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ABSTRACT

RESOURCE UTILIZATION MODEL FOR

THE ALGORITHM TO ARCHITECTURE MAPPING MODEL

Rakesh R. Patel

Old Dominion University

Director: Dr. John W. Stoughton

The analytical model for resource utilization,and the variable node time

and conditional node model for the enhanced ATAMM model for a real-time

data flow architecture, is presented in this research. The Algorithm To

Architecture Mapping Model, ATAMM, is a Petri net based graph theoretic

model developed at Old Dominion University, and is capable of modeling the

execution of large-grained algorithms on a real-time data flow architecture.

Using the resource utilization model, the resource envelope may be obtained

directly from a given graph and, consequently, the maximum number of

required resources may be evaluated. The node timing diagram for one

iteration period may be obtained using the analytical resource envelope. The

variable node time model, which describes the change in resource requirement

for the execution of an algorithm under node time variation, is useful to

expand the applicability ofthe ATAMM model to heterogeneous architectures.

The model also describes a method ofdetecting the presence of resource limited

mode and itssubsequent prevention. Graphs with conditional nodes are shown

to be reduced to equivalent graphs with time varying nodes and, subsequently,

may be analyzed using the variable node time model to determine resource

requirements. Case studies are performed on three graphs for the illustration

of applicability of the analytical theories.
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CHAPTER ONE

INTRODUCTION

1.1 Problem Definition

Research is focused on the development of an analytical model for the

resource utilization in the execution of large grain algorithms on

heterogeneous, multicomputer, data flow architectures. The algorithms which

may be implemented in an ATAMM defined data flow architecture are

considered. Algorithm To Architecture Mapping Model, ATAMM, is a Petri net

based theoretic model which describes data and control flow required for the

execution of large grain algorithms on multicomputer, data flow architectures

[1, 2].

1.2 Overview

The demand of high computing speeds is becoming predominant for any

computer system day by day. This is especially true in applications such as

real-time signal processing and complex control algorithms, which often require

a timing deadline for the completion of a job. In many cases, it is desirable to

increase performance of a computer system using multiple processors running

the same algorithm concurrently. The ATAMM model describes the system

behavior and predicts its performance for real-time algorithms, and facilitates
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the mapping of these algorithms onto multicomputer, data flow architectures.

In a data flow architecture [4], the execution of an instruction is controlled by

the availability of data needed for its execution. In other words, flow of data

causes the execution of instruction as opposed to the flow of control in

conventional machines.

The ATAMM model consists of a set of Petri net marked graphs which

incorporates the control and data flow definitions associated with each

computational event to specify the criteria for the predictable execution of an

algorithm with highly reliable performance [2]. It also provides the means for

investigating different algorithm decompositions in an architecture

independent way. Once the intended hardware is chosen, the model can be

used to match the algorithm requirements with the hardware capability in

order to achieve optimum performance. With availability of sufficient

resources, the system executes algorithm with maximum throughput and

minimum computing time.

The determination of resource requirements for achieving optimum time

performance under worst case condition is of interest. The resource envelope

is a time history of resource requirements over the interval between successive

inputs. A model for analytical evaluation of the resource envelope, and

consequently, the maximum resources required (Rm_) is developed. For a

system with non-homogeneous processors, node times of an algorithm graph

vary as a node may be executed by a different processor in each repetitive
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execution of an algorithm. Conversely, if node times vary, it may cause a

change in resource requirement and may also cause resource limited mode.

The conditions for the presence of resource limited mode under node time

variation and its subsequent prevention are investigated. Also, many

algorithms, such as control system algorithms, require conditional branching

of nodes so that only one of the several successive paths is to be executed.

Each node must be able to enable selectively one of the several outgoing paths.

A conditional node algorithm graph may be reduced to a variable node time

graph and, consequently, its resource requirement may be evaluated.

1.3 Research Objective

The objective of this research is to develop the analytical resource

utilization model to evaluate the resource envelope and maximum resource

requirement, R_, directly from a given graph, and to investigate resource

requirements for time varying node graphs and conditional node graphs. The

model also provides an analytical means of determining the presence of

resource limited mode with time varying nodes and, subsequently, its

elimination without degrading system performance and predictability. The

approach taken to evaluate the analytical resource envelope is straightforward,

and is based upon calculating the path length from the source input to each

deposited output token. The execution of a graph with initial tokens on

forward edges is also investigated to evaluate the critical path and the critical
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path length, since this type of graph structure is obtained in some control

applications. In addition, this class of graphs had not been treated previously

in the ATAMM model development. Research is aimed as an enhancement to

the ATAMM model with respect to incorporation of graphs with time varying

and conditional nodes, and also with initial token markings on the forward

edges.

1.4 Thesis Organization

Basics of the ATAMM model is presented in Chapter Two and the

performance measures are defined in the ATAMM context. The deposit time

of a token is defined along with the fire time of any node in the AMG. The

execution of graphs with initial tokens on the forward edges in the systems

based on the ATAMM model is investigated, and the critical path and the

critical path length are defined for these graphs. Such graphs distinctly

represent control system algorithms with initial conditions embedded in them.

Path length, modulo-TBO operation and other terminology relevant to this

thesis research are defined.

The development of the analytical resource utilization model to evaluate

the resource envelope and the Total Graph Play (TGP) diagram is presented

in Chapter Three. Consequently, a method for determining the value of Rm_

is described, assuming a worst case analysis. In addition, the analysis of

algorithm graphs with time varying nodes is discussed in consideration of
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instantaneous increases in resource requirements. A method for analyzing and

eliminating the potential for this increase beyond R_, or resource limited

mode, with graphs having time varying nodes is presented. An overview of a

conditional node graph is presented, and its mapping on the ATAMM based

systems is discussedby obtaining an equivalent reduced graph which contains

time varying nodes. Consequently, a method for determining the resource

requirement for conditional node graphs is outlined.

The analytical model developed in Chapter Three is illustrated by

performing casestudies on example algorithm graphs in Chapter Four. The

analytical results obtained using theoretical model are compared with the

experimental results. The experimental results are obtained using ATAMM

software support tools such as Simulator (Version 2.3) and Analyzer. The case

studies are performed on three algorithm graphs, the first is a graph with

three parallel paths, the second is a graph with a closed circuit in it, and the

third is a conditional node graph.

The summary of research with appropriate conclusions and evaluations

is given in Chapter Five, and topics for future research are outlined.



CHAPTER TWO

OVERVIEW OF ATAMM MODEL AND BASIC DEFINITIONS

2.1 Introduction

In this chapter, an overview of the ATAMM data flow architecture model

is presented. Background for the ATAMM model is presented in Section 2.2.

The performance measures of the model are described in Section 2.3. The

material presented in Sections 2.2 and 2.3 extensively uses information

previously reported by Stoughton and Mielke [6], Jones [7], and Mandala [12].

The concept of deposit time, fire time, and related issues are discussed in

Section 2.4. These issues are an important factor in the development of the

analytical model for resource utilization, and consequently investigating the

behavior of graphs with time varying and conditional nodes as described in

Chapter 3. The notion of deposit time and fire time is also useful in the

evaluation of the critical path and the critical path length for a graph with

initial tokens on forward edges, as described in Section 2.5. In Section 2.6,

other terminology relevant to the research is described.

2.2 ATAMM Model

Since the last decade, because of continuous increase in dependency on

high speed computing environment, multiprocessor and parallel processing
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systems have become an area of intensive research. The development of

parallel architectures composed of a number of identical, special purpose

computing elements is of particular interest [6]. The computing elements of

a distributed system must share distributed resources and information for

better utilization. Therefore, there is a need to synchronize and control this

sharing in order to obtain accurate overall system operation [7].

The ATAMM model is an outcome of research at Old Dominion

University, in conjunction with NASA-Langley Research Center, to develop a

multicomputer operating strategy for an implementation of large-gained,

decomposedalgorithms on data flow architectures. This model is of particular

importance because it provides a context in which algorithm decomposition

strategies can be investigated without the need to specify a specific computer

architecture. The model also identifies the data flow and control dialogue

required of any data flow architecture which implements the algorithm. In

addition, the model provides a basis for analytically calculating the

performance bounds for computing speedand throughput capacity [5].

The ATAMM model consists of three Petri net marked graphs called the

algorithm marked graph (AMG), the node marked graph (NMG), and the

computational marked graph (CMG). A Petri net is a special kind of directed

graph which is capable of describing data and control flow of a system [7].

Petri nets serve as both a graphical and mathematical tool. An example of a

marked graph is shown in Figure 2.1. In a marked graph, circles represent
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nodes (transitions or actual computations) and line segments represent edges

(places or flow of data). The black dots on the edges represent tokens which

indicate availability of data. A node is enabled or fired by the presence of

tokens on all incoming edges.

The AMG is a representation of a specific algorithm decomposition.

Operations are represented by nodes and operands are represented by directed

edges. Availability of data is represented by the presence of tokens on

incoming edges. Source and sink transitions for input and output signals (data

packets) are represented as squares. An example illustration of an AMG for

a discrete system equation is shown in Figure 2.2. The AMG does not display

procedures that a computing structure must manifest in order to perform the

computing task. Also, the issues of control flow, time performance, and

resource management are not apparent from this graph.

The NMG is a Petri net graph that represents the performance of an

algorithm operation by a functional unit. Three basic activities, reading of an

input data from global memory, processing an input data to compute an output

data, and writing of output data to global memory, are represented as

transitions (nodes) in the NMG. Data and control flow paths are represented

as places (edges), and the presence of data is shown by tokens marking

appropriate edges. A read transition can be fired only if a functional unit is

available in a queue of available functional units and a token is present on

each incoming edge. Once assigned, the functional unit is used to implement
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the read, process, and write operations before being returned to a queue of

available functional units. An NMG describing these basic activities, along

with the meaning of edge labels, is shown in Figure 2.3.

The CMG is constructed from the AMG and the NMG using the

following rules:

1. Source and sink nodes in the algorithm marked graph are

represented by the source and sink nodes respectively in the CMG.

2. Nodes corresponding to algorithm operations in the algorithm marked

graph are represented by NMGs in the CMG.

3. Edges in the algorithm marked graph are represented by the edge

pairs, one forward directed edge for data flow and one backward

directed edge for control flow, in the CMG.

The play of the CMG proceeds according to the following graph rules:

1. A node is enabled when all incoming edges are marked with a token.

An enabled node fires by absorbing one token from each incoming

edge, delaying for some specified transition time (equal to time

required for node computation), and then depositing one token on

each outgoing edge.

2. A source node and a sink node fire when enabled, independent of the

availability of a functional unit.

3. A node precess in initiated when the read node of an NMG is enabled

and a functional unit is available for assignment to the NMG. A FU
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n Tokens

IF _/_ ww

OE

m=l Tokens

OF

NMG Arc Labels

IF Input Buffer Full

IE Input Buffer Empty
DR Data read

PC Process Complete

PR Process Ready

OE Output Buffer Empty

OF Output Buffer Full

NMG Node Labels

r Read Input Data

p Process Data

w Write Output data

Figure 2.3. ATAMM node marked graph (NMG) model.



13

(functional unit) remains assigned to an NMG until completion of the

firing of the write node of the NMG.

A CMG representation of the AMG of Figure 2.2 is shown in Figure 2.4.

The complete ATAMM model consists of the AMG, the NMG, and the CMG.

A pictorial view of the ATAMM model with its components is shown in Figure

2.5.

The CMG of Figure 2.4 has some important characteristics. Execution

of the CMG results in live, reachable, safe, deadlock free, and consistent

behavior. Liveness indicates that every transition of the graph can be fired

from the initial marking [5]. Reachability implies that an output will be

produced for every input. The CMG is safe because the backward control

edges prevent data from being overwritten, or they prevent a graph from being

over-crowded with excessive data packets. The backward control edges prevent

enablement of a transition until previous output data are being picked up. The

CMG is also deadlock free, because once assigned to a node, a functional unit

is always able to complete node execution. Consistency implies that the CMG

periodically produces output when inputs are applied periodically [5].

There are two types of concurrency possible during the execution of an

algorithm as specified by the CMG. Nodes belonging to the same data set and

which are independent of each other may be executed simultaneously. This

type of concurrency is referred to as parallel concurrency and has a direct

effect on computing speed. It is limited by the number of nodes that can be
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graph

Figure 2.5. ATAMM model components.
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performed simultaneously for a given algorithm graph and by the number of

functional units available. Also, nodes belonging to different data sets can be

performed simultaneously in the computing system. This type of concurrency

is referred to as pipeline concurrency [4]. It is limited by the capacity of the

graph to accommodate additional data sets and by the number of functional

units available to implement the algorithm periodically.

