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ABSTRACT

A multiple magnet bearing can be developed from N individual electromagnets. This paper presents the

constitutive relationships for a single magnet in such a bearing. Analytical expressions are developed for a magnet

with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of

induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model

because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model

is applicable to bearings using attraction or repulsion.

INTRODUCTION

Research and development activity on passive, active, and combination magnetic bearing systems spans over 150

years beginning with Earnshaw in 1839. The authors will not attempt to summarize the history for this workshop

but will simply note research in magnetic bearings, magnetic dampers, and magnetic levitation for vehicles, ttigh

speed magnetic bearings are a commercial reality, being used in grinding and polishing machinery, vacuum pumps,
compressors, turbines, generators, and centrifuges.

Passive systems using permanent magnets in repulsion are usually incapable of generating sufficient load
carrying capacities. Two electromagnetic levitation methods have met with success: direct, position feedback

control techniques; and ac modulated or indirect feedback methods. The latter suffers from high eddy current losses

and a small range of stable air gaps. Early experiments with fully active systems (1957) were largely thwarted

by the then high cost and large size of control system components. Since active magnetic bearings provide both
damping and support, and with the reduction in cost and size of sophisticated electronics, the choice is clear.

Subsequent efforts for load bearing situations have concentrated on active magnetic bearb_gs.

IIowever, the dynamics of direct feedback magnetic bearings have not been as thoroughly analyzed as have
journal bearings. Most of the available literature deals with empirical ideas and concentrates on reliability of

the bearing, reducing the size, weight and complexity of the devices. The authors have completed an extensive

investigation of the dynamics of an active magnetic bearing [1,2,3,4] in terms of equilibrium points, transient
response, on-set of instability, limit cycle size, and forced response. The only speed dependent effect was the change

in forces due to eddy currents. This change leads to a critical speed, a Hopf bifurcation with subcritical unstable

limit cycles. The reader is referred to [3,4] for a description of the dynamic analysis and results.

The purpose of this paper is to present the eddy current analysis. Although a good analytical model has not

previously been available for eddy currents due to shaft rotation, a number of authors have calculated the eddy

current effects in other geometrical configurations using a hypothetical simplified model and finite element methods

[5,6]. Studies on linear induction motors are available [7,8] which can be extended to magnetic bearings by several

assumptions and manipulations. In the above studies, the current density vector is cross multiplied to calculate
the induced forces, which does not take care of the attractive force when the moving material is ferromagnetic. In

this paper, the forces are calculated using the Maxwell's stress tensor approach which in one calculation gives all

the forces involved. Matsumara [9] has derived the fundamental equations for a horizontal shaft magnetic bearing

taking into account the rolling, pitching, and yawing of the rotor. In deriving the equations of motion, he assumes
that the journal consists of a laminated core and consequently no eddy currents are generated in the material.

FOUR MAGNET BEARING

Consider a bearing using four magnets as shown in Fig. 1. The shaft has high permeability and high conduc-

1 This work was supported in part by the Office of Naval Research under Contract No. N0014-80-C-0618.

2 Presently at General Motors Research Laboratories.
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tivity and is not laminated. (La,nination would serve to inhibit eddy currents.) Purely for simplicity, all of the

four electromagnets are identical, modelled as a coil of N turns on a laminated core of high permeability. Each
magnet applies a flux density Bi and the d('ad weight is suspended by the difference in forces exerted by top and

bottom magnets. All magnets generate a flux density which can be adjusted to vary the equilibrium gap lengths

under the magnets. This fully energized c(mfiguration w_._ chosen so that the magnets could generate the effect of

repulsion by decreasing the attraction. The shaft displacement is measured by two coordinates (_, r/) as shown in

Fig. 1, measured from the center of the clearance space in the horizontal and vertical directions respectively when
the journal is spinning under the magnets.

If the shaft is not laminated, motion of the conducting shaft through the supporti,lg magnetic fields will induce

eddy currents. These eddy currents create two kinds of force on the rotor: drag forces which lead to additional

power dissipation and coupling of motions of the journal in two perpendicular directions; and repulsive forces which

tend to counter balance the attractive forces and shift the equilibrium point.

