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Abstract

The MATRICS flow solver calculates the

inviscid transonic potential flow about a winE/body

semi-configuration. At present, work is in progress
to extend MATRICS to take viscous effects into

account through coupling with a boundary layer

solver. This solver, MATRICS-V, is based on robust

calculation methods for the boundary layer, the

outer wing flow and their interaction. MATRICS-V is

intended for (inverse) design purposes. The

boundary layer and wake are based on an integral

formulation of the unsteady first order boundary

layer equations, the inviscid method is the

existln 8 MATRICS potential flow solver and the

interaction algorithm is of the quasl-slmultaneous

type.

The paper gives a progress report on the

coupled potentlal-flow boundary-layer method for

transonic wlng/body configurations.

i. Introduction

Computation methods for three-dlmenslonal

transonic potential flow are an important component

in design systems for civil aircraft wing/body

configurations. Accurate performance prediction

under these conditions (e.g. lift-drag analysis)

requires that the transonic potential flow solver

is coupled with a boundary layer solver to account

for the viscous effects on the wing pressure

distribution in a sufficiently accurate way. For

some years NLR has available its own developed

system MATRICS (Multi-component Aircraft TRansonic

Inviscld Computation System) for the calculation of

the three-dlmensional invlscld transonic potential

flow about wing/body configurations (Ref. I). The

MATRICS-derlvatlve MATRICS-V -now under develop-

ment- will calculate the interaction of the

invlscld potential outer flow and a viscous

boundary layer on the wing of a transonic transport

winK/body configuration. The ultimate objective of

the development of MATRICS-V will be the embedding

of this system in a wing design system, also

currently under development at NLR.

This paper gives a progress report on the

development of MATRICS-V. Firstly, a description

will be given of the MATRICS three-diamnslonal

transonic potential flow solver, being the starting

point for the development of MATRICS-V. Secondly,

the requirements for the development of the

viscous-inviscld interaction solver will be
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formulated. Robustness of the interaction algorithm

has been formulated as the main requirement. Next,

the basic concepts of the vlscous-inviscld

interaction solver will be given. Subsequently, a

short system overview will be given of the MATRICS-

V flow solver, followed by an analysis of the

boundary layer equation system and on the inter-

action law. Finally, some preliminary computational

results will be presented.

2. Startln_ vosltion for the

development of MATRICS-V

The MATRICS-V vlscous-lnviscid interaction

solver is a follow-up to the MATRICS three-

dimensional Inviscid transonic potential flow

solver. This flow solver solves the full potential

equation in strong conservation form on a grid of

C-H or C-O topology. This grid is generated using

the MATGRID grid generator (Tysell and Hedman,

Ref. 2). The solver uses a fu!ly conservative

finite volume dlscretlzatlon and a multlgrld

solution method. The dlscretlzatlon scheme is

second order accurate in the mesh size in subsonic

parts of the flow, and first order accurate in

supersonic parts of the flow. For the capture of

supersonlc/subsonlc shock waves a Godunov-type

shock operator is used. Options for fully-

conservative as well as non-conservatlve shock-

capture are available. Details on the MATRICS flow

solver can be found in references 3, 4.

MATRICS provides data for a lift-drag-dlvlng-moment

analysis. Substantial research has been performed

on the reliable prediction of drag by the MATRICS

flow solver. Findings of this research have been

reported in reference 5.

The development of MATRICS-V is partly based

on experience at NLR with the modelling of two-

dimensional strong viscous-invlscld interaction on

airfoils (Refs. 6, 7).

3. Reoulrements

MATRIGS-V is designed to calculate the

influence of the wing boundary layer and wake on

the lnviscid potential outer flow about a given

transport-type wlng/body configuration from

subsonic up to and including transonic cruise

conditions. Laminar as well as turbulent boundary

layers should be calculated, where the turbulent

boundary layer is allowed to be mildly separated.

The MATRICS-V method should be robust; a guaranteed

converged solution should be obtained for realistic
flow conditions. The method should also be about

ten times faster than a three-dlmenslonal Reynolds-

averaged Navler-Stokes solver, to enable wing

design applications.

