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Abstract

Harmonic oscillator wave functions have played an historically important role in our

understanding of the structure of the nucleon, most notably by providing insight into the

mass spectra of the low-lying states. IIigh energy scattering experiments are known to give

us a picture of the nucleon wave function at high-momentum transfer and in a frame in

which the nucleon is travelling fast. This paper presents a simple model that crosses the

twin bridges of momentum scale and Lorentz frame that separate the pictures of the nucleon

wave function provided by the deep inelastic scattering data and by the oscillator model.

1 Introduction

While a prediction for the nucleon structure functions from first principles in quantum chromody-

namics (QCD) seems, even now, a remote prospect, if we are ever to claim a deep understanding of

the structure of the nucleon, a clear interpretation of such gross properties as the neutron-proton

structure function ratio (R '_p) and the polarization asymmetry (A "p) of the proton structure func-

tion is essential. A notable attempt to relate these features to the nucleon rest-frame wave function

was made by Le Yaouanc et al. [1, 2, 3], who employed non-relativistic harmonic oscillator spatial

wave functions and SU(6) mixing in an attempt to formulate predictions both about the structure

functions and the nucleon form factors. While both the large-x behavior of R '_p and the initial

slope of the neutron electric form factor were well accounted for by the inclusion of an admixture

70 excited state in the nucleon wave function, the signs of the mixing angles obtained in the two

cases were observed to disagree.

Against the structure-functions calculation of Le Yaouanc et al. may be raised the objection that

there is no clear prescription for Lorentz-transforming a non-relativistic wave function. It is this

concern that will be addressed in this paper. Less widely recognized is an objection that can

be raised against the treatment of the form factors by Le Yaouanc et al. The latter calculation
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involves the assumption that the nucleon's charge (magnetization) density and electric (magnetic)
J

form factor_arerel_l_ed by Fourier transformation. The Fourier relationship holds only when the

Lorentz transformation of the spatial wave functions is ignored. There are several models which are

known to predict a non-zero neutron electric form factor in the absence of SU(6) mixing[4, 5, 6]. In

such models, which employ plausible relativistic spin wave functions, the matrix elements involved

in the determination of the form factors cannot be factorized into a product of spin, isospin, and

spatial matrix elements. Since the spin wave functions play no role in the structure function

calculation, the possibility must be considered that the structure functions provide the correct

value for the mixing angle.

The spatial wave functions that shall be considered are the "definite metric"[7] solutions to the

relativistic harmonic oscillator equation of Feynman et al.[8] In their original work, Feynman et at.

used the non-normalizable "indefinite metric" solutions of their wave equation. These solutions

yield divergent form factors as _q2 increases. To remedy this, they multiplied all matrix elements

by an ad hoc factor. The "definite metric" solutions are normalizable and, when used to calculate

nucleon form factors, yield the proper q2 behavior, a dipole fail-off for large _q2, without any

adjustments. These solutions also help to illuminate features of the structure functions and the

parton model, as will be seen later on.

In Section 2 the relativistic harmonic oscillator equation and its normalizable solutions are re-

viewed. The behavior of these solutions under Lorentz's transformation is discussed, and their
form in the infinite momentum frame is exhibited. In Section 3 the infinite-momentum-frame

relativistic-oscillator nucleon wave function is combined with QCD momentum scaling incorpo-

rated via the valon model of Hwa.[9] The proton and neutron Structure functions are considered

within the context of the resulting model, and a value for the mixing angle for an admixture of

70 excited state is calculated. In Section4, the significance of this calculation is reviewed.

