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Abstract

An alternative picture of classical many body mechanics is proposed. In this picture

particles possess individual kinematics but are deprived from individual dynamics. Dynamics

exists only for the many particle system as a whole. The theory is complete and allows to
determine the trajectories of each particle. We propose to use our picture as a classical

prototype for a realistic theory of confined particles.

1 Basic Concepts

In modern elementary particle physics, the problem of quark confinement is one among the funda-

mental and unsolved troubles [1]. All attempts to explain the strange behaviour of quarks which

never appear as free particles failed. Usually, the problem of quark confinement is attacked in the

framework of quantum mechanics or quantum field theory because quarks are quantum objects.

In spite of that in the present paper we propose a new purely classical approach to this prob-

lem. We start with the very foundation of classical mechanics because we strongly believe that

the heart of the problem is here. We shall show that there exists a particular kind of classical

mechanics of N -particle systems in which the constituent particles cannot realize themselves as

individual mechanical objects. We are strongly convinced that this kind of classical mechanics is

a right prototype for quantum theory of confined particles. Our approach to classical mechanics

of confined particles is based on a particular extension to many-particle systems of the recently

developed new mathematical formalism of the Galilean covariant dynamics of a single particle [2].

The essence of this new formalism may be recapitulated in two items:

i.) all mechanical quantities which describe motion of particles satisfy simple evolution equations;

it.) the interaction of each particle with its environment is described by two vector-valued measures
which also should be determined from their own evolution equations.

It is to be noticed that the property listed in item i) allows one to divide all mechanical equations

into kinematical and dynamical equations of motion, equations of balance and equations of the

environment which replace the customary force laws. Among these equations the kinematical
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equations of motion and the equations of balance have universal and standard forms while the dy-

namical equations of motion and the equations of the environment are new in treating mechanics.

The latter have a particular meaning for each type of mechanical interaction. They are necessary

to complete the theory and to guarantee its Galilean covariance. The equations of environment

acquire their beautiful form only after increasing the number of vector-valued measures of me-

chanical interaction mentioned in item ii). Apart from the usual measure called the force, the

new formalism uses a second measure called the influence. The introduction of influences opens

new possibilities of extending the range of applicability of classical mechanics to new hypothetical

types of systems. For all necessary details we send the interested readers to [2].

2 Many Particle Systems

It is straightforward to extend the new Galilean covariant dynamics described in [2] to mechanical

systems which contain more than one particle. We shall describe this extension "in two steps.

The first step is common to all passages from one-particle to many-particle systems and consists

in introducing separate, individual kinematics for each particle of the considered system since

otherwise we could not speak about many-particle systems at all. This means that for N-particle

systems we have to consider 6N kinematical equations of motion

£_ (t) = _Tj(t) (2.1)

gj (t) = gj (t) (2.2)

and 3N dynamical equations of motion:

(t) = (t) (2.3)

where j = 1,2, ...N and _j (t), ffj (t) and ff_ (t) are the usual trajectory function, velocity function

and the acceleration function of the j-th particle, respectively. The quantities _ (t), called influ-

ences, represent one of the vector-valued measures of mechanical interaction of the j-th particle

with its environment. We would like to stress here the conceptual difference between the new

notion of the influence fj (t) and the standard notion of the force fj (t). The former is a measure

of non-uniformity of the motion while the latter measures the violation of conservation laws during

the motion. Both fj (t) and _ (t) provide the complete description of the dynamical action of the

environment of the particle on the particle itself. The second step in the passing from one-particle

to many-particle systems consists in introducing a corresponding dynamics. The new formalism

described in [2], allows one to implement this step either in a standard or a nonstandard way and

this is one of the advantages of the new formalism. In the standard way we introduce for each
particle the notion of its momentum/Tj (t) and the notion of the force F_ (t) acting on the j-th

particle. The dynamics of particle is then described by the Newton equations balance

i 'j(t) = (t) (2.4)

The inertial properties of each particle appear in double face [3] since the Galilean transformation

rules for the momenta

iffj (t) _/_3 '(t') = R/Tj (t) + m_ff (2.5)
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introduces the Galilean masses rnj of the particles while the second law of dynamics

Pj (t) = Mj (2.6)

introduces the inertial masses M_ of the particles. The standard mechanics works with the addi-

tional assumption that

rn_ = M_ (2.7)

but an alternative case of violation of equalities (2.7) may be considered as well [4].

