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ABSTRACT

Thisresearchisconcernedwithdevelopingagraphicalsimulationof thetestbedatthe

Centerfor IntelligentRoboticSystemsfor SpaceExploration(CIRSSE)andtheinterface

which allowsfor communicationbetweenthetwo. Suchaninterfaceis usefulin

teleroboticoperations,andasafunctionalinteractiontool for testbedusers.Creatinga

simulatedmodelof a realworldsystem,generatesinevitablecalibrationdiscrepancies

betweenthem. This thesisgivesabrief overviewof thework doneto datein theareaof

workcellrepresentationandcommunication,describesthedevelopmentof theCIRSSE

interface,andgivesa directionfor futurework in theareaof systemcalibration.The

CimStationsoftwareusedfor developmentof this interface,is ahighlyversatilerobotic

workcell simulationpackagewhichhasbeenprogrammedfor thisapplicationwith ascale

graphicalmodelof thetestbed,andsupportinginterfacemenucode.A needfor this tool

hasbeenidentifiedfor thereasonsof pathpreviewing,asa windowon teleoperationand

for calibrationof simulatedvs. realworldmodels.Theinterfaceallows information(ie.

joint angles)generatedbyCimStationto besentasmotiongoalpositionsto thetestbed

robots. An optionof theinterfacehasbeenestablished,suchthatjoint angleinformation

generatedbysupportingtestbedalgorithms(ie.TG, collisionavoidance)canbepiped

throughCimStation as a visual preview of the path.
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CHAPTER 1

INTRODUCTION

The Center for Intelligent Robotic Systems in Space Exploration (CIRSSE) was

established by the National Aeronautics and Space Administration (NASA) in 1988 as part

of a national program to integrate university research with their own, and contribute to the

rapidly growing field of robotics. The main emphasis of the center is on intelligent

machines, with technical support in the areas of sensing, control, real-time computing and

the contribution to autonomous and telerobotic systems [2]. The research described in this

thesis applies to the goals of the center, in that a graphical interface with the manipulators

and their environment is of critical importance for support of telerobotic operations.

1.1 Goals and Motivation

The goal of this work was to develop a convenient and efficient interface between a

user of the CIRSSE testbed and the hardware and software of the testbed itself. Prior to

this work, all interaction with the testbed was handled via the CIRSSE testbed Operating

System (CTOS) (section 2.3.1) or other off-line programming techniques. No teach

pendant, nor any other convenient method was available to implement simple, routine

tasks on the manipulators. This design, using the CimStation graphical package as an

interface, provides not only a convenient tool to handle standard testbed operations, but is

an exact graphical replica of the robots and their environment, which allows the user to

execute involved paths and preview their performance. The ability to have a window on
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themotionof roboticmanipulatorsiscriticalin a teleoperationalmode,andfor verifyingthe

accuracyof apredeterminedpath.

Themotivationfor thisresearchwastofacilitatetheinteractionbetweentheuserand

theCIRSSEtestbed,by implementingafrontendgraphicspackagewhich requiresonly a

limited knowledgeof CAD typesoftware,to engagethetestbedarmsfor demonstration,

research,or taskorientedpurposes.This applicationextendsto usesin spaceor anyother

teleoperationalsituation,wheretheuseris notableto seethearmsdirectlyor by wayof

cameraimages,andreliesfully onagraphicalrepresentationof theworld asher/his

window on theenvironment.In addition,this interfacehasthecapabilityof accepting

information(ie.pathdefinitions)fromexternalroutinesandaUowsascreeningprocessof

themotionwithoutriskingdamageto theequipmentin theeventof a unforeseenpatherror.

1.2 Historical Review

In any research or industrial setting where an operator is forced to be at a location

removed from the robotic workcell, there is a need for teleoperational capabilities. By

def'mition, a teleoperable system [3,23] involves a human operator controlling a

manipulator from a position which is not necessarily within visual proximity. With the

number of sites engaging in robotic activity constantly growing, so is the amount of work

being done in the area of workcell representation and telerobotic operation. In this section,

a concise review of some of that work will be covered, and a comparison made with the

research of this thesis. Future work in the area of calibration, as it applies to the topics of

this thesis, together with possible approaches, will be covered in Chapter 5.

Many sites have invested Lime into developing a world model of their workceU

environment, for off-llne programming and teleoperational purposes. In the case of

telerobotic manipulation, the need for a world model is clear, but often, a simulated model

of any kind, is beneficial for proof of concept development or testing. The University of
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California(Davis,CA) [21], hascreatedaCAD-basedprogrammingandsimulation

system,whichacceptsbothsensorinputandoff-line commandto representtheirmultiple

armenvironment. Thekinematicandphysicallydescribedsystemupdatestheimageof

primitive shapeswith everyacquisitionof newinformation. TheUniversityof Scienceand

Technologyin Wuhan,China[8], hasdevelopedanoff-line, computeraidedmotion

package,for usewith anIBM-PC AT computerto operateaPT-300Vrobot. Theuser

employsamenuinterfacefor directcommunicationwith themanipulator,andtheresults

canberepresentedby akinematicallyanddynamicallyaccuratethreedimensional

simulation.Bothmotionplanningandcollisiondetectioncapabilitiesareincluded. Park

andSheridan[20], implementanIRISworkstationastheastheuser'sinterfaceto a system

whichsupportsbothamanualandsupervisorymodeof teleoperation.The operator

generates instructions interactively, and heuristic algorithms return targets which are

attained without collision. This work is based heavily on the use of sensory feedback. All

of the above products are similar in nature to the CIRSSE effort in world modeling, but are

not as concentrated on the graphical aspects.

Off-line programming involves creating a series of robot motions which will

accomplish a desired task taking into account physical constraints, before the robot is

engaged, and there have been various tools developed to simplify this process. Smith of

Hewlett Packard Laboratories in Palo Alto, CA [28], has developed a higher order robot

interface, in which the user supplies less rigorous, abstract commands to advance the robot

through its task. Mazer, et alii [17] use a classical simulator and graphics for off-line

programming, and a crude graphics scheme to communicate control commands through

and ethel'net system. In the area of telerobotics, Tendick et alii of the University of

California (Berkeley,CA) [30], have developed a feed forward, vision based control

system for their vision calibration capabilities. One of the most important features of the

CIRSSE testbed interface, is the off-line programming function which allow the user to
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completelydefineandtestamotionsequencepriorto downloadingit to themanipulators.

In addition,effectiveon-lineoptionsareavailablefor interactivemanipulatorcontrol.

Perhapstheresearchwhich ismostcomparableto thatof this thesis,is thework

beingdoneby theJetPropulsionLaboratories(JPL)in California [9,10,13]. Theyhave

developedastateof theartroboticfacility aspartof theNASA teleroboticsprogram,which

includessupportfor autonomousmotion,dualarmforcereflectingteleoperationwith voice

interaction,andsharedcontrolfor autonomy.Theirworld modeliscalibratedwith the

physicalworkcellat runtimeuponobtainingsensordata.This isreplacedwith amore

involvedroutineif theinformationof severalsensorsis to beprocessedandcross

referenced.Theoff-line programmingmodesinclude:tasklevel,processlevelandservo

level in decreasingcomplexityrespectively.Comparedto thecapabilitiesof theCIRSSE

testbed,thoseof theJPLtestbedarefar moreadvancedin theareaof controlandsensory

feedback.Theadvantageagain,of theCimStationinterface,is its robustflexibility in the

areaof graphicalrepresentationandmanipulation.

1.3 Research Organization

As with any user interface, it is desirable for the internal structure of the algorithm to

be completely invisible. In this application, the execution was envisioned to be from a

single "machine" which would oversee both the display of CimStation, as well as the

interface which translates the requests sent from the graphics session, into commands

which operate the testbed hardware. The current software which exists to support the

CTOS, and that which supports CimStation are not compatible. CTOS runs on VxWorks

and CimStation utilizes SunView. A direct communication between these two systems has

not been established to date, therefore the UNIX environment was implemented as a liaison

for the graphics application under SunView, and the message handling task under

VxWorks.
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This research was separated into four phases which progressed into the current

version of the graphical interface. In the f'rrst phase, a detailed model was constructed with

the tools provided by CimStation for that purpose. Though a kinematic model of the

PUMA 560 exists as a feature of CimStation, both left and right CIRSSE end effectors had

to be duplicated graphically, as well as the three degree of freedom K.N. Aronson

platforms (section 3.1). With this complete, the first pass for communication between

CimStation and the testbed controlled by CTOS was attempted successfully, by using data

files (section 3.2). Information being generated by functions within CimStation (internal

and formulated) was sent to and saved by a data file accessible by both processes.

Consequently the message handling routine running under CTOS, polled the data file at a

SUNVIEW ( robot

Cimstation ( jointvalues

TESTBED

VXWORKS

CTOS Client -'h

terface/
Clif) j

Figure 1.1 - Message Passing Scheme of the Graphics Interface

repeated interval of I second for any new information, interpreted the meaning and sent the

appropriate command to the Motion Control System (MCS). A layout of this exchange is

shown in Figure 1.1. With this complete and functioning, the same scheme was achieved

by substituting a "socket" structure for the data files (Chapter 4).
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1.4 Design Constraints

Theconstraintswhichwereidentifiedin eachphaseof researcharedescribedhere.

• MessagePassingby DataFiles- to ensureaccessibilityof bothprocessesto themessage

files,a rigorousschemeof openingandclosingthefilesbeforeandaftereachread/write

operationwasmaintained,andfor thisreason,thenumberof files,andtheinformation

passedto themwaskeptsmall.

• MessagePassingThroughSockets- theextremelyinvolvedandtimeconsuming

procedureby whichexternalC code,is incorporatedintoCimStation,necessitatedthe

minimizationof correctionsandcodechanges.Also,theextractionof informationfrom

CimStationprovedto benon-trivial,andtherefore,datawaspreparedwithin CimStation,

to facilitateits post-processingin thesupportingCTOSroutines.

Theamountof data,andthework involvedin pre/post-processingit, determinesthe

efficiency(ie.speed)of theinterface,andtherefore,in bothphasesof research,improved

efficiencywasobtainedby minimizingthequantitiesof each.

1.5 Advantages and Uses

In additionto havingahighqualitygraphicaldisplayof theroboticenvironmentbeing

studied,CimStationhascapabilitieswhichallow it to beausefultool in otherareasof

testbedresearch.Severalareaswhicharecurrentlyunderdevelopmentin CIRSSEhave

foundtheCimStationpackage,andthesubsequentgraphicalinterface,to bea valuable

tool. Forexample,theGeometricStateManager(GSM),developedasaworld modelof

thetestbed,with agraphicsdisplayasoneof its features,importsthemodelscreatedwith

theCimStationmodelingpackage.ThegraphicalrepresentationsaresavedasIGES(Initial

GraphicsExchangeStandard)files,andareeasilytransportedto theGSMfor usein its

representationof theTestbedenvironment.IGESis astandardbeingdevelopedbythe
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ANSI Y14committeeto transferprimarilyCAD dataasaconglomerateof geometric

primitive shapessuchaspoints,lines,cubes,cylinders,etc.[l]. Someotherareasof

researchwhichhaveimplementedthegraphicalinterface,arethesingle/dualanncollision

detectionalgorithmandthetrajectorygenerator(TGen).Bothusethepackageasafront

endgraphicalpreviewerfor their generatedpathsasavisualcheckfor pathvalidity in

additionto theirnumericalresults.

As astandaloneroutine,thegraphicalinterfacebetweenCimStationandtheCIRSSE

Testbedservesmanypurposesin additionto theonesdescribedabove.Currently,its

usefulnesswill beseenmostly in theCIRSSEPUMA robotlaboratory,whereit will be

employedasastraightforwardtool for robotmanipulationandpathplanning.CimStation

hastheadvantageof doing"visual"motion,thatis tosaymotionwhichrequiresavisual

estimateof theendeffector'spositionin space,asopposedto arigorousevaluationof the

joint angles.This featureallowstheuserto programageneralpath,andview it without

havingto engagetherobotsuntil thepathissatisfactory.Theinterface,when

communicating,sendssuccessivejoint anglesof anengagedrobot,in real-timeto the

testbedrobots. In addition,thisinterfacehaspotentialapplicationsin manytelerobotic

situationssuchashazardousmaterialsoperationswhereit is unsafefor ahumanto operate,

or in aspaceroboticsituationwheretheroutinedutiesareoftenperformedby robotswith

astronautteleoperationto reducetheriskof humaninjury. In both cases, an accurate

window on the environment is required for adequate performance by the manipulator.



1.6 Interface Software

Thesupportingsoftwarefor thefinal designof thegraphicalinterface,is locatedon

theCIRSSEcomputernetwork,in thedirectory

/home/hrordinterface

This directory contains all the source code for the CimStation user menu (written in SIL),

and the source code for the CTOS task (written in C). A listing of these codes may be

found in Appendix C.



CHAPTER 2

DESCRIPTION OF RESOURCES

The resources employed in the course of this research include the CIRSSE Testbed

hardware (ie. the robots, end effectors and platforms), the testbed software, CTOS and the

CimStation graphics package which is the area of emphasis, and the computer facilities as a

link between them. In this chapter, each of these resources will be discussed in detail, to

provide a background understanding of the interface to the reader.