&. Basic concepts

The Coupling of an inviscid outer flow with a

viscous boundary layer flow will be done using an
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integral method formulation of the boundary layer

equations. With integral methods there is no

explicit formulation of a turbulence model, but the

system of equations is supplemented by suitable

empirical closure relations. The integral method is

reasonably easy to implement, because in the

integral method the three-dimensional flow problem

is formulated as a two-dimensional problem on the

wing surface and the wake center-surface. This is a

great advantage in code development.

Until a few years ago, the boundary layer

equations have always been used in their steady

form to compute a steady boundary layer flow. The

main advantage of this formulation over an unsteady

formulation has always been its lower computation

time. However, using the boundary layer equations

in their unsteady formulation, integrating them

towards a steady solution, the boundary layer

method is particularly well suited for

vectorization and hence for implementation on

todays supercomputers, see Van Dalsem and Steger

(Ref. 8), Swafford and Whitfield (Ref. 9). An even

more important advantage of using the unsteady

boundary layer equations for solving steady

boundary layer flow is the robustness of this

approach. With the unsteady formulation a simple

time-integration scheme will in any case produce an

unsteady answer. With the steady formulatlon a

space-marchlng scheme has to be used and the

specification of initial data proves to be more

difficult in a space-marchlng scheme than in a

time-integratlon scheme. Also in case the steady

boundary layer solution is non-unlque or non-

existent, the solution produced by an unsteady

formulation is probably more useful, than the

solution produced by a steady formulation.

Two candidate interaction algorithms have been

considered, namely the seml-lnverse and quasi-

simultaneous algorithm. (The more sophisticated

simultaneous algorithm is too expensive to

implement in MATRICS because of the fully implicit

relaxation algorithm employed in the existing

inviscid potential outer flow solver). Experience

by Ashill e.a. (Ref. i0), pp. 35, and Cebecl, Chen

e.a. (Ref. 111 indicates that the seml-inverse

algorithm lacks robustness in difficult flow cases.

Therefore the quasi-simultaneous interaction

algorithm is used, being the best available

interaction algorithm that can be implemented in

interaction with the inviscld potential outer flow

solution algorithm.

In the inviscid potential outer flow solver

the "blowing velocity approach" is used to account

for the boundary layer effects on the inviscid

outer flow, which means that a source strength is

specified at the body surface and a Jump in source

strength at the wake. This approach is reasonably

standard, while experience by Chen, Li e.a.

(Ref. 12) reports that this approach is more

reliable than the boundary layer displacement

approach.

Experience by Chow (Ref. 13) indicates that it

is mandatory to prescribe the pressure Jump across

the wake as a boundary condition to the outer

inviscid flow. The latter Jump influences the Kutta

condition prescription in Uhe outer inviscid flow.

and this is essential in order to compute realistic

lift values for the wing. The pressure Jump across

the boundary layer is computed as in Chow (Ref. 13)
and Lock and Williams (Ref. 14).

5. Descriotion of the calculation metho d

5.1 Inviscid method

The full potential equation

(pub - 0,
ax i

(11

u i i a_= u® + -- , (2)
ax i

q2 = (uZ) 2 + (u2) 2 + (u3)2 , (3)

is solved using a fin£te voium-e discretizatt6_ :_

formulated on a curvIilnearc6brdinate sys_em_and a

multigrid method employing ILU/$1P smoothlng. At

present only semi-conflgurations can be considered.

The boundary conditions arei

• on wetted surfaces u. - qS; (51

for the inviscid flow solver, the source

strength S - 0 on the body, els e S is computed

by the boundary laye£solver; .....