The nonstandard approach to many-particle systems we shall follow below consists in the idea

that in the following, in contradistinction to kinematics, we do not introduce separate dynamical

characteristics of individual particles at all and consider only global dynamical description of the

system as a whole. This means that the dynamics of the N-particle system is collectively described
by one total momentum /3(t) which cannot be represented as sum of individual momenta of

particle because the latter do not exists and by one total force ff (t) which also cannot be treated

as a resulting force of individual forces Pj (t) because the particles do not feel any force at all.

The total momentum/3 (t) and the total force ff (t) satisfy the Newton equation of balance

/3(t) = P (t) (2.s)

and the motions of individual particles are solely governed by the dynamical equations of motions

(2.3). The individual influences are related in a certain way, we shall discuss below, to the total

force F (t). We shall not visualize the total force f (t) as a three-dimensional vector acting on

a particular point in space and therefore we should not answer the usual question which asks at

which point the force is applied. We restrict ourselves solely to the interpretation of the force

i (t) as a vector-valued measure of interaction of the system with its environment which violates

the conservation law of the total momentum. Under Galilean transformations the force if(t)

transforms in the usual way

ff (t) ---,/3'(t') = Rff (t) (2.9)

Similarly, the transformation rule for the momentum/3 (t) must be of the form

P (t) = RP (t) + (2.10)

and introduces the notion of the Gahlean mass .&4 of the system of N particles as a whole. The
notion of its inertial mass will be introduced below. We do not introduce the notion of individual

masses of the particles because for them we have neither individual momenta nor individual

forces. Therefore, for the considered particles we can write neither equations (2.5) nor equations

(2.6). The particles of the considered systems have only individual kinematics but are deprived

from individual dynamics. In this sense the particles are "confined in a system" because they

cannot realize themselves as individual mechanical entities. They may exist only as constituents

of collections and there is no possibility to extract from these collections any individual constituent
or a cluster of constituents.

We are fully aware that our point of view on the nature of confined particles is very radical and

it may be rejected by the argument that in the domain of_classical mechanics all particles should

be treated in a classical way. Confined particles observed in Nature are objects quite different
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from the usual particles just due to their being absent in a free state. They cannot therefore

have all the attributes of usual particles and any theory of confined particles has to take this fact

into account from the very beginning. Otherwise, irrespective of any eventual partial success,

a theory of that type is physically wrong. Realistic confined particles are quantum objects and

any realistic consistent theory of such particles must be of a quantum type. Unfortunately, all

present quantum theories are based on classical prototypes in which the confinement of particles

is excluded. To have physically well motivated theory of confined particles, we should construct it

from an assumption different than the usual theories have incorporated in. It is therefore highly

necessary to stud)' alternative classical prototypes for new quantum theories and this was the

main motivation of writing the present paper.

In addition, it should be taken into account that all detection methods in particle physics

are based on the principles of classical physics because the interaction of quantum particles with

measurement apparatus is always classical. Therefore, independently from any quantum theory

which may explain the confinement any complete theory of confined particles has to look for

alternative approaches already on the classical level.

One crucial novelty of our approach to Galilean covariant mechanics [2] consists in rejecting

all known force laws and in replacing them by a system of differential equations from which the

influences and forces may be determined. In Newtonian mechanics the influences/_ (t) and forces

Fj (t) are always related by simple relations

F:(t)-- Mj _(t) (2.11)

In more sophisticated forms of mechanics the differential equations which relate _ (t) and F: (t)

are of the form

where _ is a function of its arguments collectively denoted by symbols without the label j and the

label I runs over a set which is sufficient to produce a complete system of differential equations for

specification of all _ (t) and fi3 (t). In any mechanics of confined particles we have only one force

/_ (t) and N influences _ (t), and consequeniiy we should modify the standard way of writing the

differential equations (2.11) and (2.12). To do this, let us observe that in the standard mechanics

the force/_ (t) may be represented in the form

N

F(t) = _ Fj(t) (2.13)
i=1

where F: (t) are the forces acting on the j-th particle. From this representation and (2.11) we find

the equation
N

_(t) = _ M, fj(t) (2.14)
j=l

which apart from the undetermined inertial masses contains quantities used also in the mechanics

of confined particles. We cannot however take this equation as one of the equations of the en-

vironment because confined particles have no inertial masses and the meaning of the coefficients

in (2.14) is not clear. We have argued in [2] that all constants that appear in the equations
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for influences and forces may be interpreted as coupling constants of the model of the particle

environment , and following this line of reasoning we could take instead of (2.14) the equation

N

f (0 = -jg (0 (2.15)
j=l

where aj (j = 1,2...N) are fixed coupling constants. However, such an approach leaves too much

arbitrariness. The situation is much better for identical particles because for such particles all

relations should be symmetric under all permutations of quantities ascribed to individual particles.

