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ABSTRACT

This paper explores the feasibility of planar, sub-harmonically pumped, anti-parallel
InGaAs/InP heteroepitaxial Schottky diodes for terahertz applications. We present calculations
of the (I-V) characteristics of such diodes using a numerical model that considers tunneling. We
also present noise and conversion loss predictions of diode mixers operated at 500 GHz, and

! obtained from a multi-port mixer analysis, using the I-V characteristics predicted by our model.

Our calculations indicate that InGaAs/InP heteroepitaxial Schottky barrier diodes are
expected to have an I-V characteristic with an ideality factor comparable to that of GaAs
Schottky diodes. However, the reverse saturation current of InGaAs/InP diodes is expected to be
much greater than that of GaAs diodes. These predictions are confirmed by experiment. The
mixer analyses predict that sub-harmonically pumped anti-parallel InGaAs/InP diode mixers are
expected to offer a 2 dB greater conversion loss and a somewhat higher single sideband noise
temperature than their GaAs counterparts. More importantly, the InGaAs/InP devices are
predicted to require only one-tenth of the local oscillator power required by similar GaAs diodes.
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I. Introduction

GaAs Schottky diodes are frequently used as mixer elements in heterodyne receivers for the

few hundred gigahertz to few terahertz frequency range [1], At present a major limitation on

these devices for space-based applications is the difficulty in obtaining sufficient local oscillator

(LO) power from solid state sources; the maximum available LO power decreases sharply with

increasing LO frequency. One approach to overcoming this limitation is to use sub-

harmonically pumped, anti-parallel diode pairs, which halves the frequency at which the LO

power is needed to a range where obtaining sufficient LO power is less of an obstacle. Standard

GaAs Schottky diodes have a large turn-on voltage, and consequently require a substantial

applied bias to minimize LO power requirements and conversion loss. Unfortunately, it is not

feasible for each diode to be biased individually in an anti-parallel configuration. To reduce the

LO power requirement, InGaAs has been proposed as a material for use in sub-harmonically

pumped, anti-parallel diode structures [2]. Schottky barriers formed from InGaAs have a height

that decreases, with increasing indium mole fraction. The resulting lower turn-on voltage of

these diodes suggests that they will require smaller LO voltages, and therefore power, for

optimum performance. An added benefit of using InGaAs instead of GaAs is its superior

mobility, which will lead to a lower series resistance, which in turn will reduce the conversion

loss.

Of crucial importance to both the conversion loss and noise of the mixer is the diode I-V

characteristic. We have previously reported on a Schottky diode current-voltage analysis that

considers electron tunneling and image force lowering [2]. In diodes with epitaxial layers doped

to greater than about 5.0 x 1016 cm~3, electron tunneling significantly affects the diode ideality

factor.
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We present the results of conversion loss and mixer noise calculations using the I-V

characteristics obtained from our diode model. A single diode equivalent circuit was used to

model diode mixers in the sub-harmonically pumped, anti-parallel configuration. We have used

a computer program by P. Seigel to perform the analysis [3], which we have modified to use the

current-voltage model discussed in this paper, rather than the standard thermionic-emission

model.

We also discuss fabrication technology currently being developed for a planar, anti-parallel

InGaAs/InP diode.

n. Diode Model

A. Anti-Parallel Planar Diodes

An electron micrograph of a GaAs anti-parallel planar diode is shown in Figure 1 [1]. The

Ino.sGao.sAs/InP anti-parallel planar diodes being designed in this study will have an identical

geometry. A cross-section of such a diode is shown in Figure 2. A circuit model of a planar

diode showing the major parasitics is shown in Figure 3. The junction capacitance, Cj, and the

series resistance, Rs, are the dominant parasitics at high frequencies, and should be minimized

for optimum conversion performance. The effects of the pad-to-pad capacitance, Cpp, and the

finger inductance, Ls, are smaller, and have not been considered in the mixer calculations

presented in this paper. Furthermore, the junction conductance itself may deviate from ideal

exponential behavior, particularly at high forward or reverse bias, and this can also affect the

conversion performance. This effect is considered in the Schottky I-V analysis presented in this

paper.
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The series resistance of a Schottky diode can be reduced by increasing the conductivity of

the epitaxial layer and/or the substrate, or by reducing the thickness of the undepleted epitaxial

layer. The epilayer conductivity can be increased by increasing its doping concentration,

however, this involves a trade-off: the diode ideality is also decreased. The use of InGaAs,

which has a greater electron mobility than GaAs, allows for a high conductivity epilayer, and

avoids this trade-off, as we shall show later. In addition, the epilayer in InGaAs diodes can be

made much thinner than in GaAs diodes. This is because the epilayer is generally made slightly

thicker than the zero-biased depletion depth, which is proportional to the square root of the

Schottky barrier height. Therefore, in equally doped material, the zero-biased depletion depth in

Ino.53Gao.47 As is about half that in GaAs.

