@ https://ntrs.nasa.gov/search.jsp?R=19930019881 2020-03-17T04:38:19+00:00Z

75 /
7/ 7
NASA Technical Memorandum 108995 / o

Parallel Software Tools
at Langley Research Center

Stuti Moitra, Geoffrey M. Tennille, Christopher D. Lakeotes,
Donald P. Randall, Jarvis J. Arthur, Dana P. Hammond,
and Gerald H. Mall

(NASA-TM-108995) PARALLEL SOFTWARE N93-29070

March 1993 TOOLS AT LANGLEY BFSFARCH CENTER

at i}
(NASA) 82 p Unclas

G3/60 0171951

NANASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 2368 1-0001

Table of Contents

Chapter 1
INTRODUCTION
1.1 High Performance Computing at NASA Langley......cocennnnns 1-1
1.2 Evaluation of Parallel Software TOOIScooiivninciricnncieiineee 1-2
1.3 Future DITECONccviviiiiiiiiinnicrenieeteseseneiestesiessesstessaeeseesaeessessuesenssssessneses 1-3
Chapter 2
Express - Basic Tools
2.1 Overview Of EXPIESS .ttt ssesssessssessssssesssaess 2-1
2.2 AcCCESS tO EXPIESS .ottt ettt sas e s e r s 2-2
2.2.1 Express and NEtEXPIESS ..o snsesens 2-2
2.3 Detailed Description of EXPIESScccccevevieiivceiiniiinciiteninneicneiiecennnecesnneensns 2-3
2.3.1 CUBIX INPUt/OUtPULcccoeiveiiieiiineieccrercetr st esree e saecsne e srae e 2-3
2.3.1.1 Advantages and Disadvantages of the CUBIX
Programming Model ... 2-6
2.3.2 Host/Node Model ...ttt esiseessnssenes 2-6
2.3.2.1 Advantages and Disadvantages of the Host/Node
MOdEL e 2-6
2.3.3 Compiling CUBIX and Host/Node Programsc.cccooccveeenneen. 2-7
2.3.4 Executing Express CUBIX Programs ... 2-9
2.3.4.1 Sample CUBIX and Host/Node Programs 2-10
2.3.5 Express System Calls ..o 2-16
2.3.5.1 System Initialization ... 2-16
2.3.5.2 Processor Allocation and Cube Control.........c.c..ccco...... 2-17
2.3.5.3 Data DecCOmMPOSItION......cccivmiieriiniiiiiniiiirireirenene e cresseesnees 2-17
2.3.5.4 Message - PasSing ... 2-18
2.3.5.5 Global Operationscccvmmminnnnnenccneneeeseeseteeseeene 2-19
2.3.5.0 TJO ottt s srd 2-19
2.3.5.7 Utility ROUNES oot 2-20

March 1993 Table-of-Contents-1

2.4 Observations on USing EXPIesS ..o 2-21

2.5 Known Bugs of EXPIESS ...coovvveiiiirneirireerensescssesesssesassnsssssssssssessssssonss 2-23
2.6 References for EXPIesscoviiccciinniessinssis s esssessssssssssesasens 2-23
Chapter 3
Express - Performance Analysis Tool (PM)
3.1 Overview oOf PM ...ttt saer s sss s et sasassesnas 3-1
3.2 ACCESS IO PM ...ttt sttt et ns 3-1
3.3 Detailed Description of PMc.cccccoiiiiiiinnciinteecre e ete e 3-1
3.3.1 Using the Program Execution Tool (Xtool)vvvreerennee 3-1
3.3.2 Using the Program Communication Tool (ctool) 3-2
3.3.3 Using the Program Events (etool)ccenncnrcrerieeninrnenen, 3-2
3.3.4 Compiling and Executing a CUBIX PM Program 3-3
3.4 Observations on Using PM ...t 34
3.4.1 Data Gathering Using Compiler Switchescocvveevieiinnnnee. 3-4
3.4.2 Data Gathering Using the Programmatic Interface ... 3-4
3.5 Known Bugs Of PM ...ttt stsnesasne e ss b s enesasneens 3-5
3.6 References for PM ... e sessasase s rasassssens 3-5
Chapter 4
Express - Graphics Tool (PLOTIX)
4.1 Overview of PLOTIX ...t sase s e 4-1
4.2 Access to PLOTIX ...t sre st s sssessnnes 4-1
4,3 Detailed Description of PLOTIXcoccovveverrerennn. ettt aasens 4-2
4.4 Observations on Using PLOTIXcoinonncreennerseseissssessesssenens 4-3
4.5 Known Bugs of PLOTIX ...ttt sesssessssnnes 4-3
4.6 References for PLOTIX ..o snerseeese s sesees e sessaesens 4-3

Table-of-Contents-2 March 1993

Chapter §
Interactive Parallel Debugger (IPD)

5.1 Overview Of IPD ...ttt n s sesssanes 5-1
5.2 AcCCESS 10 IPD e s s s s s e s s 5-1
5.2.1 Invoking IPD from Bluecrab ... 5-1
5.2.2 Node Program SpecifiCationscccevuereieenencnnisenneesenneniensenininees 5-2
5.2.3 Exclusive IPD Featurescocvvviiniiniiniininninnseis et 5-2
5.3 Detailed Description of IPD ..ot 5-2
5.3.1 Node Program Compilation ... 5-2
5.3.2 Other Preparation ... 5-3
5.3.3 Asynchronous Node Program Execution Monitoring ... 5-3
5.3.4 Some Diagnostic Approaches at Halt ..., 5-4
5.4 Observations on Using IPDc.cccoviiiiininiinniinnnirennieesnensncsnnsneencsannees 5-4
5.4.1 SIENGINS .ot 5-5
5.4.2 WEAKNESSES .ocecvverirecneneeesesscnsssisssssasssesssesessssss st sannsesssssesssssssss 5-5
5.5 Known Bugs Of IPD ... stssssiissisisssssnes 5-7
5.6 References for IPDcccccvveviiiinininiici ettt 5-7
Chapter 6
MIMDizer
6.1 Overview of MIMDIZEr ... senscssstsasssises 6-1
6.2 Access t0 MIMDIZET ... sstsessse s s st sesasscssssessssssonasasnias 6-2
6.3 Detailed Description of MIMDIZET ... 6-2
6.4 Observations on Using MIMDIZETccoviiiiiniiiininiiiiinniniiis 6-4

March 1993 Table-of-Contents-3

6.5 Known Bugs of MIMDIzZervvnccnrnircnereeeresssssssessasasassene 6-4

6.6 References for MIMDIZETcccccovioviriiiiiiniiniictcetesie et cveer e 6-4
Chapter 7
Performance Analysis Tool (PAT)
7.1 Overview of PAT ..ottt sttt sber st sasas s 7-1
T.2 AcCeSS tOPAT ...t sae st eaebens 7-1
7.3 Detailed Description of PATc..coccoviiieiiciiiinirceencsienrcse et ssesse s 7-2
7.3.1 Profiling Methodscomcnnncreincrcsesesresnese e 7-3
7.3.1.1 Profiling the Program Execution ..., 7-3
7.3.1.2 Profiling the Program Communication 7-4
7.3.1.3 Profiling the Program Eventsrvinreenens 7-5
7.3.2 Analyzing Methods ... 7-6
7.3.2.1 Analyzing Execution Profile (xtool)cccccvveeirnnnnnn 7-8
7.3.2.2 Analyzing Communication Profile (ctool) 7-9
7.3.2.3 Analyzing Event Profile (etool)cccceevvvvviiciiiennnnnne. 7-11
7.3.3 Compilation and EXECULIONccceccveeiiieiienieeeeeereerece e e 7-12
7.3.4 System Calls .. 7-15
7.4 Observations on Using PAT ...t ercenaneenane 7-17
7.5 Known Bugs of PAT ...ttt snesre s 7-17
7.6 References for PAT sttt srasensans 7-17
Chapter 8
Parallel Virtual Machine (PVM)
8.1 Overview of PVMciiiiiiiinnniininniniesnstennesssnsssssessenessessnssssnessessssens 8-1
8.1.1 OS and Platformscccceevivieuieinninnneinensccnnieecorisessissossessessessosasssesses 8-2
8.2 AcCesS t0 PVM et sssssstaeestres st st st esseasssesssens 8-2

Table-of-Contents-4 March 1993

8.3 Detailed Description of PVM ... 8-3

8.3.1 Compiling with PVM ..o s sasennee 8-3
8.3.2 Running a PVM Program ...t 8-5
8.3.3 Description of FORTRAN Subroutines T ') 8-6
8.3.4 Global Subroutines ... 8-9
8.4 Observations on Using PVM .., 8-10
8.5 Known Bugs of PVM ..t sssssssssss g-11
8.6 References for PVM ... sssscsssesssssssssasisesssesssnas 8-11

March 1993 Table-of-Contents-5

Table-of-Contents-6

March 1993

ACRONYMS

ACD
BLAS
CAB
CAS

(@ 3\
CPU
aac
DNS
ESS
FFT
FTP
GFLOPS
GSRC
HPCCP
ICASE
1/0
IPD
LaRC
MFLOPS
MIMD
MSS
NAS
NFS
NQS
080,
ORNL
PAT
PVM
SNS
SPMD
SRM
TCP/IP
X, X11

Analysis and Computation Division

Basic Linear Algebra Subroutines

Computer Applications Branch

Computational Aero-Sciences

Concurrent File System

Central Processing Unit

Central Scientific Computing Complex

Domain Name Service

Earth and Space Sciences

Fast Fourier Transform

File Transfer Protocol

Gigaflops (Gigalbillion] FLoating point OPerations per Second)
Goddard Space Flight Center

High Performance Computing and Communications Program
Institute for Computer Applications in Science and Engineering
Input/Output

Interactive Parallel Debugger

Langley Research Center

Megaflops (Mega[million] FLoating Point OPerations per Second)
Multiple-Instruction, Multiple-Data

Mass Storage Subsystem

Numerical Aerodynamic Simulation

Network File System

Network Queuing System

Operations Control Office

Oak Ridge National Laboratory

Performance Analysis Tool

Parallel Virtual Machine

Supercomputing Network Subsystem

Single Program Multiple Data

System Resource Manager

Transmission Control Protocol/Internet Protocol

X Window System

PREGSDING PAGE BLANK NOT FILMED

1 INTRODUCTION
1.1 High Performance Computing at NASA Langley

The Central Scientific Computing Complex at NASA Langley Research
Center has been a national leader in high performance computing from the
introduction of Control Data Corporation's STAR-100 in the mid-1970's.
Work commencing in the mid-1980's centered around parallel vector
processors such as the CRAY-2 and CRAY Y-MP. For the last decade,
research at the Institute for Computer Applications in Science and
Engineering (ICASE) has focused on the emerging technology of
microprocessor-based parallel computing. There is general consensus that
this new paradigm of computing will become a major percentage of
scientific computing in the mid-1990's.

The transition to a new programming style is expected to be more difficult
than the transition to vector computing in the 1970's. Parallel computers
have generally immature software and require significant user effort to
achieve any reasonable level of efficiency. To assist the programmer, each
vendor and numerous third party software are developing parallel
software tools to assist in the portability, debugging, analysis and design of
parallel applications. The intent of this paper is to give users a brief
introduction to the tools available on the Intel iPSC/860 (see section 1.2).

The current parallel environment at LaRC is a 32-node Intel iPSC/860 with
8 megabytes of memory per node. This machine has a hypercube
interprocessor interconnect and requires an Intel i386-based System
Resource Manager (SRM) as a front-end. The LaRC iPSC/860's SRM is
named Bluecrab. There is a Sun Microsystems SPARC 1+, named Fiddler,
that also serves as a front-end. It is not possible to login directly to the
iPSC/860. By the fall of 1993, it is expected that a 66-node Intel Paragon
will replace the iPSC/860. Most of the tools available on the iPSC/860 will
also be available on the Paragon.

March 1993 1-1

1.2 Evaluation of Parallel Software Tools

Effective parallelization of applications requires considerable effort by the
programmer. This is true of the shared memory CRAY-class
supercomputers as well as massively parallel computers or workstation
clusters. Compilers that automatically parallelize a user's code have not
matured to the level of sophistication displayed by automatic vectorizing
compilers for CRAY or CONVEX class supercomputers. Debuggers and
performance analysis tools for distributed memory systems are in early
stages of development. However, significant work is being done by many
individuals and organizations in the development of tools to assist the
programmer in the design and coding of parallel code. The purpose of this
paper is to summarize the effective use of some of the commercially
available tools that have been installed at LaRC and to provide some
evaluation as to the features that each tool possesses or lacks.

The description for each tool is organized in a similar fashion. First, an
overview of the tool is provided. This section describes why the tool might
be used and what functionality it provides. The next section describes
accessing the tool, based on the individual vendor's documentation and the
experiences of the authors. The third section is a description of how the
tool is effectively utilized. This section includes examples. The following
section provides observations on the ease of use of each tool and a
comparison with similar tools that the authors have used on other systems.
This section also discusses features that the authors feel the individual tool
either lacks or needs to improve. The next section describes known
problems. The final section gives references for the tool. These references
may include vendor documentation or other technical papers.

The tools selected for early evaluation and testing include Intel's
Interactive Parallel Debugger (IPD) and Performance Analysis Tool (PAT);
ParaSoft's EXPRESS basic tool set, performance monitor and graphics tool;
Applied Parallel Research's MIMDizer; and Oak Ridge National Laboratory's
Parallel Virtual Machine (PVM). The paper makes extensive references to
available vendor documentation and refers the reader to the Intel Mini
Manual, written at LaRC for details on the local implementation of tools,
including path names, environment variables and makefiles.

1-2 March 1993

1.3 Future Direction

This work is not intended to be an exhaustive review of all parallel
software. Only those tools which have been installed for use at LaRC are
described in detail. The paper is intended to be dynamic. As new tools are
evaluated on the Paragon or other parallel systems, their evaluations will
be included in revisions or supplements to this paper. Additionally,
revisions will reflect the resolution of problems, the inclusion of new
features and on-going observations about the tools.