• in the sylaetry plane u, - O, (6)

• in the far-field_eXcept downstream_ _=- 01:(7_

• in the far-field downstream (Trefftz-plane)

a2_ = 0, (8)

where _I is the chordwise (wrap-around) grid

coordinate,

• across the prescribed vortex sheet

[q] " q" - q-, (9)

bua] = (pqS)" - (pqS1- ;

for the inviscid flow solver the Jump acros_

the wake, (.)+ f (.)', Is computed by the

boundary layer solver,

• across the C-O topology branch cut that

extends from the tip section to the far-field

lateral boundary

b] - o, b_] - o. (lO)

5.2 Viscous method

The steady first order boundary layer

equations, describing conservation of mass and

momentum in a general rlght-handed coordinate

system, can be found in Myring (Ref. 15). Adding

time-dependent terms and using first order integral

thicknesses, the boundary layer equations can be

integrated with respect to z (normal to the wing

surface or wake centerline), using the momentum

equation in z-direction to eliminate the pressure.

Then the integral equations are obtained in the
form

x -mom4nt-um:

1 a6_

_z at -

!

i

m

z
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1
* e22k2 - _C_I;

z

y-momentum:

jar

lae, L2 ,la la[ ] }
+ 821 ÷ ---- + 13 ÷

h Iax [ hl _ 8X J ax

(12)

+ 022 + --i + 12 +
h z ay [ h 2 _ ay Jay

1 c .
÷eull" _ _2'

entrainment :

;qJl at -q at (,x[h, j

[h, JJ ax h, ay

(13)

where q is the velocity, J is the Jacobien of the

transformation from physical to computational

space, and overbars denote boundary layer edge

values. The density thickness 6_ is the integral of
(P'a)/P over the boundary layer.

In the latter equation (13) the instationary

entrainment coefficient is an extension of the

unsteady two-dimensional definition as used by

Houwink (Ref. 16).

Subsequently an expression is needed for the

calculation of the non-dimenslonal mass flux S

through the surface of the wing and wake,

representing the displacement effect of the

boundary layer on the invlscid outer flow. Assuming

an inviscid flow between the stream surface z - 0

and the displacement surface _*, which is a stream

surface for the inviscid flow, the following

expression can be obtained from (13) by setting

6 -0:

"I

,.__1 .- ,J'
(14)

this is equivalent to S - w/q, yielding the usual

interpretation of S in steady inviscid flow.

In the used body-conforming non-orthogonal

coordinate system the y-axle is in the spanwlse

direction of the wing, while the x-axis is in

chordwlse direction wrapping around the wing and

the wake.

Next, a streamline coordinate system is adopted, in

which the variables (now denoted with tildes)

reduce to their familiar form, see Myrlng

(Ref. 15). Transformation to and from the stream-

line coordinate system is done whenever necessary.

Thus it is possible to derive equations using the

well-known integral parameters in streamline

coordinates and in the curvillnear system.

The equations (II) to (14) are thus written in the

basic variables _n, H, q and C, where the cross-

flow parameter C is defined as

c - slgu(_.)-_= (15)

Reduction of the number of unknowns to the four

basic variables is established by prescribing a set

of turbulent velocity profiles in the streamline

coordinate system, while the density thickness 6_

is eliminated using the Crocco relation,

prescribing a parabolic distribution between

velocity and temperature (Ref. 17). For the time

being no velocity profiles are used, but proven

closure relations taken from accepted two-

dimensional methods for attached as well as

separated flow (Ref. 16, 18, 19) have been

implemented in a first version of the code. In a

next version, more physical closure relations and

velocity profile families will be used.

Initial conditions for the turbulent boundary

layer calculation are generated by the BOLA-2D

solver (Ref. 20), which calculates the laminar

quasi-two-dimensional flow in the leading edge

region of the wing.

Boundary conditions are set at the wing root, where

derivatives in spanwise direction are assumed to be

zero, and the wing tip, where zero lateral deriva-

tives _n local sweep direction are prescribed, see

Cross (Ref. 21). Far downstream, a zero gradient

condition in chordwise direction is specified for

all quantities.



Thesystem of equations (Ii) to (13) is solved

in combination with an interaction law (to be

discussed in the next section). The complete set of

equations can be written symbolically as

_% + Au. + BuT +Du = f, (16)

q

where u = [Sn, H, q, C].

