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Abstract

The purpose of this study is to investigate the flow and heat
transfer characteristics of a combined forced and free
convection flow in a curved duct. Solutions are obtained by
solving the low Mach number model of the Navier-Stokes
equation using a control volume method. The finite-volume
method has been developed with the use of a predictor-
corrector numerical scheme and some new variations of the
classical projection method. Solutions indicated that the
existence of buoyancy force has changed the entire flow
structure inside a curved duct. Reversed flow at both inner and
outer bend is observed. For moderate Reynolds number the
upstream section of the duct has been significantly influenced
by the free convection processes. In general heat transfer is
strong at the inner bend of the beginning of the heated section
and at the outer bend on the last half of the heated section. The
maximum velocity location is strongly influence by the
combined effects of buoyancy and centrifugal forces. Strong
buoyancy force can reduce the strength of the secondary flow
where it plays an important role in mixing.

1) Introduction

Steady flow in a curved duct is of practical engineering
interest and was first investigated by Dean [1], [2]. The main
concern of the fluid mechanics problem is to determine the
total pressure drop in the flow since a duct with a bend has a

higher pressure drop due to the secondary motion of the fluid.

Interest also occurs in this type of flow for the mixing of
chemicals by the secondary motion. If the mixing is adequate,
then additional pumping is not required.

Combined forced and free convection is of great importance
in the design of heat exchangers like the cooling of electronic
equipment by Freon-12 where inside the cooling coil the
buoyancy force is higher than convection force. Moreover, the
effect of secondary flow is of great important as it can enhance
the overall heat transfer rate like design of a cooling coil inside
a nuclear reactor. Unlike the straight duct flow, which can be
solved analytically by using the parallel flow assumption, the
flow in the curved section is not parallel and is more complex.
Most of the recent research efforts by Masiliyah {3], Soh and
Berger [4], [5], and Yao and Berger (6], are limited only to a
curved duct because the problem can be written in a toroidal
coordinate system. This is the first three dimensional numerical
study of a curved duct with straight duct(s) attached where the
usage of a non-orthogonal mesh is required.

Numerical solutions are obtained by solving the governing
equations in a body fitted, non-orthogonal, coordinate system.
A control volume form of the governing equations is used in

this study due to clear physical interpretation of the integral
equations. A detail discussion of the initial and boundary
conditions for this problem is also included. Solutions are
presented in the form of two-dimensional contours and three-
dimensional surface contours in order to indicate the local
variations. One-dimensional plots are used to show the global
results. A detail discussion of the flow structure and local heat
transfer rate of the combined forced and free convection flow
field and its different with a forced convection flow field is
also present in this study.

2) Governing Equation:

For internal flow, the dimensionless variables are defined as
follows:
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where piniee is the density at the inlet of the duct, L is the
reference length and is the radius of the duct, Ty, is the
temperature of the inlet fluid, Ty is the maximum temperature
of the system, t is time, U¢is the reference velocity scale and

is defined by the mean velocity at the inlet which has the
following form:
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The resulting dimensionless governing equations (omitting
over bars) with the Boussinesq approximation have the
following forms:

1) Continuity Equation:

%f{fpdv+gp'\?-?m =0

where t is the time, p is the density, V is the velocity vector,

T is the unit normal vector pointing out of the control volume,

- dV is the finite volume, and dA is the area on each surface of
" the finite volume.
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2) Momentum Equation:
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3) Thermal Energy Equation:
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where Rayleigh Number (Ra) =

vo
Prandtl Number (Pr) = = "Heat Diffusion
Eckert Number (Ec) = U Mechanical Energy
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where B is the coefficient of thermal expansion, g is the
grav:tamm vector, AT is temperature difference defined as Ty—

Tinterr U is the reference velocity scale defined as the mean
inlet velocity, and v is the kinematic viscosity of the fluid.

For subsonic flow (i.e. low Mach number) with a moderate
Reynolds number, the Eckert number is much smaller than
one. Hence the viscous heating term and the flow work term
can be neglected. The dimensionless thermal energy equation
has the following form:
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A detail derivation of the low Mach number model equations
with the Boussinesq approximation is shown by Yam [7].

