculate the error in a quasi stroboscopic

measurement of the operator !) - :_ performed for instance in the interval rr 2rr r 2_"2-_B w , _ + _ we
identify the conjugate observable of 1)-k as the quantity (/?v - _b,)/2. This last can be expressed in

terms of the components of the amplitudes of the normal modes and the commutator at different

times of the two conjugate observables is obtained as

1 ih. a_-I _+-1

[1)(t + r)- _(t + r),-_([)_(t)-_x(t))] = --_-(a_7-_- -+-2) cos w+r + a+(a+ + 2) cosw_r). (41)

When r = 0 the commutator relationship (41) is written as

1

[1)(t) - :_(t), _(ibu(t) - 15_(t))] = ih (42)

which is exactly the quantity [}(t), ½i_.(t)] + [_)(t), a"

By expressing w+ and w_ in terms of the frequencies _ and wB and substituting in a± their

expressions in terms of # we get finally

1

[_)(t + r) - _(t + r), _(;_(t) -/3_(t))] = ih(cos &r cos wBr
l+p

_/#(;z + 4)
sin &rsin wBr) (43)

2_" 7r 27r
If the measurement is performed in the interval [2-_'B w, _ + "D'-], we can approximate

and a measurement of infinitesimal duration t' performedcosaaBr --_ 1 and sin wsr _- wsr - 7

in such interval and with a precision A[1)(t) - k(t)] allows to evaluate the error introduced in the

measurement process on the uncertainty product as
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h 1 + tt sin &t'(wBt'- 2) I (44)
A[_(t + t')- :_(t + t')]. A[fiu(t) - lb,(t)] _ _lcos _t' ¢_(p + 4)

from which, under the approximation for the trigonometric functions, we obtain

h (45)_aG(_) 2aid(t)- _(t)]_(t)]

The error due to a measurement of duration t' on the operator _ - _ is calculated starting from

A[9(t)- d:(t)] because

1 + tt sin _t'(wBt' - 7r
A[_(t+t')-3:(t+t')]_A[_)(t)-k(t)][cos_t' ¢#(#+4) 7) ] (46)

If the notation now is changed defining At = A[_)(t)- _(t)] we have

-_ [cos _t t

and in the limit of t' _ 0 we get

1 + # sin _t'[wBt' 7r
eft(it + 4) -_l] (47)

dAt l+g rr& At (48)

dt eft(it + 4) 2

from which, by integrating, we obtain the error on a measurement performed around t = _ as

A[_(t + r)- d:(t + r)] ,._ A[_(t)- d:(t)]exp[ r(# + 1) _r]. (49)
2¢_(_+ 4)

For instance, for a choice t = [2-_Brr -_] and r = _47r we obtain

2_) . _ 2.)] _, 2. _(__ 2_)]exp[2_,:("+_)] (50)A[9(G-_.+ _ - _(G-d + _ _ a[O(_ :_)- u_, 5- _/,(, + 4)

A drawback of these measurement scheme appears when # is very small and the frequency of the

measurement is consequently very small too. To overcome this problem a multimode configuration
can be used. In this case the commutator at different times approaches zero more frequently when

compared to a two-mode configuration of the same final mass ratio. A more detailed description

of this point can be found in [22].

5 QND continuous schemes for coupled harmonic oscil-

lators

Also QND continuous schemes can be used for coupled harmonic oscillator. A first example is

given by a monitoring of the complex amplitude of the physical modes J: and _ [23]. Introducing

the complex amplitudes such that
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9 = n [(fl + (51)

f_u/m_u = Img[(_ + i_)e -i_''t]

we can rewrite the Hamiltonian in terms of _ and _'2 and, by writing the Heisenberg equations

for the time evolution of I7"1,we obtain

-- = -wuk sin wut. (52)
dt

The complex amplitude is not a constant of the motion. However it is easily proved that it is a

QND observable. A relationship valid for an infinitesimal time r is derived for the time evolution

A A

Yl(t + r) = Y_(t)- wu:_ sin wutr

and this implies the commutation rule for ]_] at different times

(53)

A _ _ A

[Y,(t + r),_q(t)] = [Y,(t) - wu k sin wyt, Y_ l = 0 (54)

because of the commutativity between Y, and/:. Thus _'1 (or _'2, for which similar relationships

hold) is a QND observable, although it is not conserved during the motion. From (52) the
coordinate :} is inferred as

1 d_
= (55)

wu sin wut dt

apart from the singularities already discussed appearing when sin wut = 0. When a classical force

F(t) acts on the system the Hamiltonian operator is modified and the added term is

A

HI = -(_ + _l) F(t)

obtaining, in this case, the following expression for the time evolution of Y1

(56)

d_ _ wuksin wut sinwutF(t). (57)
dt muw _

However the effect of the external force to be detected, in our case of geometrical nature, on

the transducer is negligible compared to the effect on the antenna, due to the smaller size of the

transducer. Thus H 1 _" -kF(t) and the second term in (57) can be omitted. In this reasonable
approximation, i.e. F(t) acting only on the antenna, _ is also QNDF, i.e. QND also in presence of

an external force. To obtain a continuous monitoring of Y1 we need a QND interaction Hamiltonian

of the type

H', = E0cos w_ t cos wyt(!)- :_)gl (58)

that is a coherent superposition of pumpings at frequencies w_ 4- wu. Analogous considerations

can be made for the monitoring of the real or the imaginary part of the complex amplitude of

one normal mode expressed in terms of the physical modes through (33). The advantage in this

case is that the quantity _+ is a constant of the motion and its monitoring is the standard one
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already discussed for a single harmonic oscillator. This is obtained by means of the interaction

Hamiltonian

H_= E0coswetcosw+ - (59)

and the analogous for monitoring a component of the complex amplitude X;- by substituting w+

with w_. One drawback of monitoring one component of the complex amplitude of the normal

modes is that the information on the other mode is lost, and it is crucial to have information on

both the modes to take full advantage of the resonant schemes.