2 The Relativistic Oscillator Model

L:

For simplicity of discussion, the relativistic oscillator model is introduced for the two particle case

first. This model describes the binding of a pair of quarks to from a meson via the differential

equation

where xl and x2 represent the space-time coordinates of the two constituent quarks, and the metric

convention is defined by -g00 = gii = 1. The quark spin will be ignored here, though versions of

the relativistic oscillator model have been formulated to include spin 1/2 quarks.[10, 11] Eq. (1)

is readily solved via separation of variables in terms of the coordinates
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X. = 1/2 (xl. + x2.)

x, = 1/2(xx_, - z2u) (2)

where the Xu are the space-time coordinates of the meson center of momentum and the x u

determine the space-time separation of the quarks. The separated equations are

(0_,- m_)¢(x/= 0 (3)

and

(-a_ +,,.,_/4__+_o_)_(x)=_(.) (4)

where tX/(xl, x2) = ¢(X)_(x). Eq. (3) is the Klein-Gordon equation for a meson of mass m, while

Eq. (4) describes a four-dimensional harmonic oscillator.

Eq. (4) is itself separable in terms of the space-time components x_,, while the eigenvalue m 2 is

given by a linear combination of the eigenvalues corresponding to each of the component equations.

In the timelike direction, an increase in the excitation quantum number corresponds to a more

negative contribution to the mass squared. To eliminate a degree of freedom which is not observed

in nature, and to eliminate, as well, the unphysical possibility of imaginary mass, the oscillator-

model solutions are required to obey the subsidiary condition

ax,, v_0-;_+--/-x" _(x,x)=o. (5)

This condition suppresses timelike excitations in the meson rest frame.

The solutions to Eq. (3) have the familiar form exp(iPuX.) where P. is the four-momentum

corresponding to the meson center-of-momentum coordinates X_,. The solutions to Eq. (4) are

products of oscillator solutions in each of the space-time components, with the solution in the

timelike coordinate in the restframe being restricted to the fundamental mode via Eq. (5). Such
solutions can be written as

Od/21r (2b+k+Wb!]c,,w,)-I/2 Hh[xr _r_]Hk[yr _r-_]Hw[zr _'_]

2
xexp [-w/4 (x_ + y_ +z, + ,_)]

L

(6)

513



where H denotes a Hermite polynomial and x' denotes the four vector x, represented in terms

of its components, xr, yr, z, and t. in the meson rest frame. The invariant meson square mass

corresponding to pu is required by Eq. (3) to be equal to m 2, while Eq. (4) determines that

m 2 = w(b + k + w + 1) + m_.

The above solutions form a complete set of normalized rest-frame solutions. The wave function

in a frame in which the meson is not at rest is specified by the Lorentz transformation between

the meson rest frame and the frame in which it is moving. For example, the ground state in an

arbitrary frame can be written as

¢,(x,_)

×e×p{-_/4[x_- 2(P.x?/P_]}. (7)

The construction of relativistic-oscillator momentum-space wave functions in arbitrary frames is

equally straightforward. Figure 1 provides a pictorial view of the effect of the Lorentz transfor-

mation on the rest-frame wave function, both in coordinate space and in momentum space. The

bound state quarks are seen to acquire lightlike momenta in the frame where the meson is moving

rapidly. The success of the parton model tells us that this should be the case.

Modelling of the nucleon requires that a three particle version of the relativistic oscillator be

considered. A harmonic interaction between each pair of quarks is assumed, and the governing

differential equation takes the form

{3[o12+o_+o_]-_/36 [(_,- _)_+(_ - _)_+(_- _,)_]- uo}_(x,,_,_) = 0 (8)

where xl, x2 and x3 are the space-time coordinates of three constituent quarks.

Separation of variables can be implemented in terms of the coordinates X, r and s, defined as

X. = 1/3 (xxu + x2. + xz.)

r. = 1/6(zlu + z2. - 2x3.)

_.= -1/(2v_)(_,. - x_.). (9)
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The wave function @(Xl,Z2,x3) can be written in terms of these variables as O(X)_(r)O(s) where

_b(X) satisfies Eq. (3) while _b(r) and O(s) satisfy respectively

-1/2(0 -wUs2)9(s) = A,O(s) (lo)

The square mass is Eq. (3) in the nucleon case is then given by U ° + Ar + A,. To remove the

unphysical timelike degree of freedom from the nucleon spectrum of states determined by Eqs. (10),

the three-particle relativistic oscillator equation is supplemented by a pair of subsidiary conditions
that suppress such excitations in the nucleon rest frame.

