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1. ABSTRACT

The use of unstructured mesh techniques for solving complex

aerodynamic flows is discussed. The principle advantages of
unstructured mesh strategies, as they relate to complex geometries,

adaptive meshing capabilities, and parallel processing arc

emphasized. The various aspects required for the efficient and
accurate solution of aerodynamic flows arc addressed. These
include mesh generation, mesh adaptivity, solution algorithms, con-
vergence accelerationand turbulencemodeling.Computations of
viscous turbule.m two-dimensional flows and inviscid three-

dimensionalflows about complex configurationsare demonstrated.

Remaining obslacles and directions for future re,search am also o_t-
|ined.

3. SOLUTION PROCEDURE

In non-dimensional conservative vector form, the Navier-

Stokes equations read

a'-_ + V.F,= _ V.F, (1)

where Re. denotes the overall flow Reynolds number, and w

represents the conserved variables
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2. INTRODUCTION

Over the last decade, much attention has been devoted to the

development and use of unstructured mesh methodologies within
the research community. This enthusiasm however, has not always

been shared by the applications and industrialcommunity. The

promise of easily enabling the discretization of complex geometries
has been counte.xbalanced by questions of accuracy and efficiency.
Furthermore,the dearthof resultsconcerningviscousflowcalcula-

tionsusingunsu_cmmd meshes has produced skepticismconcern-

ing the value of unstructuredmesh techniquesfor practicalaen)-

dynamic calculations.

There is no doubt that block-structured techniques have

proved extremely effective in discretizing very complex geometries.
However, unstructured grid techniques offer additional inhcrezqt

advantages which may not at tirst appear evident. The possibility of

easily performing adaptive meshing is perhaps the largest advan-
tage of unstructured grid methods. In fact, the implementation of

adaptive meshing techniques for structured meshes has generally
bean found to incur unstructured-mesh type overheads [1]. Further-

more, although unstructured grid data-sets are irregular, they are

homogeneous (as opposed to block structured grids where
differentiation between block boundaries and interiors must be

made). One of the consequences of this property is that
unstructured-mesh type solvers are relatively easily parallellzable.
While unstructured mesh solvers always incur additional memory

and CPU-time overheads due to the random nature of their data;

sets, large gains in efficiency can be obtained by carefuI choices of
data-structures, and by resorting to more efficient implicit or

multi-levd solution procedures. When combined with adaptive

meshing and parallelization, these can result in truly competitive

solution pmceAures.

In the following sections, the application of unstructured

mesh techniques to various aerodynamic flow problems are dis-
cussed. The particular approach chosen (i.e. a vertex based Galer-

kin finite-clement discretization with additional artificial dissipation

terms and an unstructured multigrid algorithm for convergence

acceleration),representsthe methodology adopted over several

yearsof researchby the author,and constitutesbut one of several

competing approaches.Both inviscidand viscousflows are con-
sidered,although exclusivelysteady-statesolutionproceduresare

discussed.Both two and three-dimensionalproblemsareaddressed.

p being the fluid density, u, v ,and w the cartesian velocity com-

ppnents, and E the internalenergy. F, represents the convective

flux vector, the components of which arc algebraic functions of the

conserved variables and the pressure, which itself can be related to

the conserved variables through the perfect gas relation. F, denotes
the viscous flux vector; the components of which are functions of

the first derivatives of the conserved variables. Equation (1)

represents a set of partial differential equations which must be

discretized in space in order to obtain a set of coupled ordinary
differential equations, which can then be integrated in time to

obtain the steady-state solution. Spatial discretization is performed

using a Galerkin finite-element type formulation. The following
derivation is restricted to the two-dimensional case for the sake of

clarity, since the extension from two-dimensions to three-

dimensions is entirely straight-forward. Multiplying equation (1)

by a test function ¢, and integrating over physical space yields

f + v.F. = ,V.F, <3>
Integrating the flux integrals by parts, and neglecting boundary

terms gives

0w dxd, = J_F, .VOdrdy - J_F, .V*dxd, (4)

In order to evaluate the flux balance equations at a vertex P, 0 is
taken as a piecewise linear function which has the value I at node

P, and vanishes at all other vertices. Therefore, the integrals in the

above equation are non-zero only over triangles (tetrahedra in three

dimensions) which contain the vertex P, thus defining the domain

of influence of node P, as shown in Figure 1, for the two-
dimensional case. To evaluate the above integrals, we make use of

the fact that ¢_ and ¢_ are constant over a triangle, and evaluate
spatial derivatives of ¢ and w over a triangle using vertex values,

by Green's contour integral theorem. The convective fluxes F, are

taken as piecewise linear functions in space, and the viscous fluxes

F, are piecewise constant over each triangle, since they are formed

from first derivatives in the flow variables. Evaluating the flux
integrals with these assumptions, one obtains