3) Problem of interest

An experiment with combined forced and free convection in a
curved duct has been performed by Cheng and Yeng [8], [9].
In the experiment, a curved duct with a straight long entrance
length is fabricated. The straight long entrance length is to
ensure a fully developed parabolic velocity profile at the
entrance of the heated curved section. (We will later see that
this is not always true). A hot water jacker is inserted into the
curved section to create the heated section. The heated curved
section is then oriented in a vertical upward direction. Room
air from a compressor is used as a working fluid inside the

assembly. Smoke generated by burning paper straws is injected

at the straight duct entrance. Photographs of the secondary
flow patterns are taken at the exit of the curved duct where the
heated air is discharged directly into the surrounding as jet. A
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schematic of the experimental apparatus is shown in Figure 1.
The parameters used in this experiment (Reynolds number of
59.92 and 246.69, Rayleigh number of 2.57x104, curvature
ratio of 1:10.9 and Prandtl number of 0.7) are imported in the
current numerical study.

o Numerical Methas
N

The problems of interest have geometries that are very
difficult to describe using a Cartesian coordinate system. Thus,

a coordinate transformation is used to define a pody ﬁtted

curved duct w1th stralght duct attached

Al derivative terms in the equation of motion are evaluited
with the use of the generalized coordinates and this involves a

coordinate transformation. A  detail derivation of the
transformation is shown by Dwyer and Dandy [9] and Yam
[7] R

7 The control volume equauons (mtegral equauons) consist of
volume terms and surface terms. The volume and surface area

of a control volume can be obtained by the usage of vector
operations. For control volumes with cell centers located at a
singular point (like those at the axis of the ellipsoid grid), all
the dependent variables can become coupled with the adjacent
cell through the convection and viscous terms. This leads to
difficulty with implicit solvers. A simple solution to this
problem is to put the cell surface at the singular point. As
shown by the governing equations, the only terms that exist at
the control surface are those of the flux and pressure terms.

Since they are being multiplied by the surface area of zero, the

excessive coupling is removed. The cell center of the control
cell however is still coupled to the rest of the system by the
remaining five surfaces. A detail discussion of is shown by
Yam {7].

) Finite Volume Equations

In this study, all the variables are defined at the center of
the control cell. When variables are needed at the surface of
the cell, averaging is performed, and gradients are evaluated
with a second order finite difference with respect to the cell
surface. Thus, discretization of the governing equations in
generalized coordinates is second order accurate in space.
However, for the internal flow, the resulting maximum
Reynolds number that we can run to obtain solutions is limited
to 200. One way of increasing the Reynolds number is by
adding more grid points to the physical domain. This, however,
is limited by the capacities of current computers. An
alternative is to add artificial dissipation only to the stream
wise direction to enhance the stability of the numerical scheme.
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This is done by adding 7Ty the diffusion coefficient

of the stream wise viscous term where V_)C is the local stream-

wise velocity vector, and d—s); is the local length scale of the
control volume in the stream-wise direction:

As shown by Yam [7], the areas on the control cell are
defined by the cross product of the two position vectors located
on each surface. These two position vectors are determined by
linear interpolation between the grid points where the surface
is located. For a control volume with plane surfaces this is a
good method of determining the surface area, however the
resulting surface integral of area is not always equal to zero.
This can lead to truncation error in the governing equations
where surface integrals are evaluated. A typical and an
* important example is the pressure force term in the momentum
equation. The difficulty can be overcome by correcting the
pressure force term as:

—{!P'ﬁ)dA :—QPE’MW{!?M

Thus any error in the evaluation of the areas is compensated by
the second term and the finite volume equations will accept
uniform solutions.

IV) Numerical Scheme

After the governing equations have been transformed into
finite-difference equations, a numerical scheme must be

employed to solve the system of equations. An iterative

implicit scheme with replacement (Predictor - Corrector -
Corrector) is used in this study. This is variation of the
alternate line implicit method with replacement. A detail
discussion is shown by Yam [7]. The advantage of using this
type of iteration scheme is that it has a fast convergence rate
compared to other iterative methods [7].

V) Pressure Solver

The governing equations consist of the continuity equation,
three momentum equations, and energy equation with un-

knowns of U, V, W, P and T. The velocity field is obtained

through the momentum equations, and the temperature field is
obtained from the thermal energy equation. However, we do
not have an explicit equation for the pressure field. Thus,
special treatment must be used in order to obtain the pressure
field. The method that was used to obtain pressure for this

study is a variation of the method developed by Chorin [8]. A

detail discussion is shown by Yam [7].