The system (16)+_.appears _o be hyp?rbo!ic in

specified on the wing. Further downstream, a quasi-

simultaneous interaction algorithm is used. In this

formulation the inviscid flow calculation is done

in direct mode with a prescribed source strength S

on the wing and the wake and a prescribed velocity

jump across the wake. The viscous calculation is

done in quasi-simultaneous mode with a prescribed

Invlscid wall velocity, which has been corrected

for boundary layer curvature effects. Thus the

boundary layer is computed effectively with a

prescribed edge velocity instead of the invlscid

wall velocity. Cebeci, Clark e.a. (Ref. 28) have

practice. Discretizatlon is done according to t_e shown that such an approach avoids the initiation

directions of the characteristlcs in (x,t) and of undesirable pressure fluctuations in the

(y,t)-space, using a matrix-split procedure

(Ref. 22). Thus equation (16) is discretized as

+A' .u•A- • •B-%u f
q

(17)

trailing-edge region at reasonably large angles of

attack. The boundary layer computation computes a

new source strength S and velocity Jump Aq, which

are used as the subsequent input for the

interactive calculations.

_, Analysis of the system of eouatlons

In smooth parts of the flow second order accurate

differencing will be obtained using a scheme as for

example in Spekreijse (Ref. 23).

The system of equations (17) is solved using the

fully implicit backward Euler time-lntegration

scheme proposed by Stager and Warming _(Ref. 24) and

Yee (Ref. 25).

5.3 Interaction law

In order to avoid a breakdown of the boundary

layer formulation in separated flow regions an

extra equation is needed which modifies the

inviscid flow boundary layer edge velocity q.

Usually a highly linearlzed form of the inviscld

outer......potential flow is taken, for ex.ample the t_o:

dimensional Hilbert-lntegral formulation as used by

Veldman (Ref. 26). An even more simplified form is

given by Williams (Ref. 27). In this paper the

latter form is slightlymp_d.ified, but still derived
from the linearized potential equation. This wiil

be discussed in more detail in section 6.2. In its

simplest form the interaction law can be written as

8q _ '_ S = 8J--r- _----_ S k. (18)
8s _x [SsJ _Ax

_,i Analysis of boundary laver eouation system

To analyze the properties of the boundary

layer equations formulated in chapter 5 (Eqs. (1),

(2). (3). (18)) we assume the following simplifying

conditions:

• orthonormal coordinate system, i.e. hl-hz-l,

g-O; kl-kz-k3-O; ll-lz-13-O;

• outer stre-mline aligned with the x-axis, i.e.

&/_-l._/_-0;
• closure conditions as in Cousteix and

Houdeville (Ref. 20), i.e.

_,,--cZ(_-_.), _--c_. (19)

With H-_/_x, and H1-(_-_1)/_ n we obtain an

equation system _

Eu_ + Au, + Bu_ - f, u = [In0n.H.Inq.lnC].

q

where

Time-dependent terms are obtained from the

instationary form of S (equation (4)). paying

special attention to the limiting case for M * 0.

Two remarks are made:

I. Equation (18) is written along streamlines,

which implies that the streamline dlrectlona

are known from the invlscld flow solver and

are kept fixed during a viscous calculation.

2. Equation (18) is a law in correction form,

indicating that it will not influence the

converged solution. In this way the

interaction law can be shown to be essential

to avoid breakdown of the boundary layer

formulation, but once convergence is obtained

it does not affect the final solution.

_.4 Vfscous-invtscid interaction aleorithm

H - _(IP-I); r 1 - H(M2-X) + _2&r(_l+l) 0

E - S + H I - &r(_l+l) H1 + I - 1_2(R+Hl-#r(l_l) 0 J , (20)
I r + _. H(I-_ 2) + _lqlr(R+l) H

o+2+oIH1 H1 H 1 ( 1 -k2 ) 0

* - ,(21)

_i - Ki(#r+l) Kd - KLMq_r(H+I) 0

0 2+N 2 l

The leadin S edge part of the boundary layer

will be calculated in direct mode using the program

BOLA-2D (Ref. 20). This presupposes that the flow s-

does not separate in this part of the boundary

layer. The inviscid flow computation in this part

is done in direct mode with a source strength S

H-1 #r+l ( 1- _2) fl+(l_+l)_lq| r+_2 - 2 H-1 ]

S _r+_ (l-_2)n + (_P,l)_q| r H

;(22)
0 0 0 0

C(H-1) C(Ir+l) C((R-I) (2 +_2)+(_,l)_qir) 2C(H- 1)

i

|

!