-_tS_ _ "''_-'AL'°F:+ F'# Re.I e_=,I F,,w _y = _ T.aL_ (5)
e-I m
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where the summations are over all triangles in the domain of
influence, as shown in Figure 1. A_s represents the directed (nor-
mal) edge length of the face of each triangle on the outer boundary
of the domain, F_ F¢s are the convective fluxes at the two vertices
at either end of this edge, and F: is the viscous flux in triangle e, e
being a triangle in the domain of influence of _. If the integral on

the left hand side of equation (5) is evaluated in the same manner,
the time derivatives become coupled in space. Since we are not

interested in the time-accuracy of the scheme, but only in the final

steady-state solution, we employ the concept of a lumped mass

matrix. This is equivalent to assuming w to be constant over the

domain of influence while integrating the left hand side. Hence, we
obtain

T" = --'-T --'AL'tJ tr¢.AL,a) (6)e-1 Re. =

where the factor of 1/3 is introduced by the integration of ¢ over

the domain, and _ represents the surface area of the domain of
influence of P. For the convective fluxes, this procedure is

equivalent to the vertex finite-volume formulation described in

[2,3]. For a smoothly varying regular triangulation, the above for-
mulation is second-order accurate.

Additional artificial dissipation terms arc required to ensure
stability and to capture shocks without producing numerical oscilla-
tions. This is necessary for both inviscid and viscous flow compu-

tations, since in the later ease, large regions of the flow-field
behave essentially inviscidly and the physical viscosity is not

sufficient to guarantee numerical stability for the type of mesh

spacings typically employed. Artificial dissipation terms are thus
constructed as a blend of a Laplacian and a biharmonic operator in

the conserved flow variables. The Laplacian term represents a

strong formally first-order accurate dissipation which is turned on

only in the vicinity of a shock, and the biharmonic term represents
a weaker second-order accurate dissipation which is employed in

regions of smooth flow [4,5,6].

The spatially discretized equations are integrated in time to

obtain the-steady-state solution. For inviscid flow calculations, a

five-stage_Kunge-Kutta scheme is employed for the time integra-

tion, where the convective terms are evaluated at each stage in the

time-stepping scheme, and the dissipative terms are only evaluated

at the first two stages and then frozen for the remaining stages. A
complete multistage time-step, in which the solution is advanced
from time level n to level n+l, can be written as

w(O) -- W a

W(I) _ W(0) -- iff.l_/[Q (w(°)) - D(w(°));

w(2) _-w {°) - ct2At[Q(wfl))- D (w(l))]

I

W(a+l) _-- W(5)

with

cq = It4 ct 2 = 1/6 ct_ = 3/8 e4 = 1/2 ct s = 1

where w represents the conserved flow variables. Q is the convec-
tive residual, D denotes the dissipative operator, and At represents

the discrete time-step. For viscous flow computations, a variant of

ateady-stateis acceleratedby employing localtime-steppingand

implicitresidualaveraging[2,3,4],which have previouslybeen
describedin the context of unstructured meshes.

4. MULTIGRID STRATEGY

The idea of a multigrid strategy is to perform time steps on
coarser meshes to calculate corrections to a solution on a fine

mesh. The advantages of time stepping on coarse meshes are two-

fold: first, the permissible time-step is much larger, since it is pro-
pordonal to the cell size, and secondly, the work is much less

because of the smaller number of grid points. On the finest grid of
the sequence, the flow variables are updated by the S-stage scheme
as shown in equations(7). The residualsand flow variablesare

then transferredto the next coarsergrid.If R" representsthe

transferredresidualsand w' thetransferredflowvariables,a forcing

functionon the coarsegridcan be definedas

P = R' - R (w') (8)

