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Abstract

Using the relativistc harmonic oscillator, we give a physical basis to the phenomeno-

logical wave function of Yukawa which is covariant and normalizable. We show that this
wave function can be interpreted in terms of the unitary irreducible representations of the

Poincar@ group. The transformation properties of these covariant wave functions are also
demonstrated.

1 Introduction

Because wave functions play a central role in nonrelativistic quantum mechanics, one method of

combining quantum mechanics and special relativity takes the form of efforts to construct rela-

tivistic wave functions with an approrpriate probability interpretation. The harmonic oscillator,

which has the useful property of mathematical simplicity, has served as the first concrete solu-

tion to many new physical theories. It played a key role in the developing stages of nonrelativistc

quantum mechanics, statistical mechanics, theory of specific heat, molecular theory, quantum field

theory, theory of superconductivity, theory of coherent light, and many others. It is, therefore,

quite natural to expect that the first nontrivial relativistic wave function would be a relativistic

harmonic oscillator wave function[i, 2].

In connection with relativistic particles with internal space-time structure, Yukawa attempted to

construct relativistic oscillator wave functions in 195313]. Yukawa observed that an attempt to

solve a relativistic oscillator wave equation in general leads to infinite-component wave functions,

and that finite-component wave functions may be chosen if a subsidiary condition involving the

four-momentum of the particle is considered. This proposal of Yukawa was further developed by

Markov,[4] Takabayasi,[5, 6] Sogami[7] and Ishida.[8]

The effectiveness of Yukawa's oscillator wave function in the relativistic quark model was first

demonstrated by Fujimura et al.[9] who showed that the Yukawa wave function leads to the
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correct high-energy asymptotic behavior of the nucleon form factor. The harmonic oscillator

wave function was also rediscovered by Feynman et al.[lO] who advocated the use of relativistic

oscillators instead of Feynman diagrams for studying hadronic structures and interactions. The

paper of Feynman et al. contains all the troubles expected from relativistic wave equations, and

the authors of this paper did not make any attempt to hide those troubles.

The basic problem facing any relativistic harmonic oscillator equation is the negative-energy spec-

trum due to time-like excitations. It had once been widely believed that any attempt to obtain

finite- component wave functions by eliminating time-like excitations would lead to a violation of

probability conservation. This belief did not turn out to be true. It is now possible to construct

harmonic oscillator wave functions without time-like wave functions which form the vector spaces

for unitary irreducible representations of the Poincar6 group.

In Section 2, we formulate the problem by writing down the relatlvistically invariant differential

equation which leads to the covariant harmonic oscillator formalism. In Section 3, we study solu-

tions of the oscillator differential equation which are normalizable in the four-dimensional x, y, z, t

space. In Section 4, representations of the Poincar6 group for massive hadrons are constructed

from the normalizable harmonic oscillator wave functions. It is shown that they form the basis

for unitary irreducible representations of the Poincar6 group, as well as that for the O(3)-like

little group for massive particles. In Section 5, Lorentz transformation properties of the harmonic

oscillator wave functions are studied. The linear unitary representation of Lorentz transformation

is provided for the harmonic oscillator wave functions.

2 Covariant Harmonic Oscillator Differential Equations

We first consider the differential equation of Feynman et al.[10] for a hadron consisting of two

quarks bound together by a harmonic oscillator potential of unit strength:

-2 _ + _ + (x..- _)_ +,n0_ _(xo,_b)= 0, (1)

where z_ and xb are space-time coordinates for the first and second quarks respectively. This

partial differential equation has many different solutions depending on the choice of variables and

boundary conditions.

In order to simplify the above differential equation, we introduce new coordinate variables:

x = (2, + _b)12,
x = (z=-zb)12. (2)

The four-vector X specifies where the hadron is located in space-time, while the variable z mea-

sures the space-time separation between the quarks. In terms of these variables, Eq. (1) can be
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written as

o_ m°_+ _ _(x'_)

This equation isseparablein the X and x variables.Thus

=0. (3)

¢(x, _)= f(x)¢(x),

and f(X) and ¢(x) satisfy the following differential equations respectively:

(°' )o7._ m°_- (_ + 1) /(x) -- 0,

Eq. (6) is a Klein-Gordon equation, and its solution takes the form

(4)

(5)

(6)

f( X) = exp [zlzipuXU] , (7)

with

_p2 = _p.pu = M 2 =mg + (A + 1).

where M and P are the mass and four-momentum of the hadron respectively. The eigenvalue A

is determined from the solution of Eq. (7). We are using the same notation for the operator and

eigenvalue for the hadronic four-momentum. This should not cause any confusion since we are

dealing only with free hadronic states with a definite four-momentum.

