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Abstract

The three-dimensional harmonic oscillator plays a central role in nuclear physics. It

provides the underlying structure of the independent-particle shell model and gives rise to

the dynamical group structures on which models of nuclear collective motion are based. It will
be shown that the three-dimensional harmonic oscillator features a rich variety of coherent

states, including vibrations of the monopole, dipole and quadrupole types, and rotations of
the rigid flow, vortex flow and n-rotational flow types. Nuclear collective states exhibit all of
these flows. It will also be shown that the coherent state representations, which have their

origins in applications to the dynamical groups of the simple harmonic oscillator, can be
extended to vector coherent state representations with a much wider range of applicability.

As a result, coherent state theory and vector coherent state theory become powerful tools in
the application of algebraic methods in physics.

1 Introduction

Harmonic oscillatorsare important in many-body physicsfor many reasons. The followingare

some of the reasons:

(i)Small amplitude normal modes of a system about a configurationof stableequilibriumare

harmonic both in classicaland quantum mechanics.

(ii)Harmonic oscillatorshave non-dispersivecoherentstates.Thus, they exhibita perfectcor-

respondence between classicaland quantum mechanics.

(iii)The boson quanta ofthe harmonic oscillatorprovideimportant buildingblocksforthe boson

second quantizationof the observablesof a largenumber of systems;e.g.,the Harniltonian

isoftenusefullyexpressedin the second quantizedform

hffi Z _v._a. + Z (V"_'_a_.a'/.'4 + V_'a_a_I¢'-' •• ") • (1)

(iv) The classical Lie algebras all have boson (Weft) representations; e.g., an abstract element X

of GL(n,C) can be realised as a mat_ (Xo) or as the boson operator

x =  x,i ,taj. (2)

It is shown in the following that the three-dimensional harmonic oscillator has a rich variety

of symmetries and coherent states all of which feature in the theory of nuclear collective motions.
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2 Symmetries and coherent states of the simple har-
monic oscillator

The symmetries and dynamical group structures of the harmonic oscillator are most easily recog-

nized when the latter is expressed in terms of the Heisenberg-Weyl algebra. The Heisenberg-Weyl

algebraisa Lie algebraspanned by harmonic oscillatorraisingand loweringoperators(alsocalled

boson operators)and the identityoperator;i.e.,

hw(1) = (a t, a, I). (3)

The elements of hw(1) satisfy the boson commutation relations

[a,at]= I, [a,l]= [at,I] 0. (4)

The simpleharmonic oscillatorHazniltonianisgiven by

One: finds: that: the symmetry _up of the Hamiltonian H is the on_m_ional unitary

group:U(i) and that H has three d)_namical:groups - viz., t.he I-Ieisenberg:Weyl group HW(1),

the Symp]ectic group Sp(I:R) (strictIy-the rnetap_fc group)_and {_he inh0mogeneous symplectic

group ISp(1,R). The Lie algebra, u(1), of U(1) isspanned by a sin-gle_l_n_ _

(s)

The Lie algebras of the symplectic and inhomogeneons sympiectic groups are given, respectively,

by

sp(1, R) ffi (ata t, aa, ata + aa t)

isp(1, R) ffi (ata t, an, ata + aat, at, a, I). (7)

The coherent states of the dynamic.aIgroups_ all of considerable interest. F'vrst_all that a

coherent state of a group is, by de_{sion [1, 2] a state obtained byapplyinga grouptransfo_tion

to a particular state of a (usually irredu_ble) representation space on which the group acts.

The standard (Glauber) coherent states, for example, are obtained by applying elements of the

I-Ieisenberg-Weyl group:to the harmonic oscillator ground state [3]. " .....

An arbitrary element g of the Heisenberg-Weyl group is represented as the operator

T(g) = e_t-'_'°+i*'l, (8)

where a and_ are complex and realpar_eters, respectively,and i isthe identityoperator.Thus,

we have

T(g)lO) -- e_t-"'°+'_"lO) ffi e_'t-°"lO)e'_'. (9)

The state : -- - : : -

la)= e-'-°"10) (Io)

iswellknown to have a wave functionthatisofthe same form as the ground statewave function

but with itscentroiddisplact_dfrom the harmonic oscillgorequilibriumpositionand @yen some

non-zero mean valueof momentum. A HW(1) coherentstatefor a realv_dueof a isillustrated,

for example, in Fig. 1. The ph_-factor-e{_-_ be regarded as a-U(l) gauge factor. :-

Y
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Fig.1. Harmonic oscillatorcoherentstatesinduced by HW(1), Sp(1,R) mad ISp(I,R)

transformations,respectively.