2.3 Performance Measures

In this section, basic measures of time performance in the ATAMM

model are described. The determination of resource requirements for the

execution of a given graph on a data flow architecture is presented. Also, the

ATAMM performance plane is described.

In Section 2.3.1, two time performance measures, TBIO and TBO, are

defined. A brief overview of a graph play and corresponding resource

requirements is presented in Section 2.3.2. In Section 2.3.3, the ATAMM

performance plane is defined, and an example for illustration is presented.

2.3.1 Performance Measures

The performance measure TBIO (Time Between Input and Output) is

the elapsed time between an algorithm input and the corresponding output.

TBIO is an indicator of the computing speed. The lower bound for TBIO,

denoted as TBIOLB, is given by the sum of node (transition) times for nodes
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contained in the longest directed path from input source to the output sink in

the AMG. This is shown in [4]. The performance measure TBO, for the time

between outputs, is the elapsed time between successive algorithm outputs

when the AMG is operating periodically at steady state. The inverse of TBO

is an indicator of output per unit time or throughput. The lower bound for

TBO, imposed by the algorithm, is given by the largest time per token of all

directed circuits in the CMG [4]. The lower bound for TBO, imposed by

available resources, is given by TCE/R where TCE (Total Computing Effort) is

the sum of node times for all nodes in the AMG and R is the number of

available functional units (resources). The lower bound for TBO, denoted as

TBOLB, is the greater of the algorithm bound and the resource bound.

2.3.2 Injection Control and Resource Requirements

In this section, a brief description of injection control is presented.

Then, two diagrams which display graph play and are useful for determining

the number of resources required to achieve specified performance measures

are defined.

Injection control is a control procedure which limits the maximum rate

at which new input data packets can be injected. A data packet is an input

data set. For real-time control and signal processing applications, the

algorithm is repeated periodically with new input data sets [4]. When

presented with continuously available input data packets, the natural behavior
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of a data flow architecture results in an operation where data packets are

accepted as rapidly as available resources and the input node transition

permit. This leads to a steady state operating point where TBO = TBOLB, but

TBIO > TBIOLB. This occurs because the pipeline from input to output

becomes congested with extra data packets which must wait for free resources

to be processed. Injection control eliminates data packet congestion and thus

preserves operation at TBIOLB. An example implementation of injection control

strategy is shown in Figure 2.6.

In the AMG, the longest path from the input source to the output sink,

measured in terms of time, is defined as the critical path. There can be more

than one critical path for a given AMG. In the example AMG of Figure 2.7,

nodes 1, 2, and 5 form a critical path. In this graph, there is only one critical

path. The critical path length (TBIO) is 5. The CMG for AMG shown in

Figure 2.7 is given in Figure 2.8.

The single graph play (SGP) diagram is a diagram which displays the

execution of each node of the AMG as a function of time. The diagram is

constructed for a single input data packet under the assumption that unlimited

resources are available to play the graph. Node activity is denoted by a solid

line and the symbols (<,>) are used to indicate the beginning and end of node

execution. When several nodes are active at the same time, lines indicating

node activity are stacked vertically so that computing concurrency is apparent.



19

Algorithm

CMG

Controller

D = node delay time

Figure 2.6. Implementation of injection control strategy.
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The SGP diagram for the CMG shown in Figure 2.8 is given in Figure 2.9. The

data packets are numbered in the same sequence in which they are injected.

The number of resources required to execute a single data packet is

obtained by counting the number of active nodes during each time interval in

the SGP diagram. The peak resource requirement is denoted by 1_._, and it

represents the minimum number of resources necessary to achieve operation

at TBIO = TBIOLB.

The total graph play (TGP) diagram displays the execution of each graph

node when the graph is operating periodically in steady state with a period of

TBO. The TGP diagram is constructed using information from the SGP

diagram. (However, in Chapter 3, we will see that the TGP diagram may be

constructed using information from the Total Resource Envelope determined

analytically from a given AMG). The SGP diagram is divided into segments

of width TBO, and these segments are overlaid to form the TGP diagram.

Each segment from the SGP diagram represents a new input data packet.

Data packets are numbered sequentially so that the packet numbered i+l is

the data packet which is input to the graph TBO time units after the packet

numbered i. The TGP diagram for the SGP diagram of Figure 2.9 is shown in

Figure 2.10.

The resource requirements to execute multiple data packets injected

with a period equal to TBO are obtained by counting the number of active

nodes during each time interval in the TGP diagram. The peak resource
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requirement 1_ is determined by finding the largest resource requirement in

all TGP diagrams drawn for injection intervals greater than or equal to TBO.

From Figure 2.10, it is evident that a minimum of four resources are required

for TBOLB equal to 3. It can be easily shown that if the TGP diagram is drawn

for values ofTBO > 3, the resource requirement does not exceed 4. Therefore,

the peak resource requirement R_ is 4.

2.3.3 ATAMM Performance Plane

The display of all the operating points on a graph of TBO versus TBIO

with R as a parameter is called the ATAMM performance plane diagram. An

example performance plane diagram is shown in Figure 2.11.

The system exhibits the best time performance when operated at the

lower bounds of TBO and TBIO. Operation of the algorithm graph at these

lower bounds is achieved using input injection control. The resource

requirement at this point is the value 1_ obtained in the TGP diagram drawn

for TBIOLB and TBOLB.

resources, the operating

Under conditions of nonavailability of sufficient

point must be shifted to a place so that fewer

resources are required. By using injection control, the operating point can be

moved along the vertical line A-V. This operating strategy preserves TBIO but

degrades throughput performance [8]. The operating points on the vertical line

A-V are calculated from the TGP diagram by increasing TBO until the number

of active nodes in any time interval decreases by one from the previous
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operating point. As an example, consider the AMG of Figure 2.7. By

increasing TBO from 3 to 4, as shown in the TGP diagram of Figure 2.12, the

number of required resources decreases to 3. Increasing TBO to 5 would not

reduce the resource requirement. These points are shown in Figure 2.13 along

the vertical line at TBIO = 5.

To reduce resource requirements, the operating point also can be moved

along the horizontal line A-H. This operating strategy degrades computing

speed but preserves TBO [9]. This strategy is implemented by adding control

edges to the original AMG. A control edge is an AMG place which imposes a

precedence relationship among two transitions, but does not imply data

dependency [9]. When such an edge is added to an AMG, the longest path

from input to output increases, thus increasing TBIO. The addition of control

edges can crate new directed circuits having increased time per token values

so that TBO is also increased. This can be avoided by increasing the number

of buffers (queue size) on an edge in the AMG. Every edge has an initial

buffer size of one which serves as a storage for the output of a node. By

increasing the number of buffers on an edge, the token count on circuits

formed by adding control edges can be increased so that the value of TBO is

preserved. Operating point design using control edges and buffer spaces is

explained in more detail in [4].

As an illustrative example, consider an AMG of Figure 2.7. Adding a

control edge from node 3 to node 4, as shown in Figure 2.14, requires that



28

1(2)

(1)
5

i

t

i

J

*_._j

<

i

i

t

i

×
i

f

i i i

i t i

' 2 (2) ,

i i

a(2) :
: >',
t i

4(,2)
o

0 1 2 3 4 5
> Time

Figure 2.12. TGP diagram for the SGP diagram of
Figure 2.9 with TBO = 4.



29

TBO

6

5

4

3

0

2

.......................... 0R=2

R=3

.....................

J

0

i

..................... O---OR=3
R=4

I I I I I I I > TBIO
1 2 3 4 5 6 7

Figure 2.13. ATAMM performance plane diagram for

the AMG of Figures 2.7 and 2.14.



30

_'_
II

II

II

II

0

r_

II

E!

.p,ml



31

buffer size be increased between nodes 1 and 4. The TGP diagram for the

AMG of Figure 2.14 is shown in Figure 2.15. Here TBO = 3, TBIO = 6, and

I_ = 3. The new operating point at TBO = 3 and TBIO = 6 for R = 3 is

shown in Figure 2.13. Additional operating point at TBO = 5 and TBIO = 6 for

R = 2 is obtained by using injection control.

The performance plane diagram provides information essential for the

selection and control of the time performance of algorithms executing under

ATAMM rules. Operating points are selected by identifying R points in the

performance plane, one point corresponding to each resource number. The

point associated with a specific value of R identifies the value of TBIO and

TBO when the system is operating with R resources. If the number of

resources changes, then a new operating point is identified. Operation at the

new point is realized by modifying the graph with control edges and buffers,

and adjusting the input injection interval.

2.4 Deposit Time and Fire Time

In this section, description of deposit time of an enabling token for the

firing of a node is presented. This will be taken as a basis for the development

of an analytical model for resource utilization in Chapter 3. The latest time

at which a node may fire, or is ready to fire is called fire time. The necessary

condition for firing is outlined and, consequently, the fire time of a node is

defined in terms of the deposit time of enabling tokens. This is useful in



32

1

(1)
2

i o i

(2) ,' 2 (2) ,'
t o

"_.-A

n

i

i

4 (:1)

t n

i i

(2)
3

o

(1) ,
5 ,

V

0 1 2 3 4
• Time

Figure 2.15. TGP diagram for the AMG of Figure 2.14
with TBO = 3.



33

finding the critical path and TBIO for a graph with forward initial tokens, as

will be seen in Section 2.5.

2.4.1 Waiting Token and Deposit Time

An enabling token which waits (on an incoming edge of a node) for

tokens from other nodes to become available is called a waiting token. The

positions of waiting tokens in the graph, and deposit times of waiting tokens

in one TGP (steady state) time interval are important in the construction of the

resource envelope. The resource envelope gives the information regarding

number of resources utilized at each time instant over one TBO time frame.

Therefore, finding the net change in number of resources required at the

completion of each node in the AMG along with their time positions over one

TBO time interval are sufficient for the development of the resource envelope.

The concept of a waiting token and its deposit time directly leads us to obtain

basic requirements for analytically developing the resource envelope.

In an abstract sense, a waiting token is present on an edge if the token

is waiting for other token(s) from other node(s) to become available. As for

example, a node may have several edges directed to it from other nodes. Each

of these predecessor nodes must finish execution and deposit an enabling token

on all incoming edges of the successor node in order to fire the successor node.

Of interest is determining the predecessor node which deposits the last

enabling token. An edge directed from this predecessor node to the successor
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node of interest constitutes an edgewith no waiting token, and all other edges

directed to its successor are assumed to have waiting tokens on them, even if

there may be more than one paths present with equal lengths. This

assumption is relevant because in physical reality, token must be present for

an infinitesimally small amount of time.

The physical interpretation of a waiting token on an outgoing edge from

any node is that the resource assigned to this node is freed and is entered in

a queue of available resources, thus reducing the resource requirement by one.

An absence of a waiting token means that the release of a resource occupied

by a node is now replaced by a resource assigned to its successor,thus causing

no net change in number of resources. For example, if node A has three

outgoing edges on two of which waiting tokens are present, one of the three

successorsfires immediately after A is finished, and there is no net change in

the number of resources utilized. If a waiting token is present only on one

edge, two resources are required immediately aider one is released, which gives

a net increase of one resource. If none of the edges has a waiting token, the

net increase is two.

In summary, for any node in the AMG, N-1 incoming edgesto a node out

of a total N would have waiting tokens present on them. For each edge with

a waiting token, time to deposit the token is equal to the path length of a

waiting token, and this may be calculated by finding the longest path from the

source to a particular edge, and summing all the node times in this path.
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2.4.2 Fire Time of a Node

A node may be fired when each of the incoming edges to the node has

an enabling token present on it. An enabling token may correspond to either

a current data packet or any of the previous data packets. If the path contains

an initial token on any edge, the data dependency is reduced by one packet

number at that point, and an enabling token is obtained from any of the

previous data packets depending on the number of initial tokens in the path.

Data packet index is reduced by one for each initial token present in the path.

Fire time of a node is the time at which all the enabling tokens for the

node are available. Fire time is the maximum of deposit times of all the

enabling tokens (either from a present or any previous data packets) for a

node. The notion of fire time of a node is used in the following section in

determining the critical path and TBIO for a graph with initial markings on

forward edges.

2.5 Critical Path for AMG with Forward Initial Tokens

In this section, an algorithm for finding the critical path and,

consequently, calculating TBIO for an AMG with initial tokens on the forward

edgesis presented. Consider an algorithm implementation of a control system

which has a unit delay operator Z1 in it. This constitutes operation on

previous data values. This kind of situation may be handled in the directed

graph by inserting an initial token on the appropriate edge. The calculation



36

of the steady state critical path is not straightforward for this type of graph

due to the presence of initial token(s) on forward edge(s). The modified AMG

method, to find the critical path, doesnot address the casewhen AMG contains

forward initial tokens. The algorithm presented here is used to identify the

critical path without any misinterpretation.