2.1 CimStation Software

This software, developed by Silma, Inc. [25,27], is highly versatile graphical,

robotics, simulation package, which allows the user to implement any number and variety

of environments. The features and capabilities of CimStation are particularly suited for this

application, as the CIRSSE testbed consists of customized equipment which had to be

modeled specifically. The package allows the user to interact with predefined robots and

workcells via user-friendly menu functions, or create a more personalized session by

writing code in the Silma language SIL [26]. The flexibility of this software, provided this

research with the necessary tools to implement a detailed model of the testbed, and the

supporting code to fit the specific needs of the Center.

9
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2.1.1 Graphics

CimStation is a three dimensional modeling package which represents all of its

objects as groups of primitive shapes and solids such as blocks, cylinders, prisms etc.

These models may be defined as robots, end effectors or simply objects with which the

other elements of the workcell interact. Any type of model may be created within the

session or a CAD model may be imported via the IGES (Initial Graphics Exchange

Standard) representation. Conversely, models and representations of robots may also be

exported from CimStation, which is a feature that was used frequently to supply other

testbed applications such as the CIRSSE Geometric State Manager (GSM) with precise

descriptions of the testbed.

Internally, all solids are built and stored using the boundary representation method,

and have the option of being displayed as solid models with hidden lines removed, or as

wireframe models to conserve memory and thereby increase display efficiency. This

structure organization allows solids to be grouped (permanently or temporarily) into

meaningful workcells within which the robot(s) operate. Due to this representation, the

models are strictly kinematic entities which only know physical properties such as gravity,

collision with other solids and dynamics if intentionally supplied with that supporting

information. Background code and customized software packages can be created or

installed from an outside source. A dynamics package, and a collision detection package

are currently available from Silma, as well as group operations, coordinated motion,

painting and external devices packages. On/off-line translating packages are available from

Silma, which essentially perform the same function as the interface component of this

research, but the CimStation translator for the PUMA robot controllers is written to

manipulate VAL II commands, however the CIRSSE controllers do not use VAL II. In

addition to the incomparability of programming languages, the interface to multiple PUMAs

is not adequate, the translator can not handle more than six DOF and is not programmed
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with iinformationabouttheCIRSSEgrippers.Thereforeit wasdeterminedthatthis

packagewouldnot beof use in this research.

The CimStation environment consists of a full screen window which is dedicated to

displaying the graphics portion of the software, and the menu interfaces. A background

window runs as a display for all SIL output, messages and errors. This window can be

disregarded by the novice user, but proves to be critical in the development of SIL code.

Figure 2.2 shows a general

CURRENT OBJECT INFORMATION
OPTION
MENUS

WORKCELL

REPRESENTATION

> COMMAND LINE & MESSAGES

GRAPHICS
MENUS

> SIL BACKGROUND WINDOW

Figure 2.1 CimStation Session Windows

configuration of the CimStation session. The current object information subwindow

contains data concerning the cycle time of an operation, the current robot/object being

operated on and in the case of a robot, its current joint angles for all its n joints (these are

updated with the completion of each move). The command line subwindow contains a SIL

prompt, and allows the user to interact directly with the internal language of the software,
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or any code which has been written for that particular application. The option and graphics

subwindows allow full operation of CimStation through menu driven commands. Any

command which can be executed with a menu choice, has a counterpart which can be typed

on the SIL command line. Finally, the workcell representation window shows the current

state of the manipulators and their environment. This is perhaps the most impressive

feature of CimStation, in that it is so versatile in the variety of ways it allows the user to

view the workspace; from any of the world orthogonal directions (top, front & side

views), and from any spin or tilt direction. The combination of these views allows for a

complete set of configurations for the user to choose from.

The two subwindows in the CimStation session window which are menus, are the

options menus, and the graphics menus (Figure 2.2). All the functions for constructing

workcells, robots and end effectors are contained in the options window, along with the

commands to move objects (both in world coordinates and in the case of robots via a teach

I I i

CIMSTATION
i i

MODELING

LAYOUT WORKCELL
I

PROGRAMMING
i

RUN SIMULATION
i

GENERATE OUTPUT
i

APPLICATIONS

UTILITIES

REF F I

TO TOP

GRAPHICS

COLLISIONS

UNDO MOVE
I

DYNAMICS

PAUSE:

_RESET TASKS

TO TEXT

LIBR I HIDE

STATUS
i

GROUPS

TRACING
I

MEASURE

SHOW MOVIE

off/on

APPLICATION

FILE SYSTEM

Figure 2.2 - CimStation Session Menus
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pendant), program the robots and create animations/movies. The graphics menus give the

user control over what is being displayed such as a toggle on the various reference frames

attached to each object, or even the object itself. Also, choices can be made as to how the

objects are displayed; as wireframe models, with hidden lines removed or as regular

surface solids, and at what rate the screen should refresh itself.

2.1.2 Motion and Kinematics

These features are what make CimStation so effective as a modeling tool. The

metakinematics package is the environment which supports the creation and modification of

robots and end effectors. The information which must be supplied by the designer is

limited to number and size of links (fingers), and their relation to each other, and the

various joint limits which should be imposed on the robot. A knowledge of the Denavit-

Hartenberg [4] coordinate frame labeling is helpful in specifying exact orientations of the

links, but is not required for successful manipulator and end effector construction. The

limits imposed on the formulation of a robot include a minimum number of links (three),

and that they be an open kinematic chain (ie. link i must necessarily be connected to link

i+1) proceeding from base to end effector. This became a concern in this application, as

the entire testbed is an 18 degree of freedom manipulator, and consists of two end effectors

which CimStation is not able to support. This topic and its solution will be discussed in

Chapter 3. In the case of gripper construction, CimStation limits the number of "f'mgers",

but is very flexible in defining their operation; the open and close positions can be

specified, as well as the speed with which they grasp and the percentage of full "open" each

operation is to include.

The motion of any robot can be defined in several ways under CimStation. For

general or individual motion, the user can select a mode under the move menu which

specifies what plane (X-Y, Y-Z, X-Z) or what axis of rotation (X, Y, Z) the move will take
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placeon/about.Theneitheranumericalanswermaybe typedin at thecommandline, ora

graphicspickmaybemadewith themouseto definetheexactlocation/orientationof the

manipulatorandits endeffector.Thisprovidestheoptionto makemovesvisually,or with

exactnumericalinformation.Forpathmotion,aftereachmovehasbeencompleted,it is

possibleto attacha"frame"of referenceto thatpoint(locationin spaceof theendeffector),

with respectto thecurrentgoverningreferenceframe,which canbeanywhere,butusually

is atworld zero. Theseframescanthenbecombinedin someorderto representthevia

pointsof thedesiredpath. Onceapathhasbeendefined,it canbestoredalongwith its

environment,andanyof theadditionalfeaturesmentionedin Section2.1.4canbe

implemented.

Thegraphicsandmanipulationfeaturesof CimStationarecompatibleto anygeneric

CAD packagewith optionssuchascopy,rotate,translateandalsothefull rangeof solid

modelingobjectsto drawon. Oncetherobots,objectsandendeffectorshavebeen

constructed,CimStationincludesconvenientoptionsfor movingentiregroupsof objectsor

only parts. In thecaseof endeffectors,individualmenuoptionsexist for themanipulation

of gripperfunctions(ie. asdescribedabove).Therobotscanbepositionedwith respectto

theenvironment(world)ormovedin akinematicsensewith therobotpendantfeature,bya

vectorof joints, or in termsof world positionandorientation.

2.1.3 SIL Programming Language

In addition to the menu functions which exist in a CimStation session, it is also

possible to interact with the software via SIL [26] commands. This is the computer

language which has been developed by Silma Inc., to support the graphics package. Any

command which has a corresponding menu button, can be translated into one or a series of

SIL commands to perform the same task. SIL is a Pascal-based language, and as with

Pascal, is highly modular. SIL is defined using the LISP (LISt Processing) language [7]
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which is commonly used in AI (artificial intelligence) research, but is used here for its

exclusive use of lists for data and program structures. At compilation time, all SIL

programs are translated into C [12] before execution, and for this reason,CimStation will

allow external C code (eg. the testbed interface) to be integrated in. This is a critical

component of the second phase of this thesis, the interface of CimStation with MCS/CTOS

using sockets.

2.1.4 Additional Features

In addition to the basic features which have already been discussed, CimStation

offers many others which deserve mention here. Several of these features were applied in

the development of the graphical interface, and as it is possible that these and others could

be implemented in future improvements of the interface. In the area of path planning;

currendy the Trajectory Generator (TGen) developed at CIRSSE, is being used to guide the

physical arms from one joint vector position to another, whereas CimStation contains an

accurate path planner which is used to guide the graphical arms. The CimStation path

planner accounts for joint angle and work envelope limits, and does not permit even the

kinematic arms from attempting to reach an unobtainable goal position. Also accelerations

and velocities are taken into account when defining a path, and just as with the testbed

controller, these influence the trajectories. Either straight fine or joint interpolated motion

can be chosen as governing processes. Another feature which is available, but not taken

advantage of, under the version 4.2.1 of CimStation, is the dynamics package. A PID

controller is used to model and simulate the effects of inertia and friction, and can be

def'med for each joint individually. For the interface on this work, only the kinematics of

CimStation were employed, and other information such as dynamics and other path

planning information was taken from the software developed specifically for the testbed.
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Two features which are not available in the version 4.2.1, are the collision-free path

planning option and the robot calibration option. The former involves defining a path as a

succession of Cartesian points (or of joint angle vectors), and the software generating a

path free of collisions with any other objects in the work space. This is a critical option in

any workceU programming environment, especially when a front end graphical display is

not available, and the motion of the physical robot is the test for collision !..This is a feature

which will be available in future versions of CimStation (ie. version 4.3.1 [24]), and so for

this interface, the collision detection will be done with the algorithm developed at CIRSSE

for that purpose. Another critical component of any physical environment simulation, is

calibration of the two. The difficulty of synchronizing the modeled workcell with the

physical one is sizeable. Version 4.3.1 contains a calibration package which takes into

account both the accuracy of the robot and in the placement of the workcell parts. The need

for workcell calibration will be discussed further in Chapter 5. More information about

4.2.1 and subsequent versions of CimStation and software features can be found in [27].

A feature which is used to implement externally generated data, is the concurrent

programming option. It is possible, through SIL processes (similar to functions and

procedures), to manipulate more than one robot simultaneously. This compensates for

CimStation's inability to command more than one robot at one time in the on-line mode, but

off-line, with a SIL program loaded, any number of manipulators can be in motion, on

individual paths, concurrently.
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2.2 Hardware

The testbed is composed of two, six degree of freedom (DOF), Unimafion, PUMA

560 manipulators, which are each mounted on a three DOF, K.N. Aronson platform [33]

and are fitted with pneumatic grippers [29] especially designed for the research being done

at CIRSSE (Figure 3.2). These together give the testbed a total of 18 DOF, with each

robot operable separately for performing localized tasks, or all 18 joints together for tasks

which require a bigger range of motion. Figure 2.3 shows a representation of the testbed

including the strut rack with a strut, taken from the CimStation hidden line removal,

wireframe option ([33] contains more information about the specific link frames associated

with each DOF). The custom built platform consists of two carts which each have a rotate

and tilt joint, and can translate along one linear joint which has a travel range of_+l.5 m

along the world Y-axis (Figure 3.2). The global origin, (world) zero frame is shown in

Figure 2.3 - CimStation Representation of the 18 DOF CIRSSE Testbed
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Figure2.3,locatedon topof thebackplatformrail, in themiddleof its length. ThePUMA

560'saremountedsimilarly to theplatforms(asopposedto mirror imageof eachother),

andall robotsin thetestbedarereferencedin termsof theirlocationasshownin

Figure 2.4.

left PLATFORM {W*} fight PLATFORM

[IF!  i   i ii ii!is sJiiJii  iiiFiii JFJi iii i!ii! ;ii i!F!iii i i! i! ii    !iiii ii i   i i      ! 