Coherent statesof the syrnplecticgroup are constructedina similarway; i.e.,a Sp(1,R) group

element isrepresentedin factoredform

T(g)= e'w-"'_ *<°t°+_'t), g _ Sp(1,R) (11)

and symplecticcoherentstatesare given by

T(g)10)= e"°'-""t0)ei'. (12)

Again there isa U(1) gauge factor.Coherent statesof the symplecticgroup [4,5, 6] are often

described as squeezed states.

There has been much interest in squeezed states in optics in recent years. One of their pre-

dicted properties [7] which, as far as I know, has never been investigated is that they should

exhibit enhanced non-linear phenomena. This is expected because non-linear properties require

the simultaneous presence of two photons of light and one may anticipate, therefore, that the

squeezed light emitted, for example, from a two-photon laser should be particularly effective at

providing photons in pairs. Squeezed coherent states are also of paramount importance in nuclear

physicsas we discussin the following.

3 The three-dimensional harmonic oscillator

The Heisenberg-Weyl algebra

hw(3) = (a_,a,,I;i =- 1,2,3)

satisfiesthe commutation relations

and the Haxniltonian of the three-dimensional harmonic oscillator is given by

h= E _,_..

(13)

(14)

(15)

This Harniltonianhas an energy spectrum as shown in Fig.2,where the standard spectroscopic

notationisused to labelthe radialand angularmomentum quantum numbers ofthe energy levels.
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Figr 2: T he energy level spectrum for a singleparticle ina three-dimensional harmonic
oscillator potential. Each energy levels consists of a degenerate multiplet of states

which span an irrep of the symmetry group U(3).

The three-dimensionalharmonic oscillatorunderliesthe shell-modeltheoryof nuclearphysics.

One findsthat ifone were to assume that the neutrons and protons insidea nucleusobeyed an

independent-particleSchr6dingerequation in which the potentialenergy is that of a harmonic

oscillator then, because of the Pauli exclusion principle, one can assign a given harmonic oecillator

wave function to at most two neutrons, one with _i n up and one with spin down. The same is true
for the protons. Thus, one constructs the ground state of a nucleus by filling the harmonic oscillator

energy levels starting from the bottom and progressing upwards. Because of themultiplicity of

harmonic oscillator states of a given energy, the harmonic oscRlator energy of a many-nucleon

state increases discontinously as each level is filled and the next level starts to be populated.

The nucleon numbers at which this happens axe called mag/c numbers and the nuclei at which it

happens are called closed-shell nuclei. Such nuclei are expected to be particularly stable, like the

inert gases of atomic physics. Now, experimentally observed magic numbers diifer from those of

the harmonic oscillator Hamiltonian. However, if one adjusts the harmonic oscillator Hamiltonian

by the addition of an angular momentum term proportional to the square of the orbital angular

momentum, to simulate the effects of a more realistic shell model potential, and includes a spin-

orbit interaction, then the single-particle levels become of the type shown in Fig. 3 and the

experimentally observed magic numbers are reproduced [8].

A typical shell model Hamiltonian is therefore of the form

H= _ I_ + V, (16)
tt

where h_ isa single-particleHamiltonian forthe n'th nucleon of the form

In 1
h ffi--p" + + Cl. + DI 2

2m 2

and V isthe residualinteractionbetween the nucleons.

(17)
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Fig.3. The single-particleenergy levelspectrum fora shellmodel potentialwith an 12

term and a spin-orbitinteraction.The numbers inparenthesisindicatethe multiplicity

of statesof a given energy level.The numbers to the rightof an energy levelindicates

the cumulative number of statesup to that energy. These numbers correspond to the

experimentally observed magic numbers.

