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Abstract

The purpose of this study is to investigate the flow and heat
transfer characteristics of a combined forced and free

convection flow in a curved duct Solutions are obtained .by
solving the low Mach number model of the Navier-Stokes
equation using a control volume method. The finite-volume
method has been developed with the use of a predictor-
corrector numerical scheme and some new variations of the

classical projection method. Solutions indicated that the
existence of buoyancy force has changed the entire flow
structure inside a curved duct. Reversed flow at both inner and

outer bend is observed. For moderate Reynolds number the
upstream section of the duct has been significantly influenced
by the free convection processes. In general beat transfer is
strong at the inner bend of the beginning of the heated section
and at the outer bend on the last half of the heated section. The

maximum velocity location is strongly influence by the
combined effects of buoyancy and centrifugal forces. Strong
buoyancy force can reduce the strength of the secondary flow
where it plays an important role in mixing.

1) Introduction

Steady flow in a curved duct is of practical engineering
interest and was first investigated by Dean [I], [2]. The main
concern of the fluid mechanics problem is to determine the
total pressure drop in the flow since a duct with a bend has a
higher pressure drop due to the secondary motion of the fluid.
Interest also occurs in this type of flow for the mixing of
chemicals by the secondary motion. If the mixing is adequate,
then additional pumping is not required.

Combined forced and free convection is of great importance
in the design of heat exchangers like the cooling of electronic
equipment by Freun-12 where inside the cooling coil the
buoyancy force is higher than convection force. Moreover, the
effect of secondary flow is of great important as it can enhance
the overall heat transfer ram like design of a cooling coil inside
a nuclear reactor. Unlike the straight duct flow, which can be

solved analytically by using the parallel flow assumption, the
flow in the curved section is not parallel and is more complex.
Most of the recent research efforts by Masiliyah [3], Sob and
Berger [4], [5], and Yao and Rerger [6], are limited only to a
curved duct because the problem can be written in a toroidal
coordinate system. This is the rnst three dimensional numerical

study of a curved duct with straight duct(s) attached where the
usage of a non-orthogonal mesh is required.

Numerical solutions are obtained by solving the governing
equations in a body fitted, non-orthogonal, coordinate system.
A control volume form of the governing equations is used in

this study due to clear physical interpretation of the integral
equations. A detail discussion of the initial and boundary
conditions for this problem is also included. Solutions are
presented in the form of two-dimensional contours and three-
dimensional surface contours in order to indicate the local

variations. One-dimensional plots are used to show the global
results. A detail discussion of the flow structure and local heat
transfer rate of the combined forced and free convection flow
field and its different with a forced convection flow field is

also present in this study.

2) Governing Eouation:

For internal flow, the dimensionless variables are defined as
follows:

--_ 13 .-- X.'_ _ .-f= P-Pref .
P - Pinlet ' x = L ' v ffiUref ; Pinlet U2ref '

T - Tinlet __ t Uref

t ='-U"

where Pinlet is the density at the inlet of the duct, L is the

reference length and is the radius of the duct, Tinlet is the

temperature of the inlet fluid, T H is the maximum temperature

of the system, t is time, Uref is the reference velocity scale and

• is defined by the mean velocity at the inlet which has the
following form:

Uref=

The resulting dimensionless governing equations (omitting
over bars) with the Boussinesq approximation have the
following forms:

1) Continuity Equation:

fff ÷ --0
_t

¢/ .q

where t is the time, p is the density. _ is the velocity vector,

-.).
n ts the unit normal vector pointing out of the control volume,

• dV is the finite volume, and dA is the area on each surface of
the finite volume.
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2) Momentum Equation:

schematic of the experimental apparatus is shown in Figure 1.

3 mf[fV dV + p jjjff[(V ._)_dV The parameters used in this experiment (Reynolds number of
P_3t v ¢ 59.92 and 246.69, Rayleigh number of 2.57×104, curvature

Ra fff ratio of 1:10.9 and Prandtl number of 0.7) are imported in the
=- ffP n-¢dA_ + R_e_ _" n_ dA-_t R_Pr JJJ pTdV curre-nt numerical study"

3) Thermal Energy Equation: 4) Numerical Methods

Iffrdv+ .f.ff(¢.¢)Tar n coo, i, t. System
_t od ,/ . _ _= :

The problems Of interest have geometries that are very
=ff eTs_dA+Ec Pr _II 0dV +Ec( _ ffIpP d_ difficult to describe using a Cartesian co0rdihate_)/._/em_ Thus,

*/ I/ - a c0ordinate ir_a_sTtriiiaiion is used to define-_y:fitted

+ _IPP_'_ dA ) coordinaf6 °system. For the probiems of lntemai fio_:tna
a curved dticVwith_ffaighi duct attached, a three dimensional

_ g_L_AT _ Buoyancy Force
where Rayleigh Number (Ra) - vet - "Viscous Force

v V'_om=_=Diffus=Ton
Prandfl Number (Pr) = -- =¢t Heat Diffusion

U2 _Me-ch_anical Energy
Eckert Number (Ec) = 2"7._ - Thermal Enery,;pal

where 1_ is the coefficientof thermal expansion, g is the

gravitation vector, AT is temperature difference tier-reed as TH-

Timep _U_ the reference v_i_-iQ _aie _f'me_i as the me_ _

inlet velocity, and v is the kinematic viscosi_ of the fluid.