March 1993 1-3

March 1993

2 Express - BASIC TOOLS
2.1 Overview of Express

Express is a package of parallel software tools for FORTRAN and C
applications, developed by ParaSoft Corporation for the Intel iPSC/860 and
other platforms. In addition to having Express available on the Intel
iPSC/860, Langley Research Center (LaRC) has a site license for both the
FORTRAN and C network versions of Express on Sun Microsystems
SPARCstations. Express provides a programming environment for
distributed memory Multiple Instruction Multiple Data (MIMD) machines
and includes a complete set of tools for developing and testing both
FORTRAN and C programs. Users can develop new parallel programs by
calling Express primitives from their source code. Express includes tools for
message-passing, automatic data decomposition, Performance Analysis
(PM), Parallel Debugger (NDB) and Parallel Graphics (PLOTIX). More
information on these tools can be found in references [1] - [8] (see section
2.6). Access and other general information for Express at LaRC is located on
the iPSC/860 front-end computers in the file

/urm/ipsclshare/Iocal/express-ipsc/README.larc

Questions about Express may be directed via e-mail to:

mpp@fiddier.larc.nasa.gov

March 1993 2-1

2.2 Access to Express

Express software can be run from a SUN workstation, or from an Intel 386-
based microcomputer. This section includes access information from these
machines at LaRC and some general information on Express software.

To access Express software, users must set the PATH and MANPATH
environment variables. They may be set by executing the following
statements after logging on, but before using Express on Fiddler or
Bluecrab. These statements may also be added to a user's .cshrc file.

On Fiddler:

source /ump/ipsc/share/local/express-ipsc/setenv.sund-fiddier
On Bluecrab:
source /Jump/ipsc/share/local/express-ipsc/setenv.v_386-bluecrab

It is possible for users to access the iPSC/860 and Express software
directly from their own Sun SPARCstations. To set this up, contact your
workstation system administrator and the iPSC/860 system administrator
at (804) 864-7474.

2.2.1 Express and NetExpress
The file in the directory
flump/ipsc/share/local/express-ipsc

allows a user to execute Express programs on the iPSC/860.

Another version of Express, called NetExpress allows a group of networked
Sun SPARCstation hosts to act as nodes, emulating the iPSC environment.
NetExpress can be used to develop the initial parallel code. For more
information about NetExpress, see references [5] and [6] or send e-mail to

mpp@fiddlier.larc.nasa.gov

Example programs using Express are located in the

fump/ipsc/share/local/express-ipsc/examples

2-2 March 1993

directory on Fiddler. The examples include README files, makefiles, and
Express.cst files that refer to specific directories and files used by ParaSoft.
At LaRC the corresponding file names are:

Directory (in examples) Directory at LaRC
/home/sampson4/express fump/ipsc/share/local/express-ipsc
/home/sampsond/pgi3.3/i860 /ump/ipsc/share/XDEV/i860

2.3 Detailed Description of Express
Express supports the CUBIX and host/node models of programming.
2.3.1 CUBIX Input/Output

In the CUBIX model a single program is written which is then loaded onto
one or more nodes. The program starts executing on each node and
communication between nodes is performed via message-passing. The two
most important FORTRAN function calls in the CUBIX model are kxinit and
kxpara. The function kxinit sets up a COMMON block and the function
kxpara identifies the processor numbers and number of processors.

An important feature of Express is its Input/Output (I/O) system. Both
loosely synchronous 1/0 and asynchronous I/0 are supported. A loosely
synchronous 170 function call is a barrier to continuance of the program.
When one node makes a loosely synchronous 1/0 call it waits for all other
nodes to make the same system call. When all nodes have made the call
every node proceeds. Loosely synchronous 170 may be either single mode
(default) or multiple mode. Asynchronous I/0 function calls can be made
in any node at any time regardless of the activities currently occurring in
other nodes.

In single mode for input, node zero reads the input and Express broadcasts
the information to all processors. For output, output from node zero is sent
to the host processor. In multiple mode for input, each node receives a
different piece of data. For output operations, each node outputs its own
data. Both of these 1I/0 types must be done in a loosely synchronous
manner or the program will abort.

In asynchronous mode for input, each individual node can receive any
piece of data. In asynchronous mode 1/0 statements may be executed in
unpredictable order, making it hard to control. In this mode output from
each node can come out in any order.

March 1993 2-3

EXAMPLE (Output):

Program Mtest
Integer ndata(4)
set up Express
call kxinit

identity processor numbers

OO0 000

call kxpara (ndata)

write (6,) ‘hello world '’

call kmulti (6)

write (6,) ' | am processor ', ndata(1)
call kflush (6)

call ksingl (6)

write (6,”) ' and that is that!

stop

end

If the above example is executed on 4 processors then the output is:

hello worid

| am processor 0
| am processor 1

| am processor 2

i am processor 3

....and that Is that!

In this example the first output is in single mode. The next four outputs
are in multiple mode and the final one is in single mode. A call to kflush
in multiple and asynchronous mode should be used to flush the buffer.,
Multiple mode files never flush automatically. The only way to get at the
data in such a file is to call kflush explicitly. Common errors resulting
from not flushing the buffer are the " abort " and " status -1" messages.
The singular and multiple modes are not restricted to output operations,
they can be applied to input operations as well.

2-4 March 1993

EXAMPLE (Input):

Program input
integer ndata (4)

set up Express
call kxinit
identity processor numbers
call kxpara (ndata)
. get number of processors within the group
nproc= ndata (1)

default mode is single mode

000 000 000 000

read (5,') N
write (6, *) ' please enter ', nproc , ' values '
call kmulti (5)
read (5,°) 1
call kmulti (6)
write (6,10) N,|, nproc
10 Format (1X,'you gave ',I3, ‘and ', I3, 'to proc*, 13)
stop
end

When run on 2 processors with input

123
8.7

The output is

you gave 123 and 8 to proc 0
you gave 123 and 7 to proc 1

To avoid the constraint of loosely synchronous output, asynchronous mode
output may be used. However, it introduces randomness to the output.
Code that is guaranteed to work follows:

call kasync (6)

ff (... Error...) then

write (6, *) ' we have problem'
call kflush (6)

endif

An error condition in a particular node can be detected with asynchronous
mode output. Asynchronous input is difficult to maintain since requests to
read data arrive in random order.

March 1993 2-5

2.3.1.1 Advantages and Disadvantages of the CUBIX Programming
Model

CUBIX programs are easier to develop and maintain, since only a single
program needs to be written. However, a significant drawback is the size
of the code, since a copy needs to be maintained on each processor. The
size of the code reduces the amount of space available for data. Another
drawback is the lack of standard I/0. One of Express's three different
modes needs to be used for performing 1/0.

2.3.2 Host/Node Model

In the host/node model two programs must be written, one for the host
and one for the nodes. The host program runs on the native host computer
and the node program runs on the iPSC/860 nodes. The host computer
communicates with the iPSC/860 nodes using basic Express system calls. In
this model the host program may use any of the host services that were
previously available to it plus the additional ones provided by Express to
communicate with and control the iPSC/860. The host program allocates
nodes and downloads the separately compiled node program to each
processor. It also deallocates nodes after the node program finishes
execution. All I/0 must be handled by the host program. The interface or
control portion of the code remains on the host. The interface between
host and node program is provided by Express function calls which allow
data to be transferred between host and nodes. The compute-intensive
portion of the application is executed on the iPSC/860 nodes. The Express
FORTRAN function calls kxinit, kxopen, and kxload are used in the host
program to setup Express, to allocate processor groups, and to load the
node program into each processor.

The use of byte-swapping calls is needed when sending messages between
the host and the iPSC/860 when the remote workstation does not use
Intel's byte ordering convention. The Intel convention specifies that the
least significant byte of an integer is stored at the lowest memory address.
Sun SPARCstations, such as Fiddler, use a different byte ordering
convention. Byte-swapping calls are provided by Express.

2.3.2.1 Advantages and Disadvantages of the Host/Node Model
In the host/node model a portion of the code is kept on the host computer.

This makes more memory available on the iPSC/860 nodes. The host can
keep machine specific code. For example, if considerable amount of time

2-6 March 1993

has been spent developing a complex graphical user interface, it may be
wasteful to attempt porting it to the iPSC/860 environment.

Debugging host/node model programs, however, is difficult, since nodes
are unable to perform their own I/0 without coordination with the host. So
to debug with print statements one has to change both the host and node
programs. It is also more time consuming to develop and maintain
host/node model programs.

2.3.3 Compiling CUBIX and Host/Node Programs

Express supports FORTRAN and C. The FORTRAN compiler is xf77 and the C
compiler is xcc. For more information on the CUBIX and the host/node
programming model consult references [1] and [2].

The FORTRAN compiler for Express is:
xf77 [-c] [-0 outname] [-kXN|-kXH|-kcubix] [-v] files....

Description of options:

- , Compile only - do not proceed to link resulting object files.

-kcubix | Use CUBIX programming model.

-Mpert Enables profiling.

kXH Use host/node programming model for a host program.

kXN Use host/node programming model for a node program.

-0 outname Specify an alternate name for the executable program produced by the linker.

Default Is 'a.out’.
-g For correct functioning of profiling tool xtool.
The C compiler for Express is:

xcc [c] [-0 outname] [-Dname[=zvalue]] [-Idirname] [-kXN]-kXN|-kcublx] [-v] files....

Description of options:

- Compile only - do not proceed to link resulting object files.

-Dname

-Dname=value Define preprocessor symbol and optionally assign a value. It has the
same effect as using '#define name vaiue' in program line.

-ldirectory Add a directory 1o the path for include files.

March 1993 2-7

-kcubix
-Mperf
-kXH
kXN

=0 outname

Use CUBIX programming model.

Enables profiling.

Use host/node programming model for a host program.
Use host/node programming model for a node program.

Specify an alternate name for the executable program produced by the
linker. Default Is ‘a.out’.

Generate listing of all command lines before they are executed.

For correct functioning of profiling tools.

March 1993

2.3.4 Executing Express CUBIX Programs

The basic syntax for the cubix command is

cublix [-n nodes] [-d doc] [-t time] [-D] [-mc|x|e] prog [arg1][{arg2]]..

This command provides an interface between the host/node applications
and the host file system and operating system utilities. It is also
responsible for node application and the communication of command line
arguments to a node program.

Description of options:

-n nodes

-d doc

-t time

-m{c|x|e]

March 1993

Allocate nodes for this process. Default is 1.

Alternative to -n switch. Specify size of processor group logarithmically
in manner suitable for hypercubes (i.e.,doc=0 for 1 node,doc=1 for
two,doc=2 for four etc). Default is 0.

Time out the process after the given number of seconds. This can be
useful in detecting hung programs. The defauit is no time out.

Enable the performance monitoring tools. The '¢’,%’,and ‘e’ characters
refer to the communication, execution and event driven profiling systems
respectively and may be combined.

2.3.4.1 Sample CUBIX and Host/Node Programs
EXAMPLE (Interactive CUBIX Program):

Program hello
integer nddata(4),procnum, nprocs
o]
C Express cliche
o]
common/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNODE.IALPRC
Cc
C Start up Express, find out processor numbers and number of processors
Cc
call kxinit
call kxpara(nddata)
procnums=nddata(1)
nprocs=nddata(2)
Cc
C Write same thing from each processor: it is written once.
C Then read a single value C into each node.
C
write(6,1) nprocs
1 format(1x,'Hello, there are *,i3,'nodes,give me a number: '
read (5,°) ival
(o]
C Write from each processor;this appears in processor number order.
(o]
call kmutlti(6)
write(6,2) procnum, procnum,ival,ival*procnum
2 format(1x,'| am processor ',i6, ', i6,' x ', i6,' = ', i6*i6)
call kflush(6)
C

C Switch back to single mode, prompt for one value for each node,
C read them in processor number order

Cc
call ksingi(6)
write(6,3) nprocs
3 format (1x,'Please enter ',i4, * values, one for each node’)
do 10 i=1,nprocs
read(5,*) jval

if (L.eq.procnum+1) ival = jval
10 continue
Cc
C Write the values asynchronously; in random order. Note that it is often hard
C totell on small number of nodes the ditference between multi and async modes
C

write(6,°) ‘The numbers you entered, in random order:'

call kasync(6)

write(6,4) procnum,ival
4 format (1x,'Node ',i4, ' received ', i4)

call kflush(6)

stop

end

2-10 March 1993

A sample makefile for this CUBIX program follows:

###start of makefile for Intel Express CUBIX FORTRAN code
all:ipsc
Ipsc:hello
#
hello:
xf77
runipsc:
cubix
clean:
Ipsc code
hello : hello.f
xf77 -0 $@ hello.f -kcubix
load executable 'hello’ on 4 processors.
runipsc: cubix -n4 hello
clean:-m - *.0*_fpp i

To compile and execute using this makefile enter the following (Note that
all boldface type is the response from the computer):

% make all

xf77 -0 hello hello.f -kcublx

% make runipsc

cublx -n4 hello

cublix version 3.2.4 -- copyright (c) 1991 ParaSoft
Allocated 4 nodes, origin at 0, process Id 3048.
Loading "hello” Into all processors....
Loaded,starting...