The degeneracies,and hence the symmetries, of the harmonic oscillatoraxe broken in nuclear

physics. Nevertheless,the statesof the harmonic oscillatorprovide a basis in which realistic

Hamiltonians can be diagonalizedand in which the symmetry breaking effectscan be described.

Itwillbe shown in the followingthat the symmetries and dynamical group structuresof the

harmonic oscillatorHamiltonian are alsoof vitalimportance for identifyingand separating the

important collectivedegrees of freedom of a stronglyinteractingsystem of nucleons.

The symmetry group of the three-dimensionalharmonic oscillatoristhe unitary group U(3)

whose Lie algebraisspanned by the bilinearcombinations ofboson operators {a_aj;i,j = i,2,3}.

The dynamical groups ofthe three-dimensionalharmonic oscillatorare the Heisenberg-Weyl group,

the syTnplecticgroup Sp(3,R) and the inhomogeneous symplecticgroup ISp(3,R).The Lie algebras

of these groups are given by the naturalextensionsof theirone-dimensional counterparts;e.g.,

sp(3, R) = (a_a_,a_a#,a_aj + aja_). (18)

The coherent states of a single particle in a three-dimensional harmonic oscillator potential

will not be discussed here. Instead, we proceed directly to the coherent states of a many-particle

nucleus. It will be shown that different kinds of coherent states are generated depending on the

symmetries of the initial (undisplaced) state. In particular, the coherent states of open-shell nuclei
have a richer structure than those of dosed-shell nuclei.
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4 Heisenberg-Weyl coherent states of a nucleus

The degenerate(equalenergy) statesof a three-dimensionalharmonic oscillatorenergy levelspan

an irreduciblerepresentationof the symmetry group U(3). The same is true of the SU(3) c

U(3) subgroup; i.e.,the statesof the N'th harmonic oscillatorlevelspan an SU(3) irrep(N,0)

as shown in Fig.3. It followsthat the equal energy statesof a nucleus with an independent-

particleharmonic oscillatorHamiltonian span the reduciblerepresentationof SU(3) given by the

Kronecker product of allthe (N,0) irrepsto which the nucleonsseparatelybelong.

4.1 Closed-shell nuclei

The ground stateof a dosed shellnucleus ischaracterizedby a singleclosed-shellstatewhich

must, therefore,span the one-dimensionalidentitySU(3) representation(0,0). Nucleiforwhich

such harmonic oscillatorclosed-shellstatesare believedto providea good approximation to their

ground statesare the lightnuclei160 and 4°Ca which, respectively,closethe N = 1 and N --2

harmonic oscillatorshells.

We now considercoherentstatesof the Heisenberg-Weyl group obtained by applying a group

transformationto a closed-shellstate. Note, however, that a straightforwardHeisenberg-Weyl

transformationsimplydisplacesthe centre-of-massof the whole nucleusor givesthe whole nucleus

centre-of-mass momentum without exciting it or changing its intrinsic structure in any way, Thus

it is not very interesting. However, there is another representation of the Heisenberg-Weyl Lie

algebra that is interesting. It is the representation in which the neutrons are displaced in one

direction while the protons are displaced in the opposite direction in such a way that the centre-

of-mass position and momentum remain fixed. In this representation the boson operators of the

Heisenberg-Weyl Lie algebra are the linear combinations of the elementary (harmonic oscillator)
boson operators for neutrons and protons

1 z 1 N
(19)

where n indexesthe neutrons and p indexesthe protons.These combinations satisfythe commu-

tationrelationsof Eq. (14)and, therefore,belong to a Heisenberg-Weyl Lie algebra.

The coherent statesof thisrepresentationof the Heisenberg-Weyl Liegroup are of the form

I at)-h.c.] I0)#_'. (20)

Thus, the group transformationT(g) isseen todisplacethe ground statedistributionsofneutrons

and protons inoppositedirectionsas illustratedin Fig.4.

