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Abstract

The MATRICS flow solver calculates the
inviscid transonic potential flow about a wing/body
semi-configuration. At present, work is in progress
to extend MATRICS to take viscous effects into
account through coupling with a boundary layer
solver. This solver, MATRICS-V, is based on robust
calculation methods for the boundary layer, the
outer wing flow and their interaction. MATRICS-V is
intended for (inverse) design purposes. The
boundary layer and wake are based on an integral
formulation of the unsteady first order boundary
layer equations, the inviscid method 1is the
existing MATRICS potential flow solver and the
interaction algorithm is of the quasi-simultaneous

type.

The paper gives a progress report on the
coupled potential-flow boundary-layer method for
transonic wing/body configurations.

1. _Incroduction

Computation methods for three-dimensional
transonic potential flow are an important component
in design systems for civil aircraft wing/body
configurations. Accurate performance prediction
under these conditions (e.g. 1lift-drag analysis)
requires that the transonic potential flow solver
is coupled with a boundary layer solver to account
for the viscous effects on the wing pressure
distribution in a sufficiently accurate way. For
some years NLR has available its own developed
system MATRICS (Multi-component Aircraft TRansonic
Inviscid Computation System) for the calculation of
the three-dimensional inviscid transonic potential
flow about wing/body configurations (Ref. 1). The
MATRICS -derivative MATRICS-V -now under develop-
ment- will calculate the interaction of the
inviscid potential outer flow and a viscous
boundary layer on the wing of a transonic transport
wing/body configuration. The ultimate objective of
the development of MATRICS-V will be the embedding
of this system in a wing design system, also
currently under development at NLR.

This paper gives a progress report on the
development of MATRICS-V. Firstly, a description
will be given of the MATRICS three-dimensional
transonic potential flow solver, being the starting

point for the development of MATRICS-V. Secondly,
the requirements for the development of the
viscous-inviscid interaction solver will Dbe
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"formulated. Robustness of the interaction algorithm

has been formulated as the main requirement. Next,
the basic concepts of the viscous-inviscid
interaction solver will be given. Subsequently, a
short system overview will be given of the MATRICS-
V flow solver, followed by an analysis of the
boundary layer equation system and on the Iinter-
action law. Finally, some preliminary computational
results will be presented.

2. Starting position for the
development of MATRICS-¥

The MATRICS-V viscous-inviscid interaction
solver 1is a follow-up to the MATRICS three-
dimensional 1inviscid transonic potential flow
solver. This flow solver solves the full potential
equation In strong conservation form on a grid of
C-H or C-0O topology. This grid is generated using
the MATGRID grid generator (Tysell and Hedman,

Ref. 2). The solver uses a fully conservative
finite volume discretization and a multigrid
solution method. The discretization scheme is

sacond order accurate in the mesh size in subsonic
parts of the flow, and first order accurate in
supersonic parts of the flow. For the capture of
supersonic/subsonic shock waves a Godunov-type
shock operator is wused. Options for fully-
conservative as well as non-conservative shock-
capture are available. Details on the MATRICS flow
solver can be found in references 3, 4.

MATRICS provides data for a lift-drag-diving-moment
analysis. Substantial research has been performed
on the reliable prediction of drag by the MATRICS
flow solver. Findings of this research have been
reported in reference 5.

The development of MATRICS-V is partly based
on experience at NLR with the modelling of two-
dimensional strong viscous-inviscid interaction on
airfoils (Refs. 6, 7).

2. Reguirements

MATRICS-V is designed <to calculate the
influence of the wing boundary layer and wake on
the inviscid potential outer flow about a given
transport-type wing/body configuration from
subsonic up to and including transonic cruise
conditions. Laminar as well as turbulent boundary
layers should be calculated, where the turbulent
boundary layer is allowed to be mildly separated.
The MATRICS-V method should be robust; a guaranteed
converged solution should be obtained for realistic
flow conditions. The method should also be about
ten times faster than a three-dimensional Reynolds-
averaged Navier-Stokes solver, to enable wing
design applications.

4, DBasic concepts

The coupling of an inviscid outer flow with a
viscous boundary layer flow will be done using an
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integral method formulation of the boundary layer
equations. With integral methods there 1is no
explicit formulation of a turbulence model, but the
system of equations is supplemented by suitable
empirical closure relations. The integral method is
reasonably easy to implement, because in the
integral method the three-dimensional flow problem
is formulated as a two-dimensional problem on the
wing surface and the wake center-surface., This is a
great advantage in code development.