=

=

_=



the parameter e_O at f_-O and

2
(23a)

- 2 * (_-i) _z (23b)

H = (H+I) (I÷6"=) - i, (23c)

H_ = dHJdH. (23d)

Setting K_-I and Ki-._/(_Ax) in the third row of

eqs. (20)..(22) reproduces eq. (18).

Following Myring, reference

characteristics of an equation

16, the

Eut + Au_ + f - O, u " [uI ... un]

can be obtained from

det(E-AA) - 0, A = dt
dx

(241

We first consider the quasi t_o-dimensional flow

case (a/ay-0) where no interaction law is used,

i.e. Ki-O , K_-I. This way we find the following

expressions for the characteristic directions A:

A = H, (25a)

=_t#,(_+l) ' (25b)

- H[A 2 + ((H÷I)H_-Hx÷I-(H÷I)6ztI_) A ÷

- _f +H_+ (_+l)6:H,_. o. (25c)

For realistic Hl(H)-functions, viz. with HI-H1/H

the roots of the latter quadratic equation are

real. Consequently, the equation system is fully

hyperbolic. If H_<O the values for _ are greater

than zero. At separation, that is at H_-O, in the

minimum of the HI(H) curve, one eigenvalue I passes

through zero, which means that the characteristic

direction changes from upwind to downwind there.

Consequently, the equation system models the

corresponding physical behaviour.

We continue the analysis for the quasi two-

dimensional case (8/8y-0), but now for the case

where an interaction law is used to solve for lnq,

i.e. Kt,_O, K_-I. In case Kt-I, M_-O and e-O we find

the following expressions for A:

I - O, (26a1

_ mH,
(26b)

((H+I)2H/-(H+I)HI) A z + (-H/(2Hil)(H+I) +

+H I(2H+31 - 11 A + (H+I)(HH_-HI) - 0. (26c)

For realistic Hl(_)-functions, namely with (H+I)H_-

Hi<O and HH_-HI<O three values for A are positive,

one is negative. For small e<O it can be shown that

all values for _ are positive for all H, so that

now all characteristics originate from the upwind

direction.

For the case a/aye0 we find the following

characteristic directions in the x,y-plane

(A-dy/dx) :

• No interaction law (Ki-O , Kd-l):

A - 0, (27a)

= H-l,
(27b)

H/A i + ((H-I)H/-HI(I+6r)+l+6r) _ +

+ 1 + _r " 0; (27c)

as in the x,t-plane a characteristic direction

changes from upwind to downwind at separation

(i.e. at H_-O).

With interaction law (Ki_), Kd-1) in case Ks-I,

_2-0, c-O:

I - O, (28a)

(-(H+I)IH_+(H+I)HI)I "_+ ((2H3iHZ-2H-2)H/ +

+(-2Hi+I)HI+Hi+H+I)A l +

+((HZ-I)H/+HZ+H+2)A • 1 " 0; (28b)

two positive and one negative value for _ are

found in case of realistic Hl(H)-functions.

The characteristics in the x,t-plane for the

more general case with an interaction law (Ki*O)

and without the additional settings Kl-1, _[_-0 and

¢-0 can only be analyzed numerically. We find the

following expressions for the characteristic

directions :

- H, (29a)

a3A 3 + all i + all + so - O, (29b1

where a 3 - det A and sO - det E.

A well-defined interaction law has the property

that a3_O for all _. This gives the following

relation between K i and Kd:

_>
-H_

K,,,
(HI,I[ -t!1) (1t+1) -,f_qlt[ (H÷I) +Htl[ (1-M l) -Hl_l, (H+I)

(30)
if H_<O the value Ki-,0 may be chosen (direct mode).