For subsonic flow (i.e. low Mach number) with a moderate
Reynolds number, the Eckert number is much smaller than
one. Hence the viscous heating term and the flow work term
can be neglected. The dimensionless thermal energy equation
has the following form:

.f.f.fr dv+ f.f.[(V.¢) VT.g

A detail derivation of the low Mach number model equations
with the Boussinesq approximation is shown by Yam [7].

3) Problem of interest

An experiment with combined forced and free convection in a
curved duct has been performed by Cheng and Yeng [8], [9].

In the experiment, a curved duct with a straight long entrance
length is fabricated. The straight long entrance length is to
ensure a fully developed parabolic velocity profile at the
entrance of the heated curved section. (We will later see that

this is not always true). A hot water jacker is inserted into the
curved section to create the heated section. The heated curved

section is then oriented in a vertical upward direction. Room
air from a compressor is used as a working fluid inside the
assembly. Smoke generated by burning paper straws is injected
at the straight duct entrance. Photographs of the secondary

flow patterns are taken at the exit of the curved duct where the
healed air is discharged directly into the surrounding as jet. A

boun_ fitted, non:orthogonal coordinate is=used. Typical
grid systems for the surface and sections of the curved duct are
shownhfFTgure2 throughS. = _ :': _ _=_ :_i _-I_-_

AII derivative terms in the equation Of motion are evaimited
with the use of the generalized coordinates and this involves a
Coordinate transftrmation, A-detaiI_-_rivation of the

transformation is shown by Dwyer and Dandy [9] and Yam
[7].

UD Calculations Of Geometry

The control volume equations (integral equations) consist of
volume terms and surface terms. The vo!um_eand surface area

of a control volume can be obtained by the usage of vector
operations. For control volumes with cell centers located at a
singular point (like those at the axis of the ellipsoid grid), all
the dependent variables can become coupled with the adjacent
ceil through the convection and viscous terms. This leads to
difficulty with implicit solvers. A simple solution to this

problem is to put the cell surface at the singular poinL As
shown by the governing equations, the only terms that exist at

the control Surface are those of the flux and pressure terms.
Since they are being multiplied by the surface areatfzero, the
excessive coupling is removed. The cell center of the control
cell however is still coupled to the rest of the system by the
remaining five surfaces. A detail discussion of is shown by
Yam [7].

HI) Finite Volume F_uations

In this study, all the variables are defined at the center of
the control ceil. When variables are needed at the surface of

the cell, averaging is performed, and gradients are evaluated
with a second order finite difference with respect to the cell
surface. Thus, discretization of the governing equations in
generalized coordinates is second order accurate in space.
However, for the internal flow. the resulting maximum
Reynolds number that we can run to obtain solutions is limited
to 200. One way of increasing the Reynolds number is by
adding more grid points to the physical domain. This, however,
is limited by the capacities of current computers. An
alternative is to add artificial dissipation only to the stream
wise direction to enhance the stability of the numerical scheme.



This is done by adding 1 _ to the diffusion coefficient
V

of the stream wise viscous term where _ is the local stream-

wise velocity vector, and _ is the local length scale of the

control volume in the stream-wise direction:

As shown by Yam [7], the areas on the control cell are

defined by the cross product of the two position vectors located
on each surface. These two position vectors are determined by
linear interpolation between the grid points where the surface
is located. For a control volume with plane surfaces this is a
good method of determining the surface area, however the

resulting surface integral of area is not always equal to zero.
This can lead to truncation error in the governing equations
where surface integrals are evaluated. A typical and an
important example is the pressure force term in the momentum
equation. The difficulty can be overcome by correcting the
pressure force term as:

- SS P n-_dA :_ - f]P _dA + PSf n-*dA
,q .q .q

Thus any error in the evaluation of the areas is compensated by
the second term and the finite volume equationswillaccepl
uniform solutions.

Iv)_

After the governing equations have been transformed into
t-mite-difference equations, a numerical scheme must be

employed to solve the system of equations. An iterative
implicit scheme with replacement (Predictor - Corrector :-
Corrector) is used in this study. This is variation of the

alternate line implicit method with replacement. A detail
discussion is shown by Yam [7]. The advantage of using this
type of iteration scheme is that it has a fast convergence rate
compared to other iterative methods [7].

The governing equations consist of the continuity equation,
three momentum equations, and energy equation with un-
knowns of U, V, W. P and T. The velocity field is obtained
through the momentum equations, and the temperature field is
obtained from the thermal energy equation. However, we do

not have an explicit equation for the pressure field. Thus,
special treatment must be used in order to obtain the pressure
field. The method that was used to obtain pressure for this
study is a variation of the method developed by Chorin [8]. A
detail discussion is shown by Yam [7].

VI) Initial Conditions And BouBdarv Conditlo_

Due to the elliptic nature of the governing equations,
boundary conditions must be given at all boundaries,
Moreover. since all variables are a function of both space and
time, initial conditions for all variables must also be given. For
mass driven internal flow. the mass flow rate is the only known

quantity. The pressure gradient (pressure drop) is a result from
the balancing of the forces on the fluid particles. Thus, velocity
and pressure are unknowns everywhere. For the combined
forced and free convection flow, it is assumed that the duct has

a long straight inlet section such that before the entry of the
heated curved section, the flow is fully developed. Thus the
velocity field is assumed to be parabolic everywhere. The
pressure field is assumed to have a uniform pressure gradient
along the duct system. For the temperature field, it is assumed
that the temperature is uniformed everywhere and is equal to
the inlet temperature.