Such a coherent stateisof major interestin nuclearphysics. It corresponds to a coherent

collectivemotion ofthe nucleusin which neutrons and protonsoscillatein antiphaseand thereby

generatean oscillatingelectricdipolemoment. Itisthe so-calledGoldhaber-Tellermode [9]ofthe

giant dipole resonance. The mass associated with this mode is given by the reduced mass of the

separate neutron and proton centres of mass. The restoring force for a dipole displacement can be

estimated from the nuclear symmetry energy (i.e., the energy associated with a neutron-proton
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Fig. 4. The displaced neutron and proton density distributions for a coherent state of

the Heisenberg-Weyl group in which neutrons are displaced one way while protons are

displaced the opposite way.

density difference). Thus, one deduces the frequency and the rate of electric dipole radiation for

such a coherent oscillation. The requantization of this mode leads to a relatively high energy (one

quantum) excited state which decays rapidly to the ground state by electric dipole radiation.

4.2 Open-shell nuclei

An open-shell nucleus does not have a unique lowest harmonic oscillator energy state; there is

a multiplicity of lowest energy states. As already observed, such a multiplet of states spans a

generally reducible representation of the harmonic oscillator symmetry group U(3).

Consider, for example, the nucleus _°Ne: The first 16 nucleons form an 180 closed-shell core

and combine to give a (0, 0) SU(3) (identity) irrep. Thus, the lowest energy states of 2°Ne have

four nucleons, two neutrons and two protons, in the N = 2 shell (the so-called sd shell). They

span a reducible SU(3) representation given by the Kronecker product of four copies of the (2,0)

representation; i.e.,

(2,0) × (2,0) x (2,0) x (2,0) = (8,0) + (4,2) +... (21)

The residual interaction of the shell-model Hamiltonian (16) will cause the states constructed

in this way to be mixed and the SU(3) symmetry to be broken. However, although the ener-

gies of states become non-degenerate, the states retain their SU(3) quantum numbers to a first

approximation. One says that SU(3) is an approximate dynamical symmetry for light nuclei.

In the Elliott model [10], it is assumed that states of different SU(3) irreps do not mix and

that the energies of states are given by a Hamiltonian which is a sum of SU(3) and SO(3) Casimir

invariants

H = AC2 + BL2; (22)

L 2 is the square of the angular momentum of the SO(3) subgroup of SU(3). This Hamiltonian

has an energy spectrum characteristic of a rotor

E- A(A 2 +1 z2 + A#+3A +3#) + BL(L + 1), (23)

where (A,/_) are the. labels of an SU(3) irrep. The coefficient A of C2 is assumed to be negative so

that the states of the SU(3) irrep with largest value of the Casimir invariant lie lowest in energy.

The parameter B is then adjusted to give the lowest band of energy levels for 2°Ne as shown in

comparison to the experimentally observed energy spectrum in Fig. 5. The agreement is far from
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Fig. 5. The low energy spectrum for 2°Ne as calculated in the Elliott model and as

observed experimentally.

perfect but it does describe the rotational properties of _°Ne to a first approximation. Moreover,

from the SU(3) quantum numbers, one can infer the shape of the deformed 2°Ne nucleus which

gives rise to the observed rotational band.

We now consider the coherent states corresponding to the giant dipole vibrations of such a

deformed nucleus. Since there are many degenerate harmonic oscillator ground states for an

open-shell nucleus, it is appropriate to consider coherent states of the semi-direct product group

comprising both the Heisenberg-Weyl group and the SU(3) group. For this group, there is a

uniquely defined lowest weight state for each irrep. We can then construct simultaneous coherent

states of the combined groups in which we have both rotations and dipole vibrations of the type

illustrated in Fig. 6. As one can see, the energy level spectrum of such coupled rotations and

vibrations can be relatively complex. Nevertheless, it is simply described in terms of the SU(3)

and Heisenberg-Weyl dynamical groups.

5 Symplectic coherent states in nuclear physics

A many-particle representation of an element of the symplectic group Sp(3,R) can be expressed
in the form

- nij nij

5.1 Closed-shell nuclei

When acting on a closed-shell state 10), such an operator generates the coherent state

= exp _ t tz_ja,.a..¢ - h.c. ]O)et_
nij

(25)
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Fig.6. The low energyspectrum rotationalspectrum and the combined rotation-giant

resonancevibrationof a nucleuslike2ONe.

where _ isgiven by

Z: + ja )I0)=  I0). (28)

Thus, as forthe one-dimensionalcase,there isa gauge angle _ associatedwith such coherent

states.However, the phase factorexp(i_) now comes from a one-dimensionalrepresentationof

the symmetry group U(3) of the three-dimensionalharmonic oscillator.