Until a few years ago, the boundary layer
equations have always been used in their steady
form to compute a steady boundary layer flow. The
main advantage of this formulation over an unsteady
formulation has always been its lower computation
time. However, using the boundary layer equations
in their unsteady formulation, integrating them
towards a steady solution, the boundary layer
method is particularly well  suited for
vectorization and hence for implementation on
todays supercomputers, see Van Dalsem and Steger
(Ref. 8), Swafford and Whitfield (Ref. 9). An even
more Iimportant advantage of using the unsteady
boundary layer equations for solving steady
boundary layer flow 1is the robustness of this
approach. With the unsteady formulation a simple

time-integration scheme will in any case produce an

unsteady answer., With the steady formulation a
space-marching scheme has to be wused and the
specification of initial data proves to be more
difficult in a space-marching scheme than in a
time-integration scheme. Also in case the steady
boundary layer solution 1is non-unique or non-
existent, the solution produced by an unsteady
formulation 1s probably more useful than the
solution produced by a steady formulation.

Two candidate interaction algorithms have been

considered, namely the semi-inverse and quasi-
simultaneous algorithm. (The more sophisticated
simultaneous algorithm is too expensive to

implement in MATRICS because of the fully implicit
relaxation algorithm employed in the existing
inviscid potential outer flow solver). Experience
by Ashill e.a. (Ref. 10), pp. 35, and Cebeci, Chen
e.a. (Ref. 11) indicates that the semi-inverse
algorithm lacks robustness in difficult flow cases.
Tharefore the quasi-simultaneous interaction
algorithm 1is wused, being the best available
interaction algorithm that can be implemented in
interaction with the inviscid potential outer flow
solution algorithm.

In the inviscid potential outer flow solver
the "blowing velocity approach” is used to account
for the boundary layer effects on the inviscid
outer flow, which means that a source strength is
specified at the body surface and a jump in source
strength at the wake. This approach is reasonably
standard, while experience by Chen, Li ae.a.
(Ref. 12) reports that this approach 1is more
reliable than the boundary layer displacement
approach.

Experience by Chow (Ref. 13) indicates that it
is mandatory to prescribe the pressure jump across
the wake as a boundary condition to the outer
inviscid flow. The latter jump influences the Kutta
condition prescription in the outer inviscid flow,
and this is essential in order to compute realistic
11ft values for the wing. The pressure jump across
the boundary layer is computed as in Chow (Ref. 13)
and Lock and Williams (Ref. 14).

S e t of t cu m
v id method

The full potential equation
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is solved using a finite volume dlsc}étizati .

formulated on a curvilinear coordinate system and a

multigrid method employing ILU/SIP smoothing. At

present only semi-configurations can be considered.
The boundary conditions are:

. on wetted surfaces u, = g§; (3)

for the 1inviscid flow solver, the sourcad ~

strength 5 = 0 on the body, else S 1s compuced
by the boundary layer solver; - =

in the symmetry plane u, = 0, (6)
in the far-field, except downstream, ¢ = 0, (7)
. in the far-field downstream (Trefftz-plane)

& .o, (8)
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where ¢! is the chordwise (wrap- around) grid

coordinate,
. across the prescribed vortex sheet

[ =q°-q, 9
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for the inviscid flow solver the jump "across -

the wake, (.)* - (.)°, 1is computed by the
boundary layer solver,

. across the C-0 topology branch cut that
extends from the tip section to the far-field

lateral boundary
kel = 0, Loyl = 0. ' (10)

.2 _YViscous method

The steady first order boundary layer
equations, describing conservation of mass and
momentum in a general right-handed coordinate
system, can be found in Myring (Ref. 15). Adding
time-dependent terms and using first order integral
thicknesses, the boundary layer equations can be
integrated with respect to z (normal to the wing
surface or wake centerline), using the momentum
equation in z-direction to eliminate the pressure.
Then the integral equations are obtained in the
form
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where q is the velocity, J is the Jacobien of the
transformation from physical to computational
space, and overbars denote boundary layer edge
values. The density thickness §, is the integral of
(p-p)/p over the boundary layer

In the 1latter equation (13) the instationary
entrainment coefficient 1is an extension of the
unsteady two-dimensional definition as wused by

Houwink (Ref. 16).