The following geometrical assumptions are made. The journal always remains perfectly aligned within the

bearing (no tilting). Under small displacements the surfaces of the journal and the magnet pole faces are assumed

to remain parallel. Since the individual poles are located at angles 4-_ relative to the control of the magnet, it is
assumed that when the rotor moves vertically a distance r/, the change in gap length for the vertical magnets is

rlcost?. Similarly, when the rotor moves horizontally by a distance _, the change in gap length for the horizontal

magnets is _cos6. Any other translational motion of the rotor can be written as a superposition of the motions

in _ and r/directions. The effect of unequal gap lengths under a vertical magnet caused by a rotor motion in the

horizontal direction or vice versa is neglected because the total gap length under that magnet remains constant.

EQUATIONS OF MOTION

The differential equations of motion describing the response of the rotor system require the vectorially combined
magnetic forces from all the magnets EFmaa at a station along the rotor axis.

(1)

Most rotordynamics codes linearize this to provide the eight bearing coefficients.

F o Lk,e k,
t erl_ Cr)r I J

It is immediately obvious that the dynamic characteristics of the bearing are determined by the control system

which produces the changes in magnetic flux density. This system may be simply local, represented by

Bi = f(Ai, £i) (3)

or coupled

The design of the control system will not be discussed here. Both pole placement methods [4,10] and linear

quadratic regulator theory [1] can be used to design state variable controllers.
Each magnet force will be expressed as rcsolutes normal and tangential to the magnet center line. These forces

will include steady state attraction forces and eddy current forces (both repulsion and drag). Only spin velocity is
assumed to generate eddy currents. Motion of the journal center (_,,}) doesn't generate eddy currents. The force

resolutes are only functions of flux density, gap, and journal speed.

fni = f(Ai, K2,Bi) (5)

Ftl : f(Ai, f2, Bi)

Each magnet gap can be determined from the journal location

(6)

(7)

m

|
i

i
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It can then be shown that u.less the control is based on velocities

c_e = ce, =coe = c,, = 0 (8)

and the eddy current drag forces produce bearing cross sl iffness terms.

Assuming the controller is determined, the general procedure is to:

(a) Determine the equilibrium location for a given spin speed (This assumes no journal velocity, _ =//=
0);

(b) Linearize magnetic forces about equilibrium locations;

(c) Form system dynamic equations, extract eigenvalues, determine stability;
(d) Perform parameter study to locate system bifurcations;

(e) Apply center manifold theorem to determine large amplitude behavior of ably bifurcation points;

The usual parameter study would be to follow the equilibrium location and stability as functions of spin speed.

Note that due to nonlinearities, the bearing coefficients must be determined at each different parameter value.

MAGNETIC FORCES INCLUDING EDDY CURRENT EFFECTS

The complete eddy current analysis for 4 magnets as shown in Fig. 1 with unequal gap lengths is analytically

intractable. (It is probably amenable to finite element techniques.) The following approximations are required.
First, the problem is assomed two dimensional.

Second, the problem will be unwrapped and considered as periodic on a half-space. However, before net forces

are calculated, the surface tractions predicted by Maxwe]l's stress tensor will be wrapped around a circular shaft.

As the shaft starts spinning, the eddy currents tend to repel the applied magnetic field and the skin depth of

penetration becomes very small. This motivates a semi infinite assumption in the radial direction. The velocity

will be treated as constant with respect to y, although it actually decreases linearly as the center is approached.
V = fl(o + A - y). This assumption is supported by the very small skin depth.

Third, each magnet will be considered separately, and Ihe magnetic field for each magnet will be determined
individually. The net force of each magnet is then determim:d, leading to 4 vector forces which are then summed

vectorially. An alternative (more complex) solution is disc.s>cd later in the paper. Fig. 2 shows the approximate
problem to be solved for each magnet.

Fourth, the square wave applied flux density is expan<h.d as a Fourier series

2Bo 2hi 2ai . 2ix.
= - -5-) (8)

i

or

i

The field density and current density distributions within th,: moving material solve a linear problem, and hence the

principle of superposition can be invoked and each harmolJic handled separately. Figure 3 shows a single harmonic
applied to the semi-infinite medium.