LEFT RIGHT

/" Motion

i I

Figure 2.4 - Testbed Labeling and Layout

The 18 joints of the testbed are labeled starting with the first (linear)joint of the left

platform, and ending with the last (sixth) joint of the right PUMA, which is labeled joint 18

as shown in Figure 2.3. These joint frames were labeled using a modified Denavit-

Hartenberg notation, which is described fully in [4]. This modified notation was used for

more convenient controller calculations. Each joint has a mechanical limit in addition to a

software the software limit is chosen intentionally within that of the mechanical, in order to

prevent any hardware damage due to software motion commands which exceed the

physical limitations of the testbed. Joint and link information for the testbed is shown in

Table 2.1 [33].
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3 ]Global,Localm Name Label Label

0 World zero Go L0, R0

1 L Cart linear GI Lt
2 L Cart rotate G2 l-a
3 L Cart tilt (33 L3

4 L PUMA shoulder G, L

:5 L PUMA upper-arm (35 La
6 L PUMA fore-arm G6 Ls

L PUMA wrist G7 L7L PUMA flange tilt Gs L,
9 L PUMA flange rotate! G9

10 RCartlinear G_0 Rt

11 R Cart rotate Gtl R2
12 R Cart tilt Gt2 R3

Physxcal
Limit

Sottware
Limit

N/A N/A

(-1.372,0.610)m (-1.372,0.610) m
(-150,150) degs (-150,150) degs
(-45, 45) degs (-45, 45) degs

(-256, 79) degs
(-221", 40*) degs
(-60, 246) degs
(-126, 150") degs
(- 100, 100) degs
(-290", 290*) degs

(-251,74) degs
(-215,34) degs
(-55, 241) degs
(-121,144) degs
(-95,95) degs
(-284,284) degs

(-0.610,1.372)m (-0.610, 1.372)m
(-150, 150) degs (-150, 150) degs
(-45, 45) degs (-45, 45) degs

13 R PUMA shoulder G]3 R4 (-253, 83) degs
14 R PUMA upper-arm G14 R5 (-221", 43*) degs
15 R PUMA fore-arm G_5 R6 (-60, 243) degs
16 R PUMAwrist Gl6 R7 (-134, 153") degs
17 R PUMA flange tilt G17 R8 (-100, 100) degs
18 R PUMA flange rotate G_s R9 (-290", 290*) degs

L - left

R - right

(-248,78) degs
(-215,37) degs
(-55, 238)degs
(-129,148) degs
(-95,95) degs
(-284,284) degs

* - not the mechanical limit

TABLE 2.1 - CIRSSE Testbed Joint Coordinate Frames and Limits

The CIRSSE computer facilities [5] consist of eleven Sun workstations (SUN

Microsystems, Mountain View, CA), the VMEbus cage and the two VT320 terminals

which are connected to the cage. There are a total of five Sun 4 workstations, one of which

is in the testbed laboratory, and six Sun 3 workstations. The VMEbus cage currently has

six CPU's (Vx0 - Vx5), each of which is accessible through one of the VT320 terminals

dedicated to the cage only, and collectively the cage is connected to the rest of the computer

Ethernet network through a gateway on CPU Vx0.
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2.3 Software

2.3.1 CIRSSE Testbed Operating System

CTOS [14,15,16,19] is the operating system developed over several years by

CIRSSE to manage the communication of various tasks, such as those which send

software commands to the testbed hardware (MCS), potentially running on several

processors or workstations simultaneously, in a real-time, efficient manner. CTOS is

written in the C programming language, and therefore any process which hopes to employ

it must also be written in C. This was one of the difficulties discovered in interfacing the

CimStation software with CTOS processes, because CimStation is written primarily in

SIL, which is a Pascal based language (section 2.1.3). The capabilities of CTOS are

substantial, and are employed in all research being done on the testbed.

Figure 2.5 shows a skeleton CTOS application, which shows a configuration file

(.cfg) delegating tasks and chassis information across the computing network. Each

application file

CPU 0 -Vx0

TASK1
TASK2
TASK3

TASK N

I APPLICATION.cfg ]

CPU 5 -Vx5

0 • 0 @

TASK 1
TASK 2
TASK 3

TASKN

SUN Workstation

MsgHandler.c
AINIT
PIN1T
AEXEC

Figure 2.5 - Generic CTOS Application Layout

consists of specifications for which chassis (CPU or workstation) the application(s) should

run on, the task (Message Handler) name(s) and their respective chasses, and a chassis
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wheretheI/O operationswill beexecuted.An applicationfile canconsistof several

configurationf'des,whichcaneachhaveanumberof taskstheydelegate,andall taskscan

runonadifferentchasses,andoftendo, to distributecomputationaleffort. Thetasks

consistsof thesupportingC codewhichcarryout thedesiredprocedures,anddefinethe

buildingblocksof theCTOS application. As described, a CTOS application is versatile

enough to be very complex, or simple, this being the strength of such an operating system.

2.3.2 Client Interface

The CLIF (CLient InterFace) is a C function library which can be called to support

any other CTOS task.. The CLIF is designed to take motion control (MCS) functions, and

combine them into several routines which provide a simple interface for the user who does

not want to explore the complexity of MCS commands. The arguments to the various

CLIF functions vary, but in general the information which needs to be supplied is:

ARM_TYPE - left 9-DOF, right 9-DOF or all 18-DOF

ROBOT_TYPE - PUMA, platform or both

ROBOT_KEY - an integer key to "reserve" the physical robot

With this information, plus other function specific parameters, the CLIF can command the

testbed hardware to engage, determine the current value for specific joints, operate the end

effectors, (dis)engage compliant mode and with additional speed and goal information, the

robots can be commanded to move. This code is a relatively new area of research within

CIRSSE, and the work of this thesis, is the first to implement the CLIF in a non testing

capacity.



CHAPTER 3

INTERFACE BY DATA FILES

The first design for developing a graphical interface between CimStation and the

CIRSSE Testbed was one for information to be passed between processes through data

files and subsequently through the CIRSSE Testbed Operating System. This was a

relatively simple concept, as data file Input/Output is routine in both CimStation (SunView)

and CTOS (VxWorks). The first step was to develop accurate CimStation models of every

object within the testbed workcell. Next, SIL code was written to support user commands

from CimStation, and finally, the corresponding C code, in the form of a CTOS message

handler was written to accept and interpret CimStation generated information.

3.1 Development of Models

Getting a precise model of the equipment in the testbed, represented within

CimStation was the first task of this project. Models were created for the testbed grippers

(left, right and original), the testbed platforms (left and fight identical), the combination of

PUMA and platform (constituting the left and fight 9 degrees of freedom) and the strut rack

and struts (see Appendix B) for wireframe models). Within CimStation, there exist

kinematic models of several commonly utilized industrial robots, such as the PUMA 560

which is the robotic arm used in the CIRSSE testbed, therefore, this is a component for

which it was not necessary to create a model. CimStation's modeling capabilities are very

comprehensive, and allow a wide variety of objects, such as functioning end effectors and

n degree of freedom robots to be constructed. Each model can be specified, within the

22
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constraintsimposedby thetypesof geometricshapesavailable,to look exactlylike thereal

world object.

TheCIRSSEtestbedemploystwo grippers[29], onefor eachPUMA 560arm

(Figure3.1). Thebasicshapeof eachgripperis thesame,butonehasasetof wrist

cameras,andtheotherdoesnot. Thereis alsotheoriginalgripper,which is identicalto the

others,but without theaddedfeatures.This is aspareusedfor makingtestsand

improvementswhichwill laterbeimplementedon themountedgrippers.Theendeffector

for the left PUMA is designatedasGripperA, andtheonefor therightPUMA is

designatedasGripperO. EachhasaLord IndustrialAutomationForce/Torquesensor

mountedbetweenit andthewrist flangeof therobot,andthemaximumcapacitiesare15

lbs force,and50 in-lbsTorque.GripperOhasanadditionalcameramounting,which

consistsof analuminiumfixturesupportingtwosmallcameras.Theseendeffectorsare

pneumaticallyoperated,madeprimarily of aluminum,havebooleancrossf'nesensorsin the

I

I
D = .079,1 ---

.1354 I [ [ I

 °722°°I

CIRSSE Spare Gripper CIRSSE Left Gripper-A

*All dimensions are in meters

! I

IFor  orquel Sen r
.... rl

CIRSSE Right Gripper-O
(with cameras)

Figure 3.1 - The CIRSSE Testbed Grippers
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fingersto detectthepresenceof anobject,andwerecustombuilt for easymanipulationof

thescaledstrutsusedfor researchin theCIRSSEtestbed.

Thetwo PUMA 560,six degreeof freedomindustrialroboticarmsin theCIRSSE

testbed,areeachmountedatopathreedegreeof freedomtransporterplatformmadeby

K.N. AronsonCo.of Arcade,NY (Figure3.2). Thefirst joint is linearandallows the

eightjoints aboveit to makelargetranslationalmotions.Jointstwoandthreearerotational

pitchandyawjoints,which in combinationwith thelargetranslationalprismaticjoint

increasethePUMAs'workspaceconsiderably.ThePUMAsaresecuredontothe

platforms,andtheir combinedjoints arenumberedsequentiallyto produceaninedegreeof

freedomroboticmanipulator,andtogetherwith theotherPUMA/Platformcombination

def'mean18degreeof freedomtestbed,capableof singlearmor dualarmfunctionality.

T
.1_92

I

Z_
3- -1

0 vy3 0

Zll

t

Zl0 A

* all dimensions in meters

3.6576

Figure 3.2 - The K.N. Aronson 3-DOF Platforms



25

Bothhalvesof the testbed were modeled as single 9-DOF robots because the

CimStation motion capabilites are limited to actuating one single robot at a time. The

physical testbed however is able to engage and operate all 18 degrees of freedom

simultaneously. As mentioned earlier, the CimStation software is not able to support a

closed kinematic chain, of which the complete CIRSSE testbed is an example, and so

therefore that inconvenience was superficially avoided by composing the testbed out of

two, nine DOF robots (joints 1-9 and joints 10-18) or out of four robots, two six DOF

PUMAs (joints 4-9 and 13-18) and two, three DOF platforms (joints 1-3 and 10-12).

Unfortunately, unless CimStation is being fed joint information from some external process

(ie. the collision avoidance routine), then it is not possible to represent motion of all 18

DOF simultaneously. The user identifies the type of motion which she will be undertaking,

and selects at the start which of the two types of workcells should be loaded.

The CimStation routines are robust in representing non-redundant manipulators (ie.

less than or equal to six DOF), however, any number of DOF beyond that, the user is

exposed to the possibility that a closed form solution may not exist for that particular

configuration. In these cases, CimStation resorts to an iterative solver technique to derive

the joint angles for the specified goal. As was seen in the nine DOF PUMA/Platform

robot, the iterative solver was employed for nearly every move. A side effect of this

iterative solution, in the case of the redundant (9-DOF) manipulator was encountered The

linear joint of the nine DOF sequence, has a much larger range of motion than do any of the

revolute joints. A large linear motion, which is often desirable, was assigned a

proportional penalty, and the iterative solver was reluctant to allow the large prismatic

motions of the fhst joint. The first joint could be operated separately, that is given a

specific destination, with accurate results. Only when the iterative solver was engaged was

the motion stifled. As was discovered from contacting Silma, Inc. this is a known bug in

the software which hopes to be eliminated in future versions.
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As CIRSSEis dedicatedto researchfor spaceapplications,muchof theworkbeing

donethereinvolvesthemanipulationof scaledstrutswhichwill beusedasthebasic

buildingcomponentsof futurespacestructuressuchastheSpaceStationFreedom.These

buildingblocksandtheir repository,thestrutrack,werethereforemodeledinCimStation

for usein interactionworkcellsof themanipulatorsandstruts(Figure3.3).

.6096

StrutRack

.6625

ScaledStrut

t., ,67f

R = .0118

* all dimensions in meters

Figure 3.3 - Scaled Strut and Strut Rack

3.2 Logistics of Message Passing

It was determined that the CTOS message handling routines could not directly

communicate with the CimStation software, because of an incompatibility in operating

environments (ie. VxWorks vs. SunView). Ordinarily CTOS could spawn a task which

would oversee another process, including the operation of a software package, but they

would have to be running in the same environment. So, since both environments are based

out of the UNIX operating system, this commonality was used as a connection which

could readily be accessed by both processes.
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Theschemewhichwasusedto passinformationfrom CimStationto theCTOS

messagehandleris shownin Figure3.4. Thecommandsfor actionwereinitiatedbythe

CimStationuser.Thesecommandsincludedchoicesof testbedtype,whicharmto engage

for motion,whentobegintransmittingjoint information,andwhentransmissionwas

complete.By utilizing the"user-definedmenu"option[27] in CimStation,acustomized

menuwasdevelopedfor specificusein thetestbedinterface.Eachcommandfor action

discussedabove,wasactuatedwith achoiceout of thecustomusermenu.Eachcommand

wasidentifiedwithastringof characters,for example"MOVE" for motioninitiation,and

thiswassentasstringdatato andsavedbythecommanddataf.de.On theCTOSside,the

portionof codewhichwouldaccepttheCimStationinformation,wasgiventhepathname

to theintermediarydatafile, andpolledthefile for a "new"commandevery1.0seconds.

If anewstringwasdetected,thenthesubsequentlineswereread,theirvaluessavedunder

theappropriatevariablesanduponcompletionthe"old"commandwassentsothatthe

currentinformationwouldnotbere-processed.

If thefirst line of the command file contained the MOVE command, then this

indicated that the CimStation user had selected the ON mode, meaning that joint angles

were being transmitted to the joint angle file. The CTOS message handler would then read

the joint angle file (at a rate comparable to that at which values were being supplied by

CimStation) until such time as the command "FINISHED" was encountered. This alerted

the message handler that joint angles were no longer being transmitted, and that a

resumption of polling the command data file was desired. This is just a concise

representation of the scope of the CimStation, UNIX, CTOS Message Handler

intercommunication, and a more detailed explanation will be given in sections 3.3 and 3.4.
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1. CIMSTATION

- user menus

TESTBED

STARTUP

MOTION

CHCK POSITION

END SESSION

STOP

STARTUP

bF

MOTION

TO GOAL

VIA PATH

PREVU/CREATE

VIEW STORED

ON

OFF

MESSAGE

ROBOTS

LEFT 9DOF

RIGHT 9DOF

SENT:

robot type + FIREUP
new +& arm type

MOVE + joint angle vectors
FINISHED

r 2. UNIX

COMMAND FILE

LINE 1: I

LINE 2:[
LINE 3: I

LINE 4: I

new, MOVE, old, STOP
PUMA, PLAT, FULL
LEFT_ARM,
RIGHT_ARM
FIREUP

JOINT ANGLE FILE

PLAT:

PUMA:

BOTH:

d l, 02, 03

dl, 02, O3... OR

O1, 02, 03, 04, 05, 06

O 1, 02, 03, 04, 05, O6... OR

dl, 02, 03, 04, 05, 06, 07, 08, 09

dl, 02, 03, 04, 05, 06, 07, 08, 09

o°°

FINISHED

II

3. CTOS

CTOS Message Handler

new:

robot <-- PUMA ....
arm <-- LEFT ....
FIKEUP

lm send "old" to command
file

MOVE:

read --> Joint Angle File
process & send to CLIF
until FINISHED

old: keep polling

STOP.