2.5.1 Identification of the Critical Path

A node requires that data be available on all the incoming edges for its

enablement, either in the form of the present or previous data packet(s).

Availability of data on edgesis represented by the presence of a token on each

edge. A node is not fired until the longest directed path from source leading

to the node has data available as an input to the node. In other words, the

node fires when a token is available on an input edge which corresponds to

longest path to the node. This means that enablement of any node is

determined by the longest time to deposit of token on each incoming edge.

An initial token onany edgerepresents data dependency on the previous

data packet in firing of a node on which edge directs. Absence of an initial

token represents dependencyon data corresponding to the present data packet.

If the number of initial tokens in one of the several paths from the source

leading to any node is n, then the enablement of this node is partially

dependent on the availability of the (i-n) thdata packet where i is current data

packet.
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In summary, the maximum of the times to deposit each of the enabling

tokens (whether from present or previous data packet) to a particular node

decides the longest path from source to this node. The critical path of a given

AMG is, by definition, a longest path from input to output of a graph.

Therefore, if we find times to deposit a token (Pi) at the input of the sink for

all possible paths starting from the source, then the maximum value ofP i gives

the critical path length and determines the critical path. To find time to

deposit a token for a path having initial token(s) on it, we subtract one TBO

interval from the path length for each initial token present on the path, since

the token corresponding to previous data packet is available prior to TBO time

period.

A method for the determination of the critical path is outlined asfollows:

1. Find all possible paths from source to sink and compute

corresponding path lengths.

2. Find the number of initial tokens present in each of the paths found

above.

3. Find time to deposit a token (Pi) for each path by subtracting number

of TBO time units equal to the number of initial tokens in the

corresponding path.

4. The maximum value of P_gives TBIO and the corresponding path is

the critical path.
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This method may be considered as an extension of the original approach

(modified AMG method) to account for initial tokens in the forward path [2].

2.5.2 Critical Path Evaluation (Example)

As an illustration of this method, consider a digital PID controller [11]

shown in Figure 2.16. If we determine the transfer function of a digital

controller, it can be implemented by a computer. The operator z" is

interpreted as a time delay ofT seconds, where T is the sampling period. This

time delay is implemented by storing a variable at some storage location and

then taking it out after T seconds have elapsed. Once this relation is

established, we can easily identify the program of any physically realizable

transfer function. The transfer function for the digital differentiator and the

digital integrator is given by G D (z) and Gl (z) respectively, as shown in Figure

2.16. Figure 2.17 shows a block diagram representation of the digital program

of the PID controller in Figure 2.16.

The algorithm implementation of the PID controller in Figure 2.17 is

given in Figure 2.18. One node has a self loop, and a total of three initial

tokens are present in the AMG. Firing node F requires the current data

packet from node A and node C, and the previous data packet from node E.

The results of applying the critical path evaluation method to the AMG of

Figure 2.18 are tabulated in Table 2.1, which is self-explanatory. The critical
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Path Path Length # of Initial Pi = PL - _ TBO

Tokens, ki.

AF 5 0 5

BCF1 6 1 2

BCF 2 6 0 6

DEF 10 1 6

Table 2.1. Finding the critical path for the AMG of Figure 2.18
with initial tokens on forward edges.

TBO = 4

Max (Pi) = 6 for BCF 2

Critical Path = BCF 2
TBIO = 6



path is B-C-F, and TBIO is equal to 6.

Figure 2.18 is shown in Figure 2.19.
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The TGP diagram for the AMG in

Assume that the AMG in Figure 2.18 is changed by inserting node G

between node E and node F as shown in Figure 2.20. Now, node F requires for

firing the current data packet from node A and node C, and the previous data

packet from node G. The results for the AMG of Figure 2.20 are outlined in

Table 2.2. The critical path for the new graph is found to be D-E-G-F, and

TBIO is equal to 9.5. Also, the TGP diagram for the AMG in Figure 2.20 is

shown in Figure 2.21.

2.6 Other Terminology

The purpose of this section is to define new terminology relevant to the

thesis research. This includes mod TBO operation, integer(path length/TBO)

operation, relative data packet number, and k-boundary.

Mod TBO operation for a given path length and a given TBO is defined

as

Mad TBO (Path Length) = Remainder ( Path Length.). (2.1)
TBO

In the mod TBO operation, a given path is wrapped around over one

TBO time interval (in the TGP diagram), and the remainder time period (left

over portion of the path after wrapping, which incorporates the end of the path

under consideration) is found. The value of mod TBO(path length) varies from
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Path Path Length # of Initial

Tokens, 1%.

Pi = PL - 1%.TBO

AF 5 0 5

BCF1 6 1 2

BCF 2 6 0 6

DEGF 13.5 1 9.5

Table 2.2. The critical path for the AMG of Figure 2.20 (with an

extra node added to the AMG of Figure 2.18).

TBO = 4

Max (Pi) = 9.5 for DEGF
Critical Path = DEGF

TBIO = 9.5
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0 to (but not including) TBO. In other words, outcome of the mod TBO

operation on a given path length falls in a semi-open interval [0, TBO). Thus,

the outcome ofmod TBO(path length) is periodic with a period TBO, and hence

t = 0 and t = TBO are equivalent points.

The mod TBO operation is of particular importance, because it defines

Latest Finish (LF) and Earliest Start (ES) of related nodes in the TGP

diagram. The mod TBO operation will be used in the development of the

resource envelope in Chapter 3. As an example, ifTBO is equal to 3, and path

length is 8, then mod TBO(path length) is remainder(8/3) which is equal to 2.

If path length is either 4, 7, or 10, then mod TBO(path length) = 1. If path

length is either 3, 6, or 9, then mod TBO(path length) is equal to 0 since

remainder(path length/TBO) gives 0.

The integer(path length/TBO) operation gives the number of complete

wrappings of path in the TGP diagram, and it shows the packet number at the

end of path relative to the current data packet. For the current data packet,

if the path does not extend to the next wrapping, the data packet at the end

of path is the current data packet even if the path extends over a complete

TBO time interval. The integer(path length/TBO) operation is defined as

Integer(Path Length/TBO) = Path Length - Mod TBO
TBO

(2.2)

This operation is utilized to find the data packet number relative to the

current data packet of each resource boundary. Assuming that the current



49

data packet number is i, packet numbers corresponding to each resource

boundary may be found by subtracting the value of integer(path length/TBO)

from i. The relative data packet numbers may be, in turn, used in the

construction of the TGP diagram from the resource envelope, as will be

described in Chapter 3. This gives a general view of the TGP diagram for any

data packet i.

The k-boundary is defined as a boundary (in one TBO interval) across

which there is a net change in resource requirement by k. A positive value of

k represents an increase in resource requirement by k on immediate right of

position of k as compared to resources on immediate left. A negative value of

k represents a decrease in resource requirement by k on immediate right of

position of k as compared to resources on immediate left of boundary. The

value k = 0 represents no net change in number of resources, and hence it does

not contribute to a resource change boundary. The position of k-boundary is

determined by mod TBO(path length) operation for a waiting token

contributing k-boundary, where "path length" is the time to deposit of a

particular waiting token. Because of the use of mod TBO operation, the

position of each k-boundary varies in the range [0, TBO).



CHAPTER THREE

DEVELOPMENT OF ANALYTICAL RESOURCE UTILIZATION MODEL

3.1 Introduction

The development of the analytical resource utilization model is

presented in this chapter. This model is based on the path length evaluation

from the input to each of the waiting tokens in the AMG. The model allows

an analytical development of the TGP diagram. The model also allows

calculation of resource requirements and identification of resource limited

mode for the graphs with time varying and, consequently, conditional nodes.

It also allows an analytical determination of R_ from the worst caseanalysis,

assuming that all the nodes in the graph take the maximum allocated time to

execute.

The analytical resource utilization model, which describes the evaluation

of the analytical resource envelope at steady state for one TBO time period, is

developed in Section 3.2. Consequently, the value of R_ can be determined

analytically, as discussed in Section 3.2. Since the deposit times of the waiting

tokens are used in the development of the resource envelope, and relative

packet indexes are known, the TGP diagram can also be determined from the

analytical resource envelope, as discussed in Section 3.3. This approach, which

always gives the steady-state view of the TGP diagram, is a refinement to a
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method of obtaining the TGP diagram by folding the SGP diagram [4]. The

analytical resource utilization model leads us to a method of finding the effect

of node time variation in the AMG on the peak resource requirement, which

is discussed in Section 3.4. It is found that the time varying nodes in an AMG

may cause the temporary (instantaneous) resource limited mode, and

subsequently, a preliminary approach for detecting and preventing resource

limited mode is presented. This may help in improving the system flexibility

by incorporating heterogeneous processors. An overview of the conditional

node model, and a method of mapping the conditional node graphs onto the

ATAMM model are presented in Section 3.5. Also the evaluation of resource

requirement for conditional node graphs under worst caseanalysis, and under

variable node times is discussed in this section.

3.2 Analytical Model for Resource Utilization

The development of the resource envelope from a given algorithm graph

basically utilizes the path length from the input to each of the waiting tokens

in the AMG. The waiting tokens define the boundaries across which one or

more nodes either start or finish execution.

resource requirement across these boundaries.

There may a change in the

Therefore, the evaluation of

these boundaries is important in developing the resource envelope.

Consequently, finding the positions of waiting tokens is the first, and crucial,

step in the determination of the resource envelope.
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3.2.1 Waiting Tokens in AMG

In this section, the procedure for marking the waiting tokens in the

AMG is outlined. In a given AMG, it is necessary to mark the positions of

waiting tokens in order to visualize the change in the number of resources

across different regions in the TGP diagram, and subsequently to develop an

analytic method to define resource change boundaries in the TGP diagram.

Any node in the graph may be described as a fork node, a join node, a

simple node, a node in a self loop, or any combination of these. A fork node

may be defined as a node which has at least two immediate successors. A join

node may be defined as a node to which two or more edges are directed to it.

A simple node has only one incoming edge and one outgoing edge. A node in

a self loop has an outgoing edge which is also an incoming edge to the node.

Each node defines a boundary at which there may be a change in the number

of concurrent resource. All the incoming edges to a join node must have tokens

available before a join node can be fired. The time of token deposit on each

edge depends on the longest path from source node of the AMG to the node

outputing the token of interest. The path length of this longest path gives the

time with respect to the input at which the token is deposited on the edge

under consideration.

Since a node can be fired only after all the incoming edges have tokens,

the join node cannot be fired earlier than the longest of all the paths

terminating on the join node. This may cause tokens on the other edges
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directed into the join node to wait depending upon the relative timing of the

nodes. This means that two or more resources are freed by two or more nodes

forming a join, and are replaced by a single resource utilized by the join node.

Thus, the join causes the resource requirement to decrease.

If more than one path from the input source to the join have the same

length, tokens are still assumed to wait on all except one edge, even if the

tokens arrive at the same time. This is done for consistency in further

analytical development. Consider the following special cases in the view point

of the presence of a waiting token.

1.

,

,

Source. The source is assumed to have no incoming edge. No token

wait on the outgoing edges because TBI (Time Between successive

Inputs) is set equal to TBO of the AMG, so the very first node is fired

as soon as the data packet from the source has been inputed.

Sink. The sink is assumed to have no outgoing edge, but has one or

more incoming edges. It is also assumed that the sink fires as soon as

it is enabled. However, all the incoming edges to the sink are marked

with waiting tokens, because completion of each predecessor of the sink

releases one resource and the sink itself does not consume a resource.

Graph with circuits. For the AMG containing circuits, the critical path

is found using the modified AMG. The edges on which tokens wait can

easily be determined by marking the critical path in AMG. Case 2 also

must be considered.
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As an example, consider the AMG shown in Figure 3.1, and its

corresponding TGP diagram shown in Figure 3.2. Node 8 in the AMG is ajoin

node. The critical path is 1-4-5-8, the critical path length is 8.5, and TBO is

equal to 3. As marked in the AMG, three waiting tokens are present, one on

the edge directed from node 7 to node 8, second on the edge directed from node

3 to node 8, and a third on the edge directed from node 8 to the sink. The

location of first two waiting tokens are found noting that node 8 is a join node

at which three edgesare terminated, and one out of three (from node 5 to node

8) is on the critical path. Node 1 is a fork node because it has three edges

directed out without waiting token. Successorsof node 1, nodes 2, 4 and 6, fire

at the same time when node 1 finishes. The completion of node 1 frees up one

resource and, at the same time, three more resources are utilized by nodes 2,

4, and 6. The resource requirement increases at the boundary given by the

time at which node 1 completes. Of interest is the analytical evaluation of

these boundaries to replace the graphical representation as shown in Figure

3.2.

