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1 Introduction

"

Over the last few years, considerable progress has been made in the development of tech-
niques for fabricating high-quality superconducting circuits, and this success, together with
major advances in the theoretical understanding of quantum detection and mixing at mil-
limetre and submillimetre wavelengths [1], has made the development of CAD techniques
for superconducting nonlinear circuits an important new enterprise. For example, arrays of
quasioptical mixers are now being manufactured, where the antennas, matching networks,

" filters and superconducting tunnel junctions are all fabricated by depositing niobium and
a variety of oxides on a single quartz substrate. There are no adjustable tuning elements
on these integrated circuits, and therefore, one must be able to predict their electrical
behaviour precisely. This requirement, together with a general interest in the generic be-
haviour of devices such as direct detectors and harmonic mixers, has lead us to develop
a range of CAD tools for simulating the large-signal, small-signal, and noise behaviour of
superconducting tunnel junction circuits.

- ——— -

. 2 Large-signal analysis

To model the behaviour of a quasiparticle mixer, it is first necessary to simulate the large-
signal steady-state dynamics of the local-oscillator circuit. Once the large-signal operating
point is known, it is then possible to perturb, either numerically or analytically, the under-
lying system of equations to gain information about the linear relationships hetween signal
and noise variables.

The main problem is how does one calculate the periodic current that flows through a
tunnel junction when ‘a periodic voltage is applied? For semiconductor devices this calcula-
tion is almost always carried out in the time domain, and fast Fourier transforms are used
to interface the terminal waveforms to the frequency-domain description of the embedding
circuit.

Classical resistive mixer diodes are relatively easy to simulate because the induced
current -is an instantaneous function of the terminal voltage. Quantum mixer diodes on
the other hand are difficult to simulate because the tunnelling current depends on the
voltage that was across the junction at very long times in the past. In the time domain
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the current is calculated through an integral which is similar to the convolution integral
of linear systems theory, and the tunnel junction is characterised by a response function

-which oscillates at the gap frequency with an envelope which decays inversely with time

at large times. To evaluate the tunnelling current it is necessary to sample the terminal
voltage at a rate greater than the gap frequency , and to integrate beyond a limit which is
inversely related to the voltage width of the dc nonlinearity. Time-domain simulations are
useful for studying the switching behaviour of tunnel junctions, but they are inappropriate
for studying the steady-state behaviour of RF circuits.

When a sinusoidal potential is applied to a superconducting tunnel junction, the wave-
functions associated with the quasiparticle states on one side of the barrier are coherently
phase modulated. The spectrum of the phase factor is a comb of delta functions whose
coefficients are the elements of a Bessel-function sequence. The Bessel functions have the
same argument, determined by the voltage drive level, and consecutive orders ranging from
some large positive integer to the same negative integer. The trick is to recognize that when
a periodic potential is applied, the spectrum of the overall phase factor is the convolution
of the spectra associated with the individual harmonic contributions. Once the spectrum
of the overall phase factor is known, it is possible to calculate the harmonic phasors of the
tunnelling current from the dc I-V curve and its Hilbert transform [2].

The above procedure describes a way of calculating the periodic current that flows in a
tunnel junction when a periodic potential is applied. In a real circuit the tunnel junction
is embedded in a linear network and the problem of determining the various voltages and
currents is complex. Applying the method of harmonic balance [3] to a generic circuit
comprising a tunnel junction and a Thévenin voltage source, leads to a system of coupled
nonlinear algebraic equations. Mathematically, the problem then consists of finding the
roots of these equations; electrically, the problem is equivalent to searching for a waveform
that simultaneously satisfies the circuit equations at every harmonic frequency. In nonlinear
CAD terminology, the scheme is a frequency-domain spectral-balance method, however,
unlike other versions, the spectral decomposition is based on device physics, rather than on
expanding the terminal behaviour in a set of basis functions.