Subsequently an expression is
calculation of the non-dimensional mass flux §
through the surface of the wing and wake,
representing the displacement effect of the
boundary layer on the inviscid outer flow. Assuming
an inviscid flow between the stream surface z = 0
and the displacement surface §*, which is a stream
surface for the inviscid flow, the following
expression can be obtained from (13) by setting

needed for the

§ = 0:

s = _L b3 JPn25 3q ., 8 (el .
PqJ a6 q Pat ax h1 8y
(14)

this is equivalent to § = w/q, yielding the usual
interpretation of § in steady inviscid flow.

In the used body-conforming non-orthogonal
coordinate system the y-axis is in the spanwise
direction of the wing, while the =x-axis is in
chordwise direction wrapping around the wing and
the wake.

Next, a streamline coordinate system is adopted, in
which the variables (now denoted with tildes)
reduce to their familiar form, see Myring
(Ref. 15). Transformation to and from the stream-
line coordinate system is done whenever necessary.
Thus it is possible to derive equations using the
well-known integral parameters in streamline
coordinates and in the curvilinear system.

The equations (11) to (1l4) are thus written in the
basic variables ¥;;, H, q and C, where the cross-
flow parameter C is defined as

- sign(B -85,
61

(15)

Reduction of the number of unknowns to the four
basic variables is established by prescribing a set
of turbulent velocity profiles in the streamline
coordinate system, while the density thickness §,
is eliminated using the Crocco relation,
prescribing a parabolic distribution between
velocity and temperature (Ref. 17). For the time
being no velocity profiles are used, but proven

closure relations taken from accepted two-
dimensional methods for attached as well as
separated flow (Ref. 16, 18, 19) have been
implemented in a first version of the code. In a

next version, more physical closure relations and
velocity profile families will be used.

Initial conditions for the turbulent boundary

layer calculation are generated by the BOLA-2D
solver (Ref. 20), which calculates the laminar
quasi-two-dimensional flow in the leading edge
region of the wing.
Boundary conditions are set at the wing root, where
derivatives in spanwise direction are assumed to be
zero, and the wing tip, where zero lateral deriva-
tives In local sweep direction are prescribed, see
Cross (Ref. 21). Far downstream, a zero gradient
condition in chordwise direction is specified for
all quantities.



The system of equations (11) to (13) is solved
in combination with an interaction law (to be
discussed in the next section). The complete set of
equations can be written symbolically as

Eu,_#Au,*B%+Du-f, (16)
q

vhere u = [51;. ﬁ. q, €.

system (16) appears to be hyperbolic in
1 Discretization {s done according to the
directions of the characteristics in
(y,t)-space, using a matrix-split procedure

(Ref. 22). Thus equation (16) is discretized as

The
practice.

B +a'TueaBusne J,u+BF u+Du=f. an

q

In smooth parts of the flow second order accurate
differencing will be obtained using a scheme as for
example in Spekreijse (Ref. 23).

The system of equations (17) 1is solved using the
fully implicit backward Euler time-integration
scheme proposed by Steger and Warming (Ref, 24) and
Yee (Ref. 25). .

2.3 _Interaction law

In order to avoid a breakdown of the boundary
layer formulation in separated flow regions an
extra equation 1is needed which modifies the
inviscid flow boundary layer edge velocity q.
Usually a highly linearized form of the inviscid
outer potential flow is taken, for example the two-

dimensional Hiibert-integral formulatIon as used by
Veldman (Ref. 26). An even more simplified form is
given by Williams (Ref. 27). In this paper the
latter form is slightly modified, but still derived
from the linearized potential equation. This will
be discussed in more detail in section 6.2, In its
simplest form the interaction law can be written as

. ar g o] . @ o (18)
ds  fAx ds AEax
Time-dependent terms are obtained from the
instationary form of S (equation (4)), paying

special attention to the limiting case for M - 0.

Two remarks are made:

1. Equation (18) 1s written along streamlines,
which implies that the streamline directions
are known from the inviscid flow solver and
are kept fixed during a viscous calculation.

2. Equation (18) is a law in correction form,
indicating that {it will not influence the
converged  solution. In <¢his way the
interaction law can be shown to be essential
to avoid breakdown of the boundary layer
formulation, but once convergence is obtained
it does not affect the final solution.