Hello, there are 4 nodes, give me a humber:

< 2

| am processor0:0X 2=0

lam processor1:1X 2=2
lamprocessor2:2X 2=4
lamprocessor3:3X 2 =6

please enter 4 values, one for each node :

The numbers you entered, in random order:
Node 0 recelved 1
Node 1 recelved 2
Node 2 recelved 3
Node 3 recelved 4
Execution Terminated:
System 0:24 user 3:11
(;UBIX : exit status 0
0,
(-]

March 1993 2-11

EXAMPLE (Interactive Host/Node Programs):

Host program:

2-12

Program host
common /XPRESS/ NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
integer fromnd(2),ntimes
integer check k,status
integer pgind,nodes
integer src,type, swap
integer env(4)
character*80 prgnam,device
parameter(device=' /dev/transputer',prgnam="'node’)
c data type /123/
C Start up Express. This must be the first system call you used.
C Read the number of nodes. Also find out whether or not to stop the program
C upon loading. This is useful for debugging. This is done by having a negative
C number of nodes mean "stop”. Kxpaus call stops a program at its first
C Instruction after being loaded. Kxtswa is a byte-swapping routine

START

CALL KXINIT
swaps=kxiswal()

write(6,*) 'number of nodes?'
read(5,") nodes
H(nodes.it.0)then
nodes=-nodes

call kxpaus

endif

OO0

]
C Allocate a processor group containing nodes processor in the device pointed
g to by the character device.

pgind = kxopen(device,nodes,nocare)
it(pgind.it.0) stop ‘failed to allocate nodes'

C load the program
c

status = kxload (pgind,prgham)
if(status.it.0)then
write(6,")'failed to load program’
call kxclos(pgind)

stop

endif

get system parameters and construct a checksum to compare with the
values returned from the cube

O000

status=kxpara(env)
check=0
do 10 k= 1,env(2)
check=check + (k-1)
10 continue

March 1993

Prompt for the number of times to pass the message around a ring
write(6,*) ‘how many times should the message go around’

Cc
Cc
c
read(5,*) ntimes

C

C Send the count to the cube and then read back a message for each cycle
C This is rather tricky on machines with reversed byte orders. Therefore

C byte-swapping is needed to send them to the nodes,and then swap them
o

if (swap.eq.1) call kxswaw(ntimes,ntimes,4)
status=kxbrod(ntimes,ihost,4,ialnod,dummy type)
do 20 k=1,ntimes
src=0
statuss=kxread(fromnd,8,src type)
H(swap.eq.1) call kxswaw(fromnd,fromnd,8)
if (fromnd(1).ne.env(2).or.fromnd(2).ne.check) then
write(8,*) ‘error in node communication’
write(6,*) 'expecting ',env(2),check
write(6,*) ‘received’ fromnd(1),fromnd(2)
call kxclos(pgind)
stop
else
if(mod(k,100).eq.0)then
write(6,*)'done’ k
endi
endif
20 continue
write (6,") 'finished"
call kxclos(pgind)
stop
end

March 1993 2-13

Node program:

Program Node

common /XPRESS/ NOCARE,NORDER,NONODE,IHOST IALNOD,IALPRC
integer indat(256),outdat(256)
integer tohost(2),ntimes
integer env(5)

integer k,nshift,status,dummy
integer twdnod,bcknod
integer type,dest,nprocs
integer fadd

common /junk/ idata(100)
external fadd

integer swap

data type/123/

o]
C start up Express. This must be the first Express system call used.

call kxinit
swap=kxtswa()

read system parameters,number of nodes etc....

status=kxpara(env)

O 000

C Now set up the channels to use in the ring. Map a one dimensional chain
C of processors onto the 'doc'dimensional hypercube grid with (1<<doc)
C processors in it

Cc
nprocs=env(2)
status=kxgdin(1,nprocs)
fwdnod=kxgdno(env(1),0,1)
backnod=kxgdno(env(1),0,-1)
Cc

C now read the number of iterations from the host - note that the number
C of forwarding operations Is this parameters times the length of the ring
Cc

idata(1)=123

data(2)=type

idata(3)=-1
status=kxbrod(ntimes,ihost,4,ialnod,dummy,type)
it (swap.eq.1) call kxswaw(ntimes,ntimes,4)
idata(3)=ntimes

do 10 k=1,ntimes

C
C shift data around the ring we just set up
Cc
do 20 nshift=1,env(2)
if (swap.eq.1) call kxswaw(outdat,outdat,512)
status=kxchan(indat,512,bcknod,type outdat,512,fwdnod,type)
it (swap.eq.1) call kxswaw(indat,indat,512)
20 continue
o]
C Now send a message to the host. Add up a bunch of ones and also
C our processor numbers
C
tohost(1)=1
tohost(2)=env(1)

2-14 March 1993

if(swap.eq.1) call kxswaw(tohost,lohost,4°2)
status-kxcomb(tohost.tadd.4.2.ialnod.dummy,type)
i (swap.eq.1) call kxswaw(tohost tohost,4°2)
it(env(1).eq.0)then
if(swap.eq.1) call kxswaw(tohost,tohost,8)
status=kxwrit(tohost,8,ihost,type)
endif
10 continue
call kxexit
stop
end

C
g User supplied summing function to be used in kxcomb call
integer function fadd(i,j,size)
integer i,j.slze,fadd
(S
fadd=1
if(swap.eq.1) call kxswaw(i,i,4)
#(swap.eq1) call kxswaw(] j,4)
return
end

A sample makefile for this host/node model program follows:

all:lpsc
ipsc:host node
ipsc code
host:host.f

xt77 -kXH -0 $@ host.f
node:node.f

xi77 kXN -0 $@ node.f
run host-node code on 4 processors
runipsc:ipsc

host 4 node
clean: -rm -f host node *.0 core

To compile and execute host/node code enter the following (Note that
boldface type is output from the computer):

% make all

xf77 -kXH -0 host host.f
host.t.

MAIN exsamp:

xf77 -kXN -0 node node.t
% make runipsc

host 4 nodes

number of nodes?

<4

Allocated 4 nodes, origin at 0,process id 3165
Loading "node” Iinto all processors...

Loaded, starting ...

How many time should the message go around?

March 1993 2-15

2.3.5 Express System Calls

The Express system calls are used from within CUBIX and host/node
programs. Express offers a variety of system calls. In this section the basic
calls for programming with Express will be described.

The Express system calls are divided functionally into seven groups:
system initialization, processor allocation and cube control, message-
passing, global operation, data decomposition, 170, and utility functions.
There is a domain associated with each system call. The system calls listed
in the following section also give the domain in which they can be invoked.
Some system calls can be issued by either host or node programs others
are available only to host or only to node programs.

2.3.5.1 System Initialization

The kxinit routine must be the first Express routine called in both host
and node programs. It serves to initialize the internal state of Express and
also to set up a common block containing useful parameters for use by

application code.

System call Domaln Description

kxinit host/node starts Express system.

2-16 March 1993

2.3.5.2 Processor Allocation and Cube Control

The following calls are to be issued from the host program only. The
kxploa call provides a complementary interface to the kxload routine for
loading programs into groups of processors. Instead of loading the entire
array with a single node program, this routine allows different applications
to be loaded into individual nodes of the machine. The kxopen call must
be used before attempting to access any processor groups. The kxclos call
is used at the end of the application for releasing a cube.

System call Domaln Description
kxclos host deallocate processors.
kxload host load a program into nodes.
kxopen host allocate a processor group.
kxpaus host arrange for programs to be
loaded stopped.
kxploa host load a program into individual nodes.

2.3.5.3 Data Decomposition

The kxpara routine is used to determine runtime configuration. The
information of runtime environment is returned to the array elements of
kxpara. The first array element returns node id of calling process and the
second array element returns number of processors allocated in the
processor groups.

Other data decomposition tools collectively fall under KXGRID routines
(KXGRID is not a Fortran-callable routine), whose routines include
functions to perform automatic decompositions of user domains onto the
underlying machine topology. A user specification for a problem domain
which has the topology of a Cartesian grid in N dimensions is mapped onto
the hardware topology. A partial list of the KXGRID routines is listed.
More information can be found in references [1] and [2] (section 2.6).

System call Domain Description
kxpara host/node determines runtime configuration.
kxgdin node performs elementary

mapping and must be called
before any of the other kxgrid
routines except kxgdsp.

March 1993 2-17

System call Domain Description

kxgdsp node used to divide up processors
between user specified dimension.

kxgdsi node used to distribute an array over user
grid. It distributes global index over
processors and assigns global index
to local index.

2.3.5.4 Message-Passing

The 32-node Intel iPSC/860 at Langley is a scalable distributed memory
parallel supercomputer. Communication between processors occurs
through message-passing. Messages can be synchronous or asynchronous
and are characterized by a message length in bytes, a type and a status.
The accepted message is read into a receive buffer. The type is an
identifier, determined by the programmer allowing control and validation
of messages by type. The status argument is a mechanism by which one
can check for the completion of asynchronous messages. Express provides
system calls for: synchronous message-passing, synchronous vector
message-passing, test for an incoming message-non-blocking,
asynchronous message-passing.

A synchronous send indicates that the submitting process waits until the
send is complete. The completion of the send is not a verification that the
message is received. The send function kxwrit returns the number of
bytes written, or -1 in case of unrecoverable errors. A synchronous receive
blocks the receiving process until a message with suitable parameters has
arrived. The vector send and receive functions allow send and receive of
non-contiguous blocks of data. This is the main difference between vector
and basic send and receive functions. A list of frequently used message-
passing functions follows.

System call Domalin Description
kxread host/node receive a message and wait
for completion.
kxwrit host/node send a message and wait for
completion.
kxvrea host/node receive non-contiguous blocks of data.
kxvwrl host/node send non-contiguous blocks of data.

2-18 March 1993

2.3.5.5 Global Operations

Global operations provide a high-level construct for communication among
node processors. A list of frequently used global operation functions
follows.

System call Domalin Description

kxbrod host/node performs broadcasting operation
among the processors. This function
broadcasts n-bytes of data from an
from a origin in the indicated buffer.
The broadcast is to all processors
when the argument nnodes is set to
IALNOD. IALNOD is defined in the
XPRESS common block and is set up
by the kxinit function.

kxchan host/node performs a similar task to a pair of
successive calls to kxwrit and
kxread. User is freed from worrying
about the order of sends and receives.

kxcomb node The kxcomb node is used to perform
“combining” operations on data
within the node processors. The
operation to be combined is supplied
by the user. In case of an error, -1
is returned.

kxsync node implements synchronization points
in an application. it is guaranteed
that no processor will proceed past
the call to kxsync until all are ready.

2.3.5.6 I/0

A partial list of 170 functions is described below.

System call Domaln Description

kmulti node Each node can read its own
data. Output requests also can be
made independently. Call to kflush
must be used to flush buffers else
errors will occur. Most common
errors are "abont” and"status -1".
Calls to kmulti must be made in
loosely synchronous fashion.

March 1993 2-19

System call Domain Description

ksingl node for read operation node 0 reads and
Express broadcasts the same data to
all other nodes. For write operation only
node 0 transmits. Calls to ksingl must be
made in loosely synchronous fashion.
This Is the default mode.

kmwrit node writes independent data from each node
to the file indicated by the argument.

kasync node I/O requests are handled independently
on the processors. No interprocessor
synchronization is performed.

2.3.5.7 Udlity Routines

Utility routines include byte-swapping routines and timing routines. The
use of byte-swapping calls are needed when sending messages between
the cube and the host on which the remote workstation does not use Intel's
byte-swapping convention. Intel stores the least significant byte of a word
at the lowest memory address. Sun SPARCstations, such as Fiddler, use a
different byte ordering convention. They store the most significant byte at
the lowest address. The consequence of this is that byte-swapping must be
performed when communicating data between the host processor on
Fiddler and node processors on the iPSC/860. Byte-swapping calls require
three arguments. The first is the buffer from which data is taken and
second is the buffer into which it should be placed after swapping. The last
argument is the number of bytes in the buffer to be swapped. Following is
a partial list of utility routines.

System call Domaln Description

kxtick node returns time in microseconds.

kxswaw host/node reverses the bytes in 4 bytes quantities.
kxtswa host/node checks whether bytes need to be

reversed. If the returned value is
1, then bytes need to be reversed.

2-20 March 1993

2.4 Observations on Using Express

In order to calculate communication overhead of basic message-passing
calls relative to an iPSC version, an iPSC version "ring" program and a
Express version "ring" program may be executed. The Express version of
the "ring" program performs timing analysis to compute overhead
associated with kxread and kxwrit functions compared to Intel's csend
and crecv functions. The "ring" program circulates a message among all
processors which are conceptually arranged in a ring configuration. Each
processor receives a message from its predecessor and forwards it to its
successor. The cycle is repeated a hundred times for each message length.
Message length varies from O to 32768 bytes.

On average, Express overhead was about 20% more costly than the native
Intel message-passing calls. On the other hand, for one of the NAS parallel
benchmarks, Express' combining function kxcomb was less expensive than
Intel's gdsum function. Also for another benchmark code Express's timing
using kxrecv and kxsend showed improved performance over Intel's
irecv and csend. :

The difference between kxread/kxwrit and kxchan is basically one of
safety. If messages are sent with kxwrit and then read with kxread, it is
implicitly assumed that the low lying message-passing system has enough
memory to buffer the messages until it is read. The kxchan breaks up a
large message into small pieces and arranges its proper delivery by
alternating reads and writes internally.

For short messages, therefore, kxread/kxwrit will usually result in
improved performance but might scale badly. As more nodes are added,
there is a tendency to dump more messages into the implied buffer pool
until there is no more memory. The performance of kxchan can be
improved markedly by tuning the Express packet size to match the
communication size. This is done by modifying the value of the NBSIZE
variable in the Express customization file. If messages sent are larger than
NBSIZE then Express tries to dynamically allocate a larger buffer which
adds overhead.

March 1993 2-21

The routine kxcomb can be used in two ways. The arguments "size" and
njtems" specify size of data items in bytes and the number of data items to
be combined respectively. For performance reasons it is important to know
how these arguments relate to each other and performance. If a user
wants to sum up 6 integer numbers in each processor, there are two ways
to invoke the combine routine in Express. The first likely invocation is to
specify: size=4 and number=6. In this case the function will be called
separately for each item and the program will run slowly. The other
possible invocation is: size=24 and number=1. In this case the routine will
be invoked only once and will have to perform array summation.
Programs run faster in the latter case. Also since Express's combine
operation allows users to write their own combining function, it has
greater functionality than Intel's set of routines.

Even though the manual mentions that the timing function kxtick returns
the number of hardware clock ticks, in reality it returns time in
microseconds. For many users Express’s loosely synchronous mode of I/0
creates inconvenience. Currently ParaSoft is trying to modify 1/0
operations for their next version. In the next version the default mode will
be native 170 and users will have to switch mode to get Express's 1/0.
Express manuals do not provide diagnostic information for system call
errors.