VD) Initial Conditions And Boundary Conditions

Due to the elliptic nature of the governing equations,
boundary conditions must be given at all boundaries.
Moreover, since all variables are a function of both space and
time, initial conditions for all variables must also be given. For
mass driven internal flow, the mass flow rate is the only known

quantity. The pressure gradient (pressure drop) is a result from
the balancing of the forces on the fluid particles. Thus, velocity
and pressure are unknowns everywhere. For the combined
forced and free convection flow, it is assumed that the duct has
a long straight inlet section such that before the entry of the
heated curved section, the flow is fully developed. Thus the
velocity field is assumed to be parabolic everywhere. The
pressure field is assumed to have a uniform pressure gradient
along the duct system. For the temperature field, it is assumed
that the temperature is uniformed everywhere and is equal to
the inlet temperature.

The boundary conditions for the velocity and the pressure
fields are more complicated. At the surface of the duct, the no-
slip velocity still holds. A zero pressure gradient is applied at
the surface. The velocity profile at the inlet is also fixed and is
that of the parabolic profile. Hence the velocity correction is
specified to be zero. The pressure, however, is to be
extrapolated from the pressure at first cell next to the inlet
This will allow the inlet pressure to change in order to satisfy
the balance of momentum at the first control cell. At the exit,
the velocity field is assumed to be fully developed. Thus, the
velocity gradient along a stream line is zero. Again, we
extrapolate the pressure for the exit pressure field. For the
temperature boundary conditions, the wall temperature at the
straight section is equal to zero while the temperature at the
curved section is equal to one, The inlet temperature is held
constant with a value of zero. At the exit, the temperature field
is assumed to be fully developed. Thus, the temperature
gradient along a stream line is set to be zero.

As a comparison, a pure forced convection through a 180
degree bend duct with straight ducts attached is included in this
study. However, the inlet straight section of this case is relative
short. It is reasonable to assume that the flow at the inlet is
mainly composed of an inviscid core since the boundary layer
has not yet been established. Thus the initial condition for the
velocity field is assumed to be an inviscid velocity profile with
zero velocity at the wall everywhere. For the temperature, the
initial and boundary conditions are the same as the above case
with the exception that the straight section is also heated.

A summary of initial and boundary conditions for this case
is listed in Table 1.

- Table 1
- Initial and Boundary Conditions for Forced and Free
Convection (Mass Driven) Internal Flow

Velocity | Temperature Pressure

Initial 19 -VEn) [T=0 P=PE.n)
Conditions

Body _ _ doP
Conditions
farFeld 9-Yem |T=0 P=Calculated

pstream from the flow
Boundary field
Conditions .




Far Fi
grol‘::ld v T =0 P=Calculated
- |——==0 —
- s from the flow
stream 3 Geld
Boundary :
Conditions
5) Discussion Of Resuits

A primary objective of this study is to determine the surface
(normal and shear) stresses, surface heat flux and the internal
flow structure inside a straight-curved duct subject to a
combined forced and free convection. With the gravity vector
parallel to the plane of symmetry of the geometry of this
problem, and with the assumption that the flow is symmetric in
the cross-section of the duct, only half of the domain needs to
be computed. (Hence symmetrical boundary conditions of all
gradients equal to zero and the velocity vector tangent to the
plane of symmetry are imposed at the plane of symmetry.)

We have placed 15 geometrically stretched (of 11 percent)

grid points in the radial () direction, 19 geometrically
stretched (of 9 percent) grid points in the circumferential (£)
direction and either 46 or 61 grid points in the stream-wise ({)
direction. By stretching in the radial direction, we have a grid
system that can capture the boundary layer next to the wall.
The stretching in the circumferential direction allows us to

obunn 4 more accurate secondary ﬂow m a curved d duct. A

problem is shown in Figures 2 to 5. A dimensionless time step
(At) of 0.1 is used in these calculations. A Prandtl number of
0.7 is used through out this study.

A)Asmm:!

The formulation of the internal flow part of the code is
tested by running a series of steady state test cases. Steady state
is assumed to be reached when the divergence of the velocity
field is dropped to machine zero and the relative change in the

velocity field is in the order of 10-4. This generally takes 1200
time steps. The resulting velocity profile of the test case is
compared with the exact solution. For the mass driven case
with an inviscid inlet velocity being prescribed, the entrance
length before the flow becomes fully developed in a straight
duct is calculated and is compared with experimental
correlations. The resulting pressure drop, and velocity profiles
at the fully developed region are compared with the exact
solutions. The comparison is good since the errors in velocity
and in pressure drop are in the order of discretization error.

T\;vo test cases ot; ;nass driven flow in a 180 degrees curved
duct, curvature ratio (ratio of curved duct radius Ry, to the

main curved radius R yrve) Of 5" with Reynolds number of 242
and 900 are calculated. The resulting speed contour and
secondary flow field are then compared with the numerical
results obtained by Soh and Berger [4] with excellent
agreement. A detail discussion of the solutions and comparison
is shown by Yam (7].