This means that for identical particles instead of (2.15) we will have

:., N

F(t)=o y_ _(t) (2.16)
j=l

and we have to do only with one coupling constant the meaning of which is easily established. To

find the interpretation of a, let us observe that the case of identical particles is the only case for

which the usual notion of the center of mass has a purely geometrical meaning independent of the

values of masses of particles. In fact, for a system of identical particles the usual definition of the

center of mass leads to the following identification of its position vector

1 N

X(t)= _y_ _j(t) (2.17)
j=l

its velocity

and its acceleration

1 N

l_(t) = _ _ _'j (t) (2.18)

1 N

= i_ 1 ffj (t) (2.19)=

Clearly, all these concepts have a pure geometrical and kinematical meaning as the average posi-

tion, velocity and acceleration, respectively. We may therefore use these notions also for systems

of confined particles for which the notion of mass of the individual particles is not defined. The

equation of motion for a whole system of confined particles will then be of the form

Y (t) = M,4(t) (2.20)

where M is the inertial mass of the system as a whole. Differentiating now this equation we get

F(t) = M x . M u
_E fi'J(t) = --E _(t) (2.21)

j=a N _=l

and comparing this result with equation (2.16) we come to the identification

M
o = -- (2.22)

N
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which completes the interpretation of the coupling constant a.

Clearly, equation (2.16) is only one of equations which should determine the individual in-

fluences of each particle. We still need more equations to determine the individual influences of

each particle. Whatever their form may be, they should not contain then total force/_ (t) because
the behaviour of an individual confined particle should be independent of the interaction of the

system as a whole with its environment. Consequently, the environment should never be able to

disjoin the particles into separate clusters or constituents. This may be achieved if we postulate

that the only equation in which participate ff (t) is equation (2.16). The eventual equations for

determining ff (t) should arise from treating at least two many-particle systems because the force

ff (t) is connected with the interaction of the system as a whole and not with the interaction of
its individual constituents.

Since the remaining equations which contain individual influences should determine only rel-
ative motion of the confined particles we must, instead of (2.12), postulate equations of type

Ct k, k, ljk = 0 (2.23)

where
_k -- _- h (2.24)

are the relative influences.

Solving equations (2.23) together with (2.16) we will find all individual influences _ (t) and

we may integrate all kinematical equations (2.1)-(2.3). Each equation needs however some initial

condition in order to specify the physical quantity determined by this equation, and the overall

picture of the motion of particles will crucially depend on the choice of initial conditions. To keep
the confined particles together in some finite regions of space, we must additionally assume the

condition

sup l_j(t) - _k(t)l < _ (2.25)

This is a condition on the initial preparation of the system and may not be satisfied. Note, however,

that (2.25) is not a defining property of confined particles but only one of their particular features.

3 Example

To illustrate the proposed approach, we complete the paper with a simple example of the system

of two confined particles for which equations (2.23) are of the oscillator type

=0 (3.1)

and for which the external force ff (t) is constant in time. Clearly, equation (26) has the solution

_(t) = [ cos_t + fsinwt (3.2)

where f and f are two integration constants which describe the internal structure of the system
and which have to be determined from some kind of initial conditions. From (2.24) and (3.2) we
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get then the individual influences in the form

7,(t) = ? cos_t + _J sin_t

i- i- t
L(t) = -_1 coswt- _Jsinw

and integrating equations (2.1)-(2.3) we get the trajectories of particles in the form

(3.3)

_,(t)

zz(t)

_if= 6, +flit +'Ylt 2 2w 3 sinwt + 1fcoswt2w3

_-
(3.4)

where aj, 3j and 7j for j = 1, 2 are integration constants to be determined from initial conditions.

Condition (2.25) requires that

(3.4)

71 = 72

Imposing now the initial conditions

e_(t0) = _o

_'./(to) = gjo (3.5)

gx(to)- g_(to) = go

and using equation (2.20) we get the solution (3.4) in the form

z,(t) = e,o + ,_,o+ O2o(t P2 - to) + 5-_(t - to)_+

1 _Io + _o
+ _3-a"o [1 - cosw(t - to)] + 2w sinw(t - to)

_=(t) = _2o+ _,o + _o (t - to) + p2 _--_(t - to)z-

2wiff01 [1 - cos_(t - to)] - 6,o2w- 62°sinw(t - to)

(3.6)

It is easy to see that the relative motion of the particles is independent of the force f and therefore

no external force can disjoin the particles.
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