As for the four-momenta of the quarks p_ and pb, we can combine them into the total four-

momentum and momentum-energy separation between the quarks:

P = Po +Pb,

q = (P_ -Pb). (8)

P is the hadronic four-momentum conjugate to X. The internal momentum- energy separation
q is conjugate to x provided that there exist wave functions which can be Fourier-transformed.

If the momentum-energy wave functions can be obtained from the Fourier transformation of the

space-time wave function, the differential equation in the q space is identical to the harmonic

oscillator equation for the x space given in Eq. (7)

3 Normalizable Solutions of the Relativistic Oscillator

Equation

Since we are quite familiar with the three-dimensional harmonic oscillator equation from nonrela-

tivistic quantum mechanics, we are naturally led to consider the separation of the space and time
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variables and write the four-dimensional harmonic oscillator equation of Eq.(1.6) as

-v 2+ + Ix2 - t_ _(x) = (_ + 1)¢(x). (9)

However, the xt system is not the only coordinate system in which the differential equation takes
the above form.

If the hadron moves along the Z direction which is also the z direction, then the hadronic factor

f(X) of Eq. (8) is Lorentz-transformed in the same manner as the scalar particles are transformed.
The Lorentz transformation of the internal coordinates from the laboratory frame to the hadronic

rest frame takes the form

x r =- X, yt = y,

z' = (z - _t)/(1 - Z_)'/_,
t' = (t - _)1(1 - _2),/_, (lO)

where fl is the velocity of the hadron moving along the z direction. The primed quantities are the

coordinate variables in the hadronic rest frame. In terms of the primed variables, the oscillator

differential equation is

-V'2 + 0-_ + -t a ¢(x) = (A + 1)¢(x). (!1)

This form is identical to that of Eq. (I0) , due to the fact that the oscillator differential equation

is Lorentz-invariant.[1]

Among many possible solutions of the above differential equation, let us consider the form

\_] H,(x')Yb(y')H,_(z')Hk(t')

x exp [_l(xn +ya +z a + ta)], (12)

where a, b, n and k are integers, and H,(z'), Hb(y') ... are the Hermite polynomials. This wave

function is normalizable, but the eigenvalues are:

A = (a+ b+n - k) (13)

Thus for a given finite value of )_, there are infinitely many possible combinations of a, b, n and

k. The most general solution of the oscillator differential equation is infinitely degenerate.J3]

Because the wave functions are normalizable, all the generators of the Lorentz transformations are

Hermitian operators. The Lorentz transformation applicable to this function space is therefore a

unitary transformation. Indeed, we can write any function of the coordinate variables x, y, z and

t as a linear combination of the above solutions. In particular, a solution of the oscillator equation

z
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with a given set of quantum numbers in the ha_lronic rest frame can be written as a linear sum of

infinitely many solutions in the hadronic rest frame as we shall see in Section 4.

It is very difficult, if not impossible, to give physical interpretations to infinite-component wave

functions. For this reason, it is quite natural to seek a finite set from the infinite number of wave

functions at least in one Lorentz frame. The simplest way to obtain such a finite set of wave
functions is to invoke the restriction that there be no time-like oscillations in the Lorentz frame

in which the hadron is at rest and that the integer k in Eqs. (13) and (14) be zero. In doing so,

we are led to the following two fundamental questions:

(a). Is it possible to give physical interpretations to the wave functions belonging to the resulting
finite set?

(b). Is it still possible to maintain Lorentz covariance with this condition?

Let us examine question (b) closely.

When the hadron moves along the z axis, the k = 0 condition is equivalent to

The most general form of the above condition is

p_,(x_ , O)Ox, Ca(x) = 0. (15)

Thus the k = 0 condition is covariant. Once this condition is set, we can write the wave function

belonging to this finite set as

¢_(x) = (1/Tr)[1/(2_2b2'_a'b'n')]l/_H,(x')Hb(y')H,_(z')exp [-_(xa + ya+za+ t'2)] . (16)

Except for the Gaussian factor in the t' variable, the above expression is the wave function for

the three-dimensional isotropic harmonic oscillator. This means that we can use the spherical

coordinate system for the x', y' and z' variables. We shall see in Section 3 how these ideas form

the basis for constructing representations of the Poincar_ group.