Application of the relativistic oscillator model to the structure functions requires construction of

the momentum-space wave function in the infinite momentum frame. In a frame in which a meson

whose rest-frame wave function is given by (6) is travelling with velocity parameter t3 along the
z-direction, the internal momentum-space wave function is

(2/_" _ 1/2 [(2) 1/2 (pz -- _po_l/2]_'(p,/3) = kTr2"w!] H_o _ 13=)]

× exp [-1/w((p, - 3po) 2 + (Po- 13p,)2)/(1 - 13=)] (11)

where p represents the momentum conjugate to the internal separation coordinate x, and where

transverse degrees of freedom have been neglected. As/3 ---+ 1, the square magnitude of _(p, 3)

becomes singular along the forward light cone, while vanishing everywhere else. Integrating along
the direction perpendicular to the forward light cone results in a distribution for the internal

light-cone momentum p+(= P0 + Pz) given by

eIp+)=Lm/ap_I (p,13)I= (12)

where p_ = P0 - p,. The distribution p(p+) is converted into a distribution in Feynman x by

setting p_+ = xP and requiring p(z)dx = p(p+)dp+.

A similar procedure may be followed in the three-particle case. For three particles the result is[12]

p(x) = 3m/(2rw) q2_ ( w ) (1/i[)(1/2)iH_[(m/_/-_(l _ 3x)]
i=1 i

x exp[-(ma/2w)(1 - 3z) =] (13)
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in general, and

po(x) = 3m/(2rw) '/2. exp[-(m2/2w)(1 - 3x) 2] (14)

if the nucleon is assumed to be described by the oscillator ground state wave function. The variable

x in Eqs. (13) and (14) is the momentum fraction variable. A calculation of the proton charge

structure function Fir'(x), can, for example, be based directly on Eq. (14). The result is

Fir'(x) =< e_ > mxl(2rw)ll2.exp[(-9m212w)(x- 1/3) 2] (15)

where the average of the charge el is taken over the three valence quarks. This calculation ignores

scaling effects predicted by QCD and yields only qualitative agreement with experiment.

3 Structure Functions

A valon is a bound state or constituent quark whose internal structure is probed in high energy

interactions. To be completely general, valons of different spin as well as flavor should be differ-

entiated. Let G,4N(X ) represent a momentum-fraction probability distribution for a valon of type

v (v representing spin and flavor) in the nucleon N. A nucleonic structure function FN(x, Q2)

is expressed in terms of convolutions of G,4g(x ) with corresponding structure functions for the
valon s:

(16)

The Q: dependence of the structure functions appears only in F'_(x, Q2). QCD evolution Eq. (13)

for the moments of the structure functions are used to express this dependence. According to

Eq. (16), the moments of a nucleon structure function are given by a sum of products of moments:

MN(n, Q 2) = __, M,4N(n)M'_(n, Q 2)
"d

(17)

where

MN, v(n,Q 2) = foldxx'_-2FY,'_(x,Q 2) (_s)
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and

mv/N(n) = fO 1 dxxn-lGv/N(X) • (19)

The evolution equations are the basis for assuming a form for the moments M_'(n, Q2) of the

structure functions F'_(z, Q2). The F"(x,Q 2) are understood to be determined by the quark

distributions within the valon, v, which distributions can be broken up into components that

behave as singlets and as nonsinglets under flavor transformation. The moments MY(n, Q2) are

correspondingly expressed in terms of singlet and nonsinglet moments, which are defined to be the

scaling factors governing the evolution of the moments of such quark distributions in lowest-order,

twist-2 QCD. The nonsinglet moments are given by

MNs(n, Q2) = exp(_aONSS ) (20)

while the singlet moments are

M,(n,Q 2) = 1/2(1 + p,,) exp(-d;s) + 1/2(1 - p,,,) exp(-am_s)

where

(21)

ln(Q:/A2)'_
(22)

The coefficients d'_ _ d"_.Ns, d+, and p,, come from the renormalization group analysis.[13] The con-

stant, A, is the usual scaling parameter while Q0 represents the "starting point" of the evolution.