Figure 3.4 - CimStation/CTOS Message Passing Scheme
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3.3 CimStation User Menu

In thissection,themainuserdefinedmenuTESTBEDandall its submenuswill be

discussedin detail. Thetestbedmenuwasmadeaccessible(aftersuccessfulcompilationof

thesupportingcode)from themainCimStationmenu.Thefourselectionsunderthe

testbedmenucontrolledtheinitial setupof theworkcell,theengagementof motionandthe

ultimateinterruptionof communicationwithCTOS.

3.3.1 STARTUP Menu

Thefirst steptheuserwasaskedto takefollowingtheinitiation of theusermenu,

wasto choosethe"type"of testbedwhichshewouldbeusing. Thetyperefersto which

form therobotswouldbeloadedinto theworkcell. As mentioned above, the PUMA

graphic models were included with the software, and a kinematic robot representation was

created for the 3-DOF platforms. A need was identified for the two to be modeled as one

9-DOF robot, as the capability of controlling one half of the testbed (9-DOF) clearly exists

in the physical environment. For this reason, a choice between the loading of two 9-DOF

robots (joints 1-9 and 10-18 as individual robots) or two 6-DOF PUMA manipulators plus

two 3-DOF platforms to represent the make-up of the graphics testbed was required. The

drawback to this method of representation is that the user must know ahead of time in what

combinations she will be operating the robots.

Upon selection of testbed type (2x9 DOF or 2x6DOF + 2x3 DOF) the user menu

code loaded the appropriate graphics robots in the correct orientation and CIRSSE defined

ready position (Table 3.1) onto the screen, and prompted the user to select which robot



LEFT RIGHT

PLAT ready PUMA ready PLAT ready PUMA ready

dl -1.3 m
®2 0 o
6)3 0 o

6)4 0 o

05 -45 °

O6 180 o

0 7 0 °

08 45 o

0 9 90 °

dlo 1.3 m

Oil 0 °

012 0 o

O13 0 o

014 -45 o

O15 180 o

016 0 o

O17 45 o

®18 90 o

3O

Table 3.1 - CIRSSE Ready Positions

should be engaged.

corresponding menu of robots was activated:

2x9 DQF

LEFT 9DOF

RIGHT 9 DOF

Depending on which type of testbed was selected initially, a

2x6 DOF + 2x3DOF

LEFT PUMA

LEFT PLATFORM

RIGHT PUMA

RIGHT PLATFORM

With the selection of any of these robots from the TESTBED/STARTUP/ROBOTS menu,

the series of strings: new..J

PUMA, PLAT or FULL .J

LEFTARM, RIGHT_ARM..J

FIREUP ..J

was sent to the command file, and saved. The first line denoted that the user made a new

selection of a robot, and that the next three lines of the data fide should be read and

interpreted. Lines two and three contained robot type and arm type information
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respectively,therebeingtwopossiblecombinationsfor the2x9DOFtestbed,andfour

differentcombinationsfor the2x6DOF+ 2x3DOFtestbedrepresentingthenumberof

individualrobotsin eachworkcelltype. Line fourwasintendedto bea triggertoanother

portionof themessagehandler,andthereforewasincludedin eachrobottypeselection.

Next,theusermenureturnedto themainTESTBEDmenuandgavetheuserthe

optionof motion,or endingthesession.Fromtheappearanceof themenu,it wouldhave

seemedthatselectinganothertestbedandconsequentlyengaginganotherrobotfor motion

wasa feasiblechoice,however,dueto thefactthatthisfirst designfor thecommunication

of CimStationandCTOSwasmeanttoserveasaproofof conceptexample,theoptionto

switchbetweenrobotswasnot included.Thisoptionwashoweverincorporatedinto the

seconddesignof theinterface,asdescribedin Chapter4.

3.3.2 Motion Menu

In thecaseof theTESTBED/MOTIONoptionselection,theMOTION submenuwas

presentedwith severalmorechoicesfor theuser:

TO GOAL & VIA PATH The alternative of which trajectory generator would control

the testbed motion was included, so that the user would have more flexibility in

programming a path for the robot. In the case of the TO GOAL option, the path planning

was done completely by the MCS trajectory generator, as only the f'mal goal of joint vectors

was passed through the data files. Upon receiving the desired goal position, the CLIF

automatically employed the CIRSSE trajectory generator to command the manipulators to

the correct joint values. With the VIA PATH option, the user was prompted for an update

rate which translates to the frequency with which the graphics screen is refreshed. Screen

refresh was the key CimStation command that was employed throughout this interface

research, and will be discussed more thoroughly in the MOTION menu section. For

example, an update rate of 0.25 signals the screen to be refreshed four times a CimStation
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second,ie. showtheprogressof themanipulatorsmotionon its way to thegoalposition,

four timesfor everysimulatedsecond.Thesmallerthevalueof theupdaterate,themore

thephysicalarm(ultimatelybeingdrivenby theMCSsoftwareandthetrajectorygenerator

by default)will mirror theexactpathtakenby theCimStationarms.

PREVIEW/CREATE This menu option has no interface function associated with it,

and its only purpose is to lead the user to the main CimStation menu where all the move

capabilities are located. The user menu only added to the functionality of the CimStation

software, providing the necessary interface operations. Any moves of the workcell objects

were done from the existing, main CimStation menus. This hierarchy involved substantial

travel between the various menus, but was necessary in order to take full advantage of

CimStation's move options which could not be accessed directly from the user defined

menu.

VIEW STORED Since this interface is considered such an effective path previewing

tool, and was created in part for that purpose, the VIEW/STORED menu option is listed.

This selection gives the user the opportunity to select the number of robots for which data

(prestored joint angle values) will be supplied, and the paths to the data files in which this

information has been stored. The data files which are listed, must necessarily be in the

appropriate format which the CimStation command [25]

moveto_tabjv(<robot>,<filename>)

is able to decipher; line 1 is an integer which equals the total number of joint angle vectors

contained in the data f'fle, line 2 is a real number which denotes the desired update rate and

lines 3 -> (3 + line 1) contain the actual joint values in the form of vectors (size n, the

number of joints of the robot). Once the choices for robots and corresponding data fries

have been entered, the concurrent programming function discussed in section 2.1.4, is

utilized to move the graphics arms according to the data generated by any external program

such as the collision detection algorithm or the trajectory generator. In addition to the
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advantage of previewing these externally generated paths, the ON mode of the interface can

be simultaneously selected, and those paths can command the physical arms indirectly,

through CimStation.

ON/OFF Before the ON selection was made, both a workcell type and a robot must

have been selected, otherwise the joint information being sent would be meaningless (the

supporting code was programmed to safeguard against such an occurrance). The selection

of the ON option, prompted the refresh actions function, as specified in the menu code, to

be carried out. The refresh actions function, allows for an argument which is itself a

function or a procedure. If refresh actions (Figure 3.5) is called with no argument, then

each time the screen is updated (depending on the update rate as described above), only the

action of redrawing the workcell in its "refreshed" appearance is executed. If however, a

previously defined function is passed to the refresh actions, then that function is called each

time the screen is updated. In the case of this interface, the refresh actions option proved to

be invaluable, as it represents an immediate link to the behavior of the graphics robots, and

could be harnessed, interpreted and translated to MCS meaningful commands.

STANDARD
i

refresh_actions ( );

USER DEFINED

refresh_actions ( FUNCTION );

FUNCTION:

- check for robot selection

- write the current joint angles
of the robot selected to the
data file

Figure 3.5 - The Refresh Actions Function

Once all desired motions had been communicated to the testbed, the END SESSION

menu selection was entered by the user, incicating that the link between CimStation and
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MCS/CTOS should be terminated. The implementation of this was in the form of the string

"STOP" being sent to and saved by the first line of the command data file. Once the string

was received by the message handler, the process of correctly closing all open data files

and disengaging the testbed high power (which was engaged during the FIREUP

command) was initiated. With all power down, and data files closed in th UNIX

environment, the areas were ready to begin the interface again from the start.

3.4 CTOS Message Handler

As any CTOS task, the interface message handler contained the three bootstrap

phases of AINIT, PINIT and AEXEC [19]. The first two phases were not utilized at all,

and the body of the code was placed in the AEXEC phase, programmed to switch on three

possible cases. These cases were determined by the first line of the UNIX data title which

contained all the CimStation string commands. The AEXEC phase was one loop which

polled the command file every 1.0 seconds reading line 1 and reporting the contents to the

switch.

CASE new If the polling routine of AEXEC returned from the UNIX command data

file with the string "new" in its character buffer variable, then the CASE new section of the

switch statement was executed. The next three lines of the command file unquestionably

had the def'mitions of the robot type and arm type selected by the CimStation user within

them, because as seen above, the four lines beginning with "new"
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MessageHandler.c

AINIT
PINIT
AEXEC:

CASE new:

robot_type = PUMA, PLAT or FULL
arm_type = LEFT_ARM, RIGHT_ARM
SEND ---> old

CASE MOVE:
PLAT- 3 dof
PUMA - 6 dof
FULL - 9 dof ...... until FINISHED

CASE STOP:
TERMINATE INTERFACE

Figure 3.6 - The Interface CTOS Message Handler

were directed to the data file in sequence, from the same location in the user menu code.

The message handler converted the line 2 and 3 strings into the appropriate variables and

immediately cleared the data file (by closing and reopening it) and sent the string "old" to

line 1. This method of polling for the strings "new" and "old", was a simple way to ensure

that no duplication of effort was undertaken, and that there could be no mistake of the

correct robot and arm type being defined.

The CLient InterFace (CLIF) was the method by which joint angle

values obtained from the CimStation refreshactions sequence were relayed to the Motion

Control System. The series of functions which transmit the information were located in the

CASE MOVE section of the CTOS message handler, and require only three pieces of
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information: - robot type

- al'ln type

- vector of joint values

which are passed as arguments to the following CLIF function calls:

- clifModeSet - uses default values to establish speed and blending at which the
motion will be performed

- clifKnotptSet - defines the goal position (knot point) for that motion

- clifRobotMove - executes the motion using the desired mode and knot point

Both robot type and arm type wer defined in the CASE new section, therefore, this section

was dedicated to processing the joint angle information into a readable format which was

used in calling the CLIF routines.

The robot type (PUMA, PLAT, FULL) was assigned to a global variable inside the

message handler, so that each CASE section would have access to its current value. With

the robot type known, the number of joint values expected was also known to be either

three, six or nine. The prompt to the message handler given by the MOVE string read from

the command data file, was to open the joint data file (Figure 3.3) and read its contents line

by line until the string FINISHED was detected. Each line of the joint data file therefore,

represented a vector of joint angle values corresponding to the current robot type's number

of degrees of freedom (joints). Within the CASE MOVE section, the joint vectors were

converted from string variables, as they were read from the data f'tle, to real, radian

quantities and assigned to a message handler real array of length three, six or nine. This

vector was then in the correct form to be accepted by the CLIF routine clifKnotptSet.

So, with every refresh of the CimStation graphics screen, corresponding to the update rate,

a joint vector representing the current value of the robots joints was sent to the joint data

f'fle, read by the CASE MOVE section of the CTOS message handler task and processed

into correct form for the CLIF to utilize and forward to the MCS resulting in a mirror image

motion of the graphical CimStation move.
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3.5 Initial Run Results

This first phase of the CimStation MCS/CTOS interface was completed successfully,

satisfying the proof of concept trial. Although the mechanics of the scheme were sound,

the interface was painfully slow between moves and therefore fated for revision. The

reason for the sluggishness of the communication, lay in the inevitable timing

incompatabilities between CTOS and the rate at which the data files could be opened, read,

and closed again. It is an unfortunate characteristic of the UNIX operating system which

does not signal the environment that a f'de has been updated (changed) unless a command is

issued to query that change (ie. a directory listing) or after a default timeout. This update

rate is substantially slower than the CTOS message handler was able to poll the joint data

file for new joint values, and therefore was forced to wait (poll more times) for the f'de to

signal its refurbishment.

Although it was now clear that an interface between the two processes was possible,

a more efficient and timely method was required. The features which were established for

enhancement are as follows:

- a more reflective speed of communication

- a more flexible arena for engaging and moving the robots

- an interface guaged more for the less experienced robotics user

- more safeguarding mechanisms to protect hardware and undesirable
software crashes

These objectives were evaluated, and their solution was materialized through the

implementation of sockets.

3.6 Summary

In th method of using data f'des as a communication link, the two processes,

CimStation graphics package, and CTOS message handler code, were interfaced. To

support this interface, the physical testbed was modeled using CimStation graphics
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capabilities,andaCTOSmessagehandlerwritte to interpretthecommandsbeingissuedby

CimStafion.Thetwohadaccesstocommondatafiles,whichstoredcommunication

information. Theinterfacewassuccessful,butprovedto beunacceptablyslow.