For internal flow the mean temperature is defined as

T [[ T9e74a
mean H VG?dA
while the local Nusselt Number is defined as
Q’['
hR, or

Tmeagf wall

and can be viewed as the ratio of the heat flux due to
convection and the heat flux due to conduction. A high Nusselt
number means heat transfer is dominated by convection while
a low Nusselt number means heat transfer is done mainly by

conduction.

To test the evaluation of the local heat transfer rate, a test
case of fluid with inlet temperature of 1 and cooled wall
temperature of 0 in a straight duct is calculated. The mean
temperature and the Nusselt number are calculated and the
results are then compared with theoretical values with excellent
agreement.

Case I: Re = 59.92, Ra=2.57xlO4,Pr=0.7

We begin the study with a curvature ratio of +=—, 10 3 Reynolds

number of 59.92, Rayleigh number of 2.57x10* and Prandtl
number of 0.7. A total of 19x15x61 grid points are used in this,

At this Reynolds number, the entire flow field is dominated
by buoyancy affects. The resulting pressure contour at the
plane of symmetry and the pressure contour at the surface of
the duct are shown in Figures 6 and 7. It is clear that the
pressure distribution has taken the form of hydrostatic.

The pressure at the inner wall, at the center line of the duct
and at the outer wall verses the K-station (where K equals 1 is
at the inlet, while K equals 61 is at the exit) as shown in Figure
8. The reason for plotting the pressure against the K-station is
that there is no obvious physical length scale one can plot the
pressure. The number of the K-station can be viewed as the
transformed length scale {. Thus, this is one way of presenting
combined results in straight and curved sections in a one-
dimensional plot. The unusual reverse of the maximum and

" minimum value location at the cross-section of the duct is a

characteristic of hydrostatic pressure distribution inside a
curved duct.

The cross flow velocity field is shown by the velocity
vector plot at the symmetry (X-Z) plane (Figure 9). At the
inlet, the velocity profile is parabolic as discussed previously.
As the fluid particles enter the curved section, heat is added to
it. With the combined influence of the buoyancy and inertia
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forces, the fluid particles tend to move to the highest portion of
each cross section the duct. This is shown by the maximum
velocity located at the inner bend of the duct as indicated in
Figure 9. In order to satisfy mass balance at each section, those
fluid particles at the outer bend where buoyancy force is
relative weak (when compare to those at the inner bend) have
to flow backwards. This reversed flow at the outer wall travels
upstream of the curved section to the straight section due to the
low inertia of the fluid particles as indicated in Figure 9. The
flow field has this nature until 80 degrees of the bend, when
both inertia force and buoyancy force acted in phase to push
the fluid particles upwards. The speed contour (Figure 10) at
the plane of symmetry clearly shows the reversed flow region
at the outer bend of the curved inlet.

As the flow continue to develop, the centrifugal and
buoyancy forces act together and continue pushing the fluid
particles downstream where a reversed flow at the inner bend
is then observed. As the flow continues to develop, the
maximum velocity location starts moving towards the outer
bend. As the flow reaches the exit, the buoyancy and
centrifugal forces act out of phase and the maximum velocity
is located near the outer bend. The corresponding surface total
shear stress is shown in Figure 11. It is clearly shown that the
maximum surface shear stress is located at the inner bend of
the curved entrance region due to the high velocity gradient at
that location. The minimum shear stress region (with an
opposite sign due to the reversed flow) is located at the inner
bend immediately downstream of the maximum region. The
speed contour at the 80 degree cross section where the reversed
flow region exists at the outer bend is shown in Figure 12. A
secondary flow is also observed at the exit of the duct as
indicated by the velocity vector plot at the exit plane as shown
in Figure 13. The center of the secondary flow is located at the
top half of the duct due to the strong buoyancy force.

From the temperature contour at the symmetry plane
(Figure 14), we can see that thermal boundary layer formed
rapidly at the inner bend of the curved section and is confined
to a thin layer. At the outer wall, the thermal boundary layer
flows backwards to the straight section before convecting
downstream. This is due to the reversed flow (shown by the
velocity vector plot at the symmetry plane in Figure9), where
fluid particles that have been heated up by hot curved wall
have convected backwards to the straight inlet section.