The equation that describes the distribution of the nJ:_gwletic field in the conducting medium is derived from
Maxwell's field equations.

017
1 V2/_ + "if/" = _" × (l 7 × /_) (10)

where /_ = B.g. + Bygu(g. and gu being unit vectors i_ x :,,_,1 y direction_ respectively). The y component B u
is determined from tile y component of (i0) The remaiJ_i,,g compoxLent B,, can be deternfined from the relation

V. B = 0. The magnetic field is driven by the applied _,;,g..etic field d,_Jsity, and so solutions with the same

traveling wave dependence on (x, t) are assulned. That is, il is assumed that the flux density takes the form

/i = + ......')

The solution form in the y-direction is e _qy where

J .pcrl "'ll = kiV/T + js = 1..,, 1+3 k,

(11)

(12)
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Eqn (12) can be used to predict the skin depth.

The solution domain is divided into two regions, denoted by subscripts 1 and 2 respectively: Region (1), the

air gap where tr = 0(0 < V < A); and Region (2), the moving conducting medium (A _< V < o0). The solutions
within each region have two constants of il_tegration, determined from the following 4 boundary conditions:

(1) the applied flux density at V = 0;

(2) the solution cannot grow as V --* c0 (one constant is zero);
(3) conservation of flux at the interface V --- A (V • B = 0, using the divergence theorem, this leads to

Bvl = B_).

(4) at the interface, V x H = 0 (using Stokes theorem, this leads to H=I = I1_2).

Hence, the flux density distribution throughout both regions can be determined.

hi the air gap, the solution is

= + k."- (13)
!

!
i

|

(14)
4
!

!
(15)

#

i
!

where

In the journal, the solution is

where

D 1

D2 --

(i-
I i

+ /.t

(x+
2[co h(k,±) +

B2i = (jki--e':qi. + _y)D3e-q'Ye j(k'=-wt)Bieq'tx (16) i

D3 = [cosh(kiA) + ,_sinh(kiA) ] (17)

The forces acting on the conducting medium are calculated by Maxwell's stress tensor. For magnetic problems

with currents and no charges, the forces acting on a body are given by

f = / l[gg.i - ½g2 ]dA (18)

where [2 is any closed surface surrounding the body and not containing any other body and B is the value of the
field on the closed surface. Choosing a closed surface C such that it extends from -oo to oo and includes only the

conducting medium, the integration is carried out with /i = -6"_.

The complete flux density distribution in the whole region of Fig. 2 due to all the applied sinusoidal waves is

determined by superposing the individual fields. Each component of the field (Bx, By) is an infinite series in sine or

cosine terms. The value of the/3 field at the interface which is required for calculating the forces, is calculated by

substituting y = A. It is interesting to note that the integral and the summation are interchangable in order. That
is, the force for each component of the Fourier series can be determined and then summed or the fields summed

and the force determined. This is perhaps surprising because the problem is nonlinear, but the infinite series for

B, and B_ are made up of sine and cosine terms which are orthogonal to one another and all the cross terms drop
out during integration over one period.

The total flux can also be calculated and compared with that predicted by magnetic circuit theory (Appendix

A). For the numerical example which follows, the more detailed solution is about 8% lower, showing the effects

of magnetic circuit assumptions (uniform field de_.-:ity and ho lc_,kage in air gap). For comparison to classical
problems, the forces for the problem in Fig. 2 will be dctermilLed, although the reader is cautioned to go on Eqn.

(23) for a bearing problem. Substituting for/_ and ewd,tatit_g th( integrals, the drag and lift forces per unit area

acting on the material turn out to be

1 t'o _ 1_17 s, (19)
Fdra9 _-- 4"0 t' "--_. ("ti -4" rl_i)l_e_
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I po 2

where
Ita V,, = -- (21)

ki

and nt and n2 are the real and imaginary parts of 7i.