The set of algebraic equations that results from applying the method of harmonic bal-
ance to a tunnel-junction circuit must, in general, be solved numerically. By repeatedly
analyzing, in different ways, a large pseudo-random set of tunnel-junction circuits, we have
investigated the speeds and stabilities of a range of iterative root-finding techniques. A
comparison of the techniques is shown in Fig. 1, where we have plotted the percentage
of circuits that converge, and the mean number of iterations taken, as a function of the
damping factor. The damping factor is a coefficient between 0 and 1 which determines the
degree to which the result of an iteration influences the next guess. A small value improves
stability at the expense of reducing the rate of convergence. The solid and dashed lines in
Fig. 1 correspond to two different quality characteristics. It should be appreciated that the
plots represent a total of around 20,000 circuit simulations.

The tunnel junction is a nonlinear admittance in the sense that it is most easy to
calculate the current in terms of the terminal voltage. However, fixed-point voltage-update
methods [4] are inappropriate for analyzing tunnel-junction circuits, especially in a common-
user environment, because they fail to converge when the large-signal harmonic admittances
of the tunnel junction are much greater than those of the embedding circuit. This problem
is clearly demonstrated in Fig. 1 where it is seen that the routine will only converge if
the system is heavily damped. A slightly more sophisticated way of finding the roots is
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Figure 1: Comparison of various techniques for calculating the large-signal quantum be-
haviour of superconducting tunnel-junction circuits. '

to use a multi-dimensional variant of the secant method [5]. This method is similar to
the fixed-point method, in the sense that it is only necessary to calculate the tunnelling
current once per iteration, however, because coarse derivative information is included one
might expect the routine to behave more reasonably. Somewhat surprisingly, the routine is
significantly worse despite the additional information. The problem is caused by the fact
that, effectively, only the terms on the leading diagonal of the Jacobian matrix are included,
and coupling between harmonics relies on the current calculations. As long as the current
at a given harmonic is most strongly influenced by the voltage at the same harmonic then
the routine will work well. In a highly nonlinear tunnel-junction circuit, however, there
is strong coupling between harmonics and the routine is inadequate. Fig. 1 shows the
hehaviour of a harmonic-Newton [6] {7] scheme where the full Jacobian matrix is used. It is
possible to calculate the Jacobian matrix analytically, however, we prefer to calculate the
Jacobian matrix using finite differences. Harmonic Newton results in the least number of
failures: in fact, it finds a solution for 75 % of the circuits studied, and to a large extent
the stability of the method is independent of the quality of the junction being investigated.
The fact that the convergence parameter has little effect on this fraction, together with the
almost reciprocal dependence of the mean number of iterations, shows that if it is possible
for the method to find a solution then it will eventually do so. Reducing the damping factor
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simply reduces the size of the voltage steps taken at each iteration, however, these steps
are usually in the correct direction.

We have now performed a very large number of real circuit simulations, and despite
the fact that 25 % of the randomly generated circuits failed to converge, we have never
come across a real circuit that has not converged. We have investigated this problem in
some detail, and we have found that many of the circuits that do not converge are behaving
in a non-periodic manner. This behaviour usually requires that the embedding circuit
impedances are very much larger than the normal-state resistance.

An alternative approach to finding a root in many dimensions is to recast the problem
into a multidimensional optimization. To do this change, the error function is used to
construct a scalar quantity that has a global minimum at the required root. One of the
attractions of optimization is that uninteresting variables, such as the local oscillator drive
level, can be eliminated from the analysis by making the variable part of the objective
function. In general, we have found that optimization methods are slow and should not be
used unless there is a particular reason to do so. Unfortunately, there is insufficient time
to discuss this more advanced topic in this short paper.

The results of a typical large-signal analysis are shown in Fig. 2. The sequence of plots
shows how the pumped dc I-V curve of a typical Nb-AlQOx-Nb tunnel junction evolves as
the wC R product is changed. As the capacitance decreases the subgap current increases,
and non-classical negative differential resistance is induced on a number of photon steps.
Notice that large capacitances are required before the characteristic relaxes to its constant
sinusoidal-voltage-driven form. Also shown, for comparison, is an analysis where the har-
monic feedback is turned off. Curiously, it seems as if internal harmonic pumping can
enhance the negative differential resistance induced on high-order photon steps—for this
reason it is possible, in certain circumstances, for the small-signal behaviour of a mixer to
be very sensitive to harmonic impedance levels.