The temperature contour at the exit plane is also shown in
Figure 15. We can see that the temperature gradient at the
outer wall is at a maximum while the temperature gradient at
the inner is at a minimum. Since temperature can be view as a
passive scalar, the temperature contour can provided us a view
of the flow field. Comparison of the temperature contour at the
exit (Figure 15) with the secondary flow smoke pattern (Figure
16) obtained by Cheng and Yuen [8] where the Reynolds
number, Rayleigh number and curvature ratio is identical to
this case is then made.

From Figure 16, we can see that the buoyancy force is pushing
all the smoke towards the outer bend and is confined to the top
30 percent of the cross-sectional area. Since at this Reynolds
number, the centrifugal force is relative weak, the flow field is
dominated by the buoyancy force. Moreover the secondary

flow is not strong enough to push the smoke from the outer
wail back towards the inner wall. This is qualitatively
comparable to the temperature contour (Figure 15) where the
temperature contour lines done not indicated a downward flow
motion next to the wall. (The deiection of downward motion is
detacted by the curvature of the contour lines and will become
clear when a higher Reynolds number case is discussed in a
later section)

The local Nusselt number at the inner bend, at the top of the
duct, and at the outer bend are calculated and are shown in
Figure 17. From this local Nusselt number plot, the heat
transfer rate at the inner bend of the curved inlet section has
increased from a Nusselt number of 6.9 to 8.6 (where the shear
stress is at a maximum) then decreased back to 0.7. This is
caused by the thermal boundary layer being pressed into the
inner wall by the buoyancy force. As this boundary layer lifts
off from the inner wall, the resulting heat transfer rate drops to
zero. At the outer wall, the reverse of this affect is observed.
The Nusselt number remains closed to zero at the beginning of
the curved section where reversed flow is observed. At about
80 degrees into the bend, the Nusselt number started to
increase up to 6.8 (at 120 degrees ) and remains constant. At
the center of the duct, the nusselt number takes on a more
convectional form of having a maximum value of 7.0 at the
entrance of the heated section and the continues to drop to a
constant value of 1.9. This shows that the heat transfer rate in a
straight-curved duct is higher than that of a straight duct where
the Nusselt number for a fully developed flow base on radius
has a value of 1.8.

The mean duct temperature is shown in Figure 18. The
mean temperature increases from O at the beginning of the duct
(at the straight section) and drops back down to zero at the
beginning of the heated section. This is due to the reversed
flow of the heated fluid flow at the inlet section. As the flow
continues to develop, the mean temperature continues to
increase to 0.98 at the duct exit.

Case IT : Re = 246.69, Ra = 2.57x104, Pr = 0.7

The second case presented here is for a Reynolds number of
246.69, Rayleigh number of 2.57x104 and Prandtl number of
0.7. The curvature ratio and grid density are the same as Case
L

At this Reynolds number, the buoyancy affect dominates
the region next to the inner wall at the last half or the duct
while the centrifugal force influences the region next to the
outer wall of the entire duct system. This is shown by the
pressure contour at the plane of symmetry in Figure 19. We
can see that the pressure contour has taken the form of
hydrostatic (parallel line with respect to the horizon) at the
inner wall while centrifugal force (contour lines curved
upward) is evident at the outer wall. The pressure at the inner
wall, at the center line of the duct and at the outer wall are also
presented as the function along the duct in Figure 20. The
unusual reverse of the maximum and minimum value which is
a characteristic of hydrostatic pressure distribution inside a
curved duct occurs near the exit of the duct while the



centrifugal force dominated pressure distribution is observed at
the first half of the curved section.

The cross flow field is shown by the velocity vector plot at
the symmetry (X-Z) plane (Figure 21). As the fluid particles
enter the curved section, heat is added to it. With the combined

influence of the buoyancy and inertia forces, the fluid particles

tend to move to the highest portion of each cross section the
duct. This is shown by the maximum velocity located at the
inner bend of the duct as indicated in Figure 21. In order to
satisfy mass balance at each section, those fluid particles at the

outer bend where buoyancy force is relative weak (when - -

compare to those at the inner bend) have to flow backwards.
However, unlike Case I, the incoming fluid has enough inertia
such that reversed flow does not occur at the straight inlet
section. The reversed flow at the outer wall continues up to 60
degrees of the bend. At the 55 degree location, both inertia and
buoyancy force have accelerated the fluid particles in phase
such that a reversed flow at inner bends is observed. (Hence a
reversed flow at both the outer and inner bends is detected
from 55 to 60 degrees). Moreover, the maximum velocity
location has shifted from the region next to the inner bend to
the region next to the outer bend. The combined forced and
free convection is so strong that the reversed flow at the inner
bend continues up to 150 degrees of the curved section. As the
flow continues to develop, the maximum velocity location
moves towards the outer bend. As the flow reaches the exit, the
buoyancy and centrifugal forces act out of phase and the
maximum velocity is located near the outer bend due to the
centrifugal force. Speed contours at the plane of symmetry are
also shown in Figure 22. The reversed flow at the beginning of
the outer bend and at the mid-section of the curved duct is
clearly shown. The corresponded surface total shear stress is
shown in Figure 23. The maximum surface shear stress is
located at the outer bend of the curved section due to the high
velocity gradient. The minimum shear stress regions (with an
opposite sign due to the reversed flow) are located at the outer
bend at the beginning of the curved section and at the inner
bend of the last half section.