The main strength of Express is its portability. Express can be used on a
variety of architectures including a network of Suns, CRAY Y-MP, iPSC/860
etc. This offers portability across many systems. According to ParaSoft
Express is 100% portable across different architectures. This should make
it possible for users to perform initial code development, testing, and
debugging on their own workstations, thereby reducing much of the
development activity from the iPSC/860.

Given that Express runs on a variety of platforms, the possibility of
running a single Express program on a combination of them is feasible. A
software component called "glueworks" can provide the multi-platform
capability.

2-22 March 1993

2.5 Known Bugs of Express

The timing function kxtick does not return the number of hardware clock
ticks as described in the manual. The routine kxtick returns time in
microseconds.

2.6 References for Express

(1]
(2]
[3]
(4]
(5]
(6]
(7]
(8]

Express FORTRAN Reference Guide

Express C Reference Guide

Express FORTRAN User's Guide

Express C User's Guide

Express FORTRAN Language Introductory Guide for Workstations
Express C Language Introductory Guide for Workstations

Express FORTRAN Language Introductory Guide for iPSC/860
Express C Language Introductory Guide for iPSC/860

March 1993 2-23

2-24

March 1

3 Express - Performance Analysis Tool (PM)
3.1 Overview of PM

The PM utilities are post-mortem tools for analyzing program execution,
communication performance and event traced performance of application
programs on the iPSC/860 system. Data is accumulated during the execution
of the user program and then analyzed off-line, after execution has
completed. This data can be analyzed graphically or in the tabular forms
with Sunview or the X Window System (X).

The PM profiling data can be gathered in two ways. Profiling data may be
collected automatically using switches or through a programmatic interface.
The use of compiler switches to automatically gather data with the FORTRAN
and C compilers is the easiest and preferred method. The programmatic
interface method of gathering profiling and tracing data requires specific
changes to the source code before the code is compiled. Since this method
requires additional work, it is recommended that it be used when a specific
problem needs to be isolated.

3.2 Access to PM

Access and general information on Express software is described in Chapter
2, section 2.2.

3.3 Detailed Description of PM

The PM tools utilities are designed to analyze Express parallel performance.
PM consists of three tools: ctool, xtool and etool. These tools are used to
analyze performance of application programs. |

3.3.1 Using the Program Execution Tool (xtool)

The execution profiler tool, xtool, monitors time spent in individual routines.
This allows the user to focus attention on the most time consuming areas
which would benefit most by improvements.

The execution profiler relies on data contained in the symbol table for proper

functioning. This is done by specifying the g’ switch during the linking
phase of the program.

March 1993 3-1

The system works on a statistical principle. Every few milliseconds a system
routine runs which looks at the current instruction being executed in the
user application and increments a counter noting the memory addresses. In ~
this way it builds a histogram of the frequencies of hits in various areas of
the program, and determines the amount of time spent in particular routines.

3.3.2 Using the Program Communication (ctool)

The communication profiler tool, ctool, assesses time spent in communication
and I/0. On each node, data is accumulated to measure the following:

b Time spent calculating, communicating between processors and
performing I/O functions. This leads to an estimate of program
overhead and efficiency.

* Total numbers of calls to the communication system. It provides
a simple estimate of load imbalances.

The following function information is recorded, on each node:

* Number of calls to each individual function.
* Distribution of return values from each function (i.e. message 7
length read, message length written, number of objects
broadcast etc.)
3.3.3 Using the Program Events (etool)
The event profiler tool, etool, shows the interactions between nodes and
allows user specified events to be monitored. The goal is to provide a
detailed examination of the interaction between various nodes as time
progresses. The following event information can be recorded:
* The time at which the event occurred.
> An index value indicating the nature of the event.
* A program variable with its value at the time of the event.
~

3-2 March 1993

3.3.4 Compiling and Executing a CUBIX PM Program

Profiling information on the Fortran CUBIX program hello in section 2:3.5
can be gathered automatically by using the -Mperf switch during
compilation.

xf77 -Mpert -0 -g hello hello.f -kcubix

To turn on communication, execution, and event profiling systems the -mcxe
switch is used during execution.

cubix -n4 -mcxe hello

The CUBIX command with the -mcxe switch creates log files named
cbxprof.cp, cbxprof.xp, cbxprof.ep to be analyzed by ctool, xtool and etool
respectively. The syntax to execute each tool is:

xtool[options] program_name log_file_name
etool[optlons] program_name log_file_name
ctool[options] program_name log_file_name

where program_name specified the name of the program from which the
profile data is gathered. The log file_name specifies the name of the file
containing the profile data that the PM tools examine.

A partial list of options follows:

-p suppress graphical output. Tabular output is sent to stdout.

T Use an alternative graphical device for output.
The man page for each tool has a more complete description.

Here are examples for using the -p option for tabular output and -T option
for viewing data in graphical form using the X environment.

ctool -p program_name log_flle_name
ctoo! -TX program_name log_file_name

References [1] - [4] (section 3.6) have more information on PM.

March 1993 3-3

3.4 Observations on Using PM
3.4.1 Data Gathering Using Compiler Switches

Advantages: Using compiler driven switches is the easiest, most direct way
of gathering performance data for the PM utilities. The compiler -Mperf
option, enables data gathering for any or all PM utilities. This is a preferred
way to gather performance data.

Disadvantages: While the automatic method is easy to implement, it does
have the following disadvantages.

* It is relatively broadbanded, i.e., the entire program is profiled in-
stead of a possibly smaller code segment that may be of interest.

* With the automatic method, the amount or type of information
gathered can not be controlled. For example, a user may only be
interested in profiling data for iterations 110-125 of a 1000 iteration
loop. This cannot be achieved with the automatic method.

* The automatic method of gathering data may have an undesired
impact on program performance. Because each procedure/subroutine
has at least one entry and one exit system call added to it, programs
with many procedures/subroutines can experience a significant
growth in processing time and thus a degradation of program
performance.

3.4.2 Data Gathering Using the Programmatic Interface

Advantages: This method allows the user more control over the amount
and type of data that is collected.

Disadvantages: Programmers using the manual method of collecting
profiling data must have a good knowledge of the code that PM is profiling.
One way of gaining this knowledge is to first use the automatic method to get
a feel for the general performance of the overall program, and then use the
manual method to examine specific areas in more detail.

3-4 March 1993

3.5
No

3.6

(1]
(2]
(3]
(4]

Known Bugs of PM
bugs have been found at this point.
References for PM

Express FORTRAN Reference Guide
Express C Reference Guide

Express FORTRAN User's Guide
Express C User's Guide

March 1993

3-5

3-6

March 1993

4 Express - Graphics Tool (PLOTIX)
4.1 Overview of PLOTIX

PLOTIX is an extension of the Express CUBIX model which functions as a
parallel graphics system for supported parallel and distributed systems.
PLOTIX provides some basic graphics primitives (points, lines, polygons,
etc.) with associated attributes (color, line style, fill pattern, etc.); supports
normal windowing, viewporting, and clipping; provides for rudimentary
(locator) graphics input; and supplies a two dimensional contouring facility
for rectangular and irregular regions. Device-independent graphics output
is provided with supported devices including the X Window System (X)
and PostScript (among others). The PLOTIX graphics system is described
in references [1] - [2] (section 4.6).

4.2 Access to PLOTIX

Since PLOTIX is an extension of the Express CUBIX model, consult section
2.2 for detailed access information. Analogous to the CUBIX model, there
are sample FORTRAN and C PLOTIX programs in the subdirectory:

/ump/ipsc/share/locaVexpress—ipsc/examples/plotix

A PLOTIX program is compiled and linked (in FORTRAN or C) exactly as a
CUBIX program with the additional inclusion of the PLOTIX library.
Therefore, using the earlier CUBIX notation, a PLOTIX FORTRAN program is
compiled and linked using

x{77 [-0 program] ... -kplotix files ...
and a C program may be compiled and linked using

xce [-o program] ... -kplotix files ...
A PLOTIX program is executed as a CUBIX program with the addition of the
selection of the appropriate device driver using the "-T" command line

option. Again using the earlier CUBIX notation, a PLOTIX program
execution command line using the X driver is

cubix [-n nodes] ... -TX program ...

and using the PostScript driver is

March 1993 4-1

cubix [-n nodes] ... -Tps program ...

Other supported devices are linked in a similar manner.

4.3 Detailed Description of PLOTIX

PLOTIX uses a variation of the CUBIX programming model. Consequently,
all Express FORTRAN (C) functions, including the CUBIX-specific functions,
are supported under PLOTIX. As with other Express functions, the user
should check the return codes from all PLOTIX functions calls before
proceeding. The following sections give the FORTRAN function name
followed by the C function name in parenthesis.

The PLOTIX graphics system must be initialized with the FORTRAN (C)
function kopenp(openpl) and closed with kclosp(closepl). PLOTIX
buffers all graphics output and the user is responsible for both declaring
and flushing the graphics buffer. The user may wish to experiment with
the size of the buffer which is supplied as an argument to
kopenp(openpl) (a default size is provided). The user must flush the
graphics buffer before any graphics output is displayed. Analogous to the
CUBIX I/0 modes (see section 2.3), the graphics buffer may be flushed in
single-mode, multi-mode or asynchronous-mode using
ksendp(sendplot), kusend(usendplot) or kasendp(asendplot),
respectively, conforming to the loosely synchronous versus asynchronous
conventions.

PLOTIX utilizes normalized coordinates in the range [0.,1.] to represent
screen-space or view-space. The user may partition this space with any
number of viewports with only one viewport being active at a time. The
user may define world-space or window-space based on the range of the
application data. The parallel graphics system affords the capability of
clipping the physical data at the window boundaries prior to display using
function ksetcl(setclip).

Device-independence is an important attribute of PLOTIX. In support of
this feature, PLOTIX provides a function kpxgop(getxplot) which permits
run-time determination of device-specific characteristics (such as support
for color or graphics input) for the purpose of generating code that is
conditionally executed based on these retrieved characteristics.

The supplied contouring system provides some high-level functionality
within PLOTIX. Function kcntor(contour) generates a two-dimensional

4-2 March 1993

contour map over a rectangular region based on data computed from a
user-supplied function (as opposed to a user-supplied two dimensional
array of values). In the case of irregular regions, a combination of the
lower-level functions kintl(initlevel) and kgetpt(getpoint) are used in
conjunction with the supported polygon drawing routines and the user
supplied function for calculating contour values. Examples on the use of
these contour routines and other PLOTIX functions are provided in the
aforementioned documents and on-line as addressed earlier in this section.
See section 4.6 for references.

4.4 Observations on Using PLOTIX

PLOTIX provides an architecture and device independent system for
performing parallel graphics. At the present time, the functionality of
PLOTIX is fairly limited, but the supplied basic primitives could be
combined by the user to construct more complex graphics applications.
The PLOTIX contouring system provides the only high-level graphics
capability supplied with the system. Built-in visualization capabilities for
hidden line/surface rendering, three dimensional contouring, isosurfaces,
vector display, image operations, are not available.

There is little with which to compare the performance of the Express
PLOTIX model, except to note that since PLOTIX is an extension of the
CUBIX 170 model, PLOTIX programs inherit the advantages and
disadvantages of a CUBIX program. From a user perspective, the interface
to PLOTIX is relatively straightforward implying that parallel graphics
applications may be constructed with a minimum number of function calls.

4.5 Known Bugs of PLOTIX

Although references [3] and [4] provide an alphabetized description of
PLOTIX routines. It is sometimes difficult to find individual routine
descriptions because many descriptors are for groups of routines.

4.6 References for PLOTIX

[1] Express FORTRAN User’s Guide

[2] Express C User’s Guide

[3] Express FORTRAN Reference Guide
[4] Express C Reference Guide

March 1993 4-3

4-4

March 1993

5 Interactive Parallel Debugger (IPD)

5.1 Overview of IPD

IPD is a symbolic source-level debugger for Fortran, C and assembly
language programs running on the Intel iPSC/2 and iPSC/860 Concurrent
Supercomputers. IPD contains most of the features of current debuggers
designed for serial programs and adds custom features supporting the
parallel programming model. IPD contains debug environment commands
which control the debugging environment. Another class of IPD commands
gives the user precise control over program execution. A third class of
commands perform program examination and modification. IPD is
perfectly capable of debugging in a true MIMD (Multiple Instruction
Multiple Data) environment where different programs may be on the
nodes but for the purpose of this discussion only the prevalent SPMD
(Single Program Multiple Data) case is addressed. More information on this
debugging tool can be found in references [1] and [2] (see section 5.6).
Information regarding access for IPD is located in the file

lump/ipsc/share/local/IPD-ipsc/README
Questions about IPD may be directed via e-mail to :

mpp@fiddler.larc.nasa.gov

5.2 Access to IPD

IPD assists in debugging only node programs resident on the iPSC/860.
IPD is invoked and commands entered only from the SRM (Bluecrab). If
you're logged onto a system remote host you must log into Bluecrab in
order to be able to utilize IPD. All IPD commands must be entered from

Bluecrab.
5.2.1 Invoking IPD from Bluecrab

Before using IPD, the node program must be created using the "-g” compile
option, and the cube allocated. The IPD invocation syntax is

Ipd

If the file .ipdrc exists in your home directory, IPD will automatically
execute commands in this configuration file at this time. The node

March 1993 5-1
‘ PREGEDING PAGE BLANK NOT FILMED

program to be debugged is loaded onto the appropriate nodes via the IPD
load command and execution commences.

5.2.2 Node Program Specification

An application program is loaded onto the nodes and "into" the debugger
only by way of the load command (see 5.3.3).

5.2.3 Exclusive IPD Features

IPD uses the concept of "debug context" to implicitly (by default) or
explicitly denote which nodes are the target(s) of IPD commands. This is
the one mechanism which promotes debugging asynchronously executing
node programs on the cube.

Another feature is the display of the send/receive messages queues that
contain outstanding messages of types sent but unreceived and pending
receives.