If H_<O _he value Ki-O.OIK d is suitable for all _z

and all _, in the sense that numerical co_ucation
of _ indicates that then for 0<M2<1.7 all values

for _ are real and positive, while in some rare

cases complex values are found with a positive real

part. The boundary layer equation system (and

interaction law) have consequently favourable

properties for use in the transonic flow regime at
cruise conditions. Because all characteristic

directions generally originate from upstream,

initial conditions for Oil, H, q and C have to be



specified upstream,while downstreamno initial

conditions need be specified.

6.2 Provertles of interaction law

Following Lock and Wiliiams (Ref. 14), we

consider a source strength S approximately normal

to the surface, a velocity q approximately parallel

to the surface, and define a perturbation potential

as

A--_q- _,. AS - _,. (31)
q

The outer potential flow can be described by the

linearized percdrbacion potential equation

(1-Mz) _,, + _ss = O,

with 4z = AS at Z = O. (32)

In the context of the definition of an interaction

law we will interpret• Aq/q and AS as corrections

with respect to a starting solution, i.e.

_q .q-q_, As -s-sk, (33)
q q

Parameters are now introduced for the direct and

inverse parts of eq. (35):

Ke8 [laq" 1 8a-_k]"vKi(S-Sk)'sSqk (38)

The parameters Ki and Kd can be used to perform

direct, inverse and quasl-slmultaneous computations

as follows: _ =_

direct : K i - O, K e - i, (39a)

inverse : K i - I, K d - 0, (39b)

quasl-slmultaneous: K i > O, K d - I. (39c)

With quasl-simultaneous computations,

inspection Of equation (3.8) shows that the

inviscid outer flow solution is modified locally at

places where S differs much from the previous

solution Sk. In the first =few iterations between

inner and outer solver chls will lead to non-

physical velocity distributions in the boundary

layer, especially at the wake where= % velocity

difference will occur between upper and lower side

for lifting cases, showing the deficiency of not

modelling the circulation in the interaction law.

The inviscld flow solver will therefore have to

compute thls circulation effect on Its own.

Conslderlng == _ steady form ofthe two-dlmenslonal _

where qk is given by the preceedlng outer flow S and using the property of mass conservation along

computation and Sk by the preceedlng viscous flow streamlines in the outer fl0W, we will use in

calculation. A solution to (32) in subsonic flow in

Fourier space is given by

. Cei,.e-D,s, $ =_/_'Z_" (34)

Algebraic manipulation of (31), (32) and (34),

using the derivative of Aq/q with respect to s in

order to obtain non-imaginary quantities, then

leads c0-ala-w_in=Fourler_space of c_e form

[!aq_ i aqk I . u(s_sk). (35)

as q= _jtq

In physical spats we may consider (35) as the

leading term in an integral form of an interaction

law and use it in thls simplified form.

In supersonic flow only the rlght-running wave is

considered,

= Ce1_,e_lhz. (36)

Manipulation now yields • non-imaginary interaction
law of the form

# q_qk = _ (S_Sk) " (37)

q

Considering eq. (37) as the leading term of an

integral form of an interaction in physical space,
we now have a form of interaction law that couples

S to q instead of 8q/gs, which cannot be

incorporated in the system of boundary layer

equations in • simple way. The subsonic law (35)

appears however co produce useful results both in

subsonic and supersonic flow, which is mainly due

Co the fact that strong interaction occurs in

subsonic parts of the flow (at supersonic-subsonic

shock waves end at trailing edges). This relaxes

the need for an explicit supersonic law, also

considering the findings described in section 5.1.

We will therefore use eq. (35) both in supersonic

and subsonic flow.

eq. (38):

S = 86" (40)

8S

It can now be observed that with Kl>O and Ks>0 in

"equation (38) 8q/ge has a positive correlation with

86"/8s, which is a desired property in subsonic

flOW.

7. Prelimlnarv comvutatlonal results

The MATRICS invisctd flow solver has been

tested extensively and appears to be a robust

method (Ref. 3, 4). In thls section attention will

be given to the boundary layer solver wlth

interaction law and its robustness. Finally a fully

converged solution of the whole vlscous-invlscld

interaction computation will be shown.

Starting wlth an invlscld velocity distribution

provided by the MATRICS outer solver, some

calculations have been made to obtain a converged

boundary layer solution only.