Since the above oscillator wave functions are separable in the Cartesian coordinate system, and

since the transverse coordinate variables are not affected by the boost along the z direction, we can

omit the factors depending on the x and y variables when studying their Lorentz transformation

properties. The most general form of the wave function given in Eq. (13) becomes

_-[,/<.,','.,,,>]..z',,.<,'>ex.Lz , t') (17)
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with

The wave functions satisfying the subsidary condition of Eq. (16) take the simple form

_(z,t) = [1/(r2'_nl)] '/2 H,_(z')exp[-(1/2)(z '2 + tn)],

with

._--n

(18)

This normalizable wave function without excitations along the t' axis describes the internal

space-time structure of the hadron moving along the z direction with the velocity parameter ,3.

If fl = 0, then the wave function becomes

¢_(x, t) = [1/(r2"n!)] 1/_ H,(z)exp[-(1/2)(2 + t2)], (19)

Thus

We have therefore obtained the Lorentz-boosted wave function by making a passive coordinate
transformation on the z and t coordinate variables.

Let us next study the orthogonality relations of the wave functions. Since the volume element is
Lorentz-invariant:

dzdt = dz' dt', (20)

there is no difficulty in understanding the orthogonality relation:

/ "' / '¢_- %(z, _-¢_ (z,t)¢_(z,t)dzdt t)¢_(z,t) &,,,,. (21)

However, a more interesting problem is the inner product of two wave functions belonging to

different Lorentz frames. This inner product becomes

__. •
[1- (22)

The remarkable fact is that the orthogonality in the quantum number n is still preserved because

of the Lorentz invariance of the harmonic oscillator differential equation. The oscillator equation

does not depend on the velocity parameter _. As for the factor [1 - fl2](,_+,)/2 in Eq. (23), we

note first that, when the oscillator is in the ground state, it becomes like a Lorentz contraction of

a rigid rod by [1 - _211/2. Excited-state wave functions are obtained from the ground state wave

function through repeated applications of the step operator:

I O,,_ >. (23)

The transformation property of each step-up operator is like that of z. Therefore, if the ground-

state wave function is like a rigid rod along the z direction, the n _ excited state should behave

like a multiplication of (n + 1) rigid rods.[ll, 2]
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4 Irreducible Unitary Representations of the Poincard

Group

The Poincard group consists of space-time translations and Lorentz transformations. Let us go

back to the quark coordinates x_ and xb in Eq. (1) and consider performing Poincard transforma-

tions on the quarks. The same Lorentz transformation matrix is applicable to x_, xb, x as well

as X. However, under the space-time translation which changes zo and xb to x_ + a and xb + b

respectively,

X _ X+a,

x ---* x. (24)

The quark separation coordinate x is not affected by translations. For this reason, the generators

of translations for this system are
0

P. = -i-ox. , (25)

while the generators of Lorentz transformations are

M._ = L]., + L.., (26)

where

( 0)0 X._-;L'.. = i X,,OX _

oL.,, = i _ Ox"

It is straight-forward to check that the ten generators defined in Eqs. (26) and (27) satisfy the

commutation relations of the Poincar_ group. We are interested in constructing normalizable wave

functions which are diagonal in the Casimir operators p2 and W2:

(°)p2

= +rag, (27)

W 2 = M2(L') 2, (28)

where

L,i . I 0
= -zei_kx_ Ox'_"

The eigenvalue of p2 is M 2 =mg + (a + 1), and that for W 2 is M2e(e + 1). M is the hadronic

mass, and g is the total intrinsic angular momentum of the hadron due to internal motion of the
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spinless quarks.[12] In a:ddition, we can choose the solutions to be diagonal in the component of

the intrinsic angular momentum along the direction of the motion. This component is often called

the helicity. If the hadron moves along the Z direction, the helicity operator is L3.