3.4 Viscous-inviscid interaccion algorithm

The leading edge part of the boundary layer
will be calculated in direct mode using the program
BOLA-2D (Ref. 20). This presupposes that the flow
does not separate in this part of the boundary
layer. The inviscid flow computation in this part
is done in direct mode with a source strength §

(x,t) and

specified on the wing. Further downstream, a quasi-
simultaneous interaction algorithm is used. In this
formulation the inviscid flow calculation is domne
in direct mode with a prescribed source strength S
on the wing and the wake and a prescribed velocity
jump across the wake. The viscous calculation is
done in quasi-simultaneous mode with a prescribed
inviscid wall velocity, which has been corrected
for boundary layer curvature effects. Thus the
boundary layer 1is computed effectively with a
prescribed edge velocity instead of the inviscid
wall velocity. Cebeci, Clark e.a. (Ref. 28) have
shown that such an approach avoids the initiation
of undesirable pressure fluctuations 1in the
trailing-edge region at reasonably large angles of
attack. The boundary layer computation computes a
new source strength S and velocity jump aq, which
are used as the subsequent Input for the
interactive calculations.

e uat

To analyze the properties of the boundary
layer equations formulated in chapter 5 (Egqs. (1),
(2), (3), (18)) we assume the following simplifying
conditions:

. orthonormal coordinate system,
- g=0; ky=ky=k,=0; 1;=1,=1,=0;

i.e. hl"hz-l N

. outer streamline aligned with the x-axis, i.e.
u/q=1, v/q=0;

. closure conditions as in Cousteix and
Houdeville (Ref. 20), i.e.
51.2 = C(Ez‘au)- 521 = 'Ciuv
832 = ~C2(85,-81,), 85 = -C§,. (19)

With H=3,/7, obtain an

and Hl-(5-31)/7u we
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the parameter ew0 at M=0 and

5, = 77'1 M, (23a)
My = 2 + (y-1) M2, (23b)
H = (Hel)(145,) - 1, (23c)

(23d)

H{ = dH,/dH.

Setting Ky=1 and K;=rx/(fAx) in the third row of
eqs. (20)..(22) reproduces eq. (18).

Following Myring, reference 16, the
characteristics of an equation

Eu, +Ay +£=0, us={u ... yul
can be obtained from

det(E-)A) = 0, A = %. (24)

We first consider the quasi two-dimensional flow
case (3/3y=0) where no interaction law is used,

i.e. Ki=0, Ky=1. This way we find the following
expressions for the characteristic directions A:
A =H, (25a)
A = M5 (He1), (25b)
- H{2% + ((H+1)H] -H, +1-(H+1)6 H]) A +
- HH{ + H, + (H+1)6_H{ = 0. (25¢)
For realistic H;(H)-functions, viz. with H;-H,/H

the roots of the latter quadratic equation are
real. Consequently, the equation system is fully
hyperbolic. If H/<0 the values for )\ are greater
than zero. At separation, that is at H{=0, in the
minimum of the Hl(ﬂ) curve, one eigenvalue )\ passes
through zero, which means that the characteristic
direction changes from upwind to downwind there.
Consequently, the equation system
corresponding physical behaviour.

We continue the analysis for the quasi two-
dimensional case (3/9y=0), but now for the case
where an Interaction law is used to solve for 1lngq,
i.e. K0, Ke=1. In case K=1, M2=0 and ¢=0 we find
the following expressions for A:

A =0, (26a)

A =H, (26b)
((H+1)2H{ - (He1)H,) A% ¢ (-H{(2H+1)(Hs1) +

+ ul(zrmﬁ - 1) X + (H+1l) (HH{ -H,) = 0. (26¢)

For realistic H,(f)-functions, namely with (H+1)H{-
Hy<0 and HH -H;<0 three values for A are positive,
one is negative. For small ¢<0 it can be shown that

models the.

all values for ) are positive for all H, so that
now all characteristics originate from the upwind
direction.

For the case 3/3y»0 we find the following
characteristic  directions in the x,y-plane
(A=dy/dx):

. No interaction law (K;=0, K4=1):

A =0, (27a)

A = H-1, (27b)

H{2% ¢ ((H-1)H{-H,(1+6,) +1+8,) X +

(27¢)

+1+5,. =0;

as in the x,t-plane a characteristic direction
changes from upwind to downwind at separation
(i.e. at H{=0).

. With interaction law (K;#0, K4=1) in case K;=1,

M2=0, e=0:
A=0, (28a)
(-(H+1)3H] +(H+1)H,)A® + ((2H3+H2-2H-2)H] +
+(-2H2+1)H, +H2+H+1) 2% +

(28b)

+((H3-1)H{ +H2+H+2)A + 1 = 0;

two positive and one negative value for X are
found in case of realistic H;(H)-functions.