Since valons of different helicity as well as flavor are to be distinguished, four separate valon

distributions will be required to characterize the nucleon. The corresponding moments are denoted

as

UT(n ) = MvT/p(n)= Mm/,_(n )

Dt(n ) = MDt/p(n)= MuT/,(n)

Ht(n ) = Mul/p(n) = MDt/,_(n)

't :n) = M_t/p(n) = Mul/,,(n) (23)
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where the symbol T (_). denotes that the valon's helicity is par allel (antiparallel) to that of the

nucleon, and where the identification of valon distributions within the neutron with the corre-

sponding isospin-reversed distributions in the proton follows from charge symmetry. In terms

of the singlet and nonsinglet moments Eqs. (20) and (21) and the valon moments Eq. (23), the

moments of the nucleon structure functions F2P(x, Q2) and F2_(x, Q2) are given by

M2P(n,Q 2) = 2/912U(n) + D(n)]M,(n,Q 2) + 1/914U(n)- D(n)]MNs(n,Q _) (24)

with

M2,(n, Q2)= 2/912U(n) + D(n)]M,(n, Q2)_ 2/9[U(n)- D(n)]Mgs(n, Q2) (25)

U(n) = UT( )+ U (n)
D(n) = DT(n) + (26)

It is easily verified that these equations describe the lowest-order twist-2 QCD evolution of the

moments of F 2p and F 2'_ from a starting point at which the nucleon is viewed as consisting of its

three bound-state quarks.

Eqs. (24) and (25) were used by Hwa[9] in conjuncti on with experimental moments of F 2p and

F 2'_ to obtain fitted values for the parameters Q0 and A. These equations are first order, and will

therefore not be accurate for low Q2. Ideally we would like to evolve the bound-state momentum-

space wave function from the energy scale Qo2 at which the nucleon is describable as a bound state

of its three constituent quarks (with, perhaps, an oscillator-like momentum distribution), out to

high Q2 where the structure functions are observed. The fitted parameter Qo2 is an approximation

for Q02 in the sense that the lowest-order evolution equations are used. This approximation is a

key feature of the valon model and is discussed in detail in.[14] The goal of Hwa's fitting procedure

was to obtain estimates for the functions GriN(X). In Figure 2, an "average" valon distribution

obtained in[9] by neglecting spin and flavor dependence is compared with po(x) given by Eq. (14)

Let us now introduce a 70 component of SU(6) into the nucleon wave function in the form

= [cos 0¢0 156 >, +(sin 0/v/2)(¢, [ 70 >,_ +¢0170 >Z)]. exp(-iP. X). (27)

The ¢'s represent the spatial wave functions; Co is the harmonic oscillator ground state, while ¢_

and ¢_ are taken to b e excited states with total harmonic oscillator quantum number n = 2 and

zero orbital angular momentum. The subscripts a and/3 refer to the two possible types of mixed

symmetry which are characterized by the behavior of the (three quark) wave function under

exchange of the first and second quarks. The form of the excited-state component is uniquely

determined in the oscillator model. The 70 state that involves n = 1 oscillator wave functions

is disallowed because it is of the wrong parity. No other n = 2 state with the same quantum
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numbers as the nucleon interferes with the ground state to produce the SU(6) breaking effects

that are observed in the structure functions. The wavefunction Eq. (27) leads to spin-and-flavor

dependent valon distributions of the form

p(x)

Experimental

 o moo, 
'T// \'1

O.

0
0 0.2 0.4 0.6 0.8 1.0

FIG. 2 A comparison of Hwa's "average" valon distribution with po(x) defined by

the infinite-momentum-frame relativistic-oscillator momentum-space wavefunction.

