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Abstract

From the decomposition of the exceptional Lie algebras (ELAs) under a maximal unitary

subalgebra a realization of the ELAs is obtained in terms of fermionic oscillators.

1 Introduction

Realizations of classical Lie algebras (LAs) in terms of bosonic and/or fermionic oscillators

are known long since and are very useful in several physical contexts. Via the embedding of

50(8) (_ SO(8) C E8 a realization of ELAs in terms of fermionic oscillators has been obtained

by the author [1]. However it is more convenient to dispose of several different realizations

of ELAs which allow to describe in a more appropriate way different subalgebras embedding

chains. Moreover, e.g., the embeddings G2 c 50(7) and F4 c Ee are not "deformable",

while the embeddin8_ SU(3) c G= and SO(9) c F4 are "deformable". The proposal of this

contribution is to present a realization of ELAs in terms of multilinears in fermionic oscillators

via the embedding of a maximal unitary subalgebra. It should be quoted that constructions

of ELAs as bilinears in fermionic fields in the basis SU(9) and SU(3)' has been obtained by

Koea [2]. While Koea's approach makes a more evident connection with physical applications

in a GUT framework, the multilinear approach keeps a closer connection with the algebraic

structure of LAs (roots, weights, etc.). Moreover this formalism allows to obtain multilinear

realizations for all the fundamental representations and for generators and vector spaces of all

maximal embedding$ of ELAs [3].

2 Composition law for fermionic multilinears

Let us introduce a set of N fermionic oscillators a,+, a, satisfying: (i,j = 1,2,...,N)

(i)
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A fermionic multiline_ (f.m.) X is defined by the following formula:

(f, -- a+,f_, -- a_,i > O)

x=IIf, i_Icz" (2)
i

The number of f, willbe called the order of X.

We define the contraction of two bilinearsX and Y of,reap.,order N and N' as a operation

giving s f.m. (X-"Y) obtained from the m. XY by deleting the couples (ifany) (.f,,j'_,)with

]',"in" X and f__ "in" Y, multiplied by a factor (-1)", n being the number of transpositions

necessary to obtain allthe ]'inear to j'__in XY, and by a rational coe_cent C(N,N', Z), Z

being the number of contractions.

We definea composition law (X o Y) of two f.m. by the followingequation (ij=E I,j_E J)

We remark:

• XoY=-(YoX)

• X o Y = [X, Y] (N, N'E 1,2)

We put (N,N' = 1, 2, 3, 6; ArT = order of X"Y):

• C(N, N', 0) = 1

• C(N, N', I) -- _NT,N or 6NT,N ,

" • C(N, N, N:I) =

• C(N, 2N, N) =½ (N> 1)

=

• C(N, N, _) -1 (N even)

3 Realization of Es

We consider the embedding SU(9) c//78. The adjoint representation of Es decomposes as i

248 =_ 80 + 84 + 84

Introducing a set of 9 fermionic creation and annihilation operators and we cam write

(id = 1,2,..,9):

(4)

so _= { (._'.,} (i # j), _ .i.._ - _,+,.,+_+= h.- h.+,
1

+ + + ¢#ja,,,._.ala.,,a.apa, a,.}84 -- {a ia ia_ +_.

1 + + + + + +
84 =- {o_a¢a_ + "0.. _Pa_"P_'at a,,,a,, % aq a t }

In the following we call:
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(o)

(v)



• a + "hermitian conjugate" (h.c.) of a,;

+ + + + + + "dual coniugate" (d.c.) of a_a_ak.• _isk, lmnpqral area nap aq a r

Proposition I The above set of bilinears and trilinears in the fermionic oscillators closes and

satisfies the Jacobi identity under the composition law (o) defined in See. t_.

The generators corresponding to the simple roots axe:

o_, _ a'_aa, c_, -.-. a, a2as + d.c., ak _ aLla_ (3 <_ k _< 8) (8)

The generator corresponding to the highest root is a_'ao.