The characteristics in the x,t-plane for the
more general case with an interaction law (K;=0)
and without the additional settings K=1, M*~0 and
¢=0 can only be analyzed numerically. We find the

following expressions for the characteristic

directions:
A =H, (29a)
(29b)

831 + 222 + a2 + a4 =0,

where ay = det A and a, = det E.

A well-defined interaction law has the property
that a;#0 for all H. This gives the following
relation between K; and K;:

K> H Ky
(HH{ -H,) (H+1) -6 M_H] (H+1) +HH] (1-M?) -H,§ (H+1)

(30)
if H/<0 the value K;~0 may be chosen (direct mode).
If H/<0 the value K,;=0.01K,; is suitable for all M2
and all f, in the sense that numerical computation
of A indicates that then for 0<M3<1.7 all values
for ) are real and positive, while in some rare
cases complex values are found with a positive real
part. The boundary layer equation system (and
interaction law) have consequently favourable
properties for use in the transonic flow regime at
cruise conditions. Because all characteristic
directions generally originate from upstrean,
initial conditions for 4,;, H, q and C have to be



specified upstream, while downstream no initial
conditions need be specified. )

6.2 Propextles of interaction law

Following Lock and Williams (Ref. 14), we
consider a source strength S approximately normal
to the surface, a velocity q approximately parallel
to the surface, and define a perturbation potential
¢ as

29 . 4,, 85 = 4,. (31)
q

The outer potential flow can be described by the
linearized perturbation potential equation

(I.HZ) ‘.. + ‘;g - 0,

with ¢, = AS at z = 0. (32)

In the context of the definition of an interaction
law we will interprete Aq/q and AS as corrections
with respect to a starting solution, {.e.

A9 . q-9% | A - 5-sF, (33)
q q

where q* is given by the preceeding outer flow

computation and S* by the preceeding viscous flow
calculation. A solution te (32) in subsonic flow in
Fourier space is given by

$ = Celvig-ns g . W (34)

Algebraic manipulation of (31), (32) and (34),
using the derivative of Aq/q with respect to s in
order to obtain non-imaginary quantities, then

leads to a law in Fourier space of the form

139._139%) ., (5.5,
ﬂ[qas 5 as} v(s-5%) (35)

In physical space we may consider (35) as the
leading term in an integral form of an interaction
law and use it in this simplified form.

In supersonic flow only the right-running wave is
considered,

¢ = Calveg-itve (36)

Manipulation now yields a non-imaginary interaction
law of the form

g 1 .- (s-s%y. (an
q

Considering eq. (37) as the leading term of an
integral form of an interaction in physical space,
we now have a form of interaction law that couples
S to q instead of 43q/3s, which cannot be
incorporated in the system of boundary layer
equations in a simple way. The subsonic law (33)
appears however to produce useful results both in
subsonic and supersonic flow, which is mainly due
to the fact that strong Iinteraction occurs in
subsonic parts of the flow (at supersonic-subsonic
shock vaves and at trailing edges). This relaxes
the need for an explicit supersonic law, also
considering the findings described in section 5.1.
We will therefore use eq. (35) both in supersonic
and subsonic flow.

Parameters are now introduced for the direct and
inverse parts of eq. (35):

13q_ 1 3a%) _ g (5-s*
s [q 3s q* as} Vi ). (38)

The parameters K, and K, can be used to perform
direct, inverse and quasi- simultaneous computations
as follows:

direct Ky =0, Kd - 1, (39a)
inverse K =1, Ky =0, (39b)
quasi-simultaneous: K, > 0, K4 = 1. (39¢)

With quasi-simultaneous computations,
inspection of equation (3.8) shows that the
inviscid outer flow solution is modified locally at
places where S differs much from the previous

solution S*. In the Eirst few iterations between
inner and outer solver this will lead to non-
physical velocity distributions in the boundary
layer, especially at the wake where a velocity
difference will occur between upper and lower side
for lifting cases, showing the deficiency of not
modelling the circulation in the interaction law.
The inviscid flow solver will therefore have to

compute this circulation effect on its own.