A secondary flow is observed at the 75 degrees station and
is shown in Figure 24. The speed contour at the location where
the reversed flow at the inner bend is shown in Figure 25. A
secondary flow is observed at the exit of the duct as indicated
by the velocity vector plot at the exit plane as shown in Figure
26. We can see that the center of the secondary flow is located
at the mid section and the strength of the secondary flow is
stronger than that of case one due to the strong centrifugal
effect. The speed contour at the exit where the high velocity
gradient is located next to the outer bend is shown in Figure
27.

From the temperature contour at the symmetry plane
(Figure 28), we can see that thermal boundary layer formed
rapidly at the inner bend and is confined to a thin layer while
the thermal boundary layer at the outer bend grows rapidly due
to the buoyancy force. As the duct tumned, the combined
buoyancy and centrifugal forces have lifted the thermal
boundary layer away from the inner bend and pushed it against
the outer bend where the thermal boundary layer formed
tightly against the outer wall. The temperature contour at the

exit plane is also shown in Figure 29. We can see that the
temperature gradient at the outer wall is at maximum while the
temperature gradient at the inner is at minimum. Furthermore,
the maximum temperature region is closer to the outer bend
when compare to the lower Reynolds number case (Figure 15)
due to the ‘higher centrifugal force.

From the secondary ﬂow pattern (Fxgurc 30) obtamed by

number, Prandtl number and curvamre ratio. we can see that
the smoke at the outer bend has been convected towards the
inner bend by the stronger secondary flow. The smoke has

occupied 70 percent of the cross-sectional area. This is
qualitative comparable to the temperature contour (Figure 29)
where the temperature contour lines shows a concave down
shape which indicated that it is bemg bend by the downward
flow at the duct wall region. ~

From the local Nusselt number plot (Figure 31), the heat
transfer rate at the inner bend of the curved inlet section hasa
Nusselt number of 8.6 and then continue drop to a low value of
0.183 where the thermal boundary layer have lift off the inner
bend (K=31). The Nusselt number there increases slightly and
has a value of 0.45 as the flow exits the duct. At the outer wall,
the Nusselt number has a maximum of 3.12 at the beginning of

the heated section and then drops back to have a low value of
0.2. This is the location where the thermal boundary layer has

lifted off from the outer wall due to the buoyancy effect. At
K=25, the Nusselt number started to increase rapidly to a high
value of 13.5. This is due to the reattachment of the thermal
boundary layer being pushed to the outer wall by the combined

effect of buoyancy and centrifugal forces.

The mean temperature along the duct is shown in Figure 32.

The mean temperature has increased from 0 to 0.82 at the duct

exit. This shows that even though the Nusselt number reached
an asymptotic value, the flow is not thermally fully developed,

Case Il ; Re = 242, Ra =0, Pr = 0.7

For comparison, a similar forced convection case without
body force is present here. A curvature ratio of % , Reynolds
number of 242, Prandtl number of 0.7 is used in this case. A
total of 21x15x46 grid points are used in this study. The grids
in the straight duct section and in the stream-wise direction are
expanded geometrically by 10 percent. The resulting grid
system is shown in Figures 3, 4 and 5. The flow is driven by an
imposed mass flow rate thus the only known quantity is the
velocity field at the inlet. The initial and boundary conditions
used for this case have already been discussed in the initial and
boundary conditions section.