OUT/,,(:)

Oul/,,(z)

Gor/p(z)

aou,,(z)

where

= (3m/2V/_w) [5/6 cos 2 0 + sin 2 0 {5/36h(x) + 1/3i(x)} - 2v/6/9cosOsinOj(x)]

x exp [-(m2/2w)(1 - 3x) 2]

= (3m/_) [1/6cos 2 0 + sin 2 0 {1/36h(x) + 1/3i(x)} + v/'6/18cosOsinOj(x)]

x exp [-(m_/2w)(1 - 3x)2)]

= (3m/2v/'_w) [1/3cos 2 0 + sin s 0 {1/lSh(z) + 2/3i(x)} + v/'6/9 cos 0 sin Oj(x)]

x exp [-(m_/2,.,,)(1 - 3x)2)]

= (3m/_)[2/3cos20 + 1/9_in20 + 2V_/9cosOsinOj(x)]

× exp [-(m2/2w)(1 - 3x)2)] (28)

h(x)
i(x)

j(z)

= 43/16 + m2/Sw(1 - 3x) _ + m'/16w2(1 - 3x)'

= 5/8 + m2/Sw(1 - 3x) 2

= 1/4 - m2/4w(1 - 3x) 2. (29)

Moments U(n) and D(n) determined from the above distributions were used in Eqs. (24) and

(25) to obtain fits for experimental moments[15] of F2P(z) and F2"(x) derived from the CHIO
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muon data[16] and SLAC electron data[17] at Q2 = 22.5 GeV 2. A somewhat large value of Q_

was chosen to minimize target mass and higher twist effects that may be present in the data. The

ratios R'_P(x) and A"P(x) do not app ear to show any appreciable Q2 dependence. The extension

of the tails of the distributions into the unphysical regions x < 0 and x > 1 was ignored for

purposes of computing the moments. The resulting small deviation from the Adler sum rule does

not appear to lead to noticeable discrepancies.
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FIG. 3 The moments of the nucleon structure functions vs. n as fitted by Eqs. (24)

- (26) in conjunction with Eq. (29). Fitted moments at 9 = 0 ° and at 8 = 23.3 ° are

represented by the solid curves and are compared with data from[15].

The fitted moments were functions of two parameters - the mixing angle O and the scaling variable

s defined in Eq. (22). X 2 minimization was used to determine the best fit. The X 2 function in

this case cannot be taken as an absolute indication of the quality of the fit due to the statistical

interdependence among the moments of F 2p and F 2'_. l_i2 was used, rather, as a relative determi-

nant of merit, so that the quality of the fit as a function of O could be evaluated. The minimum

of X 2 occurs at # = 23.3 °, and a positive mixing angle is clearly preferred. Figure 3 compares the

best-obtainable predicted moments from Eqs. (24) and (25) for # = 0 ° and for 9 = 23.3 ° with
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the experimental moments. At 0 = 0 °, the fitted moments of F 2" fall outside the error limits for

large n. With the inclusion of the 70 state in the wave function at a mixing angle of 23.3 ,_,c,
a simultaneous fit to the moments of F 2p and F 2" appears more reasonable, although the fitted

moments of F 2" remain somewhat large for large n.

4 Conclusion

The simple model presented in this paper falls short of providing us with the ability to draw

precise numerical correspondences between nucleonic bound state properties and the structure

function data. The model does, however, address the crucial questions of Lorentz transformation

and momentum scaling that must be considered if such corespondences are ever to be drawn. The

approximate agreement between po(x) and Hwa's phenomenologically-determined vaion distribu-

tion (see Figure 2) allows us to believe that some of the essential physics is being captured. The

value of the SU(6) 70 state mixing coefficien t obtained in this model via a simultaneous fit to

proton and neutron structur e function moments is very close to the original value determined by

Le Yaouanc et al. This fact, together with the dependence of the form factors on the nucleon

spin wavefunction, lends creclence to the idea that the observed behavior of R '_p and )i _p can be

reliably interpreted as evidence of SU(6) mixing in the nucleon wavefunction.
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