The boundary conditions for the velocity and the pressure
fields are more compficated. At the surface of the duct. the no-
slip velocity still holds. A zero pressure gradient is applied at
the surface. The velocity profile at the inlet is also fixed and is
that of the parabolic profile. Hence the velocity correction is
specified to be zero. The pressure, however, is to be
extrapolated from the pressure at first cell next to the inlet.
This will allow the inlet pressure to change in order to satisfy
the balance of momentum at the fin control cell. At the exit.

the velocity field is assumed to be fully developed. Thus, the
velocity gradient along a stream line is zero. Again, we
extrapolate the pressure for the exit pressure field. For the
temperature boundary conditions, the wall temperature at the
straight section is equal to zero while the temperature at the
curved section is equal to one, The inlet temperature is held
constant with a value of zero. At the exit. the temperature field
is assumed to be fully developed. Thus, the temperature
gradient along a stream line is set to be zero.

As a comparison, a pure forced convection through a 180
degree bend duct with straight ducts attached is included in this
study. However, the inlet straight section of this case is relative
short. It is reasonable to assume that the flow at the inlet is

mainly composed of an inviscid core since the boundary layer
has not yet been established. Thus the initial condition for the
velocity field is assumed to be an inviscid velocity profile with

velocity at the wall everywhere. For the temperature, the
initial and boundary conditions are the same as the above case
with the exception that the straight section is also heated.

A summary of initial and boundary conditions for this case
is listed in Table 1.

Table 1

Initial and Boundary Conditions for Forced and Free
Convection (Mass Driven) Internal Flow

Velocity Temperature

T=0

Pressure

Initial V = V(_r I) P = P(_,_)
Conditions

Body _ =0 _P
Boundary T = TwalX _ = 0
Conditions

= V(_, n} T = O
Far Field

Upstream
Boundary
Conditions

P_alculated
from the flow
field.



Far Field
Down- aV

_=0

stream a7
Boundary

Conditions

a--T-T=0 P=CalculatedI

aT From the flow [

Ifield" I

=÷
. =

5) Discussion Of Results

A primary objective of this study is to determine the surface
(normal and shear) stresses, surface heat flux and the internal
flow structure inside a straight-curved duct subject to a
combined forced and free convection. With the gravity vector
parallel to the plane of symmetry of the geometry of this
problem, and with the assumption that the flow is s)rnimetric in
the cross-section of the duct, only half of the domain needs to
be computed. (Hence symmetrical boundary conditions of all
gradients equal to zero and the velocity vector tangent to the
plane of symmetry ate imposed at the plane of symmetry.)

For internal flow the mean temperature is defined as

while the local Nusselt Number is defined as

aT

hN
Nu = _ - T_._ - Twall

and Can be viewed as the ratio of the heat _flux_due to
convection and the heat flux due to conduction. A high Nusselt
number means heat transfer is dominated by convection while
a 10w Nusselt number means heat transfer is dohe mainly by
conduction.

To test the evaluation of the local heat transfer rate, a test
case of fluid with inlet tem_ture:_f I=_d coole-d w_l

temperature of 0 in a straight duct is calculated. The mean

We have placed 15 geometrically stretched (of 11 percent) : temperature and the Nusselt number are calculated and the
grid points in the radial (rl) direction, 19 geometrically

stretched (of 9 percenti grid-points in the circumferential (_)

direction and either 46 or 61 grid points in the stream-wise (_)

direction. By stretching in the radial direction, we have a grid
system that can capture the boundary layer next to the wall. B)

The stretching in the circumferential direction allows us to
obtain a more accurate secondary flow in a curved duct. A
typical ex_ple of the_--_d system _d in the Cii_diYd_

problem is shown in Figures 2 to 5. A dimensionless time step
(At) of 0.1 is used in these calculations. A Prandtl number of

0.7 is used through out this study.

A) Accuracy

The formulation of the intemai flow part of the code is
tested by running a series of steady state test cases. Steady state
is assumed to be reached when the divergence of the velocity
field is dropped to machine zero and the relative change in the

velocity field is in the order of 10"4. This generally takes 1200
time steps. The resulting velocity profde of the test ease is
compared with the exact solution, For the mass driven case
with an inviscid inlet velocity being prescribed, the entrance

length before the flow becomes fully developed in a straight
duct is calculated and is compared with experimental
correlations. The resulting pressure drop, and velocity prof'fles
at the fully developed region are compared with the exact
solutions. The comparison is good since the errors in velocity
and in pressure drop are in the order of discrefization error.

dimensional plot. The unusual re:_rse of the maximum and

Two test cases of mass driven flow in a 180 degrees curved minimum value location at the cross-section of the duct is a
duct, curvature ratio (ratio of curved duct radius _ tO the characteristic of hydrostatic pressure distribution inside a

main curvedradiusRcurve)of_ withReynoldsnumber of242

and 900 are calculated.The resultingspeed contour and

secondaryflow fieldare then compared with the numerical

resultsobtained by Soh and Berger [4] with excellent

agreement.A detaildiscussionofthesolutionsand comparison

isshown by Yam [7"I.

results are then compared with theoretical values with excellent

agreement.

Case I : Re ffi59.92, Ra ffi 2.57x10 a, Pr = 0.7

We begin the study with a curvature ratio of 1_.9' Reynolds

number of 59.92, Rayleigh number of 2.57x104 and Prandtl

number of 0.7. A total of 19x15x61 grid points are used in this.
study.