7, = [eosh(ki A) + P° q-'isinh(kiA)] (22)
It ki

As expected, when no currents are induced in tile slab (V=0,s=0), there is no drag force and the lift is the

magnetic attractive force. There is all optimum value of V at which the maximum force per unit area fix is produced.

The lift force decreases as V is increased, at some value of V the lift force becomes zero, and at higher values the

rift force acts in the opposite direction (repulsion). At very high values of V there is no drag because all the flux is

excluded from the material and the repulsion force reaches an asymptotic value irrespective of the permeability of
the material.

For the magnetic bearing, the forces acting on a rotating shaft are calculated by wrapping one period of the B

field distribution back onto the circular shaft. Choosing a closed surface _ on the circumference of the rotor and

simplifying the integral in Eq. (18) give the forces acting on the rotor per unit width as

where

T1 f - - 2z 1 (ff_:__:)sin(2_)dx- _ Bx By cos( --_)dz 2/.toFt = ItO

$

--- B B  in(-ff ( - B )cos(-ffFn = #o 2po

(23)

(24)

[u=A = _ I #o qiBieJk,_ (25)Bx = Bxl(y) • 7i It ki

r_.ei_'_: (26)
1

By = Byl(y) -" E ----"'qi
ly=A i 7i ki

The parameters in Table 1 were used in the following numerical examples. Figure 4 shows the flux distribution

at zero speed and Figure 5 shows the convection effect and decrease in skin depth as velocity increases, integrating
the total flux within the air gap and within the journal, Figure 6 shows how the flux is compressed out of the

journal as eddy currents increase. Fig. 7 shows the variation in lift and drag forces. Observe the change over to

repulsion at 50,000 rpm. The drag force peaks at a value of 1100 Nt at _ = 10Srpm.

The effect on the values of the forces of the number of terms used in the Fourier series was investigated. The

magnetic forces were calculated at different spinning speeds using 10, 25, 50,100, and 500 terms in the series. Figure

8 shows the variation of the lift force. There is very little change in the results when the number of terms used in

the series is 50 or more. There is approximately 3% change in the lift force when the number of terms is increased
from 10 to 25 or from 25 to 50. This large number of harmonics is reasonable if the Fourier approximation to the

applied square wave is plotted. The drag force effectively converged within 10 harmonies. The authors typically
use 25 harmonics in dynamic analysis.

An alternative approach is developed in [2] to find net magnetic field for all four magnets as a single system
(simultaneously). The problem is posed in Fig. 9, which shows all four B fields. This complex boundary condition

is expanded in a Fourier series and the previous equations applied. However, this approach requires the assumption

that all the gaps are equal. At low spinning speeds there is no difference between the two methods as shown in Fig.

10. Only at very high speeds do the two differ. (For parameters in this paper, 4% at 105 rpm). Researchers may
wish to pursue this method.
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CONCLUSION

A very general analytical expression for bearing forces has been presented. The model is applicable to journals

made of permeable or nonpermeable material and to DC fields or AC fields. Both kinds of eddy current repulsion

bearings are included. The predicted loss of lift (about 3(J_ at 12500 rpm), agrees approximately with experimental

results of Yamamura [11]. The expression for the drag force under a single smusoidal field density wave is the same
as that obtained by Meisenholder [9].

Without considering eddy current effects, there is no speed depen,|_nt form in the constitutive model for a

magnetic bearing. Eddy currents cause a loss of effective lift which can be vi,:_,_'d as an external load and may
cause a change in equilibrium point, and change bearing coefficients. More importantly, eddy current drag causes

coupling between (x, y). Any change in the x gap affects the drag force in the y dir(:ction. Other work has shown

this coupling effects bearing stability.
A final comment applies to bearing coefficients (equivalent stiffness and damping matrices). The situation

for a magnetic bearing is different from that of journal bearings. It is not possible to determine the 8 classical
coefficients just by differentiating the force expressions with respect to _, r/, _,/I. The design of the control system

may introduce state variables within the controller. In that case the dynamics of the electrical components must also

be incorporated. Some subspace reduction might be possible, but it is impossible to determine even approximate

coefficients without a completely designed control system.
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NOMENCLATURE

Distance of magnet pole corner (near) from center line

Area of magnet pole face.