The coherent statesof the symplecticgroup Sp(3,R) constructedin thisway are naturalex-

tensionsofthe squeezed statesof the one-dimensionalharmonic oscillator.The differenceisthat

there are now threedifferentdirectionsand the squeezingor dilationinthe threedirectionsneed

not allbe the same. Fig.7(a)shows a coherentstatedeformationofthe ground statedensitydis-

tributionofa nucleusinwhich the squeezing/dilationisthe same inalldirections.Such a coherent

statedeformationpreservesthe sphericalsymmetry ofthe densitydistributionofthe (closed-shell)

nucleus and isdescribedas a monopole or breathingmode vibration.Fig.7(b) shows a coherent

statedeformation in which the nucleusissqueezed in one directionand dilatedin another. The

resultisan ellipsoidal(i.e.,quadrupole)deformation.

5.2 Open-shell nuclei

For an open-shellnucleus,we may constructsymplecticcoherent statesby applying symplectic

group transformationsto the lowestweight stateof an Sp(3,R) irrep.It can be shown that an

Sp(3,R) lowestweight stateisalsoan SU(3) lowestweightstateforthe SU(3) C Sp(3,R) subgroup

discussedinthe previoussectionand, likeit,has a non-sphericaldensitydistribution.Application

ofa syrnplectictransformationto such a statecan effectthe changes shown in Fig.8. Itcan cause
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Fig. 7. Coherent state deformations of a spherical closed-shell density distribution:

(a) shows a monopole (breathing mode) deformation and (b) shows a quadrupole

deformation.
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(b)

@@@@
(c)

(d)

Fig. 8. Coherent states of a deformed (open-shell) nucleus: (a) shows a vibration; (b)

a rigid rotation; (c) a vortex rotation; and (d) an irrotational-flow rotation.
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squeezingand dilationof the nucleustherebychanging the deformationofthe densitydistribution

as illustratedin Fig. 8(a). Since the symplecticgroup Sp(3,R) containsthe group SO(3) as a

subgroup, symplecticgroup transformationsincludepure rotations,i.e.,rigidbody rotationsof

the type illustratedin Fig.8(b). Figs.8(c)and (d)show otherkindsof rotationsthatare possible

for a fluidbut would not be possiblefor a rigidbody. Fig.8(c) shows a flow, calledvortex

rotation,in which the fluidcirculatesbut leavesthe qmulrupole shape of the deformed nucleus

fixed. Fig. 8(d) is a combination of rigid and vortex flow, called irrotational flow, in which the

shape rotates but elements of the fluid move as little as possible consistent with the rotating shape.

It is of interest to note that a pure vortex rotation is not observable if one looks only at the

density distribution of the nucleus. Thus, the vortex degree of freedom is naturally regarded as a

non-abelian gauge degree of freedom.
To observe vortex flows, one needs a probe of the nucleus that is sensitive to currents and not

justdensities.Electron scatteringisa naturalchoice.One isacustomed to think of an electron

microscope as givingsnapshots of the densitydistributionof a microscopicobject. However,

electronsaxe alsosensitiveto charge currents.Thus, electronscatteringexperiments have the

potentialforprobing the contributionsof vortexflowsin nuclear (and perhaps other)collective

motions. Some experimentalbeginnings have already been made in thisdirection.One thing

isclear.The moments of inertianeeded to describethe rotationalenergy spectraof nucleiare

smaller,by approximately a factorof two, than those for rigid-bodyrotationsand larger,by

approximately a factorof five,than forirrotationalflow. This suggeststhat nuclearrotational

flowshave a vortexcomponent similarto thatof a slightlyviscousfluid.

We next considerthe constructionof a model of nuclearvibrationsand rotationsthat admits

rotationalflowswith arbitraryamounts of vorticity,ranging from none, fora viscous-freefluid,

up to that ofa rigidbody. The factthatthe coherentstatesof the symplecticgroup span the full

range of possibilities,suggeststhatthe symplecticgroup isa suitabledynamical group forsuch a

model.