Because the spatial part of the harmonic oscillator equation in Eq. (12) is separable also in the

spherical coordinate system, we can write its solution using spherical variables in the hadronic

rest frame space spanned by z', y' and z'. The most general form of the solution is

ck,?T/, / xo_ttz) = _(r')Y"¢(0', ¢')[ll([v_2kk!)ll/2Hk(t')e -'w2, (29)

where

r' = [za + ya + za]m,

cosO t = zl/r t,

tan¢ = y'/x',

and

,_ = 2_ + e - k. (30)

Rt(r ') is the normalized radial wave function for the three-dimensional harmonic oscillator:

Rt(r) = (2(#l)/[r(# + e + 312)]z)'/2rtLt,+t/2(r2)e -,U2, (31)

t+l/2 2where L. (r is the associated Laguerre function.[13] The above radial wave function satisfies

the orthonormality condition:[14]

]f )g(nr 2 r r)dr = 6.v. (32)

The spherical form given in Eq. (30) can of course be expressed as a linear combination of the

wave functions in the Cartesian coordinate system given in Eq. (17).

The wave function of Eq. (30) is diagonal in the Casimir operators of Eqs. (28) and (29), as well as

in L 3. It indeed forms a vector space for the O(3)-like little group.[15, 16] However, the system is

infinitely degenerate due to excitations along the t' axis. As we did in Section 2, we can suppress
the time-like oscillation by imposing the subsidiary condition of Eq. (16), or by restricting k to

be zero in Eq. (31). The solution then takes the form

t2

_,_xt(z) = Rt(r')Yt'_(0',C')[(1/r) '/'exp(-t /2)], (33)

with

A=2#+L

Thus for a given A, there are only a finite number of solutions. The above spherical form can be

expressed as a linear combination of the solutions without time-like excitations in the Cartesian

coordinate system given in Eq. (17).
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We can now write the solution of the differential equation of Eq. (1) as

¢(x, x) = ei_Px¢_'_(x). (34)

This wave function describes a free hadron with a definite four-momentum having an internal

space-time structure which can be described by an irreducible unitary representation of the

Poincar$ group. The representation is unitary because the portion of the wave function depending

on the internal variable x is square-integrable, and all the generators of Lorentz transformations

are Hermitian operators. We shall study in the next section how these wave functions are Lorentz

transformed.

5 Transformation Properties of the Harmonic Oscillator

Wave Functions

If the hadronic velocity is zero, then its rest frame coincides with the laboratory frame. The wave

function then is

¢0(x) = Rt,(r)Yt_(0, ¢)[(l/r) '/4 exp(-t2/2)] • (35)

The simplest way to obtain the wave function for the moving hadron is to replace the r, 0 and ¢

variables in the above expression by their primed counterparts. This produces Eq. (30). However,

we are interested in obtaining the wave function for a moving hadron as a linear combination of

the wave functions for the rest frame. If we apply the boost operator to the wave function for the

hadron at rest,

¢_(_) = [e-'""3l_0_(_),

where K3 is the boost generator along the z axis, its form is

(36)

0 t O ) (37)K3 = -i z_ + _ ,

and rI is related to velocity parameter fl by

sinh rI =/3/(1 - fl2)1/2.

Both the rest-frame and moving-frame wave functions have the same set of eigenvalues for the

Casimir operators p2 and W 2 of the Poincar6 group.

These eigenstate wave functions are linear combinations of the Cartesian forms in their respective

coordinate systems. If the hadron moves along the z direction, the x and y variables remain

invariant. Therefore, we use the wave function of Eq. (19) with/3 = 0:

_.,o p/(,_2_,,!)],/_H.(_)exp[_(_/2)(z_+ t:)].0 =
(38)
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The superscipt 0 indicates that there are no time-like excitations: k = 0.
consider the transformation

.,0, .,o[z, = [exp(-,r/K3)]¢0 (z,t)t)

,'fifO/ I .!_

= _2o (z,z:),

and ask what the boost operator exp(-ir/K3) does to ¢_'°(z, t).

We are now led to

(39)

This boost operator of course changes z and t to z' and t' respectively as is indicated above.