Considering the two-dimensional steady form of
5 and using the property of mass conservatiom along

" streamlines in the outer flow, we will use in

eq. (38)

36° _ (40)
E

It can now be observed that with K >0 and K0 in

‘equation (38) 3q/ds has a positive correlation with

36"/3s, which is a desired property in subsonic
flow. o
Z._ Preliminary compytational results

The MATRICS inviscid flow solver has been
tested extensively and appears to be a robust
method (Ref. 3, 4). In this section attention will
be given to the boundary layer solver with
interaction law and its robustness. Finally a fully
converged solution of the whole viscous-inviscid
interaction computation will be shown.
Starting with an iInviscid wvelocity distribution
provided by the MATRICS outer solver, some
calculations have been made to obtain a converged
boundary layer solution only.
Initial values for the boundary layer parameters
were obtained from a two-dimensional flat plate
solution. These calculations, without any inter-
action with the inviscid outer solver, show the
changes made by the interaction law.

The first case is a NACA-0012 straight wing at
a Mach number of 0.70, zero angle of attack and
Reynolds number of 9 million. Only the root section
of the wing will be shown, because this section is
a8 symmetry plane with a two-dimensional flow by
definition, and therefore allows comparison with
two-dimensional methods. In figure la the inviscid
velocity distribution at the root section is given.
It can be shown that the trailing edge stagnation
behaviour causes a severe boundary layer growth,
leading to separation if no interaction law is used
to adapt the velocity distribution. Figures 1lb, c,
d show the resulting velocity, momentum thickness
and shape factor H at Reynolds number of 9 million,
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calculated with interaction factor K;=0.05. The
resulting velocity distribution shows smaller
decelerating velocity gradients and a less severe
stagnation behaviour at the trailing edge. In order
to obtain a physically relevant viscous solution,
the outflow, computed from this very first boundary
layer solution, can be added to the full inviscid
flow solver for an adjustment of the inviscid flow
to the boundary layer effect. A fully converged
viscous-inviscid solution requires a number of such
interations between the inviscid flow solver and
the boundary layer/interaction law computation.

The second case is the same straight wing at
Mach number of 0.799, angle of attack of 2.26
degrees, and a Reynolds number of 9 million. The
inviscid velocity distribution at the root section
(Fig. 2a) will certainly cause separation on the
upper side of the wing. Starting from a very simple
flat plate momentum thickness distribution, large
changes must be expected in the velocity gradients.
In this case, the resulting momemtum thickness at
the trailing edge 1s much below the viscous-
inviscid converged value, due to the changes in
velocity distribution, while the shape factor H is
only showing separation just behind the shock wave
(Fig. 2b, ¢, d). In the viscous-inviscid converged
solution separation will probably occur from shock
to trailing edge (Ref. 29). The non-physical
velocity jump across the wake (Fig. 2b) is due to
the asymmetry of the computed flow and the
simplicity of the interaction law. In the iterative
process between the full inviscid flow solver and
the boundary layer/interaction law, however, the
errors due to the simplicity of the interaction law
should disappear, resulting in a converged solution
and an inactive interaction law.

Figures 3a and 3b show the convergence
histories of the residuals of the x-momentum
equation, entrainment equation and interaction law
of the boundary layer equation system for the
testcases presented in figures 1 and 2. Using the
same computational parameters, both convergence
histories show a robust convergence, which means
that a converged solution can be computed even when
the inviscid flow velocity distribution and the
starting solution for the boundary layer flow do
not at all fit together.

At the time of writing of the paper, work on
the interaction algorithm was making good progress.
A first fully converged interacting solution has
been obtained for the attached flow around the
NACA-0012 wing at a Mach number of 0.70, angle of
attack of 1.49 degrees, and a Reynolds number of 9
million. The boundary layer is computed with an
increasing part of the inviscid flow velocity in
the first few iterations, while underrelaxation is
applied to the source strength that is used as
input to the outer solver. No boundary layer
curvature effects have yet been accounted for.
Using this procedure the inner and outer flow are
smoothly adapted to each other.

In figure 4 the 1initial 1inviscid wvelocity
distribution (viz. without a boundary layer effect)
is shown, together with the final viscous velocity
distribution and the corresponding boundary layer
variables. The difference between the inviscid and
viscous velocity is small, except at the trailing
edge, where the boundary layer displacement effect
is appreciable. This testcase has been calculated
with thirteen viscous-inviscid iterations in order
to obtain a converged 1lift value. The convergence

history 1is shown in figure 5a. Finally, in figure
5b the convergence history of the residuals in the
MATRICS outer flow solver are given as a function
of the number of smoothings. A reduction in both
maximum and mean value residual of 2.5 orders of
magnitude has been obtained, which is promising for
further development of the interaction algorithm.
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