The calculated pressure distribution is presented by
plotting, (1) the pressure at the inner bend, (2) the pressure at
the center line of the duct, and (3) the pressure at the outer
bend verses the K-station as shown in Figure 33. The resulting
pressure contour at the plane of symmetry and the pressure
contour at the surface of the duct are also shown in Figures 34
and 35. From the pressure profile, Figure 33, the inlet pressure
at the center is slightly lower than the pressure at the wall. This

' is caused by the inlet flow still being mainly composed of an
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inviscid core with a boundary layer starting to develop. As the
boundary layer grows, the displacement thickness also grows.
This increase of the displacement accelerates the main inviscid
core in order to maintain the mass balance. By Bernoulli's law,
as the velocity increases, the pressure decreases. Thus the
pressure is lower at the center. As the fluid enters the curved
section, the pressure at the outer bend is higher than the
pressure at the inner bend. This is due to the centrifugal force
exerted at the duct wall by the fluid particles. Note that at the
outer wall of the entrance region of the curved section, the
pressure gradient is almost zero. Although there is a slight
pressure oscillation at the exit of the curved section, this is due
to the lack of resolution of grid points in the stream-wise
direction. This problem can be over come by adding more
grids to the stream-wise direction,

From the surface pressure contours, Figure 34, there is a
pressure drop along the straight section of the duct, however,
the pressure is almost uniform across the duct. We can also see
that from Figure 34, not only is there a pressure difference
between the inlet and the exit, but also a pressure difference
between the inner bend and the outer bend due to the
centrifugal force acting by the fluid. At the outer bend of the
entrance of the curved section there is a region where the
pressure is uniform and it is shown in both pressure contours at
the plane of symmetry, Figure 34, and at the surface of. the
bend duct, Figure 35. This is due to the increase of the pressure
by the centrifugal force acting at the curved section. Unlike the
combined forced and free convection, here the pressure at the
outer bend remains higher then the pressure at the inner bend
of the same cross section throughout the curved section.

The velocity profile for this case is significantly different
than that of case II. Unlike case II where the maximum
velocity location started off at the inner bend and later on
moved to the outer bend, the maximum velocity location
started off at the region next to the outer bend and remained at
the outer bend. A detail description of the flow development is
discussed as follows.

The velocity profile (Figure 36) at the inlet is an inviscid
one which is explicitly specified. As the flow enters the
straight inlet section, the boundary layer started to grow,
however due to the shortness of the straight section, the flow is
still composed mainly of an inviscid core. As the fluid particles
enter the curved section, the velocity profile tends to build up
at the outer wall. This is due to the particles coming from the
straight section still want to go straight by their momentum.
However, because of the existence of the solid curved wall, the

fluid particles have no choice but to change their course o

follow the curvature of the duct. This lead to a larger buildup

of the fluid particles at the outer wall. The existence of an

inviscid core (where velocity shows a flat plateau) can still be
observed up to the 45 degrees station of the curved section.
The developing region exists to about 110 degrees until the
flow in the curved section becomes fully developed. (Further
study by Yam [7] has indicated the existent of the inviscid does
not have major influence in the heat transfer part of the
problem). At the fully developed region, the velocity profile
has the maximum located closed to the outer wall. The speed
contour at 90 degrees section of the curved duct is shown in
Figure 37. A secondary flow is also observed and is shown by

the secondary flow velocity vector located at the 90 degrees
section in Figure 38. As the fluid exits the curved section and
enters the straight section, the maximum velocity is still
located toward the outer wall. The speed contours at the exit
plane is shown in Figure 39. The cross velocity vector at the
exit is also shown in Figure 40. The secondary motion is still
clearly defined with the center of the secondary flow located at
the lower region of the cross section. Without the influence of
the buoyancy force, the secondary flow is strong enough to
move some of the fluid particles towards the inner bend as
indicated by the concave downward shape of the speed contour
line. (Without body force, the temperature contours are the
same as the speed contours).

The total surface shear stress contour is shown in Figure 41.
There is a large area of minimum shear stress located at the
inner bend with a large area of maximum shear stress located
at the outer bend. This is obvious from the velocity vector plot
(Figure 36), we can see that the velocity gradient is higher at
the outer bend then at the inner bend. At about 80 degrees from
the inner bend, a small region of maximum change in the shear
stress is observed in Figure 41. From the secondary flow
velocity vector plots (Figure 40), we can see that the center of
the secondary flow and the maximum secondary velocity
gradient are located at about 80 degrees from the inner bend.
This indicates that the region of maximum changes in shear
stress at the surface of a curved duct has the same angle that is
between the center of the secondary flow and the plane of

symmeltry.

From the temperature contour at the symmetry plane
(Figure 42), we can see that a thermal boundary layer formed
rapidly at the outer bend and is confined to a thin layer. At the
inner wall, the thermal boundary layer formed at the straight
section continues to grow at the curved section and eventually
disappears. Unlike the combined forced and free convection
case, the thermal boundary layer at the outer bend never lifts
off the duct wall. The thermal boundary layer (Figure 42) at
the inner wall start growing rapidly as it enters the curved
section while for the combined forced and free convection case
(Figure 28), the separation of the thermal boundary layer has
delay up to 55 degrees into the curved section.