At this Reynolds number, the entire flow field isdominated
by buoyancy affects. The resulting pressure contour at the
plane of symmetry and the pressure contour at the surface of

the duct are shown in Figures 6 and 7. It is clear that the
pressure distribution has taken the form of hydrostatic.

The pressure at the inner wall, at the center line of the duct

and at the outer wall verses the K-station (where K equals 1 is
at the inlet, while K equals 61 is at the exit) as shown in Figure
8. The reason for plotting the pressure against the K-station is
that there is no obvious physical length scale one can plot the
pressure. The number of the K-station can be viewed as the
transformedlengthscale_. Thus, this is oneway ofpresenting

combined resultsin straightand curved sectionsin a one-

curved duct.

The cross flow velocity field is shown by the velocity
vector plot at the symmetry (X-Z) plane (Figure 9). At the
inlet, the velocity profile is parabolic as discussed previously.
As the fluid particles enter the curved section, heat is added to
it. With the combined influence of the buoyancy and inertia
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forces, the fluid particles tend to move to the highest portion of
each cross section the duct. This is show n by the maximum
velocitylocatedai the innerbend ofthe ductasindicatedin

Figure9.Inordertosatisfymass balanceateachsection,those

fluidparticlesat the outerbend where buoyancy forceis
relativeweak (when compare tothoseattheinnerbend)have
toflow backwards.Thisreversedflow attheouterwalltravels

upstreamofthecurvedsectiontothestraightsectiondue tothe

low inertiaofthefluidparticlesasindicatedinFigure9.The
flow fieldhas thisnatureuntil80 degreesofthebend,when

bothinertiaforceand buoyancy forceactedinphasetopush
thefluidparticlesupwards.The speedcontour(FigureI0)at

theplaneofsymmetry clearlyshows thereversedflow region
at the outer bend of the curved inlet.

As the flow continue to develop, the centrifugal and
buoyancy forces act together and continue pushing the fluid
particles downstream where a reversed flow at the inner bend

is then observed. As the flow continues to develop, the
maximum velocity location starts moving towards the outer
bend. As the flow reaches the exit, the buoyancy and
centrifugal forces act out of phase and the maximum velocity
is located near the outer bend. The corresponding surface total
shear stress is shown in Figure 1I. It is clearly shown that the
maximum surface shear stress is located at the inner bend of

the curved entrance region due to the high velocity gradient at
that location. The minimum shear stress region (with an
opposite sign due to the reversed flow) is located at the inner

bend immediately downstream of the maximum region. The
speed contour at the 80 degree cross section where the reversed

flow region exists at the outer bend is shown in Figure 12. A
secondary flow is also observed at the exit of the duct as

indicated by the velocity vector plot at the exit plane as shown
in Figure 13. The center of the secondary flow is located at the
top half of the duct due to the strong buoyancy force.

From the temperature contour at the symmetry plane
(Figure 14), we can see that thermal boundary layer formed
rapidly at the inner bend of the curved section and is confined

to a thin layer. At the outer wall, the thermal boundary layer
flows backwards to the straightsectionbeforeconvecting

downstream.This isdue tothereversedflow (shown by the

velocityvectorplotatthesymmetry planeinFigure9),where

fluidparticlesthathave been heatedup by hot curvedwall
haveconvectedbackwardstothestraightinletsection.

The temperature contour at the exit plane is also shown in
Figure 15. We can see that the temperature gradient at the
outer wall is at a maximum while the temperature gradient at
the inner is at a minimum. Since temperature can be view as a
passive scalar, the temperature contour can provided us a view
of the flow field. Comparison of the temperature contour at the

exit (Figure 15) with the secondary flow smoke pattern (Figure
16) obtained by Cheng and Yuen [8] where the Reynolds
number, Rayleigh number and curvature ratio is identical to
this case is then made.

From Figure 16, we can see that the buoyancy force is pushing
all the sanoke towards the outer bend and is confined to the top
30 percent of the cross-sectional area. Since at this Reynolds
number, the centrifugal forve is relative weak, the flow field is
dominated by the buoyancy force. Moreover the secondary

flow is not strong enough to push the smoke from the outer
wall back towards the inner wall. This is qualitatively
comparable to the temperature contour (Figure 15) where the
temperature contour lines done not indicated a downward flow
motion next to the wall. (The detection of downward motion is
detacted by the curvature of the contour lines and will become
clear when a higher Reynolds number case is discussed in a
latersection)

The local Nusselt number at the inner bend, at the top of the
duct, and at the outer bend are calculated and are shown in

Figure 17. From this local Nusselt number plot, the heat
transfer rate at the inner bend of the curved inlet section has
increased from a Nusselt number of 6.9 to 8.6 (where the shear
stress is at a maximum) then decreased back to 0.7. This is

caused by the thermal boundary layer being pressed into the
inner wall by the buoyancy force. As this boundary layer lifts
off from the inner wall, the resulting heat transfer rate drops to
zero. At the outer wall, the reverse of this affect is observed.

The Nusselt number remains closed to zero at the beginning of
the curved section where reversed flow is observed. At about

80 degrees into the bend, the Nusselt number started to

increase up to 6.8 (at 120 degrees ) and remains constant. At
the center of the duct, the nusselt number takes on a more

convectional form of having a maximum value of 7.0 at the
entrance of the heated section and the continues to drop to a
constant value of 1.9. This shows that the heat transfer rate in a

swaight-curved duct is higher than that of a straight duct where
the Nusselt number for a fully developed flow base on radius
hasa valueof1.8.