An alternative scheme suggested by the time dependence of the commutator consists in a

monitoring corresponding to the following Hamiltonian:

H_'/= EocoS WetCOS _tcos wBt (_-- _)_. (60)

This coupling allows one to infer information on both the modes because, upon filtering around

we in such a way to neglect terms oscillating at we 4- 2wB, we 4- 2_, we 4- 2(_ + wB), it can be

rewritten as

H;A= -TE°cos we t(fl+)( + + fl-2_)_l (61)

where/3+ are coefficients related to the coefficients of the matrix (33) and are expressed as

P Ct_ 4#- 1 t(1+_) 1/3±= [m (2+ T (1+ T (62)

which, in the limit of/1 ---, 0, goes to fl± = =F1/_#. In this limit the interaction Hamiltonian

assumes a simple form
E0

H, - _#cos w,t(2 + - X{)gl (63)

which contains information on both the normal modes and in such a way that QND measurements

can be performed on both the modes. In all the three cases here discussed the selectivity require-

ments on the electrical circuit are more stringent than in the case of a single harmonic oscillator,

because now the electrical oscillator must have a quality factor Q_ >> we/wB in order to avoid

detection of sidebands contributions. The interaction Hamiltonian (60) can also be written as

_/= E0--cos wet(cos w+ t + cos w_ t)(_ - k)_. (64)
2

With the analogy to the multipump scheme discussed for a single oscillator we can imagine a

interaction Hamiltonian of which (64) is only the first order approximation

_.u,0 +oo +co

H,A __ -_- cos we t[ _ cos (2n + 1)w+ t + _] cos (2rn + 1 )w_ t](O - :_10
n=0 m=0

(65)

which corresponds, in the limit of a stroboscopic pumping of the kind

+= +=Hi = E0 [y_(-1)"6(t- + _ (_l)m6(t _ nzr-L--)](_- _)_
n=O _ m=0

(66)
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It is interesting to observe that after a time equal to TB/2 both the trains of Dirac distributions

wiU coincide, i.e. TB/2 = nTr/w+ = mr�w_ where n = m + 2 (the fact that n and m have the

same parity assures the same sign of the corresponding Dirac pulses at those times). So each half

a period the two trains are summed and the quasi-stroboscopic scheme discussed in the previous

section can be considered as the first order approximation of the stroboscopic scheme resulting

from (66). This completes the connection between the multipump continuous schemes and the

quasi-stroboscopic scheme introduced in the previous section.

6 Conclusions

We have shown the scenario under which quantum non-demolition measurement schemes should

be demanded for detecting gravitational waves in the generation of resonant gravitational wave

antennae currently under development, particularly ultra-low temperature resonant bar antennae

such as the Rome, Legnaro and Stanford ones which will work at a thermodynamical temperature

of _ 50 mK. Both QND stroboscopic and continuous schemes have been discussed as well as their

link and practical schemes to implement them. However the interest of quantum non-demolition

measurement schemes goes beyond the detectability of the gravitational radiation, involving also

the quantum measurement theory and the predictions of it for repeated measurements on a single

macroscopic oscillator. Feasibility of the generation of macroscopically distinguishable states using

a QND scheme has been recently discussed in quantum optics [24], [25]. It has been pointed out

that the generation of Schroedinger cats using micromechanical oscillators with quantum limited

sensitivity is also feasible [26]. Unlike the optical case, in which the QND measurement is obtained

with a frequency mixing due to non-linear susceptivity, the QND measurement for the mechanical

case is obtained using an electric field which can be large as one wants. Dissipations in a mechanical

oscillator also are quite low compared to electrical or optical oscillators. Moreover, analogies to

the production and the detection of squeezed states in optics [27] have been shown. We want to

point out a fundamental difference between the two topics: in the case of the optical squeezed

states we deal with a quantized field in which its quantum nature is responsible for the limitation

to the sensitivity, in the case of quantum non-demolition measurements on a harmonic oscillator
the eventual force field which has to be monitored is considered classical and the fundamental

limitations comes from the process of the measurement and the interaction of the meter with the

external environment. What is squeezed in a QND measure is the back-action noise generated by

the amplifier and the squeezing is made in a phase orthogonal to the one which is detected [21].

Despite this conceptual difference the formalisms to deal with QND strategies are similar to the

one used to deal with squeezed states. This analogy is so narrow that also multipump [28], [29]

and quasi-stroboscopic [30], [31] schemes have been independently and successfully implemented

for squeezing the light. Further thoughts on the analogies and the differences between quantum
non-demolition measurements on a harmonic oscillator and the squeezing of the quantum noise

can give rise to a better understanding on the same interpretation of Quantum Electrodynamics

and the operative origin of the vacuum fluctuations of the field in terms of a measurement process

[32], an aspect of this fascinating and successful theory which has been very little investigated

until now.
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