The mean temperature and the local Nusselt number at the
inner bend, at the top of the duct, and at the outer bend are
shown in Figures 43 and 44. Unlike the combined forced and
free convection cases where the Nusselt number at the inner
bend first has a high value and then at outer bend has a high
value (Figure 17, Figure 31), the forced convection case has a
higher Nusselt number at the outer bend than when compared
to the inner bend at all location (Figure 43). From the local
Nusselt number plot (Figure 43), the heat transfer rate at the
inlet section is decreasing uniformly across the duct. As the
flow enters the curved section, the heat transfer rate at the
outer bend continues to increase from a Nusselt number of 2.7
to 9.8 towards the end of the curved section while the Nusselt
number at the inner bend continues to decrease to a steady
value of 0.6. This shows that the heat transfer rate at the outer
bend is 5.4 times higher than that of a straight duct (Nusselt
number of 1.8). At the inner bend, however, the heat transfer
rate is about 3 times lower than that of a straight duct. The heat
transfer is about 16 times higher at the outer bend when



compared to the heat transfer at the inmer bend. This is
reasonable because the fluid particles are convected into the
wall at a much higher rate at the outer bend then that at the
inner bend. The overall heat transfer rate in a curved duct is
also higher than that of a straight duct. This is due to the
secondary fluid motion that enhances the heat transfer. As the
fluid leaves the curved section to enter the straight section, the
Nusselt number at inner bend and at center start to decrease
while the Nusselt number at the inner bend starts to increase. If
the straight duct section at the exit is long enough, one can
expect that the Nusselt number will approach the value of the
straight duct (i.e. Nusselt number of 1.8). The resulting surface
heat flux contour (Figure 45) shows that the region at the inner
bend has a lower heat flux value than the region at the outer
bend.

6) Conclusion

Solutions for the combined free and forced convection in a
curved duct are obtained by solving the low Mach number
model of the Navier-Stokes equation using a control volume
method. The control volume method has the advantage of clear
physical interpretation of the equauons. From thxs study we
have concluded the following: — o

(1) The maximum velocity is located near the inner
bend at the beginning of the curved section and it
transfers towards the outer bend as the flow developed.
The region where maximum velocity located near the
inner bend is buoyancy force dominated while the
region where velocity located near the outer bend is a
result of the combined buoyancy and centrifugal forces.
(2) Reversed flow exists at the beginning of the outer
bend of the curved duct. This is due to the strong
buoyancy force which entrains fluid particles upwards.
Fluid with lower momentum have to flow backwards in
order to maintain mass balance.

(3) Reversed flow exists at the inner bend of the last
half section of the curved duct. This is due to the strong
combined inertia, centrifugal and buoyancy forces that
accelerate the fluid particles at the outer bend forward.
Again this reversed flow is a necessary condition for
the conversation of mass.

(4) Secondary flow exists in the flow structure. At
lower Reynolds number, the strong buoyancy force has
reduced the effectiveness in mixing. This was observed
by Cheng and Yuen [8] who photographed smoke
patterns confined to the upper area of the duct at low
Reynolds number. As the Reynolds number increased,
the strength of the secondary flow increased and pushed
the smoke towards the inner bend.

(5) A negative Nusselt number is present at the straight
section for the lower Reynolds number case. This is due
to the backward flow from the heated section. Instead
of heat being deposited into the fluid (which yields
positive Nusselt number), heat is being deposited back
to the duct by the reversed flow of the hot fluid.

(6) Nusselt number at the inner bend is high at the
beginning of the heated section. This is due to the
buoyancy force that pushed the thermal boundary layer
against the inner bend which lead to a high temperature
gradient. As the flow developed, the thermal boundary
layer will lift off the inner bend and pressed against the

outer bend thus lead to a high Nusselt number at the
outer bend at the last half of the curved section.

When comparing the combined forced and free convection

results with the forced convection results, we notice that: .
6} “The maximum velocity location for the forced
convection is next to the outer bend due to the
centrifugal force in the entire flow field.
(2) The sversed flow exist in the enure flow
field for the forced convection.
(3) The secondary flow is stronger for lhe forced
convection case when compared to_the combined forced
and free convection case duc to the lack of the
buoyancy force. ..
(4) Heat transfer rate at the outer bend is always
stronger than that at the inner bend for the pure forced
convection case. This is due to the centrifugal force that
pushes the thermal boundary layer closed to the outer

wall.
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