Now on the coarsegrid.timesteppingproceedsas shown below:

w_)=w _q-l_ - _At (R(w ¢q-1)) + P) (9)

infor the q-th stage, the first stage,w"-') reduces to the

transferredflow variablew'. Thus, the calculatedresidualson the

coarsegridarecanceledby thesecond termin theforcingfunction

P, leavingonly the R' term. This indicatesthatthe drivingforce

forthe solutionon the coarsegridisprovidedby the finegridresi-
duals.Thus we are ensuredthat,when the finegrid solutionis

fullyconverged,no furthercorrectionswillbe generatedby the

coarsergrids.This procedureis repeatedon successivelycoarser
grids. When the coarsestgrid is reached,the correctionsarg__

transferredback to the finergrids.'/'heuse of a multigridmethod

with unstructuredmeshes presentsan adcliffonalchaUengc. Con-

sistentcoarsetetrahedralgridscan no longerbe formed by simply

consideringsubsetsof the finegridvertices.An alternativewould
be to generate the fine mesh by repeatedly subdividing an initial

coarse mesh in some manner. However, generally poor topological

control of the fine mesh results from such a procedure. Another
approach, known as the agglomeration technique, reco_tructs

coarse grids from a given fine unstructured grid by grouplng ne_gh-
boring elements together to form large polyhedral coarse-grid cells

[7,8]. In the present work. it has been decided to pursue an
unstruciii-red muhigrid approach in which a s_uerr.e of completely

unrelated coa_e and fine meshes are employed. This approach pro-

vides great flexibility in determining the configuration of the coar-
sest and finest meshes. Coarse meshes may be designed to optim-

ize the speed of convergence, whereas fine meshes may be con-
structed based on solution accuracy considerations. In general,

beginning from a fine grid, a coarser level is constructed which
contains roughly half the resolution in each coordinate direction

throughout the domain (about I/8 the number of vertices in three

dimensions, or 1/4 in two dimensions). This process is repeated

until the coarsest grid capable of representing the geometry topol-

ogy is obtained. In the context of adaptive meshing, new finer

meshes may be added to the multigrid sequence, using any given

adaptive refinement technique, since no relation is assumed

between the various meshes of the sequence.

The key to the success of such a strategy lies in the ability to

efficiently transfer variables, residuals and corrections back and

forth between unrelated unstructured meshes, in the preseht con-

text. tl'ds is performed using Iinear interpolation. For each vertex

of a given grid, the tetrahedron which contains this vertex on the
grid to which variables are to be interpolated is determined. The

this scheme is employed_ whe_ the dissipative terms are ev_uated variable at this node is then linearly distributed to the four vertices
at the li]'si, thi-rd and fifth stages, and _ozen at a]tefnate--stag-es, of the enclosing tetrahedron (three vertices of the enclosing triangle

These particular schemes have been designed to rapidly damp out in two dimensions). The main difficulty lies in efficiently deter-

high frequency error components [4,51, which is a necessary mining the enclosing cell for each grid point. A naive search over
characteristic for a muhigrid driving scheme. Convergence to all cells would lead to an O(N:') complexity algorithm, where N is

the total number of grid points, and would be more expensive than
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the flow solution itself. In this work, a graph traversal search mu'

tine with best case complexity of O(N) is employed. The sea_h

begins by choosing a node on one grid. and locating the enclosing
tetrahedron on the other grid. Tiffs can usually be determined a
priori, for example, by choosing the minimum x-y-z node and the
minimum x-y-z tetrahedron for the respective grids. We next chose
a new node for which the enclosing cell is to be searched, and this

node is taken as a neighbor of the previous node. As a starting

guess we choose the tctrahedron which was previously found to

enclose the first node, which is in the same vicinity as the new
node. If this cell is not found to enclose the new node, we search

the four neighbors of this ceil, and then the neighbors of these

neighbors, thus traversing through the mesh until the enclosing cell
is located, at which point the process is repeated for a new node.

The interpolation patterns between the various meshes are
completely detemained by assigning to each mesh vertex four inter:

polation addresses and four interpolation weights, which am all

computed in a preprocessing phase. In practice, this prepmcessing

has been found to require an amount of CPU time roughly

equivalent to one or two flow solution cycles on the finest grid.

S. ADAPTIVITY

One of the most efficient adaptive mesh enrichment tech-

niques consists of sequential point insertion and local grid restruc-

turing. This can be achieved using Bowyer's algorithm for

Delaunay triangulation. A Dclaunay triangulation is a unique tri-

angulation (tetrahedrization in 3-D) of a given set of points which

exhibits certain desirable properties (maximizes small angle,s, pro-
vides a discrete maximum principle for Laplaces equation [9] etc