The mean duct temperature is shown in Figure 18. The

mean temperature increases from 0 at the beginning of the duct
(atthestraight section) and dropsback down tozero at the
beginning of the heated section. This is due to the reversed
flow of the heated fluid flow at the inlet section. AS the flow

continues to develop, the mean temperature continues to
increaseto0.98atthe ductexit.

Case H : Re = 246.69, Ra = 2.57xi04, Pr = 0.7

The secondcasepresentedhereisfora Reynoldsnumber of

246.69,Rayleighnumber of2.57ui04and Prandtinumber of

0.7. The curvature ratio and grid density are the same as Case
I.

At this Reynolds number, the buoyancy affect dominates
the region next to the inner wall at the last haft or the duct
while the centrifugal force influences the region next to the
outer wall of the entire duct system. This is shown by the
pressure contour at the plane of symmetry in Figure 19. We
can see that the pressure contour has taken the form of
hydrostatic (parallel line with respect to the horizon) at the
inner wall while centrifugal force (contour lines curved
upward) is evident at the outer wall. The pressure at the inner
wall, at the center line of the duct and at the outer wall are also

presented as the function along the duct in Figure 20. The
unusual reverse of the maximum and minimum value which is

a characteristic of hydrostatic pressure distribution inside a
curved duct occurs neat the exit of the duct while the



centrifugal force dominated pressure distribution is observed at
the first half of the curved section.

The cross flow field is shown by the velocity vector plot at
the symmetry (X-Z) plane (Figure 21). As the fluid particles
enter the curved section, heat is added to it. With the combined

influence of the buoyancy and inertia forces, the fluid particles
tend to move to the highest portion of each cross section the
duct. This is shown by the maximum velocity located at the
inner bend of the duct as indicated in Figure 21. In order to
satisfy mass balance at each section, those fluid particles at the
outer bend where buoyancy force is relative weak (when
compare to those at the inner bend) have to flow backwards.
However, unlike Case I, the incoming fluid has enough inertia
such that reversed flow does not occur at the straight inlet
section. The reversed flow at the outer wall continues up to 60
degrees of the bend. At the 5.5 degree location, both inertia and
buoyancy force have accelerated the fluid particles in phase
such that a reversed flow at inner bends is observed. (Hence a
reversed flow at both the outer and inner bends is detected

from 55 to 60 degrees). Moreover, the maximum velocity
location has shifted from the region next to the inner bend to
the region next to the outer bend. The combined forced and
free convection is so strong that the reversed flow at the inner
bend continues up to 150 degrees of the curved section. As the
flow continues to develop, the maximum velocity location
moves towards the outer bend. As the flow reaches the exit, the

buoyancy and centrifugal forces act out of phase and the
maximum velocity is located near the outer bend due to the
centrifugal force. Speed contours at the plane of symmetry are
also shown in Figure 22. The reversed flow at the beginning of
the outer bend and at the mid-section of the curved duct is

clearly shown. The corresponded surface total shear stress is
shown in Figure 23. The maximum surface shear stress is
located at the outer bend of the curved section due to the high
velocity gradient. The minimum shear stress regions (with an
opposite sign due to the reversed flow) are located at the outer
bead at the beginning of the curved section and at the inner
bend of the last half section.

A secondary flow is observed at the 75 degrees station and
is shown in Figure 24. The speed contour at the location where
the reversed flow at the inner bend is shown in Figure 25. A
secondary flow is observed at the exit of the duct as indicated
by the velocity vector plot at the exit plane as shown in Figure
26. We can see that the center of the secondary flow is located
at the mid section and the strength of the secondary flow is
stronger than that of case one due to the s_rong centrifugal
effect. The speed contour at the exit where the high velocity
gradient is located next to the outer bend is shown in Figure
27.

Fromthe  mpe re contourat  ymm=y
(Figure 28), we can see that thermal boundary layer formed
rapidly at the inner bend and is cont'med to a thin layer while
the thermal boundary layer at the outer bend grows rapidly due
to the buoyancy force. AS the duct turned, the combined
buoyancy and centrifugal forces have rifted the thermal
boundary layer away from the inner bend and pushed it against
the outer bend where the thermal boundary layer formed

tightly against the outer walL The temperature contour at the

exit plane is also shown in Figure 29. We can see that the
temperature gradient at the outer wall is at maximum while the
temperature gradient at the inner is at minimum. Furthermore,
the maximum temperature region is closer to the outer bend
when compare to the lower Reynolds number case (Figure 15)
due to the higher centrifugal force.

From the secondary flow pattern (Figure 30) obtained by
Cheng andYuen [8"_wl_ththe _yno_ds number, Rayleigh
number, PrandO number and curvature ratio, we can see that
the smoke at the Qu_r bend has been convected towar_ds the

inner bend by the slxonger secondary flow. The smoke has
occupied 70 percent of the cross-sectional _ This is
qualitative compar_le-to the teml_rature contour ([_igure 29)

where the temperature contour lines shows a concave down
shape which indicated that it is being bend by the downward

o_ atthe duct wall region: _

From the local N_usselt number plot-(Fig_e- 3]-_,_the beat
transfer rate at the inner bend of the curved inlet section has a

Nnsselt number of 8.6 and then continue drop to a low valne of
0.183 where the therma]_aoundary layer have lift off the inner
bend (K=31). The Nusselt number there increases slightly and
has a value ofO.4'Sas__xa_ts Be duct. At the outer Wall,
the Nusselt number has a maximum of 3.12 at the beginning of

the heated section and then drops back to have a low value of
0.2. This is the location where the thermal boundary layer has
lifted off from the outer wall due to the buoyancy effect. At
K=25, the Nusselt number started to increase rapidly to a high
value of 13.5. This is due to the re.attachment of the thermal

boundary layer being pushed to the outer wall by the combined
effect of buoyancy and centrifugal forces.