The zero-biased junction capacitance of InGaAs diodes is greater than that of comparable

GaAs diodes because the junction capacitance is, to first order, inversely proportional to the

depletion depth. However, at the current densities reached in normal operation, the typical

junction capacitances of the diodes are expected to be comparable. This is because the depletion

depth depends on the remaining barrier, that is, the Schottky barrier height minus the applied

voltage, and the current density is roughly proportional to the exponential of the remaining

barrier.

B. Schottky I-V Model

We shall briefly outline the quantum-mechanical transmission current-voltage model,

which is described in greater detail elsewhere [4], and is largely based on the work of Chang,

Crowell, and Sze [5,6].

The current density is calculated through a numerical evaluation of the equation
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J(V) = dEn *(£„, VMF.CEn.V) -?„,(£„)] (1)

where R is the Richardson constant in the semiconductor, T is the temperature, k is Boltzmann's

constant, i is the electron transmission coefficient, Fs and Fm are the semiconductor and metal

distribution functions respectively, V is the applied bias, £„ is the component of the incident

electron energy normal to the metal, and E^ is the minimum allowed electron energy. Emjn

corresponds to the conduction band minimum in the metal or the semiconductor, depending on

the applied bias.

The electron transmission coefficient is obtained through a one dimensional solution of

Schrodinger's equation covering the region of the Schottky barrier, including the effects of

image force lowering. The transmission coefficient has been shown to vary sharply with the

electron energy, and ranges from near zero for electrons with energies much below the barrier

maximum, to near unity for electrons with energies a few kT greater than the barrier maximum

[4].

We have used a drifted-Maxwellian to model the electron energy distribution, which is

given by [7]

-m*(vn-vd)2

where vn is the normal component of electron velocity, and v^ is the drift velocity, defined as

where Nj is the concentration of the ionized donors in the epitaxial layer outside the depletion

region. The current density and drift velocity are calculated iteratively using (1-3) until they
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converge to the desired level of accuracy.

C. I-V Predictions

Figures 4 and 5a-b show the I-V characteristics of the metal-semiconductor junctions

(denoted by Vj) of GaAs and InojGao.sAs diodes respectively, as predicted by the algorithm

discussed in Section B. Vj. Table 1 shows the diode parameters used. The reverse current in a

Ino.5Gao.sAs diode is predicted to be several orders of magnitude greater than in a GaAs diode.

However, it is still nearly two orders of magnitude smaller than the maximum forward current.

Thus, while the reverse current is not negligible, it is not expected to degrade mixer performance

drastically, as we shall demonstrate in the next section of this paper. It is also noteworthy that

the voltage-dependent ideality factors of the two diodes at a forward current density of

104 A/cm2 (which corresponds to a current of 0.08 mA in a 1 |im diameter diode) are nearly

identical.

Figures 5a-b also show the overall I-V characteristic of a whisker-contacted

Ino.5Gao.5As/InP diode fabricated in our laboratory, and includes the effects of the series

resistance. These whisker-contacted diodes are research devices only, and will be superseded by

planar devices. The data agree well with our model, in which the only adjustable parameter is

the Schottky barrier height.

in. Mixer Analysis

The conversion loss and noise calculations presented in this paper have used the multiple

reflection algorithm developed by Held and Kerr [8]. A FORTRAN language computer program

by P. Seigel, known as GISSMIX [3], (with a few modifications) was used to perform the
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calculations. The modifications to the program include the use of the I-V model described

above, instead of the thermionic emission model, as well as changes to permit the calculation of

subharmonically pumped mixer performance using the single diode equivalent circuit.

A. Held and Kerr Mixer Analysis

The Held and Kerr mixer analysis is based on the assumption of a large signal LO source,

upon which is superimposed a small signal RF. The time-dependent conductance of the diode is

determined through a non-linear analysis. The diode waveform is then resolved into the small

signal admittance, and is represented in the frequency domain through its Fourier coefficients.

These coefficients are then used to calculate the noise and conversion performance of the diode

mixer circuit. The analysis assumes a knowledge of the diode parameters as well as the

embedding impedances at the mixing frequencies. The analysis is amply described elsewhere,

and therefore we shall not outline the details of the analysis [8].