3 Small-signal analysis

Once the large-signal behaviour of a mixer has been established, it is possible to calcu-
late the small-signal and noise performance. The admittance and noise-current correlation
matrices are determined, in the usual way, through quantum-mechanical generalizations of
commonly used classical concepts. We then use a selection of linear transforms to reduce
the admittance parameters to two-port impedance and scattering parameters, and the cur-
rent correlation matrix to a noise-temperature matrix from which the standard two-port
noise parameters can be deduced [8] [9]. It transpires that the whole scheme, both signal
and noise, can be very elegantly normalized to the gap voltage and gap current of the
tunnel barrier. The advantages of our generalized approach are that one does not have to
specify before hand which ports are to be used for the input and output, and one can easily
calculate the two-port small-signal and noise parameters which can then be loaded into pro-
prietary microwave circuit simulators for further analysis. For example, we are interested in
designing mixers that have the first stage of low-noise IF amplification in the mixer block.
A further advantage of our scheme is that the noise performance is described in terms of
correlated travelling noise waves, and this approach is an elegant way of considering a mixer
as an integral part of a quasioptical system along which noise waves propagate. '
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Figure 2: The dc I-V curve of a pumped Nb-AlOx-Nb tunnel junction for different values
of wC R product. The first plot does not include internal harmonic pumping.

4 Mixer simulations

To date we have studied the large-signal, small-signal, and noise behaviour of mixers by
adopting the design procedure suggested by Kerr (10]. That is to say, the mixer is operated
in a double-sideband mode, and the source and load impedances are assumed to be real. The
ratio of the source and load impedances, which in practice is determined by the geometry
of the mount, is set at some fixed value. In general, we use a value of unity as a higher
value tends to degrade the input return loss of the mixer. It is interesting to note, however,
that it may be possible to choose the ratio so as to minimize the sensitivity of the gain
to variations in the source resistance. The free parameter, as far as the design process
is concerned, is the normal-state resistance. Although we assume that the capacitance of
the tunnel junction is tuned out at the fundamental, we assume that the impedance at
the harmonics is given by the capacitance of the tunnel junction alone. The effects of

" junction capacitance are considered in companion paper [11], here we simplv demonstrate

the procedure by plotting, in Fig. 3, the transducer gain, noise temperature, input return
loss. and normalized output impedance of a typical Nb-AlOx-Nb mixer as a function of the
normalized source resistance; the various curves are for different normalized frequencies (
normalized to the gap frequency). It is interesting to note that the overall performance is
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Figure 3: The transducer gain, noise temperature, input return loss, and normalized output
impedance of a typical Nb-AlOx-Nb mixer as a function of the normalized source resistance.

very poor for low values of source resistance, and this is probably the single most important
reason why mixer performances improve significantly when integrated tuning elements are
used. ‘

A useful normalized expression can easily be derived for the source resistance at which
unity gain, good input match, and minimum noise temperature can be achieved. The
expression is

-0.92
B _ 0 syo09 _ 1 [{(ﬁf»;] 1)
g

and it applies for frequencies between 0.2 and 0.8 of the gap frequency. The exponent is
slightly different from that given by Kerr and Pan, because we have taken into account the
fact that the optimum bias point does not remain in the middle of the first photon step
below the gap for frequencies greater than about 0.5 of the gap frequency.

It is well known that if one plots the conversion gain, at a given frequency. as a function
of the w("R product, at some point the conversion gain becomes depressed. This can bhe
regarded as the frequency at which harmonic effects become significant; or equivalently, the
frequency at which the five-port, rather than the three-port model should be used. Using
the above value for the source resistance, we have investigated this behaviour and generated
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Figure 4: Critical current density against frequency for different values of wC R product.
The dotted line shows the optimum current density as a function of frequency.

the following expression for the optimum wC R product

Vg (mV)]OTS .

F(GH?) (2)

WCR|op = Vpg™ = 61 [

and this in turn generates the following expression for the optimum value of the critical
current density: J. (Aem™2) = 0.4f(GH:)1‘75. We have assumed [ R, = 1.8m1” and a
specific capacitance of 45fFum~2. Once again the above requirement is less severe than
that published by Kerr. Finally, in Fig. 4 we plot the optimum critical current density as
a function of frequency, and we show lines of constant w('R product. Above the dotted
line, harmonic effects are important, whereas below the dotted line harmonic effects can be

ignored.
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