The mean temperature along the duct is shown in Figu__32_:
The mean temperature has increased from 0 to 0.82 at the duct
exit. This shows that even though the Nusselt number reached
an asymptotic value, the flow is not thermally fully developed.

Cue lII : Re = 242, Ra = O,Pr = 0.7

For comparison, a similar forced convection case without
1

body force is present here. A curvature ratio of _, Reynolds

number of 242, Prandtl number of 0.7 is used in this case. A

total of 21x15x46 grid points are used in this study. The grids

in the straight duct section and in the stream-wise direction are
expanded geometrically by 10 percent. The resulting grid
system is shown in Figures 3, 4 and 5. The flow is driven by an
imposed mass flow rate thus the only known quantity is the
velocity field at the inlet. The initial and boundary conditions
used for this case have already been discussed in the initial and
boundary conditions section.

The calculated pressure distribution is presented by

plotting, (1) the pressure at the inner bend, (2) the pressure at
the center line of the duct, and (3) the pressure at the outer
bend verses the K-station as shown in Figure 33. The resulting

pressure contour at the plane of symmetry and the pressure
contour at the surface of the duct are also shown in Figures 34
and 35. From the pressure prof'fle, Figure 33, the inlet pressure
at the center is slightly lower than the pressure at the walL This
is caused by the inlet flow still being mainly composed of an
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inviscid core with a boundary layer starting to develop. As the
boundary layer grows, the displacement thickness also grows.
This increase of the displacement accelerates the main inviscid
core in order to maintain the mass balance. By Bernoulli's law,
as the velocity increases, the pressure decreases. Thus the
pressure is lower at the center. As the fluid enters the curved

section, the pressure at the outer bend is kigher than the
pressure at the inner bend. This is due to the centrifugal force
exerted at the duct wall by the fluid panicles. Note that at the
outer wall of the entrance region of the curved section, the

pressure gradient is almost zero. Although there is a slight
pressure oscillation at the exit of the curved section, this is due
to the lack of resolution of grid points in the stream-wise

direction. This problem can be over come by adding more
grids to the stream-wise direction.

From the surface pressure contours, Figure 34, there is a
pressure drop along the straight section of the duct, however,
the pressure is almost uniform across the duct. We can also see

that from Figure 34, not only is there a pressure difference
between the inlet and the exit, but also a pressure difference
between the inner bend and the outer bend due to the
centrifugal force acting by the fluid. At the outer bend of the
entrance of the curved section there is a region where the

pressure is uniform and it is shown in both pressure contours at
the plane of symmetry, Figure 34, and at the surface of the

bend duct, Figure 35. This is due to the increase of the pressure
by the centrifugal force acting at the curved section. Unlike the
combined forced and free convection, here the pressure at the
outer bend remains higher then the pressure at the inner bend
of the same cross section throughout the curved section.

The velocity profile for this case is significantly different
than that of case H. Unlike case 1I where the maximum
velocity location started off at the inner bend and later on

moved to the outer bend, the maximum velocity location
started off at the region next to the outer bend and remained at

the outer bend. A detail description of the flow development is
discussed as follows.

The velocity profile (Figure 36) at the inlet is an inviscid
one which is explicitly specified. As the flow enters the

straight inlet section, the boundary layer started to grow,
however due to the shortness of the straight section, the flow is
still composed mainly of an inviscid core. As the fluid particles

enter the curved section, the velocity profile tends to build up
at the outer wall. This is due to the particles coming from the
straight section still want to go straight by their momentum.
However, because of the existence of the solid curved wall, the
fluid particles have no choice but to change their course to
follow the curvature of the duct. This lead to a larger buildup
of the fluid particles at the outer wall. The existence of an

inviscid core (where velocity shows a flat plateau) can still be
observed up to the 45 degrees station of the curved section.

The developing region exists to about 110 degrees until the
flow in the curved section becomes fully developed. (Further
study by Yam [7] has indicated the existent of the inviscid does

not have major influence in the heat transfer part of the
problem). At the fully developed region, the velocity prorde
has the maximum located closed to the outer walL The speed
contour at 90 degrees section of the curved duct is shown in

Figure 37. A secondary flow is also observed and is shown by

the secondary flow velocity vector located at the 90 degrees
section in Figure 38. As the fluid exits the curved section and
enters the straight section, the maximum velocity is still
located toward the outer wall. The speed contours at the exit
plane is shown in Figure 39. The cross velocity vector at the
exit is also shown in Figure 40. The secondary motion is still
clearly defined with the center of the secondary flow located at
the lower region of the cross section. Without the influence of

the buoyancy force, the secondary flow is strong enough to
move some of the fluid particles towards the inner bend as

indicated by the concave downward shape of the speed contour
line. (Without body force, the temperature contours ate the
same as the speedcontours).

The total surface shear stress contour is shown in Figure 41.
There is a large area of minimum shear stress located at the
inner bend with a large area of maximum shear stress located

at the outer bend. This is obvious from the velocity vector plot
(Figure 36), we can see that the velocity gradient is higher at
the outer bend then at the inner bend. At about 80 degrees from
the inner bend, a small region of maximum change in the shear

is observed in Figure 41. From the secondary flow
velocity vector plots (Figure 40), we can see that the center of
the secondary flow and the maximum secondary velocity
gradient are located at about 80 degrees from the inner bend.
This indicates that the region of maximum changes in shear
stress at the surface of a curved duct has the same angle that is
between the center of the secondary flow and the plane of
symmetry.