The mixer performance is in general affected by the embedding impedances presented to

the diode by the mixer block at several sideband and LO harmonic frequencies. These

parameters can be obtained through a characterization of the diode mount; however, our

investigation has not yet progressed to that point. Due to the absence of information on the

embedding impedances, we have chosen to simplify and standardize our analysis by representing

all higher order mixing frequencies as short circuits. In general, the use of such an

approximation will slightly underestimate the conversion loss and noise temperature. The

embedding impedances we have assumed are given in Table 2.

The performance of sub-harmonically pumped, anti-parallel diodes was estimated through

use of the single diode equivalent circuit [9]. In this circuit model, the odd-harmonic embedding

impedance is equal to twice that presented to a single diode, and the even-harmonic embedding
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impedances are set to zero.

B. Calculations

Figure 6 shows the predicted upper-sideband (USB) conversion loss of GaAs and

Ino.sGao.5As single diode mixers at 505 GHz, as a function of the available LO power. Zero

applied bias is assumed. The diode parameters used in the mixer analysis are given in Table 1.

The Ino.5Gao.sAs diode will offer a minimum conversion loss of about 7 dB with PLQ equal to

0.2 mW, in comparison to the GaAs diode, which will offer about 8 dB conversion loss with

PLO equal to nearly 2 mW. The superior predicted conversion loss of the Ino.sGao.sAs diode is

due primarily to its lower series resistance, and its lower LO power requirement with zero bias is

due to its lower barrier height.

Figures 7 and 8 show the predicted upper-sideband (USB) conversion loss and noise

temperature respectively, of sub-harmonically pumped, anti-parallel GaAs and Ino.sGao.sAs

diodes, as a function of the available LO power per diode. The total LO power required by the

diode pair is therefore twice the amount shown. An LO frequency of 250 GHz and a signal

frequency of 505 GHz were assumed. The minimum conversion loss of the Ino.sGao.sAs diode

pair is predicted to be about 11 dB with 0.2 mW of total available LO power, compared to about

9 dB with about 2 mW of available LO power for the GaAs diode pair. The minimum USB

noise temperatures of the Ino.sGao.sAs and GaAs diode pairs are predicted to be about 2000 K

and 1300 K respectively. Thus, Ino.sGao.sAs/InP diode anti-parallel mixers are expected to

reduce the LO power requirement by at least an order of magnitude compared to that of similar

GaAs diode mixers, while increasing the conversion loss and noise by no more than 2 dB and 50

percent respectively. The RF performance of In0.sGao^As/InP diodes in an anti-parallel

configuration is expected to be somewhat degraded from that of single diodes of the same
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material and with similar parameters. We believe this is due to the relatively high reverse

saturation current of these diodes. However, this drawback is small in comparison to their

primary advantage: they will require LO sources at frequencies half of the signal frequency.

IV. Diode Fabrication

The objective of this facet of our work was to develop a device fabrication technology

which will enable us to produce predictable planar, anti-parallel Ino.53Gao.47 As mixer diodes

with reliable electrical characteristics. The fabrication procedure for planar, anti-parallel diodes

on Ino.53Gao.47 As is very similar to that on GaAs. A highly abbreviated outline follows.

1. Active Layer Thinning: The active layer of Ino.53Gao.47 As was intentionally grown
thicker than the theoretical zero-bias depletion thickness. This allowed us to adjust the
actual epitaxial layer thickness by using an electrochemical thinning technique. The
actual epilayer thickness was measured using a standard C(V) profiling technique but
with a 10 MHz frequency to allow the component of current through the space-charge
capacitance to be dominant. This provided us a way to optimize the I-V characteristic by
changing the actual active layer thickness.

2. Oxide Deposition. A thin (6000 A) layer of SiC>2 was pyrolytically deposited on the
active layer.

3. Ohmic Contact Formation. An ohmic contact was formed by electroplating Sn-
Ni/Ni/Au on n"1"1" Ino.53Gao.47As and subsequently alloying at 400° C. The TLM pattern
test has shown that the Sn-Ni/Ni/Au ohmic contact on Ino.53Gao.47 As is about
2-3 x 10~6 Qcm2, which is one order of magnitude better than that on GaAs.

4. Anode Definition. Standard photolithography and reactive ion etching were
employed to define anode windows in the 8162 layer. The anode metals (Pt and Au)
were DC electroplated through these windows onto the underlying active Ino.53Gao.47 As
layer to form the Schottky diodes.