However, we are interested in whether the transformation can take the linear form

.,o, t) ,,,o ,,'k'= (z,t). (40)

Because the oscillator differential equation is Lorentz invaxiant, the eigenvalue ,_ of Eq. (18)

remains invariant, and only the terms which satisfy the condition

n=(n'-k') (41)

make non-zero contributions in the sum. Thus the above expression can be simplified to

oo

¢_'°(z,t) = _ A'_(fl)¢;+k'k(z,t). (42)
k--O

This is indeed a linear unitary representation of the Lorentz group. The representation is infinte-

dimensional because the sum over k is extended from zero to infinity.J17]

The remaining problem is to determine the coefficient A_(fl). Using the orthogonality relation,
we can write

A'_(fl) = f dzdtg,'_+_'k (z, t)¢_'°( z, t )

1 (21_)'_ (_)'/2 ( 1 ),/2r n[(n + k)!

x f dzdtH,,+k(z)Hk(t)Un(z')

× exp (-1(2 +z '2 +t 2 +ta)). (43)

In this integral, the Hermlte polynomials and the Gaussian form are mixed with the kinematics of

Lorentz transformation. However, if we use the generating function for the Hermite polynomial,

the evaluation of the integral is straightforward, and the result is

a;(fl) = (1 - fl2)(,+,,)/2flk ((n + k)!'_

1/2

-n!-k-[ ) (44)

Thus the linear expansion given in Eq. (41) can be written as

¢_'°(z,t) = [1/(2arc)]'/2(1 - _)("+')/2(exp[_(z2 + t2)/2])

k=O ,
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As was indicated with respect to Eq. (20), this linear transformation has to be unitary. Let us

check this by calculating the sum

S- _ I A_(/_)12 • (46)
k=O

According to Eq. (45), this sum is

oo (n + k)! (,_2, k (47)s = [1- ; TkT ) "
k=O

On the other hand, the binomial expansion of [1 - _2]-(n+1) takes the form

[1 - _2]-(,.,+,) = _ (n + k)[/_2k (48)
k=0 n[k! "

Therefore the sum S is equal to one. The linear transformation of Eq. (43) is indeed a unitary
transformation.

It is also of interest to see how this transformation can be achieved directly in terms of solutions

which are eigenstates of the Casimir operators. For this purpose we construct the solutions in

terms of the spherical coordinate variables for the three-dimensional (x, y, z) space and treat t

separately. If the hadron is at rest,

ck,rn [ _ rno_t:c) = _(,')Yt (O,¢)[1/(v_2%!)]_/2Hk(t)e-'_/L (49)

Thus we have to write the generators of Lorentz transformations in terms of these variables. The

three rotation generators can be written as[13]

.0

L3 = --Z_-_,

L_ -- L1 :l:L2

-q-e +i* -_ -4- icotO .

It is not difficult to calculate the three boost generators. They take the form

= cosO(rff_._+tO) t 0r sin 0_--_,

= KI+iK2

e+_ (r 0__ ff__ t OUO t O)+tsin0 -cos0==4- - .
r r sin 0 0-0

(50)

(51)

The rotation generators affect only the spherical harmonics in the wave function of Eq. (50). Thus

L .i.k,m k,rn,.h
3qJOM = Tr_ty0M ,

-- _( l "l'k'm:t:lr .,.k,,, t _ m)(_ + m + -J_0xt • (_2)_+ _O),t --
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The above relations mean that rotations do not change the quantum numbers )_, g and k. They

only change m. Eq. (53) indeed corresponds to the fact that the little group for massive hadrons

is like SO(3).

On the other hand, if we apply the boost generators, we end up with somewhat complicated

formulas:

iK+

(g + m + 1)(g- m + 1)] 't2

[ (e+,)(e-m) ]'/'
+ L0) 7

[(g +m + l)(g + m + 2)] x" y._+,t 0 ¢b)Q_(tF::_-- (2g + 1)(2g + 3) g+l _ ,

r(e
+ L (2g + 1)(2g - 1) Y_;_'(0, ¢)Q + (g + 1)F_t(r,t ).

(53)

where

Q, : t-_r + r-_ + g ,

and '

F_e(r, t) = Re_(r)[1/(v_2%!)]'/2Hk(t)exp(-?/2).

K3 does not change the value of m, while K+ and K_ change m by +1 and -1 respectively.

In addition, unlike the rotation operators, the boost generators change )_, g and k. This is a

manifestation of the fact that the unitary representation is infinite-dimensional as is indicated in

Eq. (43).

It is possible to finish the calculation by explicitly carrying out the differentiations contained in

the Qt operators. However, this does not appear necessary, because we already know what the

answer should be from our experience with the Cartesian coordinate sytem.

i

6 Conclusion

The harmonic oscillator applied to the symmetric quark model has withstood the test of time.