Since node program execution synchronization is not guaranteed even for
the SPMD model, the process command displays the present state of each
node program as a significant diagnostic feature.

5.3 Detailed Description of IPD
The following represents the typical scenario of a debugging session under

IPD with particular emphasis on the custom parallel debugging features
which IPD affords. A single FORTRAN program is assumed (SPMD model).

5.3.1 Node Program Compilation

Normally, compilations for the Intel iPSC/860 use the if77 cross-compiler
on Fiddler. A sample if77 command line syntax looks like

if77 -0 node -g myprog.f -node

where -g gains access to the symbolic debug information at level 0
(default).

5-2 March 1993

5.3.2 Other Preparation

The user can store commands, normally entered immediately after IPD
invocation, into the .ipdrc configuration file. Examples here include
default aliases, breakpoints from prior sessions, other aliases to display
known variables at breakpoints, default context, loading of node
program(s), execution commencement, etc.

5.3.3 Asynchronous Node Program Execution Monitoring

An assumption here is that the load command is executed to store the
SPMD model onto the cube (nodes) and into the debugger. Also, the initial
run command starts the execution of the FORTRAN program resident on
all nodes.

From this point forward, IPD is called upon to be able to efficiently and
effectively deal with every possibility that might occur. The walit
command is one mechanism IPD has to deal with the fairly normal
occurrence of all nodes running to completion or breakpoint. This
command can ensure synchronization of nodes when debugging from
breakpoint to breakpoint. Breakpoints are usually set at the same line
number for all node programs. This technique however is far from
foolproof due to the possibilities of:

1. program logic errors (infinite loops)

2. extremely slow executing code due to other logic problems
(semi-infinite looping, unexpected data values, etc.)

3. aberrant data values causing abnormal conditions in one or
more separate nodes.

The user can interrupt (Ctrl-C) the executing node programs at any time,
Following this, the user should issue the stop command, followed by the
process command, to determine the exact status of all node programs
through the display of any informatives.

March 1993 | 5-3

5.3.4 Some Diagnostic Approaches at Halt

The process command (see 5.3.3) is a high-level command reporting
overall information regarding the state of each node. This may expose an
anomaly in program logic for all nodes or point to specific nodes as
differing from the majority.

Also to be considered as a high-level command in the command hierarchy
is the message passing queue commands. There shouldn't be any
outstanding sends/receives at synchronization points! Problem resolution
here depends on the user’s ability to know what should be happening in
the message passing system of the program and when it should occur.
Immediately below the high-level commands comes the frame command,
which is used to fix the order of routine invocation so that the user might
also know the exact halting location as well as the specific call chain in
force.

Below the frame level, IPD has two fairly simple commands to examine
(display) and modify (assign) program variables. Incorrect or
unexpected values in program variables usually signals the experienced
debugger to discover the error source. Many times, entering the same
sequence of commands is facilitated by the exec command, which
automatically or semi-automatically causes each IPD command stored on a
file to be executed.

5.4 Observatdons on IPD

In general, IPD seems fairly easy to use and doesn't contain any difficult
concepts to grasp which would inhibit a relative novice. Probably the most
difficult situation encountered is interpreting correctly the output from the
frame, process and outstanding message queue commands. The novice
user is likewise not burdened down with making sense of a great many
commands to comprehend. This, however, can be disconcerting to the
experienced user expecting to find more powerful commands presently
available in current (UNIX) interactive debuggers. IPD may be regarded as
a bare bones debugger, but one that should suffice given the task of
debugging parallel applications programs on the Intel iPSC/860. The
reasoning behind these general observations regarding IPD will be
delineated in terms of it's relative strengths and weaknesses from the
perspective of other debugging systems, both serial and parallel.

5-4 March 1993

5.4.1 Strengths

IPD's strong suit is the use of debug context. The user is well informed at
all times about which nodes are affected by any IPD command. The
context command allows the user to change the default debug context
should conditions warrant. The outstanding message queue commands are
invaluable in helping diagnose problems due to mismatched/untimely
communication patterns. Together with the process command, they
provide a high-level view of the program's state.

Breakpoint setting is also effectively implemented, especially in reference
to the data breakpoint option. This can be quite handy, but notoriously
slow if the user hasn't sufficiently narrowed down the code of interest.
The step command is effective when suspected code is narrowed and
when one or several nodes are suspected of not taking the same logic path
as the majority or when bad/unsuspected data is encountered.

5.4.2 Weaknesses

The background for this discussion includes UNIX-based interactive
debuggers on various supercomputer systems incorporating the X interface
as well as other debugging systems. In general, although IPD's commands
are similar to UNIX interactive debugger commands, they lack the
robustness associated with the UNIX commands. Also by comparison, IPD's
minimal command repertoire limits its effectiveness. The greatest
weakness is the lack of the X interface, which can save considerable
session time. A subtle weakness is the fact that IPD possesses commands
which have the functional equivalent of DBX debuggers, but have a
different name. Aliases could be used to remedy this particular difference.

The following list represents notable deficiencies in comparison to Unix-
based debuggers.

1. No conditional breakpoint capability.

2. No when command capability.

3. No trace command capability.

4, Difficult to save information from previous session to be used
in restarting next session.

5. Can't output data/debug session information except to the log

file.
6. Weak display command (vs. general print capability).

March 1993 5-5

7. In order to address line numbers/variables not in the current
scope the procedure and/or file/procedure must be
present on the IPD command. DBX’s up/down and
func/file handle this situation efficiently.

An example of an X based interactive parallel debugging system is the
Totalview Debugger within the Xtra Tool Set for the BBN TC2000
multiprocessing computer system. The obvious distinction between a
graphical-oriented system such as Totalview and a line-oriented system,
such as IPD is in the ability to present to the user in organized fashion
significantly more meaningful information in a much shorter time frame.
This directly impacts the users ability to more rapidly evaluate potential
cause/effect relationships, especially complex, subtle or surprising
interdependencies among processes (akin to iPSC/860 nodes).

Major features of Totalview include,

1. Multiple-window display

2. Window-per-process display of useful information (concept
may not be feasible or even desirable much beyond medium-
grained machines - such as the BBN's)

Pop-up menus eliminating command memorization

"Point and click" mechanism for breakpoint setting
Progressive "diving" into "objects" (routines,variable, etc.)
for more detailed view

User selectable additional windows capability

Integrated, context-sensitive, on-line help facility

Spell correction on routine, variable names, etc.

new

PN

The hierarchical window system available in Totalview begins with the
"root window" which displays updated process state. "Panes" within an
individual process window contain the stack trace, stack frame, and
executing source code. For a given process window, users can select a wide
variety of displayed objects such a routines, variables, breakpoints, stack
frames, etc. to obtain progressively more detailed information. Separate
windows are opened automatically and "clicked" closed. The user also has
management over several windows (any process) devoted to displaying a
specific type of information - such as all global variables, local variables,
breakpoints, events (log), etc. The reference for the preceding information
on Totalview was found in reference [3] (see section 5.6).

5-6 March 1993

5.5 Known Bugs of IPD
The following command sequence causes a syntax error within IPD.

run;wait

5.6 References for IPD

[1] Intel iPSC/2 and Intel iPSC/860 Interactive Parallel Debugger
Manual (1-9)

[2] Chapter 8 of the Intel Mini Manual (I-1)

[3] TC2000 Technical Product Summary, Revision 2.0, Nov. 1989 by
BBN Advanced Computers, Inc.

March 1993

5-7

5-8

March 1993

6 MIMDizer
6.1 Overview of MIMDizer

MIMDizer is an interactive tool which assists the user in the creation,
maintenance, and modification of computer programs for distributed
memory parallel machines. It is an extension of FORGE developed by
Applied Parallel Research Corporation and can be used to analyze and
understand a large existing program through the FORGE capabilities of
displaying global control flow, tracing global use of variables, and
analyzing data dependencies among any parts of a program. For the
transformation of a program to parallel, MIMDizer supplies a user interface
for data decomposition of arrays and distribution of loop iterations to
distributed memory processors. MIMDizer also provides the capability of
defining a parallel program from scratch via interactive menus so that the
user need not learn another parallel programming language. Complete
documentation is available in references [1] and [2] (see section 6.6).

Transforming a serial FORTRAN program into a parallel version requires
restructuring the program into a parallel form. The efficiency of the final
parallel product is dependent on the programmer's understanding of the
code and the problem being solved. MIMDizer is not a fully automated tool
for generating a parallel code, but rather simplifies the task of porting an
existing program to a distributed memory parallel machine.

Several steps are required to complete the transformation of a typical
serial program to a parallel version. The first step involves determining
which array or arrays are suitable for parallel processing. The FORGE part
of MIMDizer is useful here for tracing the use of the array throughout the
program and for determining if there are any data dependencies
associated with the array. The second step will generally be to decompose
the array across the processors. This step assigns "ownership” of portions
of the array to particular processors and assures that the required portions
of the array are available to those processors requiring them. The third
step might be to distribute the loop iterations over multiple processors for
the array being considered. It is primarily the responsibility of the user to
avoid communication problems associated with distributing loop iterations
in a manner inconsistent with the data decomposition. The end result of
these three steps, or more likely several iterations of these steps, is the
creation of a large database system comprised of four distinct parts: a
symbolic database, a dataflow database, a parallel directives database, and
a parallel model database. The fourth, and final, step in the transformation
process is to invoke a precompiler which will use the contents of these

March 1993 6-1

databases to instrument the original code into a parallel version of the
program.

6.2 Access to MIMDizer

MIMDizer is executed by entering the pathname at the shell command
prompt. The pathname is

fump/ipsc/home/psr/psr/distribAorge

MIMDizer interfaces with the X Window System, so you will need to have
your DISPLAY environment variable set for your display. The precompiler
is invoked by entering the pathname

lump/ipsc/home/psr/psi/distrib/pref77
with options to be discussed below.
6.3 Detailed Description of MIMDizer

MIMDizer is menu-driven and it is straightforward to learn your way
around the system. Upon invocation, MIMDizer displays several menu
entries in the right portion of the window. To get started, you have to
create or select a serial package containing the original program. If this is
your first session, there is of course no package to select, so you must
create one. The most efficient way to select menu entries is to use the
mouse to "pick" them by clicking the left button. To create the serial
package the following steps are necessary:

Pick "Create a Package"

Enter the package name

Pick "Define Package"

Pick "Select Hardware File"

Pick the appropriate hardware file (e.g., “iPSC 860")

Pick "Add Source Files to Package"

Mark the desired source file(s) by picking them and then pick "Add"
Pick "RETURN" twice to return to the original menu

You have now created a package and could quit by picking "Exit". For your
next session you would be able to "Select" this package or create a new
one. From this point, the following steps illustrate a possible
parallelization:

Pick "Analyze Program” Pick "Create" (in the lower window)
Pick the main program unit in the call chain in the right window
Pick "Parallelize for Distributed Memory"

6-2 March 1993

Pick "Data Decomposition”

Pick "Decompose”

Pick "Create”

Pick "Type" to toggle between "GYCLIC", "BLOCK", or "REPLICATE"
Pick "Dimension" to toggle between 1 and 7

Pick "Allocation" to toggle between "FULL SIZE" and "SHRUNK"

The decomposition and allocation choices are straightforward. Cyclic
decomposition is like dealing cards. The first element goes to processor
one, the second to processor two, and so on. Block decomposition is like
cutting the deck. The first set of elements goes to processor one, the
second set to processor two, and so on. Replicate decomposition gives all
the elements to each processor. Full size allocation stores the entire array
on each processor. Shrunk allocation stores only those array elements
required including any communicated values. Not all arrays can be
shrunk. For example, an array initialized by a FORTRAN READ statement
cannot be shrunk. Continuing with the parallelization process:

Pick "Save”

Pick the array(s) you want decomposed
Pick the decomposition type you defined
Pick "Apply*Pick "RETURN" twice

Pick "Analyze Automatically”

Pick the loops you want distributed

If you decompose on the first dimension of an array, you should also
distribute on the loop corresponding to the first dimension. If you
decomposed on the second dimension, distribute on the second dimension.
MIMDizer will not tell you if you are being inconsistent here when using
"Analyze Automatically”. If you use "Analyze Interactively”, MIMDizer
will give some clues that you are inconsistent, but you have to look for
them. Following the line "Preloop communication of", MIMDizer prints the
array elements being communicated. If you are inconsistent the
communication consists of one word at a time. If you see the message

+ The array arrayname needs cross jiteration communication

in the lower window, you are probably doing something wrong and the
resulting code will be extremely inefficient. Getting back to our example:

Pick "Save"
Pick "MENU"
Pick "Exit"

You have now decomposed and distributed your serial program. To
precompile, invoke pref77 with the following options

March 1993 6-3

pref77 serlalcode -p packhame -o paralleicode

where serialcode is the name of your original source file
packname is the name of your MIMDizer package
parallelcode is the name of the output parallel source file

To compile the parallel code enter

If77 -0 outf -node parailelcode -L/ump/ipsc/home/psr/psr/distrib/lib.860 -1 libdd_n.a
6.4 Observations on Using MIMDizer

MIMDizer has the potential to be a valuable tool for users who have
existing serial programs (with which they are familiar) which are to be
transferred to parallel versions. Since MIMDizer is menu-driven, it is
relatively easy to learn your way around the system. Several simple
examples have been used to demonstrate that a user who is familiar with
his program is capable of creating a parallel version with nearly linear
speedup, even though he knows absolutely nothing about the node-to-
node communication routines on the iPSC/860. The only weaknesses
observed for MIMDizer concern diagnostics. For the novice user,
especially, MIMDizer would be improved by issuing appropriate and
meaningful warning messages when things are being done which obviously
have a negative impact on the efficiency of the parallel program. In the
absence of such diagnostics, the user is forewarned to pay particular
attention to the decomposition and distribution processes. It is up to the
user to assure that there are no dependencies in the data being
decomposed and to assure that the decomposition and distribution are
performed in a compatible manner.

6.5 Known Bugs of MIMDizer

Although invoking the Parallel Runtime Monitor, as described in [2], led to
the creation of several "diag" files, attempts to invoke the "Node Profiler"
option were unsuccessful.