Initial values for the boundary layer parameters

were obtained from a _wo-dlmenslonal flat plate

solution. These calculations, without any inter-

action with the invisctd outer solver, show _'le

changes made by the interaction law.

The first case is a NACA-O012 straight wing at

a Mach mmber of 0.70, zero angle of attack and

Reynolds number of 9 million. Only the root section

of the wing will be shown, because Chls section is

• symmetry plane wlth a t_o-dlmensional flow by

definition, and therefore allows comparison with

two-dimensional methods. In figure la the invlscld

velocity distribution at the root section is given.

It can be shown that the trailing edge stagnation

behaviour causes • severe boundary layer growth,

leading to separation if no interaction law is used

to adapt the velocity distribution. Figures lb, c,

d show the resulting velocity, momentum r_hickness
and shape factor H at Reynolds number of 9 million,

|
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calculated with interaction factor K±-0.051- The

resulting velocity distribution shows smaller

decelerating velocity gradients and a less severe

stagnation behaviour at the trailing edge. In order

to obtain a physically relevant viscous solution,

the outflow, computed from this very first boundary

layer solution, can be added to the full invlscid

flow solver for an adjustment of the inviscid flow

to the boundary layer effect. A fully converged

viscous-inviscid solution requires a number of such

interations between the inviscid flow solver and

the boundary layer/interaction law computation.

The second case is the same straight wing at

Math number of 0.799, .angle of attack of 2.26

degrees, and a Reynolds number of 9 million. The

Inviscid velocity distribution at the root section

(Fig. 2a) will certainly cause separation on the

upper side of the wing. Starting from a very simple

flat plate momentum thickness distribution, large

changes must be expected in the velocity gradients.

In this case, the resulting momemtum thickness at

the trailing edge is much below the viscous-

inviscid converged value, due to the changes in

velocity distribution, while the shape factor H is

only showing separation Just behind the shock wave

(Fig. 2b, c, d). In the viscous-inviscid converged

solution separation will probably occur from shock

to trailing edge (Ref. 29). The non-physical

velocity jump across the wake (Fig. 2b) is due to

the asymmetry of the computed flow and the

simplicity of the interaction law. In the iterative

process between the full inviscid flow solver and

the boundary layer/interaction law, however, the

errors due to the simplicity of the interaction law

should disappear, resulting in a converged solution

and an inactive interaction law.

Figures 3a and 3b show the convergence
histories of the residuals of the x-momentum

equation, entrainment equation and interaction law

of the boundary layer equation system for the

testcases presented in figures 1 and 2. Using the

same computational parameters, both convergence

histories show a robust convergence, which means

that a converged solution can be computed even when

the inviscid flow velocity distribution and the

starting solution for the boundary layer flow do

not at all fit together.

At the time of writing of the paper, work on

the interaction algorithm was making good progress.

A first fully converged interacting solution has

been obtained for the attached flow around the

NACA-O012 wing at a Math number of 0.70, angle of

attack of 1.49 degrees, and a Reynolds number of 9

milllon. The boundary layer is computed with an

increasing part of the invlscid flow velocity in

the first few iterations, while underrelaxatlon is

applied to the source strength tha_ is used as

input to the outer solver. No boundary layer

curvature effects have yet been accounted for.

Using this procedure the inner and outer flow are

smoothly adapted to each other.

In figure 4 the initial inviscid velocity

distribution (viz. without a boundary layer effect)

is shown, together with the final viscous velocity

distribution and the corresponding boundary layer

variables. The difference between the invlscid and

viscous velocity is small, except at the trailing

edge, where the boundary layer displacement effect

is appreciable. This testcase has been calculated

with thirteen viscous-inviscid iterations in order

to obtain a converged lift value. The convergence

history is shown in figure 5a. Finally, in figure

5b the convergence history of the residuals in the

MATRICS outer flow solver are given as a function

of the number of smoothings. A reduction in both

maximum and mean value residual of 2.5 orders of

magnitude has been obtained, which is promising for

further development of the interaction algorithm.
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