Distance of magnet pole corner (far) from center

Magnetic flux density

Magnetic flux density under the magnet pole
Diameter of journal

Unit vectors

Magnetic force

Magnetic field intensity
4=-]-
Wave number

inductance of circuit
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Li

nl,n2

N

q
R

Si

t
9
V

Wa

wl

11

7
A
F

0

X

IJ, p_
Or

D

Flux path length

Real and imaginary parts of
Number of turns in coil

Complex wave number
Resistance of coil

Nondimensional velocity
Time

Velocity vector

Velocity (magnitude)
Field energy density

Field energy stored

shaft displacement
shaft displacement

Complex number = cosh kA + #oq/#k sinh kA

Gap length

Magnetomotive force

Magnet pole angle with respect to magnet axis

Flux linkage
Permeability

Electrical conductivity of journal material

Closed surface, Summation sign

Magnetic flux
Spin speed of rotor

APPENDIX A

ESTIMATION OF MAGNETIC LIFT FORCE USING CIRCUIT THEORY

If eddy currents are neglected, magnetic circuit theory can be used to approximate the magnetic lift force of

a single magnet. The following assumptions are made in deriving the expressions for the magnetic lii_ force:
1. Field f, inging is neglected.

2. Magnetization curve is linear (B = #H).

3. Magnetic flux density B and field intensity tt are uniform over cross-sections of the core, gap, or
journal.

An electromagnetic circuit is considered whose elements are gap, core, and journal. Each element has constant

crossection Ai and length Li. The magnetic flux ¢ is assumed constant throughout the circuit, and F is the total
magnetomotive force within the circuit elements.

The density relationship ¢ = BA and the constitutive law B = #H can be used to express field intensity in

the ferromagnetic material in terms of the field intensity within the air gap.

By definition F = f Hdl Integrating around the circuit and equating F to the current linked (NI) results in an

equation for field intensity within the air gap. The field energy is determined within each element w = ½/,H and
the total field energy is obtained by a volume integral over all the elements.

By definition, the force is the rate of change of stored field energy with respect to the mechanical displacement.

tloN2AI 2

Fmag = (2x + _ + L_z.)_ (h.1)
I-_rI jIA _-2 *

In addition, the total flux 5, the magnetic field density B, the magnetic flux linkage X, and the inductance L can
be expressed in terms of the gap length x and current I as:

#oNIA
= (A.2)

B = #oNI
(2x + _ _ (A.3)

X = #°N_IA
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TABLE 1

Four Magnet Bearing Parameters

Diameter of journal D

Path length in journal L2
Relative permeabi_iity of journal material #r2

Electrical conductivity of journal material ¢r

= 0.15 m

= 0.05 m

= 100.0

= 1.0 E+07 rnho/m

Pole angle

Path length in core L1

Relative permeability of core material #rl

Area of pole face A

Width of pole face W
Number of turns N

Distance of pole corner a

Distance of pole corner b
Resistance of coil R

Permeability of free space #0

= 15 degrees
= 0.28 m

= 10000.0

- (}.00025 m 2

= 0.008333 m

= 800.0

= 0.0075 m
= 0.0375 m

= 3.0 ohms

= 4_" E - 07 H/m

(A.5)

=
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Figure 1. Four magnet bearing.
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Figure 2. Semi-infinite plane under a series of electromagnets.
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Figure 3. Moving conductive medium under an applied flux density wave.

Figure 4. Flux distribution inside stationary conducting medium.
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Figure 5. Flux distribution inside moving conducting medium.

2.4

2.2

2

1.8

1.6

"" 1.4
X

• . 1.2

1

.8

.6

.4

.2

0
0

l
\

I I I I

Air

i i
2 4 6 8 10

5

Velocity (m/sec) x 10

Figure 6. Flux distribution between air gap and journal.
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Figure 7. Lift and drag as a function of speed.
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Figure 8. Effect of number of harmonics on lift force.
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Figure 9. Equivalent problem for multiple magnet case.
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Figure 10. Effect of superposition of lift force.
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