6.6 References for MIMDizer

[1] FORGE User’s Guide, Volume III
[2] MIMDizer User’s Guide, Version 7.10, June 1991

6-4 March 1993

7 Parallel Performance Analysis Tools (PAT)

7.1 Overview of PAT

The iPSC/860 Parallel Performance Analysis Tools (PAT) is a set of utilities
for gathering statistics on and analyzing program execution,
communication performance, and event traced performance of application
programs on the iPSC/860 system. The version described in this document
is the Intel Supercomputer Systems Division version of a performance
analysis product developed by the ParaSoft Corporation.

The PAT utilities gather performance data at runtime and output the data
to disk when the application completes. The PAT profiling utilities support
both the FORTRAN and C programming languages. PAT provides a set of
analysis tools that convert the performance data to tabular and graphical
forms that can be analyzed interactively. The graphical forms can be
viewed with SunView or X Window System (X). The PAT utilities provide
hardcopy output in PostScript form. Information concerning PAT include
[1] for detailed information, the man page pat for an on-line summary, and
the file

/ump/ipsc/share/local/PAT-ipsc/README/larc

for access and other general information. Questions about PAT may be
directed via e-mail to:

mpp@fiddler.larc.nasa.gov

7.2 Access to PAT

The iPSC/860 Parallel Performance Analysis Tools (PAT) analyzes
performance of application programs on the iPSC/860 system, and is used
in conjunction with the iPSC/860 C and FORTRAN compilers. Thus, code
profiling can be instrumented on platforms having access to the iPSC/860
compilers. The analyzing utilities are available on systems holding the
host software (including Fiddler), and can be invoked from a graphical
device (SunView or X) or from a non-graphical terminal (vt100).

The software package Express also developed by ParaSoft Corporation, see
Chapter 2, contains many of the capabilities, program commands, and
system calls as PAT. On systems where both software packages are
available, the use of the environment variables (for path and man pages)

March 1993 7-1

determine which package is being invoked. The default path and man
pages provided by the system administration default to the PAT utility,
not Express. The PAT man pages will have the phrase iPSC(Reg.)860 PAT
Utilities in the heading. Chapter 2 describes how to change the
environment variables to use Express.

7.3 Detailed Description of PAT

The PAT performance data is collected automatically by using compiler
switches and environment variables or selectively through the use of PAT
C or FORTRAN calls that are compiled with the application program. The
iPSC/860 system provides three methods to insert and control the use of
PAT system calls in the application code:

* Compiler switches to automatically profile/trace application
performance

* Environment variables that interactively toggle the gathering of
performance data

* A programmatic interface that allows the manual insertion of PAT
system calls at user specified points in the application code

The recommended method of gathering profiling data uses switches of the
C and FORTRAN compilers to turn one or more of the profilers on or off for
the code being compiled. This method automatically inserts the
appropriate PAT procedures and are at the start and exit of every
procedure/subroutine.

The PAT utilities provide separate post mortem tools to analyze the major
areas of parallel program performance on the iPSC/860 system. The
execution analyzer tool, xtool, displays the time spent in individual
routines. The communication analyzer tool, ctool, shows the time spent in
communication and 17/0. The event analyzer tool, etool, presents the
interactions among processors and monitors user-specified events. These
analysis tools convert the gathered performance data into tabular and
graphical forms that can be analyzed interactively.

7.2 March 1993

7.3.1 Profiling Methods

The PAT performance data is collected through the use of PAT C or
FORTRAN system calls that are compiled with the application program.
The system calls can be placed in the application code automatically, or
they can be added manually. The following sections provide an overview
of the three profiling utilities. Section 7.3.3 describes the compiler
switches to instrument manual and automatic data gathering.

7.3.1.1 Profiling the Program Execution

The Execution Profiler provides two distinct statistical methods. The first
method, the sampling method, regularly polls the processor execution
state. At a specified time cycle (10 milliseconds) a system routine looks at
the current instruction being executed in the user application and
increments a counter noting the memory address. Based on the sampling
information xtool builds a histogram of the frequencies of hits in various
program areas. Then based on the histogram PAT determines the amount
of time spent in particular routines.

The second method, the counting method, counts the number of times the
profiled routines are executed. When execution profiling is selected
procedure calls are inserted by the compiler at the start and end of each
compiled routine.

Notes: The core of the profiling methods are based on the UNIX utility
profil(), the sampling technique is not foolproof (e.g., when the sample rate
is same as event rate, then a false profile will result) and xtool often
requires a lot of memory to make a histogram.

|

March 1993

The following skeleton code, describe

manual control of the execution profiler.

PROGRAM XPRTST
INTEGER PRFBUF(2048), PRFSCL
C
C-- This value is 0x2000 (hexadecimal)
PARAMETER (PRFSCL = 8192)

d in reference [1] illustrates the

C-- This is the name of a function in the program, low

C-- in memory. A suitable candidate can usually be
C-- by looking through the "linker map".
EXTERNAL F_MAIN

C-- Start up profiler it user selected -mx option.
Cc

ISTAT = KXPINQ()
IF(ISTAT .NE. 0) THEN

found

CALL KXPINI(PRFBUF, 8192, F_MAIN, PRFSCL)

CALL KXPON
ENDIF

C-- Execute application code with profiler running.
C
Cc
C-- Program over, dump data and exit.
C
IF(ISTAT .NE. 0) CALL KXPDMP(‘exprof.prx’)
STOP
END

7.3.1.2 Profiling the Program Communication

On each node, data is accumulated to measure;

* Time spent calculating, communicating between processors, and
performing 1/0 functions. This provides an estimate of program

overheads and efficiency.

* Total number of calls to the communi
a simple estimate of load imbalances,

cation system. This provides

On each node, the following function information is recorded:

* Number of calls to each individual function.

* Distribution of return values from each function (i.e., message
length written, message length read, number of objects broadcast).

March 1993

The following skeleton code, described in reference [1] illustrates the
manual control of the communication profiler in an application program.
The only case in which explicit calls are needed is when more careful
control is required over the profiler and the data it writes to disk.

PROGRAM CBXPRF
c
C-- Start off profiler.
Cc
ISTAT = KCPINQ()
IF(ISTAT .NE. 0) CALL KCPON

-- Program over, Dump data again and exit.

OO0 O

IF(ISTAT .NE. 0)CALL KCPDMP‘exprof.prc’)

STOP
END

Notice that we can selectively profile pieces of code. In this mode it makes
sense to dump out the profile data independently to separate files for
simplicity in later analysis.

7.3.1.3 Profiling the Program Events

The event profiler records “events” in an internal log for later analysis. An
event is a user-specified point in the execution. The following information
is recorded every time an event occurs.

Event information:
* 3 time-stamp at which the event occurred
* an index value indicating the nature of the event
* a program variable at the time of the event

Optional information:
* a title which identifies an event based on a given index value
* a printf-style format string command to control the printing of a
stored program variable

The following skeleton code, described in reference [1] illustrates the
manual control of the event profiler.

PROGRAM EPRTST

INTEGER LOGBUF(2048), LABBUF(256)
REAL ENERGY, RESID, GRIND, CRUNCH
INTEGER ITER, |

March 1993 7-5

C-- Setup profiler and make labels for indices.

C-- If asked to do so at runtime start the thing up.
CALL KEPINI(LABBUF, 1024, LOGBUF, 8192)
CALL KEPLAB(1, 'Outer loop', 'lteration %d’)
CALL KEPLAB(2, 'After crunch’, ‘Energy = %d)
CALL KEPLAB(3, 'Inner loop’, ‘resid = %d)
ISTAT = KEPINQ()

IF(ISTAT .NE. 0) CALL KEPON
C--Start application code, then go into main loop.

DO 10 ITER=1,100
CALL KEPADD(1, ITER)
ENERGY = CRUNCH(ITER)
CALL KEPADD(2, INT(ENERGY))
DO 20 1=1,4
RESID = GRIND(ENERGY)
CALL KEPADD(3, RESID)
20 CONTINUE
10 CONTINUE
c

C-- Program over; dump data to host for later analysis.

CALL KEPDMP('exprof.prc')
STOP
END

Notice that the KEPADD() and KEPLAB() calls are completely safe even if

KEPINQ() returns O and the profiler is not enabled.

7.3.2 Analyzing Methods

The PAT utilities provide separate post mortem tools to analyze the major
areas of parallel computer performance on the iPSC/860 system. The
execution analyzer tool, xtool, displays the time spent in individual
routines. The communication analyzer tool, ctool, shows the time spent in
communication and 1/0. The event analyzer tool, etool, presents the
interactions among processors and monitors user-specified events. These
analysis tools convert the gathered performance data to tabular and

graphical forms that can be analyzed interactively.

7-6

March 1993

The synopsis for the use of each tool is:

xtool [-H...] [1] [-] directory] [-M menustyle] [-n pSname] [-p] [-t topno] [-T...]

program_name [log_file_name]

ctool [-b nbins] [-H...] [-p] [-T...] [-M menustyte] [-L DBname] [-m PSname]
program_name [log_{ile_name]

etool [-e] [-H...] [-L DBname] [-M menustyle] [-n PSname] [-p] [-t] [-T...]
program_name [log_flle_name]

The following is a partial list of options from the PAT man page. Please
refer to the man pages or reference manual for a complete description.

-H...

-} directory

-M menustyle

-n PSname

March 1993

Specify the type of output device required for "Hardcopy” options. By default
hardcopy output is produced in PostScript form. The interpretation of this
switch is similar to that of the -T option.

After processing other command line options enter “interactive” mode as
shown below. This switch is only active when used in conjunction with the -p
switch.

Causes the named directory to be searched when looking for the source code
1o the various routines in the program. By default only the current directory is
searched.

Use an altemative menu style. By default the tool attempts to use "three-
dimensional" menus that may not function correctly on certain monitors.
Substituting alternate numeric values in this switch uses other menu types of
which -M0 should be viable on any kind of monitor.

The base name given to the hardcopy output files created by the system. The
actual filename used is created by appending a numeric value and the string
.ps to the name given to this switch.

Suppress graphical output. The analysis results are presented in tabular form
on stream stdout.

instructs xtool to print data from the topno most active routines. This switch is
only active when used in conjunction with the -p switch.

Use an alternative graphical device for output. The supported graphical

devices and their abbreviations can be found in the “Introductory Guide” for
your system.

7-7

7.3.2.1 Analyzing Execution Profile (xtool)

The xtool command is available at the system prompt on the host
processor, and is used to examine and analyze the log file created with the
execution profiler. The only required argument is the name of the
executable program to be analyzed. Another argument is the name of the
file containing the profiled data. This argument is optional and if omitted
defaults to exprof.prx. The execution profiler uses the data contained in a
symbol table generated by the execution of the program compiled with the
-Mperf compiler switch.

The xtool command presents a separate table on stdout from each node.
The information contained in each table is:

* An identifier indicates which node the data is from.

* A summary of the busy and idle time in each processor. The
term “idle time” denotes when the CPU is not actively executing
the process (e.g., waiting for a message to arrive). All other
classes of activity are counted as "busy".

* A count of the number of profiling "misses". Since the buffer
supplied to the profiling function profil may not be fine enough
to map the whole program, the execution profiler will "miss"
occasionally, that is the program will execute at an address
outside the region mapped by the profil call. In this case the
“miss” counter is incremented. The ratio of hits to misses pro-
vides an indication of the effectiveness of the profile obtained.

* A list of the 20 most heavily used functions in the program is
provided. Associated with each is the fraction of the total pro-
filing events.

If the xtool command is invoked withcut the -p switch then a menu-
driven, graphical interface is provided. A full list of the available options
is presented in the PAT manual.

By default the graphical system used is either a Sun-3 or a Sun-4
workstation, along with a PostScript printer for hardcopy output. The -T
switch can be used to redirect output to another device. Similarly the -H
switch is used to redirect the hardcopy output.

7-8 March 1993

EXAMPLES:

To examine the execution profile data in a file called testl.prof created by
the program myprog execute the command:

xtool myprog test1.prof

To analyze the default profile data file from the program named myprog
using simple menus under X, execute the command:

xtoo! -TX -MO myprog

An "interactive" mode may be used in place of the graphical mode. To
enter the interactive mode use:

xtool -p -1 myprog
After completing normal -p processing you see the prompt
xtool>

At this prompt the following commands may be executed:

help Prints a summary of available commands.

top # Prints the normal tabular output showing only the indicated number of routines
for each node.

quit Terminate xtool and return 1o the shell.

node # Restrict output to the particular node indicated. Use the value "1 to indicate

output from all nodes.

output flle Redirect printed output to the named file. Using the command with no file name
redirects output to the terminal.

7.3.2.2 Analyzing Communication Profile (ctool)

The ctool command is available at the system prompt on the host
processor, and is used to examine and analyze the log file created with the
communication profiler. The only required argument is the name of the
executable program to be analyzed. Another argument is the name of the
file containing the profiled data. This argument is optional and if omitted

defaults to exprof.prv.

March 1993 7-9

If the -p switch is given, this command presents a separate table on
stdout from each node. The information contained in each table is:

* An identifier indicating which node the data is from.

* A summary of the calculation, communication, and 1I/0 times in
the processor. "Communication" time consists of all inter-node
and basic host-node communication, “I/0O” time consists of all I/0
requests (i.e., calls to read, write, fopen, etc.).

* A summary of the time spent in, number of calls, and errors
incurred in each communication function called by the processor.
This information provides an overview of the total communication
pattern. The "error" count is also a good place to look for obscure
bugs.

* A breakdown of the values returned by the communication
functions. The return values are binned logarithmically - the
column headed "8" indicates the frequency of return values in the
range 8 thru 15 (inclusive).

The communication profiler can be useful in the detection of programs
sending too much data in their messages. These will show up in the
histogram output. This data appears on stdout.

If the ctool command is invoked without the -p switch then a menu-
driven, graphical interface is provided. A full list of the available options
is presented in the PAT manual.