CHAPTER 4

INTERFACE BY SOCKETS

This phase of the interface was a considerably easier step to take, as the foundation

for message passing and the workcell environment had already been defined in the previous

phase of this research. As discussed in section 3.5, several areas were identified

for improvement after the completion of message passing with data files:

faster response time of the testbed to CimStation commands

- a method by which robots could be engaged in an arbitrary
sequence

- an more user friendly interface

- additional protection against accidental commands

Each of these concerns was assessed, and the ideal solution was determined to be the

UNIX function of sockets as a means of passing data. This chapter will describe the

message passing sequence used in this phase of the work, and identify and explain the

improvements incorporated from the first scheme of message passing by data f'des.

4.1 Description of Sockets

Sockets are the BSD method for allowing one process to communicate with another

in the UNIX environment. Frost [6] describes this inter process communication (IPC) as

analogous to a telephone system. Continuing with that analogy (Figure 4.1), a socket

connection requires a process designated as the server to establish the socket (the telephone

line must be installed). The server then waits and accepts connections from other processes

(waits for the phone to ring). Another process called the client, contacts the server but

must know its machine and port number (the caller must have the phone number). For

39
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information to be passed from client to server (socket connections are one-way

communication), the client executes the routine which uses the pormumber and machine

hostname to to contact the server and send the information in a format known to both (the

caller dials the phone number, and speaks in the language both understand).

SERVER
i

1. ESTABLISH SOCKET

-get telephone installed
2. DETERMINE HOST/PORT

-get a telephone number
3. LISTEN FOR CALLS

-wait by the telephone
4. ACCEPT CALLS

-answer when the telephone rings
i

CLIENT

1. IDENTIFY HOST/PORT

-find out the telephone number
2. CONNECT WITH THE SERVER

" -dial the server's telephone number
3. SEND DATA BY KNOWN FORM

- speak the language of the server

Figure 4.1 - Socket Communication Structure/Telephone Analogy

In this interface research, the server is the CTOS message handler, and the client is the

CimStation user menu code. Each performs the same functions as described above by

utilizing a library of socket routines, written by Keith Nicewarner, ECSE Department,

Rensselaer Polytechnic Institute.

4.2 Logistics of Message Passing

As mentioned above, the framework for message passing was established in the data

file phase of research, and in this phase, those commands are simply replaced with socket

function calls. Again the CimStation "user defined menu" is utilized to initiate commands

which are reflected on the graphics screen, then encoded and sent through the socket

structure to the CTOS Message Handler which reads the data, deciphers it and sends the

appropriate command via the CLIF functions to the MCS and testbed.
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Thedifferencein thismethodof messagepassing,is thattheMessageHandleris no

longerpolling,becausethelink to theCimStationusermenuis direct. This saves a

considerable amount of time, in that each process is only engaged when it is either sending

or receiving data, and is otherwise idle. This ensures that both processes are in a state of

readiness at all times, ie. no time is spent waiting for a process to finish an earlier function,

such as polling. The results of this socket method is an almost instantaneous response of

the testbed arms to the CimStation commands. Figure 4.2 shows an overview of the

socket message passing scheme.

SUNVIEW

Cimstation

VXWORKS

CTOS

TESTBED

MCS

Client

(CLIF)

Figure 4.2 - Socket Message Passing Scheme

It appears from this figure that there exists two-way communication between the processes

by means of the socket connection, and that the statement made earlier is false, but inter-

communication is in fact possible in certain highly controlled circumstances as is shown in

section 4.3.1 with respect to robot calibration.
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The CimStation code, activated through user menu selections, sends one "message"

at a time to the CTOS message handler. Each message is a variable of type string, and is

one of two message types; a command message for gripper, compliance and quit

operations, or a move message for a specific robot. Table 4.1 gives the possible

combinations of the command message, and Table 4.2 lists those of the move message.

CHARACTER 1 space CHARACTER3 space CARACTER5

C - compliance O-open / C-close P-PUMA
F-full arm

G - gripper O-on / F-off

CHARACTER 6

L-left

R-right

Table 4.1 - Command Message Combinations

An example command message would be - "G_C_FR", which translates into "close the

gripper of the right full arm" which is the same as the gripper of the right PUMA. Note

that CimStation will not send command messages for the platform alone, as it has neither a

gripper nor can it be engaged in compliant mode. Also, compliant mode is only meaningful

in the case of the PUMA arms, so for a command message "x x Fx" or "x x Px" the CLIF

will know which PUMA arm to make compliant. The quit command message consists of

only one character "q", and is encountered only once per session, as this is the command

which signals the socket connection to be terminated.
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CHARACTER 1

C-cart
P-PUMA
F-full arm

CHARACTER 2 space

L-left

R-right

CARACTER 5 -->

word 1 ... word n

n = 3,6,9

Table 4.2 - Move Message Combinations

An example move command is - "CL_000000..010_000000..011_000000..lll",

which translates into, "move the left platform d 1=.002 °, ®2= .003 °, 03=.007 °''.

The characters of 5+ represent binary words of 32 bits each, in sets of 3,6 or 9 joint

vectors. The reason for this representation is that the definition in the socket library

routines expects a _ "buffer" (variable) to be passed through the socket structure as

data. The process by which C code is adapted into CimStation readable code involves

several explicit steps, which culminate in the creation of a new CimStation environment

(called a template). This process is tediously long, in that template creation takes on the

order of one half hour to complete. In addition to this, no clear method exists by which to

verify the correctness of the product of these extensive steps, other than the success or

failure of the template creation (see also section 1.4).. This awkward method is a process

whose execution is purposely minimized, and therefore, instead of a change being made in

the parameter fists of the socket routines to accept non-string data (which would require

endless trial and error loops to ensure valid results), the original routines were left intact,

and the parameter lists (robot specifications, commands and joint angles in this case) were

convened to character strings.

SIL has pre-def'med all the functions to manipulate real data, such as joint angles, into

word (32 bit binary representation) format, and consequently, the C language can be

programmed to decode that format. Because the word representation is compatible to both
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languages, it was selected as the means by which joint angle information would be

communicated through the socket structure. Figure 4.3 shows the procedures which are

followed to ensure successful communication: CimStation obtains the joint angles through

the refresh actions sequence (as before) and then multiplies the value by 1000 and truncates

to obtain an integer value. The coefficient of 1000 is chosen because the physical robot

encoders are only accurate to 0.005 degrees, and therefore any precision beyond that would

be irrelevant. On the client (CTOS) side of the socket, the binary digit is processed as

shown to retrieve the original joint angle, and then converted to radians, which is the

format the CLIF routines expect.

SIL Function Example

Oi [deg]

E)i* 1000

real -> integer truncation
integer -> binary word

C Function

binary word -> real

®i + 1000

degree to radian conversion

®i [rad]

30.5 °

30500.000

30500
_111011100100100

Example

30500.00

30.50000

0.53232

0.53232 rad

Figure 4.3 - Encoding and Decoding of Joint Angle Information
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4.3 CimStation User Menus

Thestructureof thesocketinterfacemenuis notverydifferentfrom thatof thedata

file interfacemenu. Most menusandsubmenuswereleft unchanged,somewereenhanced

to incorporatetheobjectivesof section3.5,andotherswereaddedto incorporatethenew

socketstructureandnew features.Figure4.4showsa hierarchyof theusermenus,and

theremainderof thissectionwill bedevotedto theexplanationof eachof thosemenuand

submenuchoices.

II

TESTBED

SOCKET CONNECT
I

CELL
I

CURR ROBOT bone
HOME

MOTION IO FF
GRIPPER

|

/i SOOKETOONNEOTHOSTNAME I pluto

PORTIqUMBER _1,357

CONNECT- OK

Figure 4.4 - User Menu Hierarchy

Several menus have not changed from the previous phase, for example CELL still

prompts the user to select wether she will be engaging two 9-DOF arms, or two 6-DOF

PUMAs plus two 3-DOF platforms. The fact that CimStation can only command one robot

at a time while not in concurrent programming mode (section 2.1.4), has not changed.
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TheMOTION menuhasundergoneonly twoenhancements.Thefirst of which

involvestherefreshactionsfunction(MOTION/ON)only sendingjoint angledatathrough

thesocket,if thechangein thejoint vectorfrom thepreviouspositionis:

IIx° - x II< (1" * n) = (.01745 tad * n)

where: x ° - original vector of joint angles

x - vector of joint angles at goal position

n -= number of degreees of freedom

and each joint has made a change of at least 1° (0.01745 rad). This function calculates the

norm of the two vectors (x ° and x), and tests wether it is less than the number of DOF

times one degree. That is, unless each joint has moved more than 1 degree, the new

position is not sent. The linear joint has units of centimeters in CimStation, therefore the

value of "1" in the first joint corresponds to 1 cm, but the same weighting is given to it as

the rotational joints. Since the CimStation image is refreshed at every menu choice,

traveling between menu trees will cause duplicate joint angles to be sent through the socket

unnecessarily. This vector norm calculation suppresses that extraneous data, but, if a very

small move is pruposely desired, then the goal will not be sent. To remedy this, the

testvalue in the norm equation should be decreased. The second change in the MOTION

menu is also in the refresh actions function (Figure 4.5), whereby the type of robot

currently engaged, is concatenated in front of the joint angle data. The form which this

designation takes, is two capital letters (see Tables 4.1 and 4.2 for details), the first

describing the robot type (cart, PUMA or full arm), and the second describing the arm type

(left or right).
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STANDARD
ii,

refresh_actions ( );

USER DEFINED

refresh_actions ( FUNCTION );

FUNCTION:

- determine which robot is engaged
(CL ..... FR).

-check ifenough motion has been seen

by eachjoint(norm calculation)

concatenate the current robot string
(CL ..... FR) with the word representation
of the joint angles.

Figure 4.5 - The Updated Refresh Actions Function

As defined in section 3.3.2, the refresh actions function is executed every time the graphics

screen redraws itself, which is every time a menu selection is made or the robot joint angles

have been changed.

4.3.1 Main Menu Items

The main user menu contains several new additions which do not call on individual

submenus, and each will be described here.

Current Robot This function was developed as an internal check variable, which is

always set to the name of the robot that the user desires to manipulate. The advantage of

this routine is that the intemal safeguards against accidental movement of a robot not

consistent with the testbed's situation, are greatly simplified. By knowing the type of robot

engaged, the menu code is able to check for errors at every subsequent menu choice, for

example; if CURR ROBOT is CR, and gripper open is selected, then the code knows to

send the message "No gripper compatible with message" to the screen. This is a feature

implemented to satisfy the criterion of "additional protection against accidental commands"
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setout in section3.5asadesirableoption. Thedisadvantageto thisscheme,is thatthe

usermustfaithfully remembertochange(orat leastcheck)the"currentrobot"menu

button,whichkeepsthecurrentrobotinformationdisplayedcontinuously,beforeevery

sessionof sendingcommandsthroughtoCTOS. Unfortunatelythereis no functionin

CimStationwhichwould limit auser'saccessto aparticularrobotwithin thecell, sothe

stipulationis madeto theuser,thatshepaycloseattentionto thecurrentrobotdisplay

feature.Thesameconventionfor definingtherobotandarmtypeis usedthroughoutthis

interfaceasfollows:

RQBQT .TYPE ARM TYPE

C - platform,3-DOF L - left

P - PUMA, 6-DOF R- right
F - full 18-DOF

Therearesixpossiblecombinationof theabovecharacters,whichrepresentthesix typesof

robotswhichcanbeengagedfor motion:CL, CR,PL, PR,FL andFR.

Compliance The compliance mode is a function of the MCS system which permits

the PUMA arms (the only DOF for which compliance is defined) a certain controlled

flexibility when they come into contact with a rigid surface or external force. This

application is used when the arms are operating in an environment which has multiple

obstacles or is in a teleoperational mode, to allow for uncertainties which plague the path

planning of any manipulator. The menu choice "compliance" simply checks the compliance

setting and either obeys the user's command (on/off), or gives an error message that there

is no current robot, or that compliance is already on/off.

Current Position This menu option was developed primarily as a hook for future

work, but has a function in this interface also. The goal here is to determine the state of the

physical testbed (ie. value of all the joint angles as the hardware/sensors perceive it), and

send that information to CimStation, which translates it into a "start" position of the
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testbed. This is the issue of world model vs. physical workcell calibration which will be

discussed in Chapter 5.

The socket communication link has been defined as "one-way" but there is one

exception to that def'mition; if the client process (which is normally sending the information

to the socket) issues a command which is interpreted by the server as a request for a

response, and the next line following the command issuance in the client process is a

function which will accept the server's response, then a read function may be performed,

capturing the response information. This data, once internal to the client code, can easily

be processed as before. This seems like a long list of criteria to implement two-way

communication in a scheme defined as uni-directional, however it is an intuitive process.

Building on the telephone analogy of section 4.1, the client (caller) asks the server (listener)

a question, and communication between them does not resume until the listener has

provided the caller with a response. Sockets are equipped with message queuing

capabilities, therefore, it is reasonable to require communication between client and server

to be suspended while a response is being formulated.

The application of this functionality in the interface, is that only one socket direction

need be established, and when the CimStation process requires current position information

of the message handler, a format as described above is implemented.

4.3.2 Submenu Items

There are three submenus in the new version of the interface which will be discussed

in this section.