3.2.2 K-Boundaries

In the previous section, the positions of waiting tokens in the AMG were

shown to be determined by searching for the longest path from the input

source to a particular node. K-boundary is a boundary, in the TGP diagram,

acrosswhich there is a net change in resource requirement by k. K-boundaries
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are associated with resource changes (either increase or decrease) in the TGP

diagram. The k-boundaries are helpful in determining the analytical view of

the TGP diagram (in a view of number of resources) for a given graph, which

gives an analytical model for the resource envelope.

Let us define the following notations:

N = Total Number of nodes in the AMG

m = Number of edges outgoing from each node

T = Number of edges on which tokens wait out of"m" edges from each node.

The variable T ranges from 0 to m.

k = Net change in number of resources immediately after a node finishes.

"k" ranges from -1 to m-1.

For any node, ifT = m, token waits on each outgoing edge. The resource

utilized by this node is not used immediately by any other node when the node

completes. Thus, there is a net decrease by one in number of resources

immediately after the node completes. The net decrease by one is represented

by negative k value, which is equal to -1.

IfT = m-l, tokens wait on all except one outgoing edge. When the node

finishes, a resource used by this node is utilized by its successor which fires

immediately. Thus, there is a replacement of resource, and the net change in

number of resources is zero (k = 0).

If T = 0, all the "m" successors of the node fire at the same time when

a node completes, utilizing "m" number of resources. However, one resource
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This causes a net increase of m-1 in number of

IfT = m-2, tokens wait on all except two outgoing edges. When the node

completes, two nodes are fired immediately. Therefore, one resource is

replaced by two, and the net increase is 1.

For a given m and T, we may summarize:

k=m-T-1,

which is valid for any value of m and T.

3.2.3 Resource Use Boundaries and Resource Envelope

K-value is the value of k associated with each k-boundary. The concept

of k-values and k-boundaries is useful in further analytic development of the

resource envelope and the variable node time model. In the previous section,

we have identified the k-boundaries for any given AMG. In this section, we

will utilize k-boundaries to define Si and A_ boundaries, and to develop an

analytical form of the resource envelope.

Out of all the k-values (one for each node), only non-zero values of k are

to be considered to establish a "resource use boundary" because only these

values of k cause a net change in the number of resources. The trivial case

where k = 0 causes a replacement of resource, so it is not considered in forming

resource use boundaries.
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The following information has now been identified:

1. All the non-zero k-values and a node associated with each of them.

2. The longest path from the input source to the node corresponding to

each non-zero k-value.

From (2) above, we can find corresponding modulo-TBO (mod TBO) values

using-

Mod TBO(path length) = Remainder(path length/TBO).

As discussed in Chapter 2, the mod TBO operation on the path length

gives the relative path length within one TBO time interval in the TGP frame.

It gives the time at which the path ends in the TGP diagram. By definition,

mod TBO value lies in the interval [0, TBO). Define

S_ = Boundary across which k = -1 (Subtraction), and

= Boundary across which k > 1 (Addition).

Each S i and _ has a k-value associated with it. Also they represent

boundaries in the TGP diagram across which the number of resources change

by a value of k. Having found mod TBO values for each Si and _, these values

may be ordered in an increasing manner, from 0 to TBO. In other words, the

S i and A i boundaries are positioned in an increasing order in the TBO time

frame, incorporating k-value for each boundary as a superscript. We now have

enough information, in the form of an ordered array, from which the number

of resources utilized at any time in the TBO time frame can be found out as

outlined in the following.
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Let us consider a general form of a sequenceof Si and _ boundaries, as

shown below.

_ii_ii_i_ii_ii_iii_i_i_i_ii!_:_ii_ii_!_i_ii_i_ii__ii_i_i_i_!i_i_ii_.i_i!_i_i_!i_i_ii_i_i_i_i_ii_ii_i_i_i_i_i_i_iii_i_i_i_ii_i_ii_i_i_i_J_i_i_!_i_ii_i_ii_ii_i_ii_i_i_i_i_i
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In the ordered list shown above, m and n are known, and subscripts i, j, and

k are used to show generalization. It is important to note that there is no net

increase or decrease of resources across one TBO time frame in the TGP

diagram, i.e., a resource can neither be created nor be destroyed.

Assume that the number of resources (R) on the very start of the TGP

diagram (on the immediate right of t = 0 in the TGP diagram) is equal to P.

S_ causes a decrease in number of resources by 1, so R = P-1 on the immediate

right of S_. _¢÷"_ and Si÷___ overlap each other. There is a net increase of n-1

across these boundaries since _ causes an increase by n and Si÷ _ causes a

decrease by 1. Therefore, R = P-l+n-1 = P+n-2 on the immediate right of S_÷_.

Similarly, R = P+n-3 on the immediate right of S_÷_. Following the same

procedure, we find resource values in terms of P across each boundary in the

ordered array. The maximum R value corresponds to R_, and all other R

values are indexed by Rm_. For example, ifR_ = P+n-2, then R = P-1 = R_-

n+l, R = P+n-3 = R_-I, and so on.
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It is important to note that the number of resources about minimum and

maximum time values (about t = 0 and t = TBO) must be same due to the

periodicity of mod TBO operation. In other words, the number of resources at

t = 0 and t = 0 ÷ must be equal to the number of resources at t = TBO and t

= TBO ÷, respectively. In general, boundary conditions are satisfied for any

time slot (t = n to t = n+TBO) of width TBO. If we consider t = 0 ÷ and t =

TBO values in the current data packet, then t = TBO ÷ and t = 0" may be

considered as corresponding values in the next data packet.

The number of resources at t = 0 ÷ can be determined from the number

of resources at t = 0" since k-value(s) of any S i or _ boundaries, if it exists at

t = 0 (or t = TBO), is known, and the number of immediate successor node(s)

of the source is also known. The number of immediate successor node(s) of the

source represents the number of new processor assignments at the beginning

of each TGP time frame (at t = 0). If, in a given AMG, there are Ssl successors

of the source, then the resource requirement at t = 0 ÷ is increased by Ss_ as

compared to the resource requirement at t = 0, in addition to either increase

or decrease given by the sum of k-values of boundaries existing at t = 0". This

may be written as-

R (t = 0 *) = R (t = 0) + Ss_ + [ k-values of boundaries at t = 0 ],

where square bracket around the last term is used to identify that this term

may or may not exist. Since the number of resources at t = 0 (or t = TBO') is
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known, number of resources at t = 0 ÷ can be found using the above equation,

which must be equal to the number of resources at t = TBO ÷.

The ordered boundary information is now what otherwise would have

been conveyed by the resource envelope, or the TGP diagram. For the AMG

shown in Figure 3.1, this information is displayed below, and the _ and Si

boundaries are marked in the TGP diagram of the AMG as shown in Figure

3.2.
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It is noted that R = Rm_. The resource requirement from t = 0 to t = 0 ÷

increases by one (Ss_ _+_) because of one immediate successor (node 1) of source

node. From the analytical model of the resource envelope, the value of 1_

may be computed as will be discussed in the following section.

3.2.4 R_ from Worst Case Analys_s

In this section, a method for computing the value of R_ from the

analytical resource envelope, developed in the previous section, is presented

(without drawing of the TGP diagram). The value of R_ corresponds to the
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in the graph take the

Number of boundaries at distinct times in the array, or the number of

"t" values (corresponds to S i and _) in array.

= Distinct "t" values corresponding to boundaries marked in the array.

The maximum value of _ is equal to TBO', and i = 0 to n.

Ri = Number of resources utilized in each time slot between two _.

tn = Time at which right-most boundary is located in the array, or the time

position of right-most k-boundary in the analytical resource envelope.

The summation of all node times in the AMG defines Total Computing

Time or Total Computing Effort (TCE). It is observed that TCE events occur

in one TBO period. Thus, TCE must be equal to the sum of product of the

time duration of each slot in the TGP diagram and the corresponding number

of resources utilized in a particular slot.

If the number of distinct k-boundaries is equal to n, then

n

TCE= _ R i [ti÷ 1- ti] ,
i_O

(3 .I)

where to = 0, and to÷ 1 = TBO. Since t_ and TCE are known, and _ is known in

terms of R = Rm_, Equation 3.1 can be solved for the unknown R = Rm_.



3.2.5 An Illustrative Example

As an illustration of the method for development
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of the resource

envelope, consider the AMG shown in Figure 3.3. The critical path is A-B-E-C-

D-J as shown by dark lines in the figure, and the critical path length is 14.

Also, TCE = 17.75 and TBO = 3. To find the position of waiting tokens,

consider each node which has two or more edges directed to it. Find the path

length to the node for each incoming edge, and mark the waiting token on each

incoming edge except one which has maximum value of the path length. If two

or more incoming edges have equal maximum value, then mark a waiting

token on all except any one edge.

For a given AMG, a waiting token is present on the edge from node G

to node E, because node E cannot start until nodes B and G are finished, and

the path length A-B is greater than the path length A-G, i.e., (t A + tB) > (tA +

tG). Similarly, at node F, (t A + t B + tE) > (t A + t o + tH) , therefore a waiting token

is marked on the edge directed from node H to node F. Other waiting tokens

are marked in the AMG by following similar argument. A waiting token is

also marked on the edge from node J to the sink So, since the completion of

node J releases one resource which is not utilized by the sink.

After marking all the waiting tokens in the AMG, we construct the

resource envelope table as shown by Table 3.1. In this table, each row

corresponds to each node in the AMG. The first column shows the nodes in the

AMG, the second column gives the value of m (number of edges directed out
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Nodelml T r
A 2 0

B 2 1

C 1 0

D 1 0

E 2 0

F 2 2

G 2 1

H 2 1

I 1 1

J 1 1

k=m-T-1 Boundary Path Length Mod TBO

1 A 1 1.5 1.5

0

0

0

-1

0

0

-1

-1

A 2

S 1

8 2

8 3

5

6.25

4

14

2

0.25

1

2

Table 3.1. The resource envelope table showing k-values

and boundaries for the AMG of Figure 3.3.
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from each node), the third column gives the value of T (number of edges out

ofm which contains waiting tokens) for each node, and in the forth column the

value ofk is calculated for each node using k = m-T-1. In "Boundary" column,

different resource boundaries are named, using the notation A i (Addition) for

positive value of k and Si (Subtraction) for negative value of k. Trivial k = 0

value is discarded. In the next column the path length for each boundary is

noted, considering the path without any waiting token. In the last column the

mod TBO values of path lengths are found.

Table 3.1 shows k-value for each node, A_ and Si boundaries, the path

length from the input source to corresponding node, and mod TBO value of the

path length for the AMG given in Figure 3.3. The _ and Si boundaries are

ordered, using the corresponding mod TBO values and ordering in an

increasing manner, as shown in Figure 3.4. Here, the superscript of a

boundary represents its k value, and subscript represents boundary

numbering. Assuming P resources at the left-most point in the TGP frame, we

find resources in each time slot, knowing the amount of increase and decrease

at each A_ and Si boundary. These resource values are then indexed to R=Rm_x

as shown in the figure, since Rm_ is the number of resources for which the

system is designed.

Figure 3.4 provides the complete information about the total resource

envelope for the given graph. It is an analytical view of the resource envelope
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t=0

Ss[ +1)

P-1 p

R-1 R

0.25

t

S} -1)

1.0 1.5 2.0

s_-l_ _÷1_ S_(-I_
(+1)

A2

3.0

Figure 3.4. Ordered array of boundaries and resources

in different regions for the AMG of Figure 3.3.
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as opposed to the pictorial view. Using Equation 3.1 and information given in

Figure 3.4, R = R_ can be determined as follows:

TCE = 17.75 = R (0.25-0) + (R-l) (1.0-0.25) + (R-2) (1.5-1.0) + (R-l) (2.0-1.5) +

(R-l) (3.0-2.0)

17.75 = 3 R - 3.25, or

3 R = 21, or

R=7=R_

The analytical resource envelope may be compared with the pictorial

view of the resource envelope obtained using the Design Tool, as shown in

Figure 3.5. Comparing the value of resources in different time slots in Figure

3.4 with those in Figure 3.5, it is seen that theoretical results match with the

experimental results. Also, the value of Rm_ obtained from Figure 3.4 and

Figure 3.5 are the same.

3.3 Development of the TGP Diagram

A method for the development of the TGP diagram from the analytical

resource envelope is presented in this section. This method is important

because it is easier to draw the TGP diagram for a very large graph, a graph

with forward initial tokens, or a graph with circuits without any error. This

method may be considered as an alternative method of drawing the TGP

diagram to the previous method in which the TGP diagram is drawn using the

SGP diagram by folding it around about one TBO time interval.
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3.3.1 Method Development

As discussed in Chapter 2, the TGP diagram provides information

regarding the predecessor-successor relationship for each node in the graph.