6 The nuclear symplectic model

The nuclearsymplecticmodel [11,12,13]isbaaed on the observationthat the symplecticgroup

Sp(3,R) is a suitabledynamical group fora microscopictheory of nuclear collectiverotations,

vibrations and vortex rotations. The important feature of a dynamical group is that a Hamiltonian

which can be expressed as a polynomial in the Lie algebraof the dynamical group cannot mix

statesbelongingto differentirrepsof the group.

A suitableHamiltonian for the symplecticmodel isof the form given by Eq. (16)with the

parameters C and D of Eq. (17)setequal to zeroand

; (2T)

Q isthe Cartesianquadrupole tensorwith components givenin terms of the nucleon coordinates

{x.,} by

Q,# ffi _ z.,z.#. (2S)
_t

Note that by taking traces of powers of Q, we construct rotationally invariant polynomials. Note
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also that the trace of Q itself is the sum of the squared nuclear radii

2

ns n

Thus, the harmonic oscillatorHamiltonian

(29)

V- V.r_ I _I_ _r2l (30)

already contains a term in Try.

By a suitable choice of the parameters, c2, c3, ..., one can construct physically relevant poten-

tial energy functions for a deformed (rotational) nucleus. An important point is that polynomials

in the traces of powers of Q are functions of three observable quantities which characterize the

shape of the nucleus: the three quantities can be denoted as a, which measur_ the mean square
radius of the nucleus, _ which, measure the magnitude of the quadrupoie moment of a nucleus,

and % which measures the magnitude of the axial asymmetry of the deformation. Thus, for a

spherical nucleus, _ and "y would be zero. For a spheroidal (axially symmetric) nucleus, -f would

vanish but _ would be non-zero. But, for a generic ellipsoidal nuclear shape, both _ and _f would

be non-zero.Itcan be shown that

TrQ o¢a

3= coe;b. (31)

A simpletwo-parameter potentialofthiskind,withonly c2 and c3non-zero,isshown inFig.9.

The potentialshown has a minimum at a non-zero,but axiallysymmetric, deformation.

A calculationwithin the shellmodel space foran Sp(3,R) irrepwas carriedout for the low

energy statesofeach of fourheavy nucleiby Park et aL [14].Their resultsforthe energy levels

and electricquadrupole (E2) radiativetransitionrates isshown in Fig. 10 in comparison with

experimentallymeasured results.The agreement with experiment isnot perfectbut itisremark-

ablygood consideringthatthereisvery littleflexibilityinthe choiceof the two parameters ofthe

potential. The minimum of the potential is fixed at the known _m_taI deformation of the

nucleusand the strengthof the potentialisfixedsuch that the potentialisjuststrongenough to

ensure that the wave function has the same deformation as the potential minimum. The most

remarkable feature of the remflts is that one gets the correct moment of inertia (i.e., the energy

level spacing comes out correctly) even though there is no adjustable momentum of inertia in the

Hamiltonian; the kinetic energy of the Hamiltonian is the known microscopic kinetic energy for a

system of nucleons. This is a major success of the model because it suggests that the amount of

vorticity predicted by the syrnplectic model is just about right.

7 Coherent state and vector coherent state representa-

tions

In the applicationof algebraicmodels in physics,likethe symplecticmodel, itisnecessaryto

construct a basis for an appropriate irrep of the dynamical algebra and calculate the matrix
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elements of observable quantities. I do not wish to go into the technology of this subject here.

However, I do wish to point out that the solution to the problem is given by a straightforward

application of coherent-state and more genereally, vector-coherent-state representation theory.

7.1 Coherent state representations

A coherent state representation of a group G can be defined, following Perelomov [1] and Onofri

[2]as follows.
Let T be the desired representation of the group G and suppose it is carried by a module

(carrier space) V. Let 10) be a particular reference state in the space V; usually we choose V to be

the lowest (or highest) weight state if such exists but it can also be chosen in other ways. Then,

an arbitrary state I_) E V can be represented as a function ¢ over the group, with ¢ defined by

¢(g) = <0[T(g)[9), g e G. (32)

The remarkable fact is that without actually knowing therepresentation T, i.e., knowing only

some properties of the special state [0), one can determine the kinds of coherent state functions

that can occur. Furthermore, one is able to construct an explicit coherent state realization of the

desired representation.