Socket Connect As described in section 4.1, the CimStation software (specifically

the user menus) is the client to the socket connection, which provides data (in the form of a

string variable here) to the server, represented by the CTOS message handler. The server

establishes the socket through a library of routines, by prompting the user for an arbitrary
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integer greater than 1000. This integer then, in addition to the chassis name are manually

typed at the PORTNUMBER and HOSTNAME submenu options. When these have been

input, and axe correct, the CONNECT - OK button is chosen, and the link routines execute

to complete the link. Now a functioning socket exists, and is identified uniquely by the

hostname and portnumber. The supporting C code which was incorporated into

CimStation is described in section 4.3.4 (source code is in Appendix C).

Gripper This submenu simply operates the testbed grippers, open and close, and

sends the same command through to the CLIF. CimStation provides the user with a

separate menu to operate the end effectors of the workcell, but these are commands internal

to CimStation and would not actuate the physical grippers. Therefore, motion of the

grippers is desired in the physical system, then their operation must be commanded from

the TESTBED/GRIPPER menu.

Home Again, this submenu is a duplication of the home command which can be

issued out of the CIMSTATION/LAYOUT WORKCELL/ROBOT PENDANT menu, but

the functions defined in the TESTBED/HOME menu are specific to the CIRSSE testbed, in

that all robots within the cell can be sent back to their home or zero positions (defined in

Table 3.1). This is simply a convenience menu, and can be utilized to actuate the graphics

screen only, or in combination with the TESTBED/MOTION/ON option will echo those

moves to the physical testbed.

4.3.3 C Code in CimStation

As described in section 4.2, the integration of C code into the CimStation/SIL [27]

environment is not a trivial task. The requirement on the C code, is that it be in a format

which the SUN compiler can process. This not ANSII C format, and therefore some

alterations to the socket library functions were made, (eg. there is not function prototyping

for the SUN C compiler). With this code saved in the appropriate directory, the
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correspondingSIL codeis developedasawrapperaroundtheC code,thatis, theSIL

program(eg.usermenucode)callstheSIL function do_this(); do_this in turn is a function

which imports the SIL compiled C code, and calls the C code. During execution, the SIL

wrapper, function do_this0 is called, the imported C code is triggered and returns a value,

which is then passed back through the SIL function to the calling SIL routine.

In order for the SIL wrapper to know where to look, and so that the external C code

does not have to be recompiled with each function call, this compilation is done ahead of

time, linking the appropriate routines. These compiled results are stored in a library, and

incorporated as an INPUT/OUTPUT option for the session environment (template), which

is created once, and then simply installed at start of a CimStation session. For more

information about integrating C code into CimStation see [27] and also cprogram.notes

written by Steve Murphy as a supplement to the Silma literature.

4.4 CTOS Message Handler

The CTOS Message Handler is the C code referred to as a task in CTOS parlance,

which manages the data and messages with which it interacts. Figure 4.6 shows the

message handler for this interface by sockets phase of research. The organization of this
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MessageHandler.c
I

AINIT
PINIT
AEXEC:

prompt user for pormumber -> establish socket for client to conect with
while the message is not 'q':

CASE Cx words(3):

move the left/right CART - 3-DOF

CASE Px words(6):

move the left/right PUMA - 6-DOF

CASE Fx words(9):
move the left/right FULL arm - 9-DOF

CASE G x xx:

open/close the left/right GRIPPER

CASE C x xx:

turn COMPLIANCE on/off in the left/right puma

CASE q:
terminate socket connection

Figure 4.6 - The Updated CTOS Message Handler

code is much more modular than its predecessor, and consequently more straightforward.

As shown in Tables 4.1 and 4.2, there are six possible types of messages which can come

through the socket, three robot move commands, a gripper command, a compliance

command and a command to quit. Those are the functions that this research has been

limited to, but with the modularity of the code, others could be added with little extra work.

At the fgst call of the message handler, the full 18-DOF are engaged for motion, and

a "key" (CLIF integer representation for robot reservation) is obtained. Then, a

clifRobotSplit0 is called to split the original key into two separate ones, each overseeing

one half (9-DOF) of the testbed, denoted as left and right keys. With these established, the

user is free to actuate any robot in the graphical testbed in any sequence (provided the
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"currentrobot"selectionismadefirst, toensurepropererrorcheckingwithin CimStation).

This is aconsiderableimprovementover theschemeusedwith datafiles,becausethem,

eachrobotwasnecessarilyengagedseparatelybeforeeachmotion,which impededthe

progressionof thealgorithm. This is notasoundcourseof actionfrom thepoint of view

of theCLIF. Themethodof engagingthefull testbedandthenperformingakey split to

obtain"rights"to each9-DOFseparatelyis ta bettermethodof operation.

With thesocketestablished,thetestbedengaged,andkeysdefined,the interfaceis

readyto proceed.At thisstage,theusertravelswithin theCimStationmenusandtheUser

menus,utilizing thepackageto herownspecifications.Themessagesgeneratedby

CimStationaretransmittedthroughthesocketandinterpretedby themessagehandler

whichreadsthefirst characterof thestring,andpassesthemessageto theappropriate

function,switchingonthefirst character.Themotioncommands(first characterC, P,or

F) involvetriggeringthecorrectfunctioncall, definingthecurrentpositionof thetestbed

(viaajoint anglequeryCLIF function),anddefiningthejoint vectorwhichwill bepassed

onto themovefunction,which iscommonto all threemotioncommands,andacceptsa

joint vectorof size9. Thisparametersizeallowsfor thegeneralityof thefunction,theonly

stipulationis thatthemovefunctionspassthecorrectarraysizeasthejoint vector(9).

Eachmovefunctiontherefore,dependingonthefirst characterof themessagestring,

knowshow manyjoint anglesto expectandwhichanglestheywill be. For example,a

commandof "Px wordl...word6" triggersthePUMA movefunctionto convertthesix

joint valuesfrom binarywords,to realnumbersto radianvalues,andinsertthreeplatform

joint angles(obtainedfrom theCLIFjoint anglequeryfunction)beforethem. This

procedureis similar for theothertwo movefunctions.This flow of logic isperformed

uponthearrivalof everyCimStationmessage.

In theeventthattheCimStationmessageisacommand,thentheCTOSmessage

handlerrecognizesthisby readingthefirst letterof thestring,andcomparingit to G,C or
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q. In thecaseof thefirst messagebeingG x xx, thegripperfunctionis called,andthe

thirdcharacterisevaluatedto bean"O" toopenthegripperor "C" to closethegripperof

therobotdefinedby charactersfive and6. Thesameappliesfor compliancecommands;

Thestring"C x xx" isevaluatedby thecompliancefunction,andthethirdcharacteris

evaluateda"O" definingcompliancebeturnedon,or "F" definingcomplianceto beturned

off.: Again,therobotunderconsiderationis definedbycharactersfive andsix. The

commandsarescreenedinsideCimStation,thatis usingthecurrent robot feature, the

validity of choices is determined before any information is sent through the socket

structure.

As mentioned earlier, this algorithm is organized in such a way that will make the

subsequent addition of features extremely simple. The format is:

- a user menu is created inside CimStation [27] for the desired command

the code is equipped with a sufficient amount of error checking provisions so that
illogical information is not passed to CTOS as a message

- an identifying character is defined for that operation which the message handler
switches on when the message is receive through the socket structure

4.5 Improvements Made and Those Yet to be Made

The four areas which were identified at the conclusion of Chapter 3, were all

incorporated into the second phase of this interface research:

• "a more reflective speed of communication" was achieved simply by implementing

UNIX socket functions as the medium of interaction. Because the communication between

processes is direct, no time was expended waiting for the information to be available.

• "a more flexible arena for engaging and moving the robots" was created by engaging the

full 18-DOF of the testbed at the start of the interface session, and delegating key integers

to each half (9-DOF) of the testbed. With each CimStation command being encoded with
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therobottypeandarmtypeof therobotunderconsideration,theflexibility theuserhasin

choosingandmovingtherobotsis greatlyincreased.

• "an interfaceguagedmorefor thelessexperiencedroboticsuser"and"moresafeguarding

mechanismsto protecthardwareandundesirablesoftwarecrashes"werebothensuredwith

addedmessages,andmore/bettersafeguardingfunctionsagainsttheinevitableerrorswhich

aninexperienceduseris boundtoencounter.Thelogic behindtheinterfacewasrevamped,

in orderto seemmoreintuitiveto thenoviceuser.

Thoughthis interfaceusingsocketsis farsuperiorthethefirst attemptusingdatafile

asanintermediary,therearestill areaswhichcouldbeimproved.Chapter5discussesthe

verybroaddirectionin whichthisresearchshouldcontinue,whereastheremainderof this

sectionwill concentrateonareasparticularto thisapplicationwhichdeservetobe

improved.

• the32bit binarywordformatusedto communicatejoint anglevalues

fromCimStationto theCTOSmessagehandlerwererepresentedassuchto

conservetheeffort involvedin alteringthesocketroutines. If it was

concludedthattransmittingdataby realnumbersfor examplewasmore

efficient,thenthisupgradewoulddeserveimplementation.

• thesubsequentversionof theCimStationsoftware(version4.3.1)

containsacalibrationpackagein additionto severalotherfeatureswhich

couldbeexploited. This version, although available, was not implemented

due to insufficient memory capabilities.

• the scheme by which joint values arriving through the socket structure are

being concatenated with the "current" position of the testbed is not ideal.

By querying the testbed prior to every goal vector move, and substituting

those values into the array locations for which CimStation has not provided

data (ie. the first three joints are undefined in the case of a PUMA's



56

motion),theinterfacealgorithmoverridesthepositioningloopwhich

supportsthecontrollercode,andsubsequentlycausesthequeriedjoint

anglestophysically"drift". Thissituationcouldberemediedby only

utilizing theCLIF joint anglequeryfunctiononceperarobot type's

sequenceof motion.

• thefinal testof thisinterface,of coursewouldbeits implementationin a

teleroboticsetting.Theuseof avideocameraor otherinformationalsource

couldprovideverificationof theinterface'saccuracy.



CHAPTER 5

FUTURE WORK

The work which has been accomplished with respect to the CimStation graphics

package and CIRSSE testbed, represents a world modeling scheme and an off-line

programming tool. These concepts were described briefly in section 1.2, and areas where

similar research is being done were cited. In this chapter, calibration is discussed as the

outstanding issue which would completely define the world model already developed with

Cimstation.

5.1 Calibration Overview

Silma Inc [24] has introduced an additional package which is supported by

CimStation version 4.3.1. The main purpose of this and any other calibration scheme, is to

equate a graphical model with the physical model being "uncalibrated" (ie. veering from

kinematic and dynamic definitions) by physical constants such as gravity and the

unavoidable existence of manufacturing uncertainties. The only means by which an

artificial system could hope to represent a physical system, is with an adequate supply of

information about the system being modeled. After all, if everything is known about a

system, then it can be modeled exactly. The type of information which is beneficial (if not

crucial) to the success of a calibration algorithm, is that which comes from the various

sensors mounted around the workcell,
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5.2 Calibration Techniques

Nowrouzi, et al [ 18], have compiled an overview of the most widely used calibration

techniques. Each to some degree, measures the robots static and dynamic performance,

and compares it to the factors of idling servoing behavior, accuracy, repeatability,

over/undershoot, cross sensitivity and settling time. The evaluation of this comparison

yields the calibration techniques of the Cube Method which engages a positioning sensor

over time, the Laser Tracking Method which uses laser refraction to determine position, the

Three-Cables Method utilizes information about the lengths of three cables attached to the

robot's wrist to determine position, and the Ball-Bar Method which attaches a machine tool

to the robot's end effector, and mechanically moves the tool in specified orientations, and

the manipulators response determines the degree of calibration. The fifth and final

technique described the Theodolite and TV Camera Method, utilizes camera vision to

determine position information. This is the method of choice for many research and

industrial settings (CIRSSE included) as the technology is relatively inexpensive, and

results are accurate, especially with multiple cameras. The size of an image taken by the

camera is directly related to the proximity of the object, and therefore a series of

comparisons yield the distance of the object from the camera. This information is used to

determine position and orientation.

The techniques mentioned above represent the general pool of resources which can be

implemented for calibration of a physical system with a world model. AREEM another

calibration technique, developed by Tunstel and Vira [31] is a program to improve position

accuracies by providing scalar algebraic equations which represent the positive error

correction between the world and physical models. Renders, Rossignol et al [22] have

created a calibration method which identifies differences between real and world models by

a maximum likelihood approach to identify geometric errors. No matter what the
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calibration technique, each is heavily dependant on information obtained form the workcell

sensors.

5.3 Types of Sensors

For successful world representation of a manipulator system, there is a need for one

or more types of sensory information to be available, which through innovative

combinations can coerce the world model to approach a representation of reality. The

standard type of sensors which are readily available, resemble closely the human senses:

• tactile sensol's

• proximity and range sensors

• temperature and presence sensors

• machine vision sensors [7]

Research continues on more state of the art sensors which are more complex, to maximize

the amount of information which can be transmitted by them. An example of a sensory

vehicle which is being developed by Jau [1 i], involves a telepresent human-like hand

system. Again a sensory system which is modeled after the human senses and

configurations. Additional research is being done by Wang [32] with a vision sensor

mounted on the manipulator of a testbed to perform extrinsic calibration. This setup is very

similar to the wrist cameras of the CIRSSE testbed and the cameras mounted on the body

of the Space Shuttle Arm.