It displays the execution of each node of a graph when the graph is operating

periodically in steady-state with period TBO. The necessary information for

the development of the TGP diagram may also be obtained directly from the

analytical resource envelope developed in the previous section, since it provides

the path length to each node, and also the time instant in one TBO frame

(from mod TBO operation) which corresponds to the completion of a node.

The data packet dependency for each node relative to the current data

packet is also represented in the TGP diagram. The data packet number for

each node may be determined from the analytical resource envelope using the

integer(path length) operation. In this operation, as defined by Equation 2.2,

we divide the path length to a node by TBO, and take an integer value of the

result. If we assume the current data packet number be i, then data packet

corresponding to each node in the TGP diagram may be determined relative

to data packet i by subtracting integer(path length) value for each node from

i. As for example, if the path length to a node is 7, and TBO = 3, then

integer(7/3) is equal to 2, and the data packet of this node relative to the

current data packet i is i-2.

Since the time at which each node finishes in one TBO frame, and the

data packet for each node may be determined from the analytical resource
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envelope, as outlined above, we may construct the TGP diagram directly from

the analytical resource envelope. In the analytical resource envelope, the

boundaries are formed due to forks, and the Siboundaries are formed due joins

in the graph. In finding the path length to each join node, times of all the

nodes in the path are summed. Thus, each node in a graph is taken into

account if we consider all Si boundaries. An exception to this is when neither

of the Si boundary corresponds to the join immediately before the sink, in

which case this join node is not taken into account. To incorporate this join

node, we also consider the critical path in addition to all Si boundaries, since

the critical path also takes into account the lei_ over join node.

To summarize, the TGP diagram for the AMG may be constructed using

integer(path length) data of a node corresponding to each S_boundary and the

critical path, and a given graph. These provide information regarding data

packet indexing and predecessor-successorrelationship respectively.

3.3.2 Method Description

A method for the development of the TGP diagram from the analytical

resource envelope is outlined in the following.

1. Since the path length for each node which contributes to an S_boundary

is known, its integer(path length) value may be found using Equation

2.2. If the path length is an integer multiple of TBO, i.e. path length =

n TBO, then integer(path length) = n-1.
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Assuming that the current data packet is i, data packet index for each

of the above node is found by subtracting its integer(path length) value

from i, i.e., data packet index for a node = current data packet i - integer

(path length).

The critical path, TBIO, and TBO may be found directly from the given

AMG.

Since mod TBO(path length) for each node contributing Si is known

(which gives the time at which the node finishes in one TBO frame), we

draw the path ending at the time given by its mod TBO value,

traversing backwards (going upwards in the TGP diagram) with a length

equal to the corresponding node time, and considering each node in the

path in a reverse manner until we reach at the starting node of the

path. Also, mark the last node in the path (node contributing to Si) with

a packet index of its corresponding integer(path length) value, and

increase the packet index by one for nodes in each of the upper layers.

Repeat step 4 for each Si boundary and the critical path, and ignore any

duplication of a node in the TGP diagram.

3.3.3 An Illustrative Example

For a given AMG, the TGP diagram may be constructed using the

method outlined in the previous sub-section. As an illustration of this method,

consider the AMG shown in Figure 3.3, and its resource envelope table shown
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in Table 3.1. From the last row in Table 3.1 (row for node J), it reveals that

the critical path is taken into account in $3 since node J is last node in the

Therefore, the TGP diagram may be constructed using only Si

Table 3.1 is modified as shown in Table 3.2, which is self-

This table is used to construct the TGP diagram as outlined in

Consider first the boundary $3. Its mod TBO and integer(path length)

values are equal to 2 and 4, respectively. Therefore, in one TBO time frame,

start drawing a line segment for node J at time = 2, packet number i-4, and

going backwards (upwards in the TGP diagram) for tj = 3. Then, predecessor

of node J which does not deposit a waiting token on the edge directed to node

J (in this case, node D) is drawn. Accordingly, line segments for nodes C, E,

B, and A are drawn in a reverse fashion with appropriate data packet number.

Now, consider the boundary S_ which constitutes the path A-B-E-F.

From Table 3.2, it is seen that node F finishes at time = 0.25 in the TGP frame

with a data packet of i-2. Therefore, draw a line segment for node F, starting

at time = 0.25 with data packet number i-2, and going backwards. Since the

line segments for nodes A, B, and E are already drawn using $3, they are

redundant, and are not considered. Thus, S_ gives new information regarding

only node F.

Consider the boundary $2 which constitutes the path A-G-H-I, and

located at a point where node I finishes. From table 3.2, node I finishes at
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Node Boundary Path Length Mod
TBO

Int.(PL/TBO) Relative
Data
Packet
No.

F Sl 6.25 0.25 2 i-2

I S, 4 1 1 i-1

J $3 14 2 4 i-4

Table 3.2. The modified resource envelope table for the construction

of the TGP diagram of the AMG of Figure 3.3.
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time = 1 with data packet of i-1. Therefore, draw a line segment of length t_

= 1.25 starting at time = 1 in one TBO frame, with data packet of i-l, and

going backwards. Similarly, draw line segments for node H and node G of

lengths t_ = 0.5 and ta = 0.75, respectively. The line segment for node A is

already drawn, so it is not considered. Thus, S_ gives additional information

in terms of nodes G, H, and I. The complete TGP diagram obtained by

following the above procedure is shown in Figure 3.6.

This method gives the steady state TGP diagram for a given AMG, and

is very useful for the AMG with high complexity.

3.4 Time Varying Nodes and Resource Limited Mode

In the Section 3.2, enough background has been developed in terms of

the analytical resource envelope so that we may consider to develop the

variable node time model, as presented in this section. This model is

important because many real-time algorithms require variable node times for

reasons such as heterogeneous processors, data dependent code execution, and

time varying deadlines for the completion of a job. The execution of graphs

with time varying nodes is investigated with a point of view of the change in

number of resources. A method for the detection of a possible resource limited

mode is discussed, and also a method for its subsequent prevention is outlined.
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3.4.1 Resource Limited Mode

The multicomputer system is said to be running in resource limited

mode if a resource required during algorithm execution is not available in the

system. When a node finishes early, there may be an increase in resource

requirements in excess of that requir_ed under fixed node time conditions.

Generally the system is designed for the number of resources necessary for

fixed maximum node times in the graph. Now if for some reason the node time

decreases, which in turn may cause an increase in the resource requirement,

then the system runs into resource limited mode. The resource limited mode

of the system needs to be prevented because it causes the system time

performance to become unpredictable. Therefore, a method will be developed

in the following sections to detect the presence of resource limited mode and

subsequently, to modify the graph in such a way as to prevent the system from

going into the resource limited mode.

3.4.2 Graph Topology Considerations

The overall topology of the graph is an important contributor factor in

resource limited mode. Thus, the presence of resource limited mode depends

on the structure of the graph, as well as the timing of each node in the graph.

A node which has at least two immediate successors is called a "fork

node". The combination of a fork node and its successors is called a "fork".

The basic property of the fork is to increase the resource requirement in the
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TGP frame to the immediate right of the boundary at which the fork node

finishes. For example, consider a fork node with three successors. Let the

number of resources to the immediate left of the point where fork node finishes

be S. Then, the number of resources to the immediate right of this point

equals S+2, since an increase by two number of resources is encountered across

the boundary where the fork node finishes. If the fork node goes short, then

the three successor nodes start early at a point in time beginning at the left

of this boundary and hence two extra resources may now also be executing in

addition to the S resources already being used. If the requirement for extra

resources causesthe number of resources required to be greater than Rm_(the

maximum number of resources for which the system is designed), then the

system is driven into resource limited mode.

Suppose that without any node time variation (fork nodes finishing at

maximum allowable time), the number of resources required is equal to R for

which the system is designed. When the fork node finishes earlier than its

scheduled finish time (under any nodetime variation), the number of resources

required may become greater than R for short time duration. The system is

driven into resource limited mode due to unavailability of extra resource(s).

Another important graph attribute of the AMG is a "join". The node at

which token waits on at least one of the incoming edgesis called a "join node".

In other words, a join node may be defined as a node at which two or more

edges are directed to it. When more than one edgesterminate at a particular
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node, tokens wait on all except one edge. The combination of a "join node" and

its predecessors defines a "join". An important feature of a join is that the

resource requirement may decrease where the join node starts in the TGP

diagram.

The behavior of variable node time AMG is investigated in the following

sub-sections in the view of resource limited mode, and its subsequent

prevention. The approach taken is to observe the change in number of

resources when each Ai.boundary in the analytical resource envelope is shifted

towards left, as outlined in the following section.

3.4.3 Necessary Condition for Resource Limited Mode

In this section, a necessary condition for the presence of resource limited

mode is described. This will be useful in developing a method for the

prevention of resource limited mode, as will be seen in the following section.

An A_(÷k)boundary is one to the immediate right of which the number of

resources required increases by k in the TGP diagram. Consider a case of

shifting an A1boundary towards the left. (If any _ boundary is located at time

t = 0, its shift towards lef_ is folded over at t = TBO and then shifted to the

left). This causes the requirement of k extra resources to the lei_ of _ in the

TGP diagram. If in any time period over which A_ may be shifted in the TGP

diagram, the maximum resource requirement appears to be greater than or

equal to Rm_-k+l, then the requirement ofk extra resources increases the total
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number of resources to be greater than or equal to R_+I. However, the

system is designed for 1_ resources, which is now less than the peak resource

requirement. Therefore, the system is driven into resource limited mode.

Thus we may conclude that for any A_ boundary, if decreasing the path

length corresponding to _ over possible range causes the total resource

requirement to be greater than R_, then the system is driven into resource

limited mode. A cause of decrease of a path length may be non-homogeneous

resources, variable node times, data dependent code, and many others.

3.4.4 Prevention of Resource Limited Mode

In this section, sufficient conditions are developed for inserting the

control edges for eliminating resource limited mode due to node time

variations.

When an A_ boundary shifts towards the left, it may or may not cause

resource limited mode. We first develop a method of determining whether an

boundary may possibly cause resource limited mode, and then insert

necessary control edges to prevent resource limited mode. Define

+k =

j=

Increase in number of resources across _,

Index relative to R = R_, used to represent resources utilized in

different time slots, and

Time location of different boundaries in one TBO time frame.
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For each Ai, observe if moving _ across Si causes the resource requirement to

be greater than Rm_. If it does, find the amount of increase beyond Rm_, and

denote it by _nc. Then,

Rinc=(Rm_-j+k)-Rm_ =k-j,

where k = k-value for _ under consideration, and j = resource index on the

immediate left of Si (which is to be crossed).

The number of control edges necessary for any A i boundary, # CE, is

given by,

# CE = l_.n¢ - (# CE already determined for _ under consideration).

As an example, consider the array shown in Section 3.2.3. The number of

control edges are determined as follows.

ForA l(t=0tol,k=3),#CE(S3,j=2)=3-2.0= 1, and

#CE(SI, j= 1)=3- 1- 1= 1.

ForA 2(t=0to2.5,k=2),#CE(S4,j= 1)=2- 1-0=l, and

#CE(S2, j=0)=2-0- 1= 1.

The upper limit of the sum of # CE for any _ is equal to the k-value of

that particular _, which is equal to 3 and 2 for A_ and A 2 respectively.

3.4.5 Placement of Control Edges

In this section, a procedure for inserting control edges for the prevention

of resource limited mode is outlined. After finding the required number of



control edges as described in the previous section, we

appropriately in the AMG using the method outlined below.

1.
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insert them

Identify the successor nodes (S_NODES_) of a node in the AMG which

corresponds to an _ boundary.

2. Identify a node in the AMG (NODEsi) which corresponds to an Si

boundary. The number of control edges required for an Si is found to be

equal to # CE (Si).

3. Insert control edge(s) from NODEsj to one or more S_NODES_, the

number being equal to # CE (Si). The S_NODES_ to which control edges

are directed from NODEsi won't start their execution until NODEsi

finishes. This prevents the resources to be utilized by them from moving

to the left of the Si boundary.

4. Following the same method for each A_ S_ combination determined

above, resource limited mode may be prevented under any node time

variation.

The insertion of control edges may form circuits in the graph, and

therefore changes the value of TBO. To retain the original value of TBO, we

increase the queue size for each control edge. Moreover, initial tokens must

be appropriately placed on a control edge for the initiation of graph play.



3.4.6 An Illustrative Example

As an example, consider the AMG given in Figure 3.3.
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The behavior of

this AMG with any node time variation is investigated in this section in a view

of resource limited mode and its prevention.

Consider the analytical resource envelope as shown in Figure 3.4.