From the temperaturecontourat the symmetry plane
(Figure42),we can see thata thermalboundarylayerformed

rapidlyattheouterbend and isconfinedtoa thinlayer.At the

inner wall, the thermal boundary layer formed at the straight
section continues to grow at the curvedsection and eventually
disappears. Unlike the combined forced and free convection
case, the thermal boundary layer at the outer bend never lifts

off the duct wail. The thermal boundary layer (Figure 42) at
the inner wall start growing rapidly as it enters the curved
section while for the combined forced and free convection case

(Figure 28), the separation of the thermal boundary layer has
delay up to 55 degrees into the curved section.

The mean temperature and the local Nusselt number at the
inner bend, at the top of the duct, and at the outer bend are
shown in Figures 43 and 44. Unlike the combined forced and
free convection cases where the Nusselt number at the inner

bend rh,,st has a high value and then at outer bend has a high
value (Figure 17, Figure 31), the forced convection case has a
higher Nusselt number at the outer bend than when compared
to the inner bend at all location (Figure 43). From the local
N us,selt number plot (Figure 43), the heat transfer rate at the
inlet section is decreasing uniformly across the duct. As the
flow enters the curved section, the heat transfer rate at the
outer bend continues to increase from a Nusselt number of 2.7
to 9.8 towards the end of the curved section while the Nusselt

number at the inner bend continues to decrease to a steady
value of 0.6. This shows that the heat transfer rate at the outer

bend is 5.4 times higher than that of a straight duct (Nusselt
number of 1.8). At the inner bend, however, the heat transfer
rate is about 3 times lower than that of a straight duct. The heat
transfer is about 16 times higher at the omer bend when



compared to the heat transferat the innerbend. This is

reasonablebecausethefluidparticlesareconvectedintothe

wallata much higherrateattheouterbend thenthatatthe
innerbend.The overallheattransferratein a curvedduct is

alsohigherthan thatof a straightduct.This isdue to the
secondaryfluidmotionthatenhancestheheattransfer.As the

fluidleavesthecurvedsectiontoenterthestraightsection,the
Nusseltnumber atinnerbend and atcenterstartto decrease

whiletheNusseltnumber attheinnerbend startstoincrease.If

the straightduct sectionattheexitislong enough,one can

expectthattheNusseltnumber willapproachthe valueof the
straightduct(i.e.Nusseltnumber of 1.8).The resultingsurface

heatfluxcontour(Figure45) shows thattheregionattheinner

bend has a lowerheatfluxvaluethantheregionattheouter
bend.

6) Conclusion

Solutionsforthecombined freeand forcedconvectionina

curved duct are obtainedby solvingthe low Mach number
model of theNavier-Stokesequationusinga controlvolume

method.The controlvolume method hastheadvantageofclear

physical interpretation of the equations. From this study we
have concluded the following:

(1) The maximum velocity is located near the inner
bend at the beginning of the curved section and it
transfers towards the outer bend as the flow developed.
The region where maximum velocity located near the
inner bend is buoyancy forc_-dominated while the

region where velocity located near the outer bend is a
result of the combined buoyancy and centrifugal forces.
(2) Reversed flow exists at the beginning of the outer
bend of the curved duct. This is due to the strong
buoyancy force which entrains fluid particles upwards.
Fluid with lower momentum have to flow backwards in
order to maintain mass balance.
(3) Reversed flow exists at the inner bend of the last

half section of the curved duct. This is due to the strong
combined inertia, centrifugal and buoyancy forces that
accelerate the fluid particles at the outer bend forward.
Again this reversed flow is a necessary condition for
the conversation of mass.

(4) Secondary flow existsin the flow structure.At

lowerReynoldsnumber,thestrongbuoyancy forcehas

reduced the effectiveness in mixing. This was observed
by Cheng and Yuen [8] who photographed smoke
patterns confined to the upper area of the duct at low
Reynolds number. As the Reynolds number increased,
the strength of the secondary flow increased and pushed
the smoke towards the inner bend.

(5) A negative Nusselt number is present at the straight
section for the lower Reynolds number case. This is due
to the backward flow from the heated section. Instead

of heat being depos|_d_mto the fluid (which _elds
positive Nusselt number), heat is being deposited back
to the duct by the reversed flow of the hot fluid.
(6) Nusselt number at the inner bend is high at the
beginning of the heated section. This is due to the
buoyancy force that pushed the thermal boundary layer
against the inner bend which lead to a high temperature
gradient. As the flow developed, the thermal boundary
layer will lift off the inner bend and pressed against the

outer bend thus lead to a high Nusselt number at the
outer bend at the last half of the curved section.

When comparing the combined forced and free convection
results with the forced convection results, we notice that:

(1) The maximum velocity location for the forced
convection is next to the outer bend due to the

centrifugal force in the entire flow field.
(2-)'f'here_ no _yer_d flow existin the entireflow
field for the forced convection. ::

(3) The secondary flow is stronger for _e forced
convection case when compared to the combined forced
and free conv_ectioncase due to the lack of the
buoyancy forfe .....
(4) Heat transfer rate at the outer bend is always
stronger than that at the inner bend for the pure forced
convection case. This is due to the centrifugal force that
pushes the thermal boundary layer closed to the outer
wail.