4 Realization of E7

In the embedding SU(8) c E7 the adjoint representation decomposes as:

133 ==_ 63 + 70 (9)

The SU(8) C E7 is not contained in the SU(9) C Es, Exploiting the property that the two

unitary algebras have a common maximal subalgebra SU(6), the following realization of E7 is

obtained (ij,k = 1,2,..6 ; r = 1,2,..,5):

5

63 - {aTai -+-+-+, "7"s_ +d'c', a +aT, a +a +a_+d.c., h.c.

2 1

h,-h,+l, _(h,+h.+h,)-_. _, 2h,-h.-h,} (10)
!

70 -= {a_a_a7 + d.c., a.ia._ah + d.c., h.c.}

Realization of ti70

In the embedding SU(6) (_ SU(2) c E6 the adjoint representation decomposes as:

78 ==_ (35,1) + (1,3) + (20,2)

We have (id,k -- 1,2,..6; r -- 1,2,..5):

(35,1) ___{a+a_,

(1, 3) =- {a + a; a_ + d.c., h.c.,

h, - h,+l}

2 1

g(h, + h, + _) - g _ h,}

(20, 2) = {a_a¢ak + d.c., h.c.}

(11)

(12)

(13)

(14)

(15)
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6 Realization of F4

In the embedding SU(4) _ SU(2)' c F4 the adjoint representation decomposes as:

52 ==_ (15,1) + (1,3) + (4,2) + (4,2) + (6,3) (16)

The most convenient way to identifythe elements of F4 isthe following:

i)draw the Dynkin diagram of Ee;

ii)from i) draw, by folding,the Dynkin diagram of F4, identify the corresponding simple

roots and the highest root;

iii)draw the extended Dynkin diagram of F4 and then, by deleting a dot, identify

SU(4) _ SU(2)'.

We get for the 52 (ij,k= 1,2,.6):

7

7 "$ ""9 + d.c.,

a+ a_ + (-1)'+'-la_,'a,

a_a_ak+d.c. (i<j<k;i+j+k=M;M=6,7,9,10,..14), h.c.

a_ajat+a_a,a_+d.c. (t= l,3.4;i# j #k#l;i+J+k +l= 7),

2 1 __, hi, hs + h4-_(h, + h, + hs) +
i

hi + ht - h2 - h6, h2 + h4 - hs - h5

(i + j = 7), h.¢. :_;::::

(i#i# k #1;i+j < k+t;i+i+k+l = 14),

h._.

Realization of G2

In the emdedding SU(3) C G2 the adjoint representation decomposes as

14=_8+3+3

where (i = 1,2,.9; j = 1,2...6):

h°c.

(17)

(18)

8 _- (axa2as + d.c., aTata9 + d.c., a+ as, h.c.
1 2 1

-_(hz + h, + h_)+ § _ h, - _(h, + h, + h,) + _ _. h,)
i>3 $

(19)

3 + S = {_,+_, _,_ + d._., .,_+_+_+-,-,+ d._., b.c.} (2O)

8 Conclusions
2 :: :z:_ :

One of the advantages of the oscillators construction of LAs is the knowledge of the Fock space

which becomes the carrier space of irrep, of the the LAs.
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In the case of construction of LAs SU(N) by using fermionic oscillators it is well known that

the carrier space of antisymmetric irreps, can be realized on the Fock space. As the fundaznen-

tal irreps, of G2, Es, ET, of dimension, resp. 7, 27, 56, decompose under the maximal unitary

subalgebras as a sum of antisymrnetric irreps,as:

7 ==_ 3+3+1

27 ==_ (15,1) + C6,2)

56 ==# 28+28 (21)

one can think that on the Fock space of the fermionic oscillatorsitk possible build up the

fundamental representations,at least,of these ELAs.

Indeed for G2 this has already been obtained [4].
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