By default the graphical system used is either a Sun-3 or a Sun-4
workstation, along with a PostScript printer for hardcopy output. The -T
switch can be used to redirect output to another device. Similarly the -H
switch is used to redirect the hardcopy output.

EXAMPLES:

To examine the communication profile data in a file called testl.prof
created by the program named myprog, execute the following command:

ctool myprog test1.prof

7-10 March 1993

To analyze the default profile data file from the program named myprog
using simple menus under X execute the following command:

ctool -TX -MO myprog
ERRORS

The ctool utility uses an internal data-base to find the names and
identifiers of the functions being profiled. If this file is missing you see
the error "No system call data-base". This normally means that your
system is not installed properly. Either contact your system administrator
or use the -L switch to specify an alternate path.

If the file is present but garbled or otherwise incorrect ctool appears to
function correctly but either gives the wrong names to subroutines or does
not list anything at all. In this case the file should be recreated using the
correct system call information.

7.3.2.3 Analyzing Event Profile (etool)

The etool command is available at the system prompt on the host
processor, and is used to examine and analyze the event log created with
the event profiler. The only required argument is the name of the
executable program to be analyzed. Another argument is the name of the
file containing the profiled data. This argument is optional and if omitted
defaults to exprof.pre.

If the etool command is invoked without the -p switch then a menu-
driven, graphical interface is provided. A full list of the available options
is presented in the PAT manual.

By default the graphical system used either a Sun-3 or a Sun-4
workstation, along with a Postscript printer for hardcopy output. The -T
switch can be used to redirect output to the another device. Similarly the
-H switch is used to redirect the hardcopy output.

EXAMPLES:

To examine the event profile data in a file called testl1.prof created by
executing the program myprog, execute the command:

etool myprog testi.prot

March 1993 7-11

To analyze the default profile data file from the program name myprog
using simple menus under X, execute the command:

etool -TX -M0O myprog

If only the toggle information is required from the profile data use a
command similar to:

etool -p -t myprog toggle.pre

ERRORS

The etool utility uses an internal data-base to find the names and
identifiers of the functions being profiled. If this file is missing you see the
error "No system call data-base". This normally means that your system
is not installed properly. Either contact your system administrator or use
the -L switch to specify an alternate path.

If the file is present but garbled or otherwise incorrect, etool appears to
function correctly but either gives the wrong names to subroutines or does
not list anything at all. In this case the file should be recreated using the
correct system call information.

7.3.3 Compilation and Execution

The PAT performance data is collected through the use of PAT C or
FORTRAN system calls that are compiled with the application program.
The system calls can be placed in the application code automatically, or
they can be added manually.

The iPSC system uses the following methods to insert PAT system calls in
the application code:

* Compiler switches to automatically profile/trace application
performance

* Environment variables that interactively turn on/off the gathering
of performance data

* A programmatic interface that allows the manual insertion of PAT
system calls at specified points in the application code

7-12 March 1993

The -Mperf switch is available with the iPSC/860 C and FORTRAN
compilers, and turns on PAT instrumentation code. The syntax for the use
of this switch is

-Mpert [= {prof | comm | event} [= {auto | manual}] [,...] | {auto | manual}}

prof Enables the PAT execution profiling.

comm Enables the PAT communication tracing.

event Enables the PAT event tracing.

auto Specifies that performance monitoring code is to be invoked automaticaily.

manual Specifies that performance monitoring code is to be called manually using PAT
programmatic procedure calls.

EXAMPLES:

/* turn on all PAT Instrumentation *
If77 -Mpert -0 ftest *.0 -node

/* turn on automatic execution profiling */
1177 -Mperf=prof=auto *.f -o ftest -node

/* turn on comm. and event manually */
icc -Mperf=comm=manual,event=manual

The environment variable, EXPROF_SWITCHES allows you to set or reset
any or all the PAT profile/trace tools. The syntax for the
EXPROF_SWITCHES environment variable is:

setenv EXPROF_SWITCHES ["[c][e]{x]"]

where the option ¢ represents communication tracing, e represents event
tracing, and x represents execution profiling.

The environment variable, EXPROF_OPTS allows you to set the maximum
number of log and label entries allowed in the log file used by the etool
utility. The syntax for the EXPROF_OPTS environment variable is:

setenv EXPROF_OPTS "{ elogs | elabs } : new_value [; ...]"

where the elogs represents the log entries, and elabs represents the label
entries, and new_value represents the new value used.

March 1993 7-13

EXAMPLES:

/* all PAT instrumentation Is to profile data*/
sotanv EXPROF_SWITCHES "cex"

/* set limit ot logfile and labelflie */

setenv EXPROF_OPTS "elogs:1500;elabs:1024"

The following is a simple program to demonstrate the compilation and
execution process.

program 2
integer iter
pid = mypid()
mynod = mynode()
call keplab(1,'outer loop' ‘iteration %d’)
do 1iter=13
call kepadd(1,iter)
1 write(8,")"hello world from node”,mynod," process id ",pid
end

The following demonstrates the compilation and execution process. Note
when used in conjunction with PAT, the waitcube command ensures that
data collection has completed before the system prompt is returned. The
user can then safely release the allocated cube. cubeexec is the preferred
command to accomplish this automatically.

fiddler® setenv EXPROF_SWITCHES "cex"
fiddlers if77 -Mpert -o 12 f2.{ -node

fiddiers cubseinfo

(host) cubeinfo: There Is no attached cube
fiddiers getcube -14

getcube successtul: cube type 4mB8rxn4 allocated
fiddler% load f2; waitcube

hello worid from node 3 process Id 0.0000000
hello world from node 1 process id 0.0000000
hello world from node 0 process id 0.0000000
hello world from node 2 process id 0.0000000
hello world from node 3 process id 0.0000000
hello world from node 1 process id 0.0000000
hello world from node 0 process id 0.0000000
helio worid from node 2 process id 0.0000000
hello world from node 3 process id 0.0000000
hello world from node 1 process id 0.0000000
hello world from node 0 process id 0.0000000
hello world from node 2 process id 0.0000000

Dumping to "exprof.prc”

Dumping to "exprof.pre"

Dumping to "exprof.prx”

fiddler% reicube

relcube released 1 cube

fiddler%

fiddier% etool -p 12

Etool Version 3.1.2 - Copyright (C) 1991 ParaSoft
Reading symbol table "f2": 100%

7-14 March 1993

Symbol table: 728 public, 30 local.
Index look-up falled for symbol 372

Node O
mEEERasas=
No toggle data.
1. outer loop
T =6.154 (ms) Begin _MAIN_.
T = 6.797 (ms) Index = 1 "Iteration 0".

T = 8.035 (ms) Begin _write, flides=1 nbyte=62.

T = 8.174 (ms) Begin __cwrlte, flldes=1 len=62.

8.945 (ms) Begln ___masktrap, state=1.

9.032 (ms) End __masktrap, returned=0.

9.579 (ms) Begin __csendrecv, type=1000000020 tonode=4.
9.666 (ms) Begin _ flick.

T = 2050.084 (ms) End __flick.

T = 2050.108 (ms) End __csendrecv, typesel=2000000021.
T = 2050.142 (ms) Begin __masktrap, state=0.

T = 2050.157 (ms8) End __masktrap, returned=1.

T = 2050.182 (ms) Begin __masktrap, state=1.

T = 2050.193 (ms) End __masktrap, returned=0.

T = 2050.460 (ms) Begin __masktrap, state=0.

T = 2050.474 (ms) End __masktrap, returned=1.

T = 2050.620 (ms) End __cwrite, returned=62.

T = 2050.632 (ms) End _write, returned=62.

T = 2050.731 (ms) Index = 1 “iteration 1".

T = 2051.120 (ms) Begin _write, flides=1 nbyte=62.

T = 2051.149 (ms) Begin ___cwrite, flldes=1 len=62.

T = 2051.215 (ms) Begin ___masktrap, state=1.

7.3.4 System Calls

T
T
T
T

The following is a list of PAT system calls. More detailed information is
available in the man pages for the following PAT commands, and in
reference [1].

CPROF Control communication profiler (C language system call).
Also referenced by:
CPROF_OFF
CPROF_ON
CPROF_DMP Dump communication profile data to disk from the application program (C language
system call).
CPROF_INQ Determine runtime status of profiling system (C language system call).
CTOOL Analyze Communication Profile (Command).
EPROF Event driven profiler (C language system call). Also referenced by:
EPROF_ADD
EPROF_INIT
EPROF_LABEL
EPROF_OFF
EPROF_ON

March 1993 7-15

EPROF_DMP Dump event profile data to disk from an application program (C language system
call).

EPROF_INQ Determine runtime state of the event profiling system (C language system call).
EPROF_TOGGLE Statistical analysis of code sections (C language system call

Also referenced by:
EPROF_TOGINIT

ETOGGLE
ETOOL Analyze Event Profile (Command).
KCPDMP Write communication profile data to a file (FORTRAN language system call).
KCPINQ Determine runtime status of execution profiler (FORTRAN language system call).
KCPROF Control communication profiler (FORTRAN language system call). Also referenced
by:
KCPOFF
KCPON
KEPROF Event driven profiler (FORTRAN language system call). Also referenced by:
KEP
KEPADD
KEPINI
KEPLAB
KEPOFF
KEPON
KEPDMP Write event profile data to a file (FORTRAN language system call).
KEPINQ Determine runtime status of the event profiling system (FORTRAN language system
call).
KEPTOG Calculate program statistics (FORTRAN language system call). Also referenced by:
KEPTGI
KXPDMP Write execution profile data to a file (FORTRAN language system call).
KXPINI Low level execution profiler (FORTRANIanguage system call).
KXPINQ Determine runtime status of the execution profiler (FORTRAN language system call).
KXPROF Control execution profiler (FORTRAN language system call). Also referenced by:
KXPOFF
KXPON
XPROF Control execution profiler (C language system call). Also referenced by:
PROF_OFF
XPROF_ON

XPROF_DMP Dump execution profile data to disk (C language system call).

XPROF_INIT Low level execution profiler (C language system call).
XPROF_INQ Determine runtime status of execution profiler (C language system call).
XTOOL Analyze Execution Profile (Command).

7-16 March 1993

7.4 Observations on Using PAT

Section 7 has provided an overview of the iPSC/860 Parallel Performance
Analysis Tools (PAT), a detailed description of its functionality and use,
and a summary of the commands. The following comments are based on a
preliminary use of PAT.

The general performance information is easy to obtain, usually through the
automatic profiling method. However, this approach can yield large
amounts of information. Thus manual instrumentation is often necessary
to reduce the amount of performance information and isolate performance
information down to critical sections of code.

The default use of PAT assumes that the same executable is running in
every node. PAT can be used on applications where different executables
are running on different nodes by using manual instrumentation. That is,
run PAT for executable A, look at the data. Then run PAT on executable B,

etc.

Preliminary evaluation indicates that PAT overhead averages 10%, but
varies depending on the computation and communication make-up of the
application.

When used in conjunction with PAT, the waitcube command ensures that
data collection has completed before the system prompt is returned. The
user can then safely release the allocated cube. Otherwise the user may
release the cube prior to all data being collected. When this occurs, no
error message will be given, but subsequent data analysis will either not
be allowed or yield incomplete results. Use of cubeexec avoids this type
of problem.

7.5 Known Bugs of PAT
No bugs are known within PAT at this time.
7.6 References for PAT

[1] iPSC/860 Parallel Performance Analysis Tools Manual (1-10)

March 1993 7-17

7-18 March 1993

8 Parallel Virtual Machine (PVM)
8.1 Overview of PVM

Parallel Virtual Machine (PVM) is a free software package that is being
developed at Oak Ridge National Laboratories (ORNL). PVM allows the
utilization of a heterogeneous network of parallel and serial computers as a
single computational resource. It is a library (two libraries if you use
FORTRAN) and a daemon process. The purpose is to couple several
resources in a parallel fashion to use the best properties of a particular
machine for an application with moderately large granularity. For
example, a CRAY Y-MP could be used to perform vector calculations while
a iPSC/860 could do the highly parallel calculations.

The PVM daemon communicates to other machines through sockets, a
software mechanism. Communication between PVM processes and the
iPSC/860 takes place through the System Resource Manager (SRM). Since
this can lead to very complicated communication programming, it is
recommended to use PVM on the iPSC/860 only for applications with very
large levels of granularity. A current research effort is porting the PVM
libraries to the individual iPSC/860 nodes.

As of today, PVM only parallelizes a network of computers and does NOT
parallelize locally. Therefore, on the cube, the regular Intel communication
libraries (csend, gdsum, etc.) are used for inter processor communication.
The nodes send messages to the host program, and then the host program
sends the messages to the other PVM processes and vice versa.

PVM for the iPSC/860 has some special considerations, therefore this
report will discuss creating and using PVM on the iPSC/860. The PVM
users' guide contains information for general installation and use.

PREGBDING PAGE BLANK NOT FILMED
March 1993 8-1

8.1.1 OS and Platforms

PVM version 2.4.1 was developed for several platforms including:

ARCH Machine
C2MP Convex
CMS Thinking Machines CM-5
CRAY Cray (UNICOS 6 or greater)
HPIK HP 9000 (Snake)
KSR1 Kendall Square
i860 Intel RX Hypercube
PMAX Dec/Mips arch (3100, 5000, etc)
RIOS IBM/RS6000
SGI Silicon Graphics IRIS
SUN3 Sun 3 (SunOS 4 or greater)
SUN4 Sun 4, 4c, Sparc, etc

8.2 Access to PVM

If PVM is not installed on your system, you may install PVM yourself. You
can compile the PVM daemon and library in your own directory. To install
PVM, you must first get some files from mass storage. If you get the
message "Permission Denied," then make sure your .rhosts file contains an
entry for Sabre. See section 5.5 of SNS Programming Environment (A-8)

for details.

masget @trey/Parallel/pvm2.4.1.shar
masget @trey/Parallel/pvm.ps

masget @trey/Parallel/pvm_refcard.ps
masget @trey/Parallel/make_pvm
masget @trey/Paralle/README.pvm

You must unpack pvm2.4.1.shar in your home directory. To unpack type
sh pvm2.4.1.shar

You should now have the directory pvmZ2.4. So that the PVM daemon can
find your executables, make a symbolic link by typing

Iin -8 pvm2.4 pvim

You should now have the link pvm@. Now you need to create the PVM
libraries and PVM daemon by executing the make_pvm script. If you have
problems with the script, send e-mail to:

mpp@fiddier.larc.nasa.gov.

8-2 March 1993

8.3 Detailed Description of PVM
8.3.1 Compiling with PVM

For the iPSC/860, the PVM daemon is built and run on the SRM, therefore
the host program acts as the node for the PVM network. Since the PVM
library is built on the SRM and not the iPSC/860 nodes, you must use
Intel's communication library for inter processor communication. The host
program acts as an interpreter between the cube and the PVM network.

Here is an example PVM host file in FORTRAN for the iPSC/860:

This host program enrolls itself as PVM node process. Then,

it gets an 8 node cube and loads the intei_node program onto
the cube. The host receives a message from the cube and

then that message is then broadcast to the other PVM processes.

OO0 0

program pvm_host
implicit real*8(a-h,0-z)
parameter(nodes = 8)
character*4 sznode

(2]

enrol! the pvm host program
call fenroll(*pvm_host\0" kn)
if(kn .R. 0) then
write(*,*) 'l could not enroll Intel version host'
stop
ond if

©

get the cube, set the pid and load the node program
write(sznode,'(i4)') nodes
call getcube('pvm_cube',sznode,",0,")
call setpid(npid)
call load('/ump/ipsc/home/larc/trey/pvm/1860/intel_node',-1,npid)

[¢]

get the value of tm from the cube
call crecv(100,im 8)

now that | have the message from the cube, send

it out to the other PVM processes using PVM message passing
call finitsend()
call fputndfloat(tm,1 istat)
call fsnd("pvm_node\0",-1,200,istat)

OO0

kill the cube and release it
call killcube(-1,0)
call relcube('pvm_cube’)

(2]

(2]

quit PVM
call fleave()
stop
end

March 1993 8-3

The following is a non-cube PVM host program example. Note that this
host program only needs to initiate the node programs to execute on the
PVM.

This host program enrolls itself, then initiates the other node processes.

OO0

program pvm_host
implicit real*8(a-h,0-2)

¢ enroll the pvm host program
call fenroli("pvm_host\0",ihost)
if(ihost .1t. 0) then
write(*.*) 'l could not enroll host program’
stop
end if

see how many machines are configured in the PVM
call fpstatus(nproc, nformat, info)

(2]

initiate the PVM nodes processes. Since arch is equal to NULL, PVM will
decide which machine to initiate the node process "pvm_node\0” on.
arch = "\0"
do 100 i= 0, nproc - 1
inst = |
call finitiate("pvm_node\0",arch,inst)
if(inst .1t. 0) then
write(*,*) 'failed to initiate at process ',inst
stop
end if
100 continue

OO0

¢ quit PVM
call fleave()
stop
end

A sample makefile for a PVM host (and node program) on the SRM of the
iPSC/860 (f77 is the SRM compiler) is:

Hitiras Start of makefile for Intel PVM using SRM host HUH#HH

ARCH = 1860

FLAGS = -03 -Mvect=unroll

NFLAG = -i860 -node

HFLAG = $(HOME)/pvm/f2c/$(ARCH)/libf2c.a \
$(HOME)/pvm/src/$(ARCH)/libpvm.a -Irpc -Isocket -host

all: host node

host:
§77 -0 host host.f $(HFLAG)

8-4 March 1993

mv host $(HOME)/pvm/$(ARCH)

node:
if77 $(FLAGS) -0 node node.f $(NFLAG)
mv node $(HOME)/pvm/$(ARCH)

clean: :
/bin/rm -f host node core

##t###end of makefile #HHHHHHHHHHIH
8.3.2 Running a PVM Program

To start the PVM, the PVM daemons must be executed on each machine.
The command to start all of the PVM daemons on each machine is:

~/pvm/src/$ARCH/pvmd [-I] hosttile

where hostfile is a file containing a list of the machines in the PVM. The -i
is the only option for the pvmd command. It requests that PVM start the
daemon process interactively. If the -i option is used, a command editor is
run allowing the user to query PVM on the status of processes and the
present configuration of PVM.,

The commands PVM recognizes in interactive mode are:

barr show barriers

cont shows the current configuration of machines in PVM

help show all commands available and gives description of
each

kil kill pym processes

ps show process status

qukit kill all pvmd processes and exit PVM

reset kills currently running PVM processes

In interactive mode, the user can terminate all PVM processes by typing
quit at the pvm prompt.

A sample host file looks like:

this Is a comment (a # in the first column)

this Is a sample hostfile

yoursun.larc.nasa.gov

bluecrab.larc.nasa.gov lo=login_id pw dx=~/pvm/src/1860/pvmd
#ond of hostfile

You can specify three options in the host file. The Ilo option tells PVM what
login name to use for that machine. The pw option requests your
password for that machine in the event that a .rhosts is not available. The

March 1993 8-5

dx option allows the user to specify where the PVM daemon is located.
The default location is

Amp/pvivpmvd

If the PVM daemons are successful in starting, the message “pvm is ready”
appears. If the PVM returns a message "pvimd garbled response” or
"expected pvmd but got """, this usually means that PVM can not read the
password file. To remedy this situation, try using the pw option in the
hostfile or checking your .rhosts file.

An example demonstrating how to compile and run PVM on the iPSC/860
is located on Fiddler in the directory

~trey/pvm/example
The file
~lrey/pvm/example/README
contains instructions on how to compile and run the example.

8.3.3 Description of FORTRAN Subroutines in PVM

The following is a list of subroutines and a description of their use. The
FORTRAN subroutines are wrappers for the C functions in PVM. The
integer variable info returns a negative number if an error occurs.

Declarations
integer cnt, info, inum, len, mt, ncpus, np(cnt), ntypes
integer pstatus, type, types(ntypes)
integer*2 jplcnt)
character arch, cp, host, msg, hame, proc
real fp(cnt)
reai*s dp(cnt)
complex xp(cnt)

complex*16 zp(cnt)

8-6 March 1993

Initialization
sul . D .

call fenroli{proc,inum) enrolis process in PVM and returns inum, error
if inum < 0.
call finitiate(proc,arch,inum) initiates a new process on a specified archi-

tecture and returns instance number(inum).
inum less than zero if error occurs. If arch is
NULL, then PVM chooses an architecture.

call finitiatem(proc,host,inum) initiates a new process on a specified machine
(host) and returns instance number. inum less
than zero if error occurs. If host = ".*, then init-

call fwhoami(proc,inum,info)

Information
Subroutine
call fpstatus(ncpus,ntypes, info)

call fstatus(proc,inum,pstatus)

Sending
Subroutine

call finitsend()

call fputbytes(cp,cnt,info)
call fputnepix(xp,cnt,info)
call fputndeplix(zp,cnt,info)
call tputndﬁpat(dp,cnt,lnfo)
call fputnfloat(fp,cnt,info)
call fputnint(np,cnt,info)
call fputniong(np,cnt,info)
call fputnshort(jp,cnt,info)

March 1993

iating machine is used.

returns component name (proc) and instance
(inum).

Descring

returns number of hosts and data formats
(ntypes).

pstatus = 1 if specified component is active,
otherwise pstatus = 0.

D c .
initialize send buffer.

puts number of bytes in cp(cnt) into buffer.
put complex array into buffer.

put double complex array into buffer.

put double precision array into buffer.

put real array into buffer.

put integer array into buffer.

put long integer array into bufter.

put short integer array into buffer.

8-7

Subroutine
call fputstring(cp,info)
call |putstring(cp.len.info)

call tsnd(proc,Inum.type,info)

Receiving
Subroutine

call igetbytes(cp,cnt.iMo)
call igetncpix(xp.cnt JIinfo)

call lgetndcplx(zp,cnt.lnlo)
call fgetndfioat(dp.cnt,info)

call fgetnﬂoat(fp.cnt.info)
call fgetnint(npcnt,info)
call fgetnlong(np.cm,info)
call fgetnshon(jp.cnt,info)
call fgetstring(cp,info)
call fgetstrlng(cp.len,info)
call fprobe(type,mt)

call tprobemultl(ntypes.type.nn)

call frev(type,mt)

cail frcvinfo(len,type,proc,lnum.info)

call frevmulti(ntypes types,mt)

8-8

D oo
put character string into buffer.
put character string into buffer.
sends message in send buffer to the specified

instance (inum) of component. If inum = -1. then
broadcast to all instances.

Descript]

returns number of bytes.
get complex array from buffer.
get double complex array from buffer.

get double precision array
from butffer.

get real array from buffer.

get integer array from buffer.

get long integer array from buffer.

get short integer array from bufter.
get string from butfer.

get string from butfer.

probe for message arrival of specified
type or ‘any' if type= -1. Returns type

or -1 (not arrived).

same as probe, but permits specifying
an array of ntypes message types.

receives a message of specified type or
‘any’ if type = -1 (Blocking).

returns the length, type and sender of
last frcv or probe. -

same as rcv, but permits specitying an
array of ntypes message types.

A}

March 1993

Synchronization
Subroutine

call fbarrier(name,cnt,info)
call fready{name,info)

call fwaituntil(name, info)

Termination
Subroutine
call fleave()

call fterminate(proc,inum,info)

8.3.4 Global Subroutines

blocks caller until cnt calls with same
barrier name made. name can NOT be
reused.

sends signal with specified (abstract)
name.

suspends caller until specified signal
name OCcurs.

Description

process existing PVM. This should be the last
call to flush all PVM processes.

terminates a specified component.

Many global routines are absent from the standard PVM system, therefore
several locally developed routines have been written. These routines are
written to provide the user with similar global routines provided by Intel

(gdsum, gdhigh, etc).

These global routines emulate Intel's global

routines in table A-7 of reference [1]. This library of routines is located on

mass storage. To get the file, type

masget @trey/Parallel/pvm_glb.shar

To unpack the library, type

sh pvin_glb.shar

Then, execute the script make_glb. This script will make the global library

~/pvm/pvm_gib/libpvm_glb.a

Also, the file

March 1993

8-9

~/pvm/pvm_gIb/README

contains instructions on compiling and using the global library.

8.4 Observations on Using PVM

PVM is a low level communication tool and provides a few basic routines
(about 40 routines). The PVM system does not come with global routines,
so a library for doing global operations has been written.

PVM code is portable across architectures, but each node program needs to
be compiled separately (unless the machines are NFS mounted).
Preliminary results show that PVM performs very well for large grain
parallel problems. For programs with intensive communication, PVM
appears to have a large overhead due to communicating through LaRCNET.

Currently, there is no debugger. However, ORNL is developing one that is
expected to be made available at the end of 1993. The debugger is XAB (X
window Analysis and deBugger for PVM).

Another X interface to PVM is HeNCE (Heterogeneous Network Computing
Environment). HeNCE allows the user to create a graphical representation
of their parallel program. From the information in the graph, HeNCE
creates all of the necessary communication using PVM. The next version of
HeNCE was released at the end of 1992. The new release will contain a
debugger and ParaGraph style traces.

The most difficult concepts of PVM to the user are installation and use on
the iPSC/860. A C shell script has been written to automatically install the
PVM software on any of the mentioned architectures. When using PVM on
the iPSC/860, the host program has two roles: an iPSC/860 host and a PVM
node. Since the PVM daemon is installed on the SRM, the PVM libraries
are not used for inter processor communication on the Hypercube.

8-10 March 1993

8.5 Known Bugs of PVM

The call fbarrier (barrier in C) does not allow the reuse of the barrier
name variable. If another call is made to fbarrier, a different value for

the barrier name must be used.

When using the message-passing routines, an integer must be used for
passing the number of arguments. For example, when making a call to
fgetnfloat(FP,CNT,INFO), CNT must be an integer. If CNT is not an
integer then the program may abnormally exit.

8.6 References for PVM

[1] iPSC/2 and iPSC/860 User’s Guide

March 1993 8-11

8-12

March 199+

Form Approved
REPORT DOCUMENTATION PAGE OB e 000188
Public reporting burden for this coltection of information 15 estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathening and maintaining the data ded, and compi and r 'g the collection of information. Send comments r arding this burden estimate or any other aspect of this

collection of intormation, including suggestions for redu(ina this burden. 10 Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Aeduction Project (0704-0 188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1993 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Parallel Software Tools at Langley Research Center 505-90-53-02
6. AUTHOR(S)

Stuti Moitra, Geoffrey M. Tennille, Christopher D.
Lakeotes, Donald P. Randall, Jarvis J. Arthur,
Dana P. Hammond and Gerald H. Mall

[7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER

Hampton, VA 23681-0001

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
National Aeronautics and Space Administration AGENCY REPORT NUMBER
Washington, DC 20546-0001 NASA TM-108995

11. SUPPLEMENTARY NOTES
Moitra, Tennille, Randall: NASA Langley Research Center, Hampton, VA

Lakeotes, Arthur, Hammond, Mall: Computer Sciences Corporation, Hampton, VA

e e ——————, - S ———————
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 60

13. ABSTRACT (Maximum 200 words)
This document gives a brief overview of parallel software tools available on the
Intel iPSC/860 parallel computer at Langley Research Center. It is intended to
provide a source of information that is somewhat more concise than vendor-supplied
material on the purpose and use of various tools. Each of the chapters on tools
is organized in a similar manner covering an overview of the functionality, access
information, how to effectively use the tool, observations about the tool and how
it compares to similar software, known problems or shortfalls with the software,
and reference documentation.

It is primarily intended for users of the iPSC/860 at Langley Research Center and
is appropriate for both the experienced and novice user.

14. SYBJECT TERMS) 15. NUMBER OF PAGES
1PSC/860, performance monitor, debugger, heterogeneous a9
computing environments, message passing. e PRICE COOt
A05
17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION |20, UIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

PRECEDING PAGE BLANK NOT FILMED b