...). One of these properties, the empty ciroumcirde properly, states
that no vertex from any other triangle_trahedron can be contained

in the cimumcirele/sphere of a given triangle/tetrahedron. This pro-
perty has often been employed as the basis for an algorithm known

as Bowyer's method for the generation of unstructured meshes
[10,11]. Bowyer's algorithm is also useful for adaptive mesh
refinement. Assuming we have discretized the geometry with a
Delaunay tfiangulation/tetrahedrization, and have solved the flow
on this grid, we seek to refine the mesh in regions of high local

truncation error. The first undivided differences of some key flow

variable (density for example) are examined along every edge of

the mesh. When this difference is larger than some fraction of the

aveoge differences across all edges of the mesh, a new point is

added midway along that edge. Each new point must be inserted

into the mesh, which must then be locally restructured accordingly.
Following Bowyer's algorithm, we first locate all

mangles/tetrahedra whose circumcircles/spberes are intersected by
this new point. The union of these cells ate removed, as this deter-

mines the region of the mesh which must be restructured. A new

structure is then formed by joining the new point to all vertices of

the polygonal/hedral cavity formed by the cell removal operation,
as shown for the two-dimensional case in Figure 2. This has been

proven to result in a consistent Delaunay triangulation provided the
original mesh is a Delaunay construction [11]. In cases where a

non-Delaunay triangulation is employed for the original mesh, a

consistency check must be executed after each new point is

inserted. If negative volume cells are created, the new point must
either be rejected or displaced and reinserted [12]. When new

boundary points are introduced, they are iepositioned onto the ana-
lytic surface-patch definition (or spline curve definition in two

dimensions) of the geometry by recomputing the physical coordi-

nates of the new point based on the assigned parametric patch

coordinates, s and t, which are taken as the average of the

parametric coordinates of the two vertices at either end of the gen-
erating boundary edge.

6. TWO-DIMENSIONAL RESULTS

6.1. An Inviscid Case

In order to illustrate the effectiveness of the simultaneous use

of adaptive meshing and the multigrid strategy, the inviscid flow
through a two-dimensional turbine blade cascade geometry has
been computed. The particular blade geometry has been the subject
of an experimental and computational investigation at the occasion
of a VKI lecture series [13]. A total of seven meshes were used in

the multigrid algorithm, with the last three meshes generated adap-
tively, using the undivided density difference criterion. The coar-

sest mesh of the sequence contains only 51 points, while the finest

mesh, depicted in Figure 3, contains 9362 points. Extensive mesh
refinement can be seen to occur in the neighborhood of shocks, and

in other regions of high gradients. The inlet tlow incidence is 30

degrees, and the average inlet Math number is 0.27. The flow is

turned 96 degrees by the blades, and the average exit isentmpic

Mach number is 1.3. At these conditions, the fl0w becomes super-
stale as it passes through the cascade, and a complex oblique
shock wave pattern is formed. These are evident from the com-

puted Mach contours depicted in Figure 4. All shocks are well

resolved, including some of the weaker reflected shocks, which

non-adapted mesh computations often have difficulty resolving.

Detailsof theflow inthe rounded trailingedge regionof theblade,

where the flowseparatesinviscidlyand forms a smallrccirculation

region,are alsowellreproduced.Once the firstfourgloballygen-

eratedmeshes were constructed, the entire flow solution - adaptive

mesh enrichment cycle was performed three times, executing 25

multigridcycles at each stage.This entireoperationrequired40

CPU secondson a single processorof a Cray-YMP supercomputer.
The residuals on the finest mesh were reduced by two and a half

ordersof magnitude, which should be adequate for engineering
calculations.

6.2.Viscous Flows

While the discretizationof the viscousterms forthe Navier-

Stokes equationsas outlinedin Section2 is relativelystraight-
forward, the main difficultiesinvolved in computing high-

Reynolds-number viscous flows relateto the gridgenerationand

turbulencemodeling requirements.In orderto efficientlyresolve

the thinviscouslayersencounteredinsuch flows,highlystretched
gridswithvery high resolutionin thedirectionnormal to theflow

must be employed. Standard unstructuredgridgenerationtech-

niques(i.e.advancingfrontmethods [14,15],or Dclaunay triangu-
lations[IIAd]) generallybreakdown when attemptingto generate
such highlystretchedgrids(normalto streamwiseresolutionratios

of 100 to 1000 aretypicallyrequired).The procedureadoptedin
thiswork is to employ one of thesestandardtechniques( in this

case,the Delaunay construction)in a locallymapped space, as

opposed to physicalspace [17].A suitablemesh-pointdistribution
with the required normal and streamwise resolution must first be

obtained. This is achieved by generating a structured hyperbolic
mesh about each geometry component, and employing the union of
the points of these overlapping local structured meshes as the basis

of a Delaunay triangulation. However, a Delaunay triangulation of

a given set of points tends to produce the most equiangular trian-
gles possible, and therefore in general, is not well suited for the

generation of highly stretched mesh elements. Thus, an alternate

triangulation procedure must be employed. The approach taken

consists of defining a stretching vector (stretching magnitude and

direction) at each node of the initial point distribution throughout
the flow field. Assuming an initial triangulation has been obtained,

when a new mesh point is to be inserted, the associated stretching
vector is employed to construct a locally mapped space such that,
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within this mapped space, the local point distribution appeam iso-

tropic. A Delaunay triangulation is then performed to triangulate
the new point into the mesh in this mapped space, and the resulting
triangulation is mapped back into physical space, thus resulting in
the desired stretohcd triangulation. Hence, a fully unstructured

mesh with highly stretched elements in the boundary layer and

wake regions, nearly equiiateral triangles in the inviseid regions of
flow. and a smooth variation of elements throughout the transition
regions is obtained. The use of fully unstructured meshes for
viscous flow calculations has been pursued, as opposed to the

hybrid stmctured-mas_cmred meshes often advocated in the litera-
ture [18.19]. due to the increased generality they afford in dealing

with geometries with close tolerances between neighboring bodies,
where confluent boundary layers may occur, and due to the ease

with which adaptive meshing may be incorporated throughout the

viscous and inviscid regions of flow.

The use of a turbulencemodel is requiredfor the practical

solutionof high-Reynoldsnumber viscousflows. The most com-
mon turbulencemodels employed foraerodynamicflowsare of the

algebraictype.Such models typicallyrequireinformationconcern-

ing the distanceof each pointfrom the wail. Turbulence length
scalesare determinedby scanningappropriateflow variablesalong

specifiedstreamwise stations.In the context of um'm_c_
meshes, such informationis not readilyavailableand hence,the

implementationof algebraicturbulencemodels on such meshes

introducesadditionalcomplexities.The approach adopted in this
work [20]consistsof generatinga set of background turbulence

mesh stations.These are constructedby generatinga hyperbolic

structuredmesh about each geometry component, based on the

boundary-poim distributionof the originalunstructuredmesh. and

extractingthe normal linesof the mesh. When performIngadap-

tivemeshing, new turbulencemesh stationsmust be constructedfor

eachnew adaptivelygeneratedboundarypoint,as illustratedin Fig-
ure 5. Each time the turbulencemodel isexecuted,the flow vari-

ablesare interpolatedonto thenormal turbulencestations,the tur-
bulence model isexecutedon each station,and the resultingeddy

viscosityis interpolatedback to the unstructuredmesh. The

method employed for interpolatingvariablesback and forth
between the unstructuredmesh and the turbulencemesh stationsis

simUar to thatpreviouslydescribedforthe unstructuredmultigrid

algorithm,

Figures6 through9 illustratea calculationwhich makes use

of these various techniquesto compute a complicated two-
dimensional viscous flow over a high-lift multi-element airfoil.

The final mesh employed is depicted in Figure 6, and eoniains

total of 48,691 points. This mesh was obtained using the stretched
Delaunay triangulation technique previously described, followed by

two levels of adaptive refinement. The height of the smallest cells
at the wall is of the order of 2 x 10-s chords and cell aspect ratios

up to 500:1 are observed. The computed Mach number contours

for this case are depicted in Figure 7. The freestream Mach

number is 0.1995, the chord Reynolds number is 1.187 million,
and the corrected incidence is 16.02 degrees. At these conditions,

the flow remains entirely subcritical. Compressibility effects are

nevertheless important due to the large suction peaks generated

about each airfoil. For example, in the suction peak on the upper

surface of the leading-edge slat, the local Mach number achieves a
value of 0.77. The computed surface pressure coefficients are

compared with experimental wind tunnel data [21] in Figure 8, and

good overall agreement is observed, including the prediction of the
height of the suction peaks. This case provides a good illustration

of the importance of adaptive meshing in practical aerodynamic

calculations. Adequate resolution of the strong suction peak on the
upper surface of the slat can only be achieved with a very fine

mesh resolution in this region. Failure to adequately capture this

large suction peak results in the generation of numerical entropy
which is then convected downstream, thus contaminaRng the solu-

tionin the downstream regions,and degeneratingthe globalaccu-

racy of the solution.Because thesesuctionpeaks are very local-

ized,they are efficientlyresolvedwith adaptivetechniques.In
order to obtain a similar resolution using global mesh refmemera,

of the order of 200,000 mesh pointswould be required,greatly

increasingthe costof the computation. The eonvergencehistory

for this case, as measured by the density residuals and the total lift

coefficient Versus the number of multigrid cycles, is depicted in
Figure 9. A total of 400 multigrid cycles were executed, which

required roughly 35 minutes of single processor CRAY-YMP time,

and 14 Mwords of memory.

The discrepancy between the computed and experimental
pressure coefficients on the trailing edge flap is due to a separated
flow condition which is not reproduced by the algebraic turbulence

model. Figure 10 compares computed and experimental lift

coefficients at various angles of attack for a three-element high-lift

airfoil [22]. The failure of the computations to predict the max -
imum liftpointare directlyattributableto the inabilityof the tur-

bulencemodel to predict the onset of separation. These results
stronglyindicatetheneed formore sophisticatedturbulencemodel-

ing.The use of single or multiple field-equation models appea_ m
be the most appropriate choice for turbulent unstructured mesh
computations. Such models can be _tlzed in a straight-forward
manner on unstructured meshes. However, the task is now to

ensure that such models adequately represent the flow physics, and
that they can be solved in an efficient and robust manner. In this
work, the implementation of a standard high-Reynolds-number

k- t turbulence model with low-Reynolds-number modifications

proposed by Speziale, Abid and Anderson [23], has been pursued.

The main effort was focused on devising a technique for efficiently
solving the two turbulence equations in the context of the unstruc-
tured multigrid strategy [24]. The four flow equations and the two

turbulence equations are solved as a loosely coupled system. The

flow equations are solved explicitly, and the turbulence equations
point-implicitly, using a time-step limit which ensures stability and

positivity of k and _. In the context of the Unstructured multigrid

algorithm, the turbulence eddy viscosity is assumed constant on all

but the finest grid level where it is recomputed at each time-step.

The transonic flow over a two-element airfoil configuration has

been computed using this implementation of the model. For this

case, the freestream Mach number is 0.5, the incidence is 7.5
degrees, and the Reynolds number is 4.5 millionl Figures I 1 and

12 depict the mesh and the solution obtained with the current
implementation of the k - _ turbulence model. Four meshes were
employed in the multigrid seqUenc.e, w_th the finest mesh contain-

ing a total of 28,871 points. The convergence rates of the various

equations for this case are plotted in Figure 13. As can be seen,

the turbulence equations and flow equations converge at approxi-

mately the same rates. The computed flow field exhibits regions of

transonic flow with a small region of separated flow at the foot of

the shock. These features appear to be well reproduced by the tur-
bulence model. Future efforts will concentrate on computationally

predicting flows with large regions of separation, such as that

inferred by Figure 8, and on modifying the model to better

represent the flow physics.

7. THREE DI_N$IONAL RESULTS

Due to the limitations of present day supercomputers, and the

difficulties associated with generating highly stretched tetrabedral

meshes, three-dimensional computations have presently been

confined to inviscid flows. The techniques described in the context

of two-dimensional inviscid flows extend readily to three dimen-

sions. In particular, the unstructured multigrid algorithm and the
adaptive meshing strategy have been found to be particular
effective for three-dimensional computations [12]. As an example,
an adaptive multigrid calculation of transonic flow about an

ONERA M6 wing is illustrated in Figures 14 through 16. The
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final mesh. depicted in Figure 14, contains a total of 174,412

points and just over 1 million tetrahedral volumes. This represents

the fourth mesh in the multigfid sequence and the second adaptive
refinement level. Mesh refinement was based on the undivided gra-
dient of density.The freestrcamMach number and incidencefor

this case are 0.84 and 3.06 degrees respectively. The wen known
double shock pattern for this case is reproduced in the computed

Mach contours of the solutionin Figure 15. The leadingedge
expansionand shocks a_ wellresolveddue to the extensivemesh

refinementin theseregions.A globallyrefinedmesh of thisresolu-

tionwould resultin roughly600,000pointsand would thusrequire

3 to 4 times more computationalresources.The multigridconver-

gence rateforthiscase isdepictedinFigure 16,where 50 cycles

were performed on the originalgrid,priorto adaptation,50 cycles

on the firstadapted mesh, and't00 cycleson the finestadapted
mesh. On thisfinalmesh, the residualswere reducedby 5 orders
of magnitudeover 100 cycles,requiringa totalof 35 CRAY-YMP

singleCPU minutesand 22 MW of memory.

7.1.ParallelComputing Results

As mentioned previously,due totheirhomogeneous (although

random) nature,unstructuredmesh data-setsare particularlywell

suited for parallel processing. An unstructured mesh solver typi-
cally consists of a single (indirect addressed) loop over all interior

mesh elements, and another similar loop over all boundary ele-

ments. On a vector machine, each loop may be split into groups
(colors) such that within each group, no recurrences occur. Each

group can then be veaorized. A simple parallelization strategy for

a shared memory machine is to further split each group into n sub-
groups, where n is the number of available processors. Each sub-

group can then be vectorized and nan in parallel on its associated

processor. Because the original number of groups is not large
(usuaLly 20 to 30), the vector lengths within each subgroup are still
long enough to obtain the full vector speedup of the machine, for a

moderate number of processors. For more massively parallel
distributed-memory scalar machines, the entire mesh must be sub-

divided and each resulting partition associated with a single proces-

sor. On each processor, the single scalar interior and boundary
loops are then executed, with inter-processor communication occur-

ring at the beginning and end of each loop. The mesh partitioning

strategy must ensure good load balancing on all processors while
minimizing the amount of inter-processor communication required.

7.2. CRAY-YMP-8 Results

Figure 17 illustrates an unstructured mesh generated over a
three-dimensional aircraft configuration. This mesh contains a total

of 106,064 points and 575,986 tetrahedra. This represents the

second finest mesh employed in the multigrid sequence. The finest
mesh, which is not shown due to printing resolution limitations,

contains a total of 804,056 points and approximately 4.5 million

tetrahedra. This is believed to be the largest unstructured grid prob-
lem attempted to date. The inviscid flow was solved on this mesh

using all eight processors running in parallel on the CRAY-YMP

supercompoter. A total of 4 meshes were used in the multigrid

sequence. The convergence rate for this case is depicted in Figure
19. In 100 multigrid cycles, the residuals were reduced by almost 6

orders of magnitude. This run required a total of 16 minutes wall

clock time running in dedicated mode on the 8 processor CRAY-
YMP, including the time to read in all the grid files, write out the

solution, and monitor the convergence by summing and printing

out the average residual throughout the flow field at each multigrid

cycle. The total memory requirements for this job were 94 million

words. The ratio of CPU time to wall clock time was 7.7 on 8 pro-
cessors, and the average speed of calculation was 750 Mflops, as

measured by the CRAY hardware performance monitor [25]. For
this case, the freestream Mach number is 0.768 and the incidence

is 1.116 degrees. The computed Mach contours are shown in Fig-

ure 18, where good resolution of the shock on the wing is
observed, due to the large number of mesh points employed.
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7.3. Intel IPSC 860 Results

The implementation of the unstructured multigrid Euler solver

on the lntel iPSC 860 distributed memory scalar multiprocessor
machine, has been pursued using a set of software primitives
designed to ease the porting of scientific codes to parallel machines

[26]. The present implementation was undertaken as pan of a
more general project aimed at designing and constructing such
primitives with experience gained from various implementations.

The net effect of the use of such primitives is to relieve the pro-

grammer of most of the low level machine dependent software pro-
gramming tasks. The mesh was partitioned using a spectral panion-

ing algorithm which had previously been shown to produce good
load balancing and minimize inter-processor communication [27].

At present, the partitioning of the mesh is done in a preprocessing

stage on a sequential machine. At the time of writing, the fine air-
craft mesh (804,056 vertices) has not been nm on the Intel

machine. Thus, results with coarser meshes are quoted. Table l
gives an overview of the results obtained to date. A small 3600

point mesh was found to tun at about 4.1 Mfinps on a single Intel

iPSC 860 processor. The largest case tried to date, a 210,000 point

mesh, resulted in a 144 Mflop rate on 64 processors, which

represents an efficiency of about 55% percent, based on the single
processor results. It is anticipated that the fine 804,056 point grid,
when implemented on 512 processors, will achieve an equivalent or

greater computational speed than that observed with the full
CRAY-YMP 8-processor machine.

g. CONCLUSION

This paper has illustrated the application of unstructured mesh

techniques to various types of aerodynamic flows, and emphasized

the advantages which can be obtained for complex geometries

using adaptive meshing and parallelization. In two dimensions, a

viscous flow solution capability has been demonstrated, while in
three dimensions, efficient Euler solutions are possible. The main

problems associated with three-dimensional viscous solutions are

related to the developmem of reliable grid generation strategics,
particularly with regards to the generation of highi_, stretched
tetrahcdral elements for capturing thin viscous layers. Turbulence
modeling is also a limiting factor, although this difficulty is not
particular to the field of unstructured meshes. Future work should
also concen_ate on more complete parallelization of the entire

solution process, including items such as grid generation, partition-
ing, and adaptive meshing.
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Figure 1: Domain of Influence of Finite-Element Basis Function and
Equivalent Finite-Volume Control Volume
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Figure 3: Adaptive Mesh Employed for Computing Transonic Inviscid

Row Through a Periodic Turbine Blade Cascade Geometry; Number of
Nodes = 9362
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Figure 4: Computed Math Contours for Flow Through a Periodic Tur-
bine Blade Cascade Geometry

Figure $: Hluswation of Turbulence Mesh Stations Employed in Alge-
braic Model for an A_tively Geaerated Mesh
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Figure 6: Adaptively C.nmeral_ Unsln_mreA Mesh about Four-Element

Airfoil; Number of Nodes = 48.691
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Figure 8: Comparison of Computed Surface Pressure Distribution with

_ental Wind-Tunnel Data for Flow Over Four-Element Airfoil

Configuration; Mach= 0.1995, Reynolds Number = 1.187 million,

Incidence = 16,02 degrees

Figure 7: Computed Mach Contours forFlow ovcr Four-Element Airfoil;

Mach --. 0.1995, Reynolds Number = 1.187 million, Incidence = 16.02
degrees
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Figure 9: Convergence as Measured by the Computed Lift Coefficient

and the Density Residuals Versus the Number of Muhigrid Cycles for
Flow Past a Four-Element Airfoil
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Figure I0: Comparison of Computed and Experimental LiftCoefficients

as a Function of Incidence for a Three-Element AirfoilConfiguration

Figure II: Global View of Coarse Unslrucmred Mesh and Close-Up

View of Fine UnstructuredMesh Employed for Computing Flow Past a

Two-Element Airfoil(Coarse Mesh Points = 7272, Fine Mesh Points=

28871)
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Figure 12: Computed Mach Contours Using Low-Reynolds Number

Modification for Turbulence Equations for Supercriticai Flow over a i

Two-Element Airfoil(Mach = 0.5,Re = 4.5 million,Incidence = 7.5 z

degrees) ___
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Figure 13: Mulfigrid Convergence Rate of the Density Equation and the

Two Turbulence Equations Using Low-Reynolds Number Modifications

for Flow Over Two-Element Airfoil(Mach = 0.5, Re = 4.5 million,

Incidence= 7.5 degrees)
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Figure 14: Finest Adapted Mesh Generated About ONERA M6 Wing

(Number of Nodes - 173,412 Number of Tetmhedra = 1,013,718)
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Figure 15: Computed Math Contours on the AdaptivelyGenerated Mesh

About the ONERA M6 Wing (Mach = 0.84,Incidence = 3.06 degrees)
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Figure 17: Coarse Unsm_mrcd Mesh about an AircraftConfiguration

wish Single lq_e.ll¢;Number of Points- 106,064, Number of Te.wahodsa

= 575,986 ('FinestMesh Not Shown)

Figure 18: Mach Contours for Flow over AircraftConfigurationCom-

puted on Fine Mesh of 804,056 Vertices and 4.5 millionTeuahcdra

(Mach= 0.768. Incidence = 1.116 degn_s)
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Figure 16: Convergence Rate of the Unstructured Mulfigrid Algorithm
on the Adaptively Generated Sequence of Meshes about the ON'ERA M6

Wing as Measured by the Average Density Residuals Versus the Number
of Muldgrid Cycles

8
,4

?

i i i ' i
IO_ _0 300 _ _o0

Number of Cycles

Nnodc : 804056 Ncyct : 100 Ncycf : I00

6O0

Re..sid I : 0,98E+00 Resid2 : 0.22E-05 Rate : 0.8768

Figure 19: Multigrid Convergence Rate on Finest Mesh of the Multigrid

Sequence for Transonic Flow over Aircraft-with-Nacelle Configuration
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Size

Mesh

Mflops

3600 comp/iter(s)

comm/iter(s)

Mflops

26K comp/iter(s)

comm/iter(s)

Mflops

210K comp/iter(s_

comm/iter(s)

Number of Processors

1 2 8 16

4.1 7.1 16.9 17.4

4.6 2.4 0.6

- 0.25 0.48

- - 23.8

- - 4.5

- - 1.1

0.34

0.73

38.8

2.3

1.1

144.3

4.75

2.3

Table i: Obw -- f:_, -_ional Rates and Timings per Iteration of

Computatic _,_'. v_ _: j- ; _unication Oveflw.ad fog Various Sizes of

Unst_atrcd Meshes on lntel iPSC./800
=

64
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