No matter which calibration technique is selected, the necessity for multiple, accurate

sensor devices is clear. The ideal scheme to process the sensory data is not well def'med,

but as shown here, several prototypes for initial calibration methods are available. In the

case of this research, the calibration of the testbed with respect to itself and to the world has

been explored. For calibrating the physical testbed to the CimStafion testbed, the sensors

which are already in place (cameras, lasers, force/torque) would have to be exploited. The



sensorswhicharepresentin thetestbed,in combinationwith enoughof thecalibration

techniqueslisted here, should be sufficient to synchronize the two worlds.
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CHAPTER 6

CONCLUSION

The goal of this thesis research, was to make an interface between a graphical

display, and the physical model. The first step in accomplishing this, was to create an

accurate model of the world, the CIRSSE testbed. This was done using the CimStation

graphics package as a tool, and was chosen because of its extensive robotics capabilities,

and functions. Each component of the physical workcell, the three DOF Aronson

platforms, the six DOF PUMAs, the full one half of the testbed (nine DOF), the CIRSSE

grippers (left and right) and finally the strut rack and strut were modeled with CimStation

primitive shapes (ie. cylinders, blocks, etc.). These were then assigned the appropriate

kinematic parameters, and identified as robots, grippers or objects. All the modeled

elements of the testbed were grouped into the correct configuration, and labeled as the

"modeled world".

A graphical interface between the CimStation graphics package and the CIRSSE

testbed was then accomplished through the implementation of the MCS/CTOS system of

process communication. Two methods were tested to create interaction between the

simulated workcell and the physical model, the first was an interface using UNIX data fries

whose Input/Output capabilities are accessible by both processes and the second is the

current interface, which uses BSD sockets as the link for message passing. The latter was

found to have a much faster response time than the former, on the order of 1 second versus

30 seconds. The socket interface also proved to be more intuitive to a novice user, it was

programmed with several more error detection capabilities and showed good promise for
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future upgrading. This interface could be a useful tool in the areas of telerobotic

manipulation, path previewing and off-line programming.

This interface makes the assumption that the world model and physical model are

exactly the same (or that knowledge about the position of one necessarily defines the

position of the other), and that during motion this assumption holds true. This is a valid

assumption for the development of a working interface, but must be re-evaluated when

implementing the interface for physical tasks and paths to incorporate the idea of

uncertainty in calibration and measurements. The issue of calibration between a world

model and the physical model is identified as the direction for future work in this area.
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APPENDIX A

USER'S GUIDE

CIMSTATION - TESTBED INTERFACE

This guide is intended for those users who have some knowledge about CTOS and

the CIRSSE computing system. References will be made to names of workstations and

CTOS commands with the assumption that the reader is familiar with the terminology, or

has the resources to learn about it. Also, the assumption is made that the user of this

interface has the necessary access to the testbed facilities, computing facilities and is set up

to run the CimStation software.

Requirements

The requirements for implementing the testbed interface, in addition to those specified

above, are:

• the use of two workstations, the CIRSSE testbed and the VMEbus

cage is necessary.

• One of the above mentioned workstations must be a Sun 4, with the

CimStation software installed.on it, and the other can be any

workstation in the testbed lab.

To Start CimStation

• Log into SunView, and at a unix shell prompt, type

command to start the software if this one should change.
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"cimstation" or the



• TheC_Smtion menuappe_s,andtheusershouldselectoption 1- StartCimSmtion:

_f t.

• " Ci_tation Version 4.2 * •

• • SILMA, Inc. * •
• , ............... .f

• " Copyright 1991 * •

" * All =ights reserved * •
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(i)

(3)

'** CIMSTATION MAIN MENU *'*

Start CimStation (2) Manage Templates

Manage User Areas (4) Manage Project Areas

Option or [return] -> I

Active templates:

cirsse sockl

cirsse-sock2

weaver

Enter template name or [return] -> cirsse sockl

• The active templates will be listed, and the one which should be typed at the enter

template prompt is cirsse_sock 1, which stands for sockets 1.

• CimStation will now load the software, which usually takes about 5 minutes.

• The CimStation window is a full screen window, and the default object is the "teacher",

which is simply a reference frame with tetrahedral lines at the origin to identify orientation,

and is used for modeling purposes.

• Next, the interface user menu must be loaded into CimStation's memory with the

command: sil_load ('/home/hron/cim/sil/menu.sil');

A series of T, TRUE and ok messages will be displayed in the command window at the

lower left of the screen. These are the compiler messages signifying the successful

compilation of each internal structure, and are a good check that the code is being loaded

correctly.
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• Whencommandwindowshows ok
ok, thissignifiesthattheusermenusarereadyto

beutilized.

• In themainCimStationwindow(topfight), selecttheAPPLICATIONSbutton,thiswill

bringup themenufor whichcodewasjust installedtitledTESTBED.

To Start CTOS

• Log into xWindows, and cd to/home/hron/ctos/testbed/grinc/or the directory where the

files: Imakefile sgrincLib.c

sgrinc.cfg sgrincMsgHandler.c

sgrinc.h

are located.

• The workstation at which the CTOS task (sgrincMsgHandler.c) will be running, should

be reflected within the sgrinc.cfg (configuration) file. Three lines inside the .cfg file the

chassis name of the workstation:

chassis vx0 1 /usr2/testbed/exp/vxworks/demos/clif/clif.cfg_fast

chassis mercury

sequencer mercury

PREFIX mercury 0

% ..... LOAD CODE .....

%0 echo LOADING GRINC...

chdir /home/hron/ctos/testbed/grinc

task sgrinctask sgrincMsgHandler IIi

and should be change from mercury to the correct name. If the file is changed, then inside

that directory, a cmkrnf all command should be given to recompile the code.

• This interface uses the experimental tre_, and therefore, this directory tree must be so

indicated on the VT terminals at the CTOS screen (Experimental). ff this is not the case,
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from anxWindowprompt,typectoskernel,andfollow themenucommandsto changethe

directorytreeto experimental.Thisactionwill re-bootthecage,whichpreparesit to be

engaged.Thisshouldbedonemanuallyif theCTOSscreensarenotdisplayed.

• Now, theCTOSapplicationisstarted: frominsidethesamedirectory,type
-> app_win chassis name ,A

-> app_bts sgrinc.cfg ._1
?

The first command initiates an application window which will scroll hundreds of messages

which can be useful in the case of a malfunction, but may be neglected otherwise.

• The "RecWindow" will appear, and during the AEXEC stage, the testbed is engaged, so

the controllers, platform, grippers and VME cage must all be on. During this phase, there

will be a prompt to Turn on High Power of the left and right arms.

° Next, the RecWindow will prompt the user for a portnumber. This will be the

identifying number for the socket connection, and therefore must be remembered, so that

the same number is entered in CimStation to complete socket connection. This number

should be greater than 1000, generally between 1200 and 1800 is a good choice. For

example ... ENTER portnum: 1357

° This concludes the work at the xWindow terminal, and the rest of the interface is

conducted completely from CimStation.

Interfacing

• Selecting the APPLICATIONS button in the CimStation main menu, will bring up the

interface menu TESTBED
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TESTBED

SOCKET CONNECT

CELL
ii i

CURRROBOT bone
i

HOME
I

MOTION IOFF

GRIPPER

I coMPLIANCE _n

CURRENT POSITION

I 'F:ND SESSION '

• First select SOCKET CONNECT and enter the information about where the CTOS task

is running, and the portnumber which was entered in the RecWindow.

• Select CONNECT-OK, which will complete the socket connection, and allow the in

interface to continue.

• The next menu choice should be CELL, which prompts the user for one of two cells:

2x9 DOF

2x6 DOF + 2x3 DOF

Please read section 3.3.1 to determine which cell should be selected.

• From this point forward, it is the user's choice as to which menu functions to engage.

The basic flow of the interface, is that a motion is defined using the CimStation menus, like

CIMSTATION/LAYOUT WORKCELL ... and potentially stored using the programming

capabilities. Then, when the path has been refined to the user's preferences, transmission

to the testbed arms may begin.

To Transfer Motion Information

• Define the path either with the programming menus in CIMSTATION/PROGRAMMING

or interactively once the interface has been made.
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- from TESTBED/MOTION, follow the messages, and when ready select ON.

- from this point forward, _ move made on the graphics screen by the robot

will be reflected in the physical testbed!!

- the types of motion which can be transmitted are a pre-saved path, which is

simply <run> after the ON selection, interactive motion which involves the

user employing the CIMSTATION/LAYOUT WORKCELL/MOVE or

ROBOT PENDANT selections or the use of external data (from collision

detection or elsewhere). This option is chosen out of the TESTBED/MOTION/

menu, under VIEW STORED.option.

MOTION

TO GOAL

VIA PATH

PREVU/CREATE

VIEW STORED

ON

OFF

General Instructions

• ALWAYS choose the TESTBED/CURRENT ROBOT button before doing any

manipulation with the testbed and especially before transmitting data. The interface relies

on the knowledge of this information for most of its functions.

• Once a current robot is selected, this will be shown in the menu for reference. When

manipulating the arms through MOVE commands in the CimStation trees, the option will

be given to move any of the robots in the cell. Be sure to only choose the robot which has

been previously selected as the current robot!



APPENDIX B

CIMSTATION WIREFRAME MODELS

Figure B 1 - CIRSSE Testbed

Figure B2 - CIRSSE Grippers-Right (A) and Left (O)
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>.

Figure B3 - Left Gripper (O) With Camera Mounts

Figure B4 - Strut Rack and Strut
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FigureB5 - PUMA 560 in Ready Position with Left Gripper



APPENDIX C

SUPPORTING CODE

This appendix contains the listed programs for all supporting code developed to

interface CimStation with the MCS/CTOS system for controlling the testbed robots.

The files which are contained in this appendix can be found as software in:

/home/hron/interface/

The code listed here consists of:

CTOS Routines: page

• sgrincMsgHandler.c - main message handler, tasked by sgrinc.cfg ... 76-85

• sgrinc.h - header file for message handler, contains all includes ....... 86-87

• sgrincLib.c - library of socket routines, called by msg handler ......... 88-92

• Imakefile - CIRSSE standard makefile ..................................... 93

• sgrinc.cfg - configuration file, app bts command used to call .......... 94

CimStation Routines:

• menu.sil - SIL code to support user menus for interface ................ 95-112

• sil_sock.sil - SIL wrapper functions around imported C code ......... 113

• c sock.c - imported socket routines for use by the client ............... 114-118
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*/

NOTICE OF COPYRIGHT

Copyrigh_ (C) Rensselaer Polytechnic Institute.

1992 ALL RIGHTS RESERVED.

Permission to use, distribute, and copy is granted ONLY for research

purposes, provided that this no_ice is displayed and the author is

acknowledged.

This softgare was developed at She facilities of the Center for

Intelligent Robotic Systems for Space Exploration, Troy, New York,

thanks to generous project funding by NASA.

File: sgrincMsgHandler.c

Written By: Anna B. Hron

Date: 26 OCT 1992

Purpose:

Notes:

MESSAGE HANDLER FOR COMMUNICATION BETWEEN CTOS AND CIMSTATION

VIA SOCKETS.

To Be Done:

Modification History:

*/

INCLUDES ==========

#include "sgrinc.h"

•*========= PROTOTYPES

*/
int ne_Connect(in_ fd);

int callHandle(int fd, TID_TYPE sgTid, ROBOT_KEY l_key, ROBOT_KEY r_key);

void move_cart(TID_TYPE sgTid, char *cs_msg, ROBOT_KEY key);

void move_puma(TID_TYPE sgTid, char *cs_msg, ROBOT_KEY key);

void move_full(TID_TYPE sgTid, char *cs_msg, ROBOT_KEY key);

void grip_ir(TID_TYPE sgTid, char *cs_msg, ROBOT_KEY I_key,ROBOT_KEY r_key);

void comp_it(TID_TYPE sgTid, char *cs_msg, ROBOT_KEY I_key,ROBOT_KEY r_key);
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in% word_to_in%(char _ord);

int move_rob(TID_TYPE myTid, ROBOT_KEY key, double _jVect);

•.========== grincMsgHandler ==========

,/

CtosTask(sgrincMsgH_udler)

int sgrincMsgHandler(TID_TYPE sgrincTid, MSG_TYPE *msg)

/* ..... LOCAL VAR DECLARAIONS ..... */

int temp_portnum;

unsigned short portnum;

char ,prompt_str;

ROBOT_KEY bed_key, If_key, rt key;

switch(msg->command)

{

case MSG_AINIT:

recInfo(sgrincTid,

break;

"IN AINIT... \n");

case MSG_PINIT:

reclnfo(sgrincTid, "IN PINIT... \n");

break;

case NSG_AEXEC:

reclnfo(sgrincTid, "IN AEXEC... \n");

/*===== ENGAGE WHOLE BED AND GET KEY -> KEYS ONCE!!=====*/

bed_key = clifRobotStart(sgrincTid, FULL ARM, RIGHT_ARM);

if (bed key != -1) /* valid key gotten*/

reclnfo(sgrincTid,"18 D0F KEY = %d\n",bed_key);

clifRobotSplit(bed_k?y, &if_key, _rt_key);

recInfo(sgrincTid,"GOT KEY SPLITkn");_/

if_key = 33;

reclnfo(sgrincTid,"LF 9DOF KEY = %dkn",If_key);

recInfo(sgrincTid,"RT 9DOF KEY = %d\n",rt_key);

prompt_str = recPrompt(sgrincTid,_ULL,"ENTER portnum :");

sscanf(promptstr,"%d",_temp_portnum);

portnum = (unsigned short) temp_portnum;