The standard example is the Bargmann representation of the Heisenberg-Weyl group. If the

state [0) is the lowest weight state of the Heisenberg-Weyl Lie algebra, i.e., it satisfies

alO) = O, I[0) = IO), (33)

then

¢(g) = (0re-°-"ot+i_1tq_)= (Ole'_l_)e-½1"l'e_'. (34)

Dropping the factor e-'_l'Pe i_, one obtains the familiar Bargmann representation [15] of a

harmonic oscillator state ]@) by the holomorhpic function ¢ of a complex variable z with

¢(z) = <ole_l_,>. (35)

For example, a harmonic oscillator state

1

In) = _ (at)"lO) (36)

is represented by the function
1

z" (37)
¢.(z) = _ .

In the Bargmann representation, the harmonic oscillator raising and lowering operators are simply

the differential operators
0

at=z, a---_z, I=1. (38)

Coherent state representations of the symplectic groups Sp(I,R.) and Sp(3,R) can be con-

structed in a similar way. Consider, for example, the representation of Sp(3,R) with lowest weight
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stategiven by a closed-shellstate;i.e.,a statewhich satisfies

_o,,,_10) = 0
_j

_j(_j +_,=_)I0)= ri0) (39)
_j

A coherent staterepresentationof a stateI¢) isthen given by a function¢ over Sp(3,R) with

_(g)== (01expE [_a_.a_-.;ja_._,]I_)._, (401

which isproportionalto the holomorphic functionofsixcomplex variables

_,(z)= (Olexp_ z,_..,,o.,,,l*)• (4z)
n_

The expressionofsymplecticoperatorsin thisrepresentationissimpleand enablesone to calculate

theirmatrix elements in analyticform.

Such a constructionofcoherentstaterepresentationsisan explicitrea_stion of the Borel-Weil

theory (see,forexample, ref.[16])ofthe representationsof semi-simpleLie groups.

7.2 Vector coherent state representations

The directapplicationof the above constructionofa generalrepresentation,i.e.,one whose lowest

weightstatedoes not span a trivialone-dimensionalrepresentationofthe SU(3) c Sp(3,R) sub-

group,ismuch more complicatedand,therefore,not so useful.However, itispossibleto construct

a so-calledvectorcoherentstaterepresentationwhich issimple.

Firstobserve,from eq. (39),that the gauge factore*_is a representationof a U(3) transfor-

mation; i.e.,

s_ij

Now, the lowestweightstateofs genericSp(3,R) irrepdoes not by itselfspan an irrepofthe U(3)

subgroup ofSp(3,R).However, itisone stateofa multidimensionalirrep.This suggeststhatmore

generalSp(3,R) inpe.ps can be constructedin which the one-dimensionalU(3) irrepof Eq. (42)is

replacedby a generalmultidimensionalU(3) irrep.This iscorrectand one findsthata state• of

any discreteseriesrepresentationofSp(3,R) can be realizedas a holomorphic vector-valuedwave

function_ with

_(z) = _ J.) (_[ exp _ z_#a_a.,,# Ilk), (43)
J, nij

where {Iv)}isa basisfora lowestweight irrepof the subgroup U(3) C Sp(3,R).

The calculationof matrix dements of the sp(3,R) Lie algebrain such a representationisa

simple task. When there are no missingquantum numbers, one obtains analyticexpressionsfor

the matrix elements. When thereare missingquantum numbers, which isthe genericsituation,

one has to do relativelysmall numericalcalculationsto constructorthonormal basisstates.

The vectorcoherentstatetechniquesapply to allthe semi-simpleLie groups.They are,infact,

an explicitrealizationofthe Hsrish-Chandra theory [17]of induced holomorphic representations.
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8 Concluding remarks

I hope to have shown that the harmonic oscillator in three dimensions has s rich structure and that

itsmany-particlerepresentationsand coherentstatesprovidethe framework forboth independent-

particleand collectivemodels ofnuclearstates.Moreover, the coherentstateand vectorcoherent

staterepresentations,which originatedin applicationsof the dynamical groups of the harmonic

oscillator,have much wider applicabilityand are now essentialtoolsin the hands of those who

use algebraicmethods inphysics.
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