The work of Karr[18, 19] has fully integrated the field theorectic aspects of this work. Below we

present the experimental present status of the non-strange baryon in relation to the harmonic

oscillator.
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TABLE I. Mass spectrum of nonstrange baryons. The calculated masses based on

Eqs. (9.1) and (9.2) in Kim and Noz,[2] Theory and Applications of the Poincar_

Group. The experimental masses are from "Physical Review D" 45, No. 11, (June,

1992). The last column contains the identification code of the pion-nucleon resonance

used in Particle Data Group. For N = 0 and N = 1, the quark model multiplet scheme

is in excellent agreement with the experimental world. For N = 2, the model seems to

work well, but more work is needed on both the theoretical and experimental fronts.

There are still very few particles in N = 3. Baryonic masses are measured in MeV.

Calculated Experimental

N L SU(6) SU(3) Spin J Mass Mass PDG-ID

0 0 56 8 1/2 1/2 940 939 Plz****

10 3/2 3/2 1240 1232 P33"***

1 1 70 8 1/2 1/2 1520 1535 $11"***

3/2 1520 1520 Dz3 ****

8 3/2 1/2 1688 1650 $11 ****

3/2 1688 1700 Di3 ***

5/2 1688 1675 Dis ****

10 1/2 1/2 1652 1620 S3z ****

3/2 1652 1700 D33 ****
2 0 56

70

2 2 56

7O

8 1/2 1/2 1480 1440 Pll ****

10 3/2 3/2 1780 1600 P33 **

8 1/2 1/2 1730 1710 Pll ***

8 3/2 3/2 1898 1900 P13 *

10 1/2 1/2 1862 1750 P31 *

8 1/2 3/2 1660 1720 P13 ****

5/2 1660 1680 F15 ****

10 3/2 1/2 1960 1910 P31 ****

3/2 1960 1920 P33 ***

5/2 1960 1905 Fzs ****

7/2 1960 1950 F37 ****

8 1/2 3/2 1900

5/2 1900 2000 Fls **

8 3/2 1/2 2078 2100 P11 *

3/2 207s
5/2 2078

7/2 2078 1990 F17 **

10 1/2 3/2 2030

5/2 2030 2000 F35 *
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Table I. Mass spectrum of nonstrange baryons continued.

Calculated Experimental

N L SU(6) sg(3) Spin J Mass Mass PDG-ID

3 1 70 8 1/2 1/2 2060

3/2 2060 2080 D13 **

8 3/2 1/2 2228 2090 $1_ *

3/2 2228
5/2 2228

10 1/2 1/2 2192 1900 Szl ***

3/2 2192

70 8 1/2 1/2 2060

3/2 2060

8 3/2 1/2 2228

3/2 2228

5/2 2228

10 1/2 1/2 2192

10 1/2 1/2 2192

3/2 2192

56 8 1/2 1/2 1810

3/2 1810

10 3/2 1/2 2110 2150 $3_ *

3/2 2110 1940 Daa *

5/2 2110 1930 D35 ***

2 70 8 1/2 3/2 2180

5/2 2180

8 3/2 1/2 2348
3/2 2348

5/2 2348

7/2 2348 2190 Glr ****

10 1/2 3/2 2312

5/2 2360

3 70 8 1/2 5/2 2528

7/2 2528

8 3/2 3/2 2528

5/2 2528 2200 Dis **

7/2 2528

9/2 2528 2250 G19 ****

10 1/2 5/2 2492

7/2 2492 2200 G3r *

56 8 1/2 5/2 2110

7/2 2110

I0 3/2 3/3 2410

5/2 2410 2350 D3s *

7/2 2410 2390 F3r *

9/2 2410 2400 G39"*
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TABLE II. In addition, there are resonances which do not fit in this table. Since

most of these resonaces correspond to even- parity baryons, they presumably belong

to N = 4 multiplet.

SU(3) J Mass PDG-ID

8 3/2 1540 P13 *

8 9/2 2220 //19 ****

8 11/2 2600 _,11 ***

8 13/2 2700 K1,13"*

10 1/2 1550 P31 *

10 9/2 2300 H39 **

10 7/2 2390 F3T *

10 11/2 2420 H3,11 ****

10 13/2 2750 13,13 **

10 15/2 2950 K3,1s **
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