5. Anode Contact Finger. Conductive thin films of chromium and gold were first
deposited over the entire wafer through use of a sputtering system. Next, the fingers
were electroplated over a photolithographically defined region. Both dry and wet etching
were used to remove the thin chromium/gold film covering the wafer, leaving the contact
fingers in place.
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6. Surface Channel Etching. A final photolithography step defines the surface channel.
Buffered hydrofluoric acid was first used to remove the 8162 in the surface channel.
Then, the conducting 1 .̂53630.47 As between the pads was removed by using H3?O4 :
H2C>2 : H2O, which provides the desired etch profile for different InGaAs crystal
directions, thus allowing the finger to be undercut.

Early results of ohmic contact formation have shown a problem associated with alloying:

the oxide near the anode region was damaged after alloying. This problem was solved by

changing the plating parameters and the alloying temperature without changing the quality of the

contact. The most crucial step in device fabrication is anode formation. Early attempts at anode

formation on planar, anti-parallel Ino.53Gao.47 As resulted in a low breakdown voltage, as well as

instability and nonuniformity of the I-V. These problems were overcome by optimization of the

plating parameters. Profiles resulting from several chemical etchants have been investigated

with respect to the desired profile in forming the surface channel, which undercuts the anode

fingers and protects the anode region. The H3PO4 : H2O2 : H2O family has been found to

provide the desired results.

V. Conclusion

In this paper we have presented I-V calculations of Ino.5Gao.5As/InP Shottky barrier diodes.

The model we have used considers electron tunneling, image force barrier lowering, and the

effect of a drifted Maxwellian electron distribution. The model has been shown to agree well

with experimental data on whisker-contacted Ino^Gao.sAs/InP and GaAs diodes fabricated in

our laboratory. The I-V characteristics of Ino.5Gao.5As/InP diodes have been shown to be

similar to those of GaAs diodes, but are displaced in voltage and have a higher reverse saturation

current.
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The I-V characteristics obtained from our model were used to predict the mixer

performance of both single and sub-harmonically pumped, anti-parallel diodes. A modified form

of Seigel and Kerr's analysis was used. The calculations show that in unbiased operation,

Ino.5Gao.sAs/InP single diode mixers will offer conversion performance equal to that of

comparable GaAs diode mixers, and require only one-tenth the LO power. Furthermore, sub-

harmonically pumped, anti-parallel Ino.5Gao.sAs/InP diode mixers are expected to offer

performance nearly as good as that of the best GaAs diode mixers, but will require one-tenth as

much LO power to achieve their optimum performance.

The fabrication techniques for anti-parallel, Ino.5Gao.5As/InP planar diodes with surface

channels have been extensively investigated. Difficulties in anode plating and ohmic contact

formation have been resolved, and suitable chemical etchants necessary for the fabrication

sequence have been found.
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Table 1. Diode parameters.

diode materials GaAs Ino.5Gao.sAs/InP

anode diameter 0.5 (im 0.5 p.m
ohmic contact width 50 urn 50 (im
ohmic contact length 50 urn . 50 ̂ im
chip thickness 125 ^im 125 (im
active layer thickness 0. 1 10 Jim 0.065 |im
<|>B 0.950 eV 0.277 eV
active layer doping 1.5 x 1017 cm"3 1.5 x 1017 cm~3

buffer layer doping 2.0 x 1018 cm~3 2.0 x 1018 cm~3

Cjo 1.22 fF . 2.10 fF
Cjmax lO.O.fF 10.0 fF

sat 7.85 x 10~17 A 8.25 x 10~7 A
Imax 5.0 x 10~3 A 5.0 x 10~3 A
rt 1.12 1.09
R, 15.0 Q 9.0 Q

Table 2. Mixer embedding impedances.

CORF

^image

WLO
COTF

75 Q
75 Q
50 Q
matched
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Figure 1. Electron micrograph of GaAs anti-parallel planar diode.
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Figure 2. Cross-section of anti-parallel, planar InGaAs/InP diode (not to scale).
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Figure 3. Circuit model of planar diode.
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Figure 4. Forward current-voltage characteristic of GaAs Schottky diode.
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Figure 5a. Forward current-voltage characteristic of Ino.sGao.5As/InP Schottky diode.
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Figure 5b. Reverse current-voltage characteristic of Ino.sGao.sAs/InP Schottky diode.
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Figure 5c. Current-voltage characteristic of the heterojunction
in an Ino.5Gao.5As/InP Schottky diode.
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Figure 6. Conversion loss (USB) versus LO power of single
Schottky diodes at 505 GHz.
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Figure 7. Conversion loss (USB) versus LO power per diode of sub-harmonically
pumped, anti-parallel Schottky diodes at 505 GHz.
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Figure 8. Noise temperature (USB) versus LO power per diode of sub-harmonically
pumped, anti-parallel Schottky diodes at 505 GHz.