78

sockServerCreate(sgrincTid, If_key, rt_key, portnum, O, O,

newConnect, callHandle);

/* TAKE ACTION IF NO CONNECT */

msgApplicationExit(sgrincTid);

}
else

{

recInfo(sgrincTid,"BED_KEY NOT RECEIVED!!\n");

break;

}

break;

}

return(msgDefaultProc(sgrincTid, msg));

/* returning i will cause server to exit */

int newConnect(int fd)

{

printf("Accepted new client socket connection.\n");

return(O);

}

THIS IS ACTUALLY THE MASTER FUNCTION GOVERNING INCOMING CS COMMANDS

returning I will cause server to exit

,/

int callHandle(int fd, TID_TYPE sgTid, ROBOT_KEY l_key,
{

char cs_msg[350];

ROBOT_KEY key;

ROBOT_KEY r_key)

/* CHECK FOR VALIDITY OF MESSAGE */

if(sockStrmRecv(fd, cs_msg, 350) < 0)

return(I);

recInfo(sgTid,"Recieved '%s'.kn", cs_msg);

recInfo(sgTid,"KEYS (LF,RT): Zd Zd\n",l_key, r key);

/*===== COMPARE MESSAGE WITH COMMAND =====*/

/* ..... IF PLAT IS TO BE MOVED ..... */

if (strncmp(cs_msg,"C",l) == 0)

{

recInfo(sgTid,"RECEIVED MOVE ANGLES FOR PLAT\n");

if (strncmp(cs_msg, "CL",2) == 0) key = l_key;

else key = r_key;
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move_cart(sgTid, cs_msg, key);

}

/* ..... IF PUMA IS TO BE MOVED ..... */

if (strncmp(cs_msg,"P",1) == 0)

{

recInfo(sgTid,"RECEIVED MOVE ANGLES FOR PUMA\n");

if (strncmp(cs_msg, "PL",2) == 0) key = l_key;

else key = r_key;

move_puma(sgTid, cs_msg, key);

}

/* ..... IF FULL_ARM IS TO BE MOVED ..... */

if (strncmp(cs_msg,"F",1) == O)

{

recInfo(sgTid,"RECEIVED MOVE ANGLES FOR FULL\n");

if (strncmp(cs_msg, "FL",2) := 0)

else key = r_key;

move_full(sgTid, cs_msg, key);

}

key = l_key;

/* ..... OPERATE GRIPPERS ..... */

if (strncmp(cs_msg,"G",l) == O)

grip_it(sgTid, cs_msg, l_key, r_key);

/* ..... (DIS)ENGAGE COMPLIANCE ..... */

if (strncmp(cs_msg,"C",1) == 0)

comp_it(sgTid, cs_msg, l_key, r_key);

}

/* ..... THE ONLY COMMAND THAT TERMINATES SOCKET CONNECTION ..... */

if (cs_msg[O] == 'q')

{

clifRobotEnd(sgTid,l_key);

clifRobotEnd(sgTid,r_key);

return(1);

}
else

return(O); /* RETURNS TO THE BEGINNING OF THE LOOP - NO EXIT! */

PROCEDURE TO MOVE A PLATFORM

,/

void move_cart(TID_TYPE sgTid,char *cs_msg,ROBOT_KEY key)

{

int jts, i, j;

char dummy, word[9][32];



double curr_jvect[9], jVect[9], temp;

recInfo(sgTid,"INSIDE MOVE CART\n");

recInfo(sgTid,"KEY C: %d \n",key);

/* if ((clifRobotWhere(sgTid, key. curr_jvect)) == OK)

,/

recInfo(sgTid,"CR WHERE C= curr_jv: Y.f Y.f Y.f Y.f Y.f y.f y.f y.f y.f \n",

curr_jvect [0] , curr_jvect [i], curr_jvect [2] , curr_jvect[3] ,

curr_jvecZ[4], curt jvecZ[5], curr jvecZ[6], curr jvecZ[7],

curr_jvect [8] ) ;

if ((jts = sscan/(cs_msg,"%c Xs Xs %s", @dummy. word[O], word[l],

word [2])) != 4)

recInfo(sgTid,"NO. JTS INCOMPATIBLE WITH ARM ENGAGED!\n");

jVect[O] = (word_to_int(word[O])) * (.00001); /* LINEAR JOINT */

for (i=I; i<3; i++)

{

temp = (word_to_int(word[i])) * (.001);

jVect[i] = DEG_TO_RAD(temp);

reclnfo(sgTid,"Defined i-3 of jVect= %f %f Zf\n",jVect[O],

jVect[l],jVect[2]);

jVect[3] : 0.0; jVect[4] :-0.785; jVect[5] : 3.141;

jVect[e] = o.o; jVect[7] = 0.785; jVect[8] = 1.571;

,/

for (j=3; j<9; j++) SET JTS 4-9 TO VALUE BEFORE MOVE ie NO CHANGE

jVect[j] = curr_jvect[j];

reclnfo(sgTid,"MOVlNG TO JVECT: %f %f %f %f %f %f %f %f %f \n",jVect[O],

jVect[l], jVect[2], jVect[3], jVect[4], jVect[5], jVec'c[6],

jVect[7], jVec_[S]);

*I

}

iS (move_rob(sgTid, key, jVect) )= OK)

recInfo(sgTid,"PLAT MOVE UNSUCCESSFUL...kn");

}

else

reclnfo(sgTid,"UNABLE TO QUERY PLAT FOR POSITION\n");

8O

PROCEDURE TO MOVE A PUMA
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./

void move_puma(TID_TYPE s£Tid,char *cs_msg,KOBOT_KEY key)
{

in_ jts, i, j;
char dummy, word[9][32];

double curr_jvect[9], jVect[9], zemp;

recInfo(sgTid,"INSIDE MOVE PUMA\n");

recInfo(sgTid,"KEY P: _d \n",key);

{

./

if (clifRoboZWhere(sgTid, key, curr_jvec%) == OK)

recInfo(sgTid,"CK WHERE P= curt_jr: _f _f _f _f _f _f Xf Zf _f \n".

curr_jvecr[O3, curr_jvect[l], curr_jvect[2], curr_jvect[3],

curr_jvect[4], curr_jvect[5], curr_jvect[6], curr_jvect[7],

curr_jvect[8]);

if ((jrs = sscanf(cs_msg,"Zc Zs Zs Zs Zs _s Zs",_dummy, word[3], word[4],

word[5], word[6], word[7], word[8])) != 7)

recInfo(sgTid,"NO. JTS INCOMPATIBLE WITH ARM ENGAGED!\n");

for (i=3; i<9; i++)

{

recInfo(sgTid,"i = Zdkn",i);

zemp = (word_Zo_inZ(word[i])) * (.001);

jVect[i] = DEG_TO_PAD(ZemR);

recInfo(sgTid,"jVect I-6 = Xf Zf Zf Xf Zf Zf\n", jVect[3], jVecZ[4],

jVect[5], jVecz[6], jVect[7], jVecr[8]);

,/

jVect[O] : 1.3; jVect[l] = 0.0; jVec:[2] : 0.0;

for (j=o; j<3; j++) SET JTS I-3 TO VALUE BEFORE MOVE ie NO CHANGE

jV,c_[j] = curr_jvect [j] ;

recInfo(sgTid,"MOVING TO JVECT: 7.f 7.f 7.f 7.f 7.f 7.f 7.f 7.f 7.f \n",jVect[O],

jVecr[1], jVec_[2], jvec_[3], jVec_[4], jvect[S], jVect[e],
jVecr[7], jVect[8]);

/W,

,I

}

if (move_rob(sgTid, key, jVect) != OK)

recInfo(sgTid,"PUMA MOVE UNSUCCESSFI/L...\n");

}
else

recInfo(sgTid,"UNABLE TO OUERRY PUMA FOR POSITION\n");



P_0CEDURE TO MOVE A FULL ARM

,/

void move_full(TID_TYPE sgTid,char *¢s msg,ROBOT_KEY key)
{

int jts, i;

char dummy, _ord[9] [32] ;

double jVect[9], temp;
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recInfo(sgTid,"INSIDE MOVE FULL ARM\n");

recInfo(sgTid,"KEY F: _d \n",key);

if ((jts= sscan_(cs_msg,"XcZs Zs Zs Zs Zs Zs Zs Xs Zs",_dummy, word[O],

word[IS, word[2], word[3], word[4], word[5], word[6], word[7],
word[8])) != I0)

recInfo(sgTid,"NO. JTS INCOMPATIBLE WITH ARM ENGAGED!\n");

jVect[O] = (word_to_int(word[O])) * (.00001); /* LINEAR JOINT */

for (i=I; i<9; i++)

{

temp = (word_to_int(word[i])) * (.001);

jVect[i] = DEG_TO_RAD(temp);

recInfo(sgTid,"jVecr I-9 = Y.f Y.f Y.f Y.f 7.f Y.f Y.f Y.f Y.fkn", jVecr[O],

jVect [1], jVect [2], jVect [3], jVect [4], jVecr [S],

jVect[6], jVec_[7], jVect[8]);

}

recInfo(sgTid,"MOVINS TO JVECT: Y,f Y.f 7.f Y.f 7.f 7.f Y.f Y.f 7.f \n",jVect[O],

jVec=[1], jVec=[2], jVect[3], jVec=[4], jVect[5], jVect[6],

jVect[7], jVect[8]);

if (move_rob(sgTid. key, jVect) != OK)

reclnfo(sgTid,"FULL MOVE UNSUCCESSFUL...\n");

/*

Procedure TO FIND ROBOT POSITION AND SEND TO CIMSTATION

void curr_pos(TID_TYPE sgTid, char *cs_msg, ROBOT_KEY key, double *curt_poe_iv)
{

recInfo(sgTid,"INSIDE CURR POS \n");

clifRobotWhere(sKTid,key,*curr_pos_jv);
*/

PROCEDURE TO OPERATE GRIPPER



*/

void grip_it(TID_TYPE sgTid, char *cs_msg, ROBOT_KEY I_key,ROBOT_KEY r_key)

{

char cs_msg_temp[350];

ROBOT_KEY key;

ARM_TYPE type_arm;

recInfo(sgTid,"INSIDE GRIPPER \n");

recInfo(sgTid,"KEYS (LF,RT): Zd Zd\n",l_key, r_key);

strcpy(cs_msg_temp,cs_msg); /* FOR SAFE KEEPING */

if (strchr(cs_msg_temp,'L') != NULL)

{

}
else

{

key = l_key;

type_arm = LEFT_ARM;

key = r_key;

type_arm = RIGHT_ARM;

if (strncmp(cs_msg,"G 0",3) == O)

{

clifGripperOpen(sgTid,key,type_arm,CLIF_NGWAIT);

recInfo(sgTid,"OPENED GRIPPER");

}

else if (strncmp(cs_msg,"G C",3) == O)

{

clifGripperClose(sgTid,key,type_arm,CLIF_NOWAIT);

recInfo(sgTid,"CLOSED GRIPPER");

}

return;
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PROCEDURE TO (DIS)ENGAGE COMPLIANCE

,/

void comp_it(TID_TYPE sgTid, char *cs_msg, ROBOT_KEY I_key,ROBOT_KEY r_key)
{

char cs_msg_temp[350];

ROBOT_KEY key;

ARM_TYPE type_arm;

recInfo(sgTid,"INSIDE COMP_IT \n");

recInfo(sgTid,"KEYS (LF,RT): %d %dkn",l_key, r_key);

__ strcpy(cs_msg_temp.cs_msg); /* FOR SAFE KEEPING */



if (strchr(cs_msg_temp,'L') != NULL)

{

}
else

{

key = l_key;

type_arm = LEFT_ARM;

key = r_key;

type_arm = RIGHT_ARM;

if (strncmp(cs_msg,"C 0",3) == O)

{

if (clifComplianceOn(sgTid,key,type_arm,CLIF_NOWAIT) == OK)

recInfo(sgTid,"TURNED COMPLIANCE ON");

else

recInfo(sgTid,"UNABLE TO ACTIVATE COMPLIANCE...\n");

}

else if (strncmp(cs_msg,"C F",3) == O)

{

if (clifComplianceOff(sgTid,key,type_arm) == OK)

recInfo(sgTid,"TL_NED COMPLIANCE OFF");

else

recInfo(sgTid,"UNABLE TO ACTIVATE COMPLIANCE...kn");

}

return;
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$ =================================================

FUNCTION TO TRANSLATE WORDS (32 BITS) INTO AN INT

,/

int word_to_int(char _word)

{

int power, sum, i;

for (sum:O, power=l, i=O; i<32; i++, power <<=I)

if (word[31-i] == 'I')

sum += power;

return(sum);

}

THIS IS THE moveHome ROUTINE FROM THE CLIF EX.

,/

int move_rob(TID_TYPE myTid, ROBOT_KEY key, double ,jVect)
{



KOBOT_MODE _mode = NULL;

KOBOT_KNOTPT _knotpt = NULL;
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recInfo(myTid,"MOVE KEY: Xd \n",key);

/* set up a mode with a speed of 0.3 and a blend of 0.5 */

mode = clifModeSet(NULL,O.3,0.O,O.5,0.5);

recInfo(myTid,"SETTING MODE\n");

/a make sure that the clifModeSet succeeded a/

if (mode == NULL)

{

recError(myTid,"Unable to allocate mode structure.kn'°);

return(