Consider shifting of A 1 boundary to the left. Since A1 is contributed by node

A, tA = 1.5, and mod TBO = 1.5, the range of variation of A1 is between t = 0

and t = 1.5, as shown in Table 3.3. Now if A 1 is shifted in the region between

t = 0 and t = 0.25 (in which number of resources = R = R_), or if the S_

boundary is crossed, extra resource requirement due to A1 causes total

resources requirement to be greater than R_, therefore resource limited mode

occurs. This may be prevented by inserting a control edge directed from the

node which contributes S_ (node F) to any one successor of the node which

contributes A_ (node B or node G).

Now consider shifting ofA 2 boundary to the left. Since A 2 is contributed

by node E, and t E = 0.5, and mod TBO = 2, the range of variation of A 2 is

between t = 1.5 and t = 2, as shown in Table 3.3. In this time region, the

number of resources are Rm_-I , therefore the increase of one in number of

resources ifA 2 is shifted to the left causes the resource requirement to be R_.

Therefore shifting A 2 won't cause resource limited mode.

To summarize, the number of control edges for all the Si boundaries in

the range of variation of each _ boundary are found as follows:
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to=0 t1=0.25 t2=1.0 t3=1.5 t4=2.0

Boundaries - $I $2 AI $3

A2

Latest start

of _ = Mod

TBO [t{_} -

t{NODE_}]

1.5- tA
=1.5 - 1.5

=0

2.0 - ts
=2.0 - 0.5

=1.5

Table 3.3. Finding the possible range of variation of A_ boundaries

in one TGP frame for the AMG of Figure 3.3.
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ForA l(k= 1): S2(j= 1)= 1- 1-0-0

SI (j=O)= I-O-O= I

For A2 (k = l): S_(j=I)= 1-1-0=0

Thus, one control edge is required for preventing a possible resource limited

mode, which may be inserted starting from node F directed to either node B

or G, with appropriate initial token and queue size. The AMG with a control

edge from node F to node G is shown in Figure 3.7.

3.5 Conditional Node Model

An overview of the conditional node model is presented in this section.

An algorithm graph with conditional nodes is studied, and a possible reduction

of a conditional node graph to a time varying node graph is described. Basic

modifications necessary for mapping the conditional node graph on the

ATAMM based architectures are presented, and finally an example of

conditional node graph is given in which conditional node graph is investigated

using the variable node time model.

It is assumed that each conditional node has a capability of making

decisions depending upon certain data conditions. This capability is derived

from the executable code embedded in the node itself. It is also assumed that

only one of the several outgoing paths is chosen for execution by each

conditional node, and there is no restriction on the number of conditional nodes

in an AMG. Also, the probability of execution of any conditional path, in one
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particular run of the AMG, is moderately greater than zero, and all conditional

paths are executed at nearly same frequency. The decision making process

resembles branching such as a "case" statement.

3.5.1 Overview

In many practical applications, it is necessary to change the flow of

execution of algorithm depending on the existence of certain condition(s). For

example, a portion of the algorithm may change from one range of the data

values to another. For these type of applications, the AMG implementation of

an algorithm may contain one or more conditional branches (forks). For any

conditional branch, only one of the several possible alternative paths is

executed when a particular data condition occurs, all other paths being

inactive. Also, a jump from one conditional path into the other is not allowed.

Intuitively, the conditional branch has at least two alternative paths. Each

alternative path may contain any number of nodes in it. A node which

initiates a conditional branch is called the conditional (fork) node. When a

conditional node finishes, its data output is given to all of its successors. Now,

depending upon the data conditions at the output of conditional node, any one

of its successors starts its execution and it continues for the rest of the path.

The remaining successor nodes (for which data condition is not satisfied) do not

execute, but they just pass the data packet to their corresponding successors

in the path.
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Since only one of the several nodes at the same level in a conditional

branch is executed, it is possible to combine these node into a single node by

grouping the executable code of each of these nodes in one node. Such a new

node may be viewed as a node with partitions, each partition containing the

codefor one particular node, and any one of these partitions is executed in the

presence of any data conditions.

A partitioned node is assigned a node time which is found using a notion

of latest time to deposit a token at the output of a node. The latest time to

deposit a token at the output of a node is the longest path length from the

input source to the node. For a reduced graph with partitioned nodes, the

latest time to deposit is the maximum of all deposit times, one for each

partition. An equivalent node time, which is assigned to a partitioned node,

is found by subtracting the latest time to deposit at the input of the node from

the latest time to deposit at the output of the node. The latest time to deposit

at a particular edge represents the time, under the worst case, at which a

token may be deposited on the edge,when a conditional node AMG is executed.

Thus, the notion of latest time to deposit ensures a worst case analysis of the

execution of a conditional node graph. (A notion of latest time to deposit is

illustrated in Section 3.5.3, using a conditional node AMG). The TCE is

calculated by summing node times of all nodes in a reduced graph. The TCE

found from a reduced graph (instantaneous TCE) is used in the calculation of

Rm_ from the analytical resource envelope.
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A new node containing different partitions has to make a decision as to

which of its partitions is executed each time data is available at input of the

node. Therefore, it requires some basis to make this decision. One criteria

may be let the new node figure out in which execution block the conditional

node was in when output becameavailable by viewing the status of someflags.

This criteria is time consuming and requires backward status information. An

easier and feasible approach may be to have the predecessor node provide

necessary information to make a decision. This may be done by incorporating

a status flag with each data packet, the value of which is determined by the

node outputing data packet in such a way as to reflect the partition number,

the code in which is to be executed next. Again, value of the status flag

depends on which of the several conditions has caused the output. Now each

node in the conditional branch checks the status flag when data packet is

available at its input, and executes the code in the partition reflected by the

status flag.

Since each node in the conditional branch has different partitions

containing different pieces of code, the node may take different time each time

it is executed. Therefore, each node in the conditional branch may be viewed

as a time varying node with a conditional execution.



3.5.2 Example for Illustration

Consider the conditional AMG shown in Figure 3.8.
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Assume that the

fork at node A is a conditional fork, and the top two paths (paths B-C and D-E)

are conditional. Therefore, one of the two possible paths is executed at any

time. The conditional AMG may be reduced to the AMG without any

conditional branching as shown in Figure 3.9. Here, node X is divided into two

partitions, which contain code for the successornodes of a conditional node A

(B and D). Node Y also has two partitions; partition 1and partition 2 contains

code for node C and node E, respectively. Partitions in a node are separated

by dotted lines within the node. Thus, four nodes in the conditional branch

shown in Figure 3.8 (nodes B, C, D, and E) are reduced to two nodes (nodes X

and Y), as shown in Figure 3.9.

In Figure 3.8, node F is common to both the conditional paths, i.e., node

F is always executed irrespective of the conditional path selected. Therefore,

node F is shown, in Figure 3.9, as a successorof node Y without any partition,

so that it is executed as soon as data at its input from either of the partitions

in node Y is available. Under a worst case, fire time of node F is equal to the

latest time to deposit at the input of node F, which is equal to 7 as shown in

Figure 3.9. Latest

corresponding edges.

tx

deposit times at different edges are shown along

Node times of nodes X and Y are found as follows:

= latest deposit time at output of X - latest deposit time at input of X.

=7-4=3.



92

O'3
II

II

Jl

II

O0

II

i
0

q_
o
c_

c_
b_
c_

c_

,Diml



c_
II

II

oO
II

i

o

o

o

o

m_

!k3



94

Similarly, t_ = 4 - 2 = 2.

The edge from node A to node G is unconditional. Therefore, node G is always

executed as soon as node A finishes. Also, node H is always executed when

both node G and node F deposit tokens at the input of node H. Nodes G and

H in Figure 3.8 are equivalent to those in Figure 3.9.

After reduction, the conditional sub-graph is converted to a simple chain

sub-graph, as shown in Figure 3.9. The number in each partition of a node

represents the time to execute particular partition, and it corresponds to the

appropriate node time. One advantage of this reduction is that the reduced

graph is simpler to analyze for resource requirements. The second advantage

is that the variable node time model may be utilized to obtain resource

requirement of a conditional node graph and to analyze conditional node graph

for resource limited mode. However, if node E is removed from the AMG of

Figure 3.8, then a reduced graph will have a partitioned node with its second

partition empty. Since some partitioned nodes may have null partitions, an

extra overhead is present due to unnecessary firing of the node, even for a null

partition.

The reduced equivalent AMG, shown in Figure 3.9, does not contain any

conditional branch or node, and it may be considered as the AMG with time

varying nodes, since partitioned nodes may take different execution times. For

this AMG, the analytical resource envelope, maximum resource requirement,
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and behavior under node time variation may be found using the variable node

time model as described in the following.

The waiting tokens are marked in the AMG as shown in Figure 3.9.

Also, TBO = 3, TBIO = 10, the critical path is (A-X-Y-F-H) 2 where subscript 2

represents the partition number for the critical path, and TCE = 13 (This is

the maximum instantaneous value of TCE considering tx = 2 and t v = 3). The

resource envelope table, showing k-values, and Si and _ boundaries is shown

in Table 3.4. In Figure 3.10, these boundaries are ordered in one TBO time

frame, and resources in each time slots are calculated. This figure represents

the analytical resource envelope.

follows using Equation 3.1:

TCE

R

The value of R = R_ can be determined as

= 13

= R (1-0) + (R-l) (2-1) + (R-l) (3-2)

=3R-2, or

=5 =R_

Now consider node time variation in the AMG of Figure 3.9. The

possible range of variation of A_ boundary is found, as shown in Table 3.5. If

A 1 is shifted in the time slot in one TBO frame between t o = 0 and t 1 = 1, then

the increase in number of resource by one in this slot causes the total resource

requirement to be greater than Rm_. Therefore, decrease in node time of node

A may cause resource limited mode. The control edges required to prevent

resource limited mode may be found as follows:
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Node m

A 2

X 1

Y 1

F 1

G 1

H 1

T

0

0

0

0

1

1

k=m-T-1 Boundary Path Length Mod TBO

1 A 1 2.0 2.0

0

0

0

-1 S, 5.0

-I 8 2 10.0

2.0

1.0

Table 3.4. The resource envelope table for the AMG of Figure 3.9.
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t=0

Ss[ +1)

1.0 2.0
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i
i

i

S(-1) A_(+1)

S_ -1)

3.0

P-1

R-1
P

R

Figure 3.10. The analytical view of the resource
envelope for the AMG of Figure 3.9.
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Boundaries

Latest start of _ =

Mod TBO [t{_} -

t{NODE_}]

to=0 t1=1.0

8 2

t2=2.0

S 1

A1

2.0- tA
=2.0 - 2.0

=0

Table 3.5. Finding the possible range of variation
of A_ boundaries in one TGP frame for the
AMG of Figure 3.9.
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For A1 (k = 1, and variation between 0 and 2):

$1(j=1)=1-1-0=0

S2(j=O)= I-O-O= I

Thus, one control edge is required to prevent resource limited mode. This

control edge may be directed from the node contributing to $2 (node H) to any

one successor of node A (either node X or node G).

3.5.3 Example to Illustrate the Latest Time to Deposit in Conditional Graphs

Consider the conditional AMG shown in Figure 3.11. It contains a

conditional branch with two paths, and each path has three nodes. The

corresponding reduced graph with unconditional nodes is shown in Figure 3.12.

Here, nodes B and E are combined in node X, nodes C and F are combined in

node Y, and nodes D and G in node Z. Times to deposit from the source to the

output of nodes A, X, Y, and Z are shown in Figure 3.12. The latest time to

deposit at each edge is the maximum of all deposit times shown on the edge.

Node times of nodes X, Y, and Z are found as follows:

tx = latest deposit time at output of X - latest deposit time at input of X

= 200 - 100 = 100

Similarly, t_ = 350 - 200 = 150, and t z = 600 - 350 = 250.

Node times of all other nodes remain unchanged. From the reduced graph, the

TCE is equal to 1000.
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A consideration of the latest time to deposit in finding equivalent node

times of the partitioned nodes provides a worst case analysis of conditional

node graphs, and resource requirements for the execution of conditional node

graphs may be found under a worst case.



CHAPTER FOUR

CASE STUDIES THROUGH SIMULATION/EXPERIMENTS

4.1 Introduction

In this chapter, casestudies are performed on three different example

AMGs to illustrate the applicability of the resource utilization model and the

variable node time model. In Section 4.2, an AMG with three parallel paths

is investigated. The analytical resource envelope is evaluated, and conditions

for resource limited mode and its prevention are found. The AMG is simulated

and TREs are obtained under different AMG conditions for comparison with

the theoretical results. In Section 4.3, a graph with a circuit is investigated

under node time variation, and the sameresults are obtained asin Section 4.2.

A conditional node graph is studied in Section 4.4.

4.2 Case Study - I: A Graph with Three Parallel Paths

An AMG with three parallel paths, and node time variation is

investigated in this section. The AMGs with parallel paths are important

because of the possibility of high concurrence in the execution of tasks.

However, they possessa potential of resource limited mode under node time

variation. The AMG used in the first casestudy is shown in Figure 4.1. This

AMG has three parallel paths. Node times are allowed to vary to values less
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than the maximum value assigned to the node. Performance and operating

conditions are based on these maximum node times.

For the AMG shown in Figure 4.1, the critical path is 1-2-3-4, and the

critical path length is 425. Also, TBO = 150 and TCE = 725. The waiting

tokens are marked in the AMG as shown in Figure 4.1.

The k-value for each node, significant k-values (those forming A i. or Si

boundary), the path length from input to corresponding node, and mod TBO

value of the path length are presented in Table 4.1. In Table 4.2, these

boundaries are ordered with respect to mod TBO values (_), and the allowable

range of variation of _ is calculated (with respect to one TBO frame).

Assuming P resources at the left-most point in the TGP frame, number of

resources in each time slot are found since the amount of increase and

decrease at each A1 and Si boundary is known. Figure 4.2 shows an analytical

form of the TRE. From Figure 4.2 and using Equation 3.1, R = R_ can be

determined as follows:

TCE = 725 = R(100-0) + R(125-100) + (R-1)(150-125)

= 150 R- 25

or, R= Rm_ = 5

From Figure 4.2, if A_ is shifted to the left, it causes the resource

requirement to be equal to R+2. Consequently, the system is driven into

resource limited mode if the node time of node 1 falls below 100.



106

Node[ In T I

1 3 0

2 1 0

3 1 0

4 1 1

5 1 0

6 1 1

7 1 0

8 1 1

k=m-T-1 Boundary Path Length Mod TBO

2 A 1 100 100

0

0

-1 $1 425 125

0

-1 $2 250 100

0

-1 83 250 100

Table 4.1. The resource envelope table showing k-values and
boundaries for the AMG of Figure 4.1.
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to=0 tz=100 t2=125

Boundaries $3 $1

- S 2

A1

Latest start of _ -- 100 - t_

Mod TBO [t{_} - - = 100 - 100

t{NODE_}] = 0

Table 4.2. Finding the possible range of variation of

A t boundaries in one TBO time frame for

the AMG of Figure 4.1.
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The number of control edges for all Si boundaries in the range of

variation of A 1 boundary to prevent resource limited mode are found as:

For Al (k = 2); S2(j=0)=2-0-1=l, andS3(j=0)=2-0-1=l.

Thus, two control edges are required to prevent a possible resource limited

mode, one for both $2 and $3. The first control edge may be inserted from the

node corresponding to $2 (node 6) to any one successor of node 1 (node 5), and

the second control edge may be inserted from the node contributing $3 (node

8) to node 7. An initial token is placed on each control edge to account for the

packet differential between the nodes.

The TRE for the AMG of Figure 4.1 without any node time variation is

shown in Figure 4.3 which is obtained using the ATAMM Design Tool (Version

2.1). This pictorial view of the TRE corresponds to the analytical TRE shown

in Figure 4.2. The Graph Description and Simulation Control (GDSC) file used

for the AMG of Figure 4.1 with node time variation is shown in Figure 4.4, and

the corresponding TRE obtained using System Simulator/Analyzer Version 2.6

(1987-88) is shown in Figure 4.5. From Figure 4.5, it is evident that a total

seven (7) resources are required if the node time of node 1 is varied. The AMG

may be modified, as shown in Figure 4.6, by inserting two control edges. The

GDSC file for the AMG of Figure 4.6 under node time variation is shown in

Figure 4.7. The TRE for the AMG of Figure 4.6 is shown in Figure 4.8, which

is obtained using the System Simulator and GDSC file of Figure 4.7. From

Figure 4.8, it is seen that even under node time variation a total five (5)
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# Graph Description File for Case Study I #

# Graph with three parallel paths and time varying node 1 #

# To find resource requirement under node time variation #

# TBO(GLB) = 150, TBIO(GLB) = 425 #

111

Nodes 8

Sources 1

Sinks 1

Places 11

Priority4863572 1
Resources 8

Input 1

Output 4
Times

Read 20

Process 70

Write 10

Node 1

Inputs 1

Outputs 2 6 9
times

Read 20

Process 70 R 30

Write 10

Node 2

Inputs 2

Outputs 3
Time

Read 15

Process 50

Write 10

Node 3

Inputs 3

Outputs 4

Node 4

Inputs 4 8 11

Outputs 5

Figure 4.4. The GDSC file for the AMG of Figure 4.1 with time

varying node 1.



Time
Read 20

Process 120

Write 10

Node 5

Inputs 6

Outputs 7

Node 6

Inputs 7

Outputs 8

Time

Read

Process

Write

10

30

10

Node 7

Inputs 9

Outputs 10
Time

Read 10

Process 30

Write 10

Node 8

Inputs 10

Outputs 11

Source 1

Outputs 1

Time

Process 10

Write 130

Sink 2

Inputs 5
Time

Read 20

End

Figure 4.4. (Continued)
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# GDSC File for AMG to eliminate resource limited mode #

# Graph with three parallel paths with two control edges inserted #

# TBO(GLB) = 150, TBIO(GLB) = 425 #

115

Nodes 8

Sources 1

Sinks 1

Places 13

Priority48635721
Resources 8

Input 1

Output 4

Times

Read 20

Process 70

Write 10

# Increase by 2 due to two control edges

# Global time assignment #

Node 1

Inputs 1

Outputs 2 6 9

times

Read 20

Process 70 R 30

Write 10

# Local time assignment #

# Time varying node #

Node 2

Inputs 2

Outputs 3

Time

Read 15

Process 50

Write 10

Node 3

Inputs 3

Outputs 4

Node 4

Inputs 4 8 11

Outputs 5

Figure 4.7. The GDSC f'fle for the AMG of Figure 4.6 to prevent
resource limited mode.



Time

Read 20
Process 120
Write 10

Node 5

Inputs 6 12
Outputs 7

Node 6

Inputs 7
Outputs 8 12
Time

Read 10
Process 30

Write 10

Node 7

Inputs 9 13
Outputs 10
Time

Read 10

Process 30

Write 10

Node 8

Inputs 10

Outputs 11 13

Source 1

Outputs 1
Time

Process 10

Write 130

Sink 2

Inputs 5
Time

Read 20

End

# TBO - Read time of node I #

# Read time of node 4 #

116

Figure 4.7. (Continued)
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resources are required, which is equal to the maximum number of resources

in the system. Therefore, resource limited mode under node time variation is

eliminated.

4.3 Case Study - II: A Graph with a Circuit

An AMG with a closed loop (circuit) in it is investigated with time

varying nodes. The algorithm graphs with circuits are generally found in

digital signal processing and control applications. In a graph containing a

circuit, data from the predecessor cycle is needed for computation of a current

data packet. Figure 4.9 represents an example of a graph with a circuit. This

AMG is investigated under node time variation.

The critical path for a graph with a circuit may be found by using the

modified AMG method. Subsequently, for the AMG of Figure 4.9, the critical

path is found to be 1-8-9-4-5, and the critical path length (TBIO) is equal to

600. Also, the values of TBO and TCE are 500 and 1000, respectively. The

waiting tokens are marked in the AMG as shown in Figure 4.9.

The k-value for each node, significant k-values, resource boundaries, the

path length from input to the corresponding node, and its mod TBO value are

shown in Table 4.3. In Table 4.4, these boundaries are ordered with respect

to mod TBO values (ti), and the possible range of variation of _ in one TBO

interval is calculated. Assuming P resources at the lei_-most point in the TGP
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Node I

1

2

3

4

5

6

7

8

9

mIT
2 0

1 0

2 1

1 0

1 1

1 1

1 0

1 0

1 0

k=m-T-1 Boundary Path Length Mod TBO

1 A 1 100 100

0

0

0

-1 S, 600 100

-1 $2 500 0

0

0

0

Table 4.3. The resource envelope table showing k-values and

boundaries for the AMG of Figure 4.7.



121

Boundaries

Latest start of _ =

Mod TBO [t{_} -

t{NODE_}]

to=0

S 2

t1=100

S 1

A1

I00- ta
= 100 - 100

=0

Table 4.4. Finding the possible range of variation

of A_ boundaries in one TBO time frame

for the AMG of Figure 4.7.
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frame, the number of resources in each time slot are found since the amount

of increase and decrease at each A i. and Si boundary is known.

For AMG of Figure 4.9, the analytical resource envelope without any

node time variation is shown in Figure 4.10. It is seen that R = R_ resources

are required for the entire TGP time frame. From Figure 4.10 and using

Equation 3.1, R = Rm_ can be determined as follows:

TCE = 1000 = R(100-0) + R(500-100)

= 500 R

or, R =R_ = 2

From Figure 4.10, it is observed that if boundary A 1 is shii_ed to the left, the

resource requirement is increased to R+I due to an increase of 1 caused by the

A 1 boundary. Consequently, the system is driven into resource limited mode

if the node time of node 1 falls below 100.

The number of control edges to prevent resource limited mode are found

as:

ForAy(k= 1); SI(j=0)= 1-0-0 = 1.

Thus, one control edge is required to prevent a possible resource limited mode

due to node time variation of node 1. A control edge may be inserted from the

node corresponding to S_ (node 5) to any one successor of node 1 (either node

2 or node 8). In the simulation, the control edge is inserted from node 5 to

node 8. An initial token is placed on the control edge.
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The TRE for the AMG of Figure 4.9 without any node time variation is

shown in Figure 4.11, which is obtained using the ATAMM Design Tool. The

pictorial view of the TRE shown in Figure 4.11 corresponds to the analytical

TRE shown in Figure 4.10. The GDSC file used for the AMG of Figure 4.9

with time varying node 1 is shown in Figure 4.12, and the corresponding TRE

is shown in Figure 4.13 which is obtained using the System Simulator. From

Figure 4.13, it is evident that a total three (3) resources are required if the

node time of node 1 is varied. The AMG may be modified, as shown in Figure

4.14, by inserting the control edge directed from node 5 to node 8. The GDSC

file for the AMG of Figure 4.14 under node time variation of node 1 is shown

in Figure 4.15, and the corresponding TRE obtained using the System

Simulator (Version 2.6) is shown in Figure 4.16. From Figure 4.16, it is seen

that a total two (2) resources are required even under node time variation

which is equal to the maximum number of resources in the system. Therefore,

resource limited mode under node time variation was eliminated for this case.

4.4 Case Study -III: A Conditional Node Graph

A conditional node AMG, and node time variation is investigated in this

section. The conditional node algorithm graphs are encountered in signal

processing and control applications. The AMG used for Case Study - III is

shown in Figure 4.17. This AMG has three parallel paths. However, top two

parallel paths are conditional paths. Any one of the top two parallel paths is
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# The AMG for Case Study - II #

# Graph with circuit. TBO(GLB) = 500. TBIO(GLB) = 600. #
# To Find TRE under Node Time Variation #

Nodes 9

Sources 1

Sinks 1

Places 12

Priority546793821
Resources 2

Input 1

Output 5

Times

Read 20

Process 70

Write 10

# Global time assignment #

Node 1

Inputs 1 7

Outputs 2 10
Times

Read

Process

Write

20

70 R 50

10

# Local time assignment #

# Time variation of node 1 #

Node 2

Inputs 2

Outputs 3

Node 3

Inputs 3

Outputs 4 9

Node 4

Inputs 4 12

Outputs 5

Node 5

Inputs 5

Outputs 6

126

Figure 4.12. The GDSC file for the AMG of Figure 4.9 with time

varying node 1.
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Node 6

Inputs 8

Outputs 7

Node 7

Inputs 9

Outputs 8

Node 8

Inputs 10

Outputs 11

Node 9

Inputs 11

Outputs 12

Times

Read 30

Process 150

Write 20

Source 1

Outputs 1

Time

Process 10

Write 480

Sink 2

Inputs 6

Time

Read 20

End

# Local time assignment #

Figure 4.12. (Continued)
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# The AMG for Case Study - II #

# Graph with circuit. TBO(GLB) = 500. TBIO(GLB) = 600. #

# Control edge (directed from node 5 to node 8) is added #

# to prevent resource limited mode #

Nodes 9

Sources 1

Sinks 1

Places 13

Priority546793821
Resources 2

Input 1

Output 5
Times

Read 20

Process 70

Write 10

# One control edge is added #

# Global time assignment #

Node 1

Inputs 1 7

Outputs 2 10
Times

Read

Process

Write

20

70 R 50

10

# Local time assignment #

# Time varying node 1 #

Node 2

Inputs 2

Outputs 3

Node 3

Inputs 3

Outputs 4 9

Node 4

Inputs 4 12

Outputs 5

130

Figure 4.15. The GDSC file for the AMG of Figure 4.14 of case

study II to prevent resource limited mode.
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Node 5

Inputs 5

Outputs 6 13

Node 6

Inputs 8

Outputs 7

Node 7

Inputs 9

Outputs 8

Node 8

Inputs 10 13

Outputs 11

Node 9

Inputs 11

Outputs 12
Time

Read 30

Process 150

Write 20

Source 1

Outputs 1

Time

Process 10

Write 480

Sink 2

Inputs 6
Time

Read 20

End

# Local time assignment #

Figure 4.15. (Continued)
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executed at a given time, but the bottom path is always executed since it is not

a part of the conditional branch.

An equivalent (reduced) AMG for the conditional node graph of Figure

4.17 is shown in Figure 4.18. Nodes B and D, and nodes C and E of Figure

4.17 are combined as node 2 and node 3 of Figure 4.18, respectively. The

latest times to deposit are shown along edges and, subsequently, node times

of partitioned nodes 2 and 3 are calculated. Nodes 1, 5, 6, and 4 in Figure 4.18

corresponds to nodes A, F, G, and H respectively, in Figure 4.17.

For the reduced AMG shown in Figure 4.18, the critical path is 1-2-3-4,

and the critical path length is 700. Also, TBO = 300 and TCE --- 900. The

waiting tokens are marked in the AMG, as shown in Figure 4.18.

The k-value for each node, significant k-values along with resource

boundaries, the path length from input to corresponding node, and its mod

TBO value are presented in Table 4.5. In Table 4.6, these boundaries are

ordered with respect to mod TBO values (ti), and the allowable range of

variation of A_ in one TBO

analytical resource envelope.

frame is calculated. Figure 4.19 shows the

From Figure 4.19 and using Equation 3.1,

R = Rm_ can be determined as follows:

TCE = 900 = R(100-0) + R(300-100)

= 300 R

or, R = 1_ = 3
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Node I m T

1 2 0

2 1 0

3 1 0

4 1 1

5 1 0

6 1 1

k=m-T-1 Boundary Path Length ModTBO

1 A 1 100 100

0

0

-1 S 1 700 100

0

-1 S 2 300 0

Table 4.5. The resource envelope table showing k-values and

boundaries for the AMG of Figure 4.18.
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to=0 t1=100

Boundaries $1

$2

A1

Latest start of _ = 100 - ta
Mod TBO [t{_} - - = 100 - 100

t{NODE_}] = 0

Table 4.6. Finding the possible range of variation
of A_ boundaries in one TBO time frame

for the AMG of Figure 4.18.
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From Figure 4.19, if A 1 is shifted to the left, it causes the resource

requirement to be equal to R+I. Consequently, the system is driven into

resource limited mode if the node time of node 1 falls below 100. The number

of control edges to prevent resource limited mode are found as:

For Al (k = l); S_(j=0)=l-0-0=l, andS2(j=0)=l-0-1=0.

Thus, one control edge (for $1) is required to prevent a possible resource

limited mode. The control edge may be inserted from the node contributing to

S_ (node 4) to any one successor of node 1 (node 2 or 5). An initial token is

placed on the control edge to account for the packet differential between the

nodes.

The TRE for the AMG of Figure 4.18 without any node time variation

is shown in Figure 4.20 which is obtained using the Design Tool. The TRE

exactly corresponds to the analytical resource envelope shown in Figure 4.19.

The GDSC file used for simulation of the AMG of Figure 4.18 with node time

variation is shown in Figure 4.21, and the corresponding TRE obtained is

shown in Figure 4.22. From Figure 4.22, it is seen that a total four (4)

resources are required if the node time of node 1 is varied, i.e., resource limited

mode is present. To prevent resource limited mode, the AMG may be changed,

as shown in Figure 4.23, by inserting the control edge (found above) from node

4 to node 5. The GDSC file for simulation of the AMG of Figure 4.23 under

node time variation is shown in Figure 4.24, and the corresponding TRE is

shown in Figure 4.25. From Figure 4.25, it is seen that even under node time
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# Graph Description File for the AMG of Case Study - III #

# A Conditional Node Graph with Three Parallel Paths #

# TBO(GLB) = 300. TBIO(GLB) = 700 #

# To Find the TRE under Node Time Variation #

Nodes 6

Sources 1

Sinks 1

Places 8

Priority 4 3 6 5 2 1
Resources 3

Input 1

Output 4

Node 1

Inputs 1

Outputs 2 3
Time

Read 10

Process 80 R 10

Write 10

# Time variation of node 1 #

Node 2

Inputs 2

Outputs 4
Time

Read 10

Process 180 R 50

Write 10
# Time varying combined node 2 #

Node 3

Inputs 4

Outputs 5
Time

Read 10

Process 280 R 30

Write 10

# Time varying combined node 3 #

Figure 4.21. The GDSC file for the AMG of Figure

with time varying node 1, and combined
nodes 2 and 3.

4.18
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Node 4

Inputs 5 7

Outputs 8

Time

Read 10

Process 80

Write 10

Node 5

Inputs 3

Outputs 6
Time

Read 10

Process 80

Write 10

Node 6

Inputs 6

Outputs 7
Time

Read 10

Process 80

Write 10

Source 1

Outputs 1

Time

Process 290

Write 10

Sink 2

Inputs 8

Time

Read 10

End

Figure 4.21. (Continued)
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# The GDSC File for the AMG of Case Study -III #

# A Conditional Node Graph with Three Parallel Paths #

# TBO(GLB) = 300. TBIO(GLB) = 700 #

# Control Edge directed from Node 4 to Node 5 is added #
# to Prevent Resource Limited Mode #

# To find the TRE with the Control Edge added #

Nodes 6

Sources 1

Sinks 1

Places 9

Priority 4 3 6 5 2 1

Resources 3

Input 1

Output 4

# One Control Edge Added #

Node 1

Inputs 1

Outputs 2 3
Time

Read 10

Process 80 R 10

Write 10

# Node Time Variation of Node 1 #

Node 2

Inputs 2

Outputs 4

Time

Read 10

Process 180 R 50

Write 10
# Time Varying Combined Node 2 #

Node 3

Inputs 4

Outputs 5
Time

Read 10

Process 280 R 30

Write 10
# Time Varying Combined Node 3 #

145

Figure 4.24. The GDSC file for the AMG of Figure 4.23 to

prevent resource limited mode.
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Node 4

Inputs 5 7

Outputs 8 9

Time

Read 10

Process 80

Write 10

Node 5

Inputs 3 9

Outputs 6
Time

Read 10

Process 80

Write 10

Node 6

Inputs 6

Outputs 7
Time

Read 10

Process 80

Write 10

Source 1

Outputs 1

Time

Process 290

Write 10

Sink 2

Inputs 8
Time

Read 10

End

Figure 4.24. (Continued)
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variation a total three (3) resources are required, which is equal to the

maximum number of resources in the system. Therefore, resource limited

mode under node time variation is eliminated.
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CONCLUSION

5.1 Summary

The development and application of the analytical model for resource

utilization, in an ATAMM based real-time data flow architecture, has been the

primary goal of this research. Several useful results are obtained during the

process of model development. First, the analytical resource envelope may be

found directly from the given Algorithm Marked Graph (AMG) and,

consequently, the maximum number of resources are evaluated from a worst

case analysis. Second, the Total Graph Play (TGP) diagram may be

constructed using information from the analytical resource envelope and a

given AMG. Third, the behavior of an AMG, with time varying nodes, is

investigated in view of the change in resource requirements using the

analytical resource envelope of a given AMG. From the study of node time

variation in the AMG, a potential problem of resource limited mode in time

varying node graphs is encountered. A condition for the presence of resource

limited mode is found which, consequently, leads us to a method for preventing

resource limited mode.

An interesting extension to the time varying node case is the modeling

of an AMG with conditional branches. It has been shown that the conditional
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node graph may be made equivalent to the unconditional AMG by merging

nodes. Therefore, a conditional node graph may be analyzed using the variable

node time model to determine resource requirements. An algorithm [4] which

determines the critical path and the critical path length (TBIO) has been

refined so as to take into account an AMG with initial tokens on forward

edges.

5.2 Evaluation

The analytical resource utilization model is a model which describes a

method for obtaining the analytical resource envelope directly from a given

AMG. The analytical resource envelope so obtained corresponds to the

pictorial view of the total resource envelope (obtained using the ATAMM

software support tools). The analytical resource envelope is obtained using the

notion of a waiting token, where it is noted that a deposit of the waiting token

may be viewed as the release of a resource unit. From the analytical resource

envelope, the value of Rm_, maximum number of resources for optimum time

performance, may be derived using a worst case analysis. The analytical

resource envelope shows each and every resource change boundary in the TGP

diagram, and therefore is useful to evaluate changes in resource requirements

under various conditions. In the case studies, which are performed for three

algorithm graphs, the analytical resource envelope is obtained for each graph,

using the analytical resource utilization model. For each graph, the analytical
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resource envelope directly corresponded to its Total Resource Envelope (TRE),

which is obtained using software simulation of an ATAMM based system.

For a given AMG, a method is described to construct the TGP diagram

from the analytical resource envelope instead of from the Single Graph Play

(SGP) diagram [4]. The new approach is useful since it provides the correct

steady-state view of the TGP diagram for a graph with initial tokens on

forward edges, whereas the SGP approach does not. The TGP diagram so

obtained gives the number of required resources in each region over one TBO

interval, which may also be obtained from the analytical resource envelope.

The basis for development of the variable node time model is provided

by the analytical resource utilization model. The variable node time model is

developed asan ATAMM enhancement, which describes the change in resource

requirements for the execution of an algorithm under node time variation. It

is shown that an increase in the number of required resources beyond Rm_,or

resource limited mode, may occur at any instant in a time varying node graph.

A sufficient condition for the presence of resource limited mode is presented.

Resource limited mode is undesirable because it causes the system

performance to become unpredictable.

the graph with control edges so as

described. The approach of using

Consequently, a method of modifying

to prevent resource limited mode is

the analytical resource envelope is

significant because the change in maximum resource requirement can beeasily

viewed, and it also leads us to a method for detecting resource limited mode.
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The variable node time model is useful in analyzing resource requirements of

a conditional node graph. In the casestudies, the potential of resource limited

mode and control edges for its prevention are found for example algorithm

graphs, using the variable node time model. Also, each AMG, with variable

node times, is run in a software simulation and, subsequently, resource limited

mode is observed from the TRE of each AMG. After inserting the control edges

to prevent resource limited mode, each AMG is simulated again. From the

TRE of each AMG, it is observed that resource limited mode has been

prevented. Thus, the experimental results illustrate the applicability of the

analytical results.

An overview of the conditional node model is presented, which describes

a method of reducing the conditional node graphs to equivalent graphs with

time varying nodes, using a notion of partitioned or combined nodes. The idea

is to make use of the variable node time model to predict resource

requirements for the execution of a conditional node graph. In case study III,

a conditional node graph is reduced to an equivalent graph. From the

equivalent graph, the analytical resource envelope and the value of R_ are

found using the resource utilization model, which corresponded to the

experimental results. Using the variable node time model, the equivalent

graph is investigated for resource limited mode and its prevention. Also, the

equivalent graph is simulated under node time variation, without and with

control edges, for illustration of the analytical results.
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The case studies formed a basic demonstration tool for the illustration

of the analytical results. From these results, and without more direct proof,

the resource utilization model is robust, consistent, and is a natural extension

to the existing ATAMM modeling concept.

5.3 Topics for Future Research

Research leads us to several topics of continuing and future research.

First, the ATAMM design tool could be modified to incorporate the idea of the

analytical resource envelope, the TGP diagram, and the variable node time

model. Second, the conditional node model could be investigated for its

implementation in the ATAMM based data flow architectures.

Current version of the design tool utilizes the SGP diagram of a given

graph to evaluate performance measures and resource requirements. The

design tool might be modified to obtain the analytical resource envelope from

a given AMG and, consequently, to evaluate resource requirements by utilizing

the analytical resource envelope. The design tool might also be extended to

predict resource requirements of graphs with time varying nodes. The

detection of the presence of resource limited mode might be included with its

subsequent prevention, by inserting control edge(s) in the given AMG in real

time. The reduction process of a conditional node graph into a variable node

time graph might also be automated.
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The implementation of a conditional node graph in the ATAMM based

data flow architecture might be a topic of future research. The implementation

method should take care of the null partitions in the reduced graph in such a

way as to prevent the firing of these null partitions to remove the overhead

associated in firing.
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