References

I.Dean,W_._I__"NQteOn The Motion Of FluidIn A Curved

Duct",PhflTM_g.20,208,1927.

2.Dean,W. R. "The StreamlineMotion Of FluidInA Curved

Duct",Phil.Mag. 30,673,1928.

3.Masliyah,J.H., "on LaminarFlow InCurved Semicircular

Ducts",J.FluidMech. (1980),Vol.99.part3,pp.469-479.

4.Sob,W. Y. and Berger,S.A.,"Laminarentranceflow ina

curvedduct",J.FluidMech. (1984),Vol.48,pp I09-135.

5.Soh,W. Y. and Rerger,S.A., " Fullydevelopedflow ina

curvedductofarbitrarycurvatureratio",InternationalJournal
ForNumericalMethods inFluid,Vol.7,pp.733-755,1987.

6.Yao, L.Y.and Berger,S.A.,"Flowinheatedcurvedducts",
J.FluidMech. (1978),Vol.88,pp.339-354.

7. Yam, C. "An Investigation of Flow Structure and Heat
Transfer Characteristics of Three Dimensional Flows", (1991)

Ph.D. Dissertation. University of California, Davis.

8. Cheng, K.C. and Yuen, F. P. "Flow Visualization

Experimentson SecondaryFlow Pattensin an Isothermally
Heated Curved Duct",JournalofHeat Transfer.(1987),Vol.

109,pp.55-61.

9. Cheng, K.C. and Yuen, F. P. "Flow Visualization Studies on
Secondary Flow Pattens in Straight tubes Downstream of a 180
deg Bend and in Isothermally Heated Horizontal Tubes",
Journal of Heat Transfer .(1987), Vol. 109, pp.49-54.

!

[
g

i

|

i

i

Z

lEE



I

t

_mm,m

FigureI

SchematicDiagram ofExperimental

Apparatusby Cheung and Yucn [8]

Figure 2
Grid System For The Straight-Bend Duct

(X-Z Plane)

Figure5

SurfaceGrid ForThe I80 DegreesBend

CurvedDuctWith StraightDuctsAttached

Pressure Contour At The Plane Of Symmetry
Re = 59.92, Ra = 2.57e4
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Figure3

InternalGridSystem

Exit Inlet

Figure 7
Surface Pressure Contour

Re = 59.92. Ra = 2.57e4

Figure 4
Grid System For The 180 Degrees Bend

Duct With Straight Ducts Attached
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Figureg

PressureAlong The Duct
Re = 59.92,Ra = 2.57e4



Figure 9
Velocity Vector At The Plane Of Symmetry

Re = 59.92, Ra = 2.57e4

Figure I0

Speed Contour At The Plance Of Symmetry
Re = 59.92, Ra -- 2.57e4

Figure i1
Total Surface Stresses

Re = 59.92, Ra -- 2.57e4
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Figure 12

Speed Contour At The 80 Degrees Location
Re -- 59.92, Ra ---2.57e4

Figure 13

Secondary Flow At The Exit
Re = 59.92, Ra -- 2.57e4

Figure 14

Temperature Contour At The Plane Of
Symmetry

InnerBend Outer Bend

Figure 15
Temperature At The Exit
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Figure 16
Smoke Pattern At The Exit Obtained By

Cheng And Yuen [8]

i

Z

m



6,

II •

-3

.6

4

4

s m ts 2o u 3o u ,o 4s so ss m
K-Station

Figure 17
Nusselt Number Along The Duct

Re = 59.95 Ra -- 2.57e4

Figure 21
Velocity Vector At The Plane Of Symmetry

Re = 246.69, Ra = 2.57e4
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Figure 18

Mean Temperature Along The Duct
Re = 59.92, Ra = 2.57e4

Figure 22
Speed Contour At the Plane of Symmetry

Re = 246.69, Ra = 2.57e4

Figure 19
Pressure At The.Plane Of Symmetry

Re - 246.69, Ra = 2.57e4

Figure 23
Total Surface Stresses

Re = 246.69, Ra = 2.57e4

0 .m 4O 6O

K-Station

Figure 20
Pressure Along The Duct
Re = 246.69, Ra = 2.57e4

Figure 24

Secondary Flow At The 75 Degrees Location



Figure25
SpeedContour At the 75 Degrees Location

Secondary Flow At The Exit
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Figure 27
Speed Contour At The Exit

Figure 28

Temperature Contour At The Plane Of
Symmetry

Figure 29

Tempe _ra_mreCon_fAt The Exit
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Figure 30
Smoke Pattent At The Exit Obtained By

Cheng And Yuen [8]
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Figure 31

Local Nusselt Number Along The Duct
Re = 246.69, Ra = 2.57e4
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Figure32

Mean TemperatureAlong The Duct
Re = 246.69, Pat = 2.57e4
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Figure 35
S_ace Pressure Contour

Figure 36

Velocity Vector At The Plane Of Symmen7
Re = 242, Ra =0.0

Figure 37

Speed Contour At the 90 Degrees Location
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Figure 38

Secondary Flow At The 90 Degrees Location

Figure 39
Speed Contour At The Exit
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Figure 40
Secondary Flow At tile Exit
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Figure 41

Total Surface Stresses

Re = 242, Ra =0__0......

Figure 42

Temperature Contour At The Plane
symme_ T

i.

4t_

m

Figure 43

Mean Temperature Along The Duct
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Figure 44
Local Nusselt Number Along The
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Figure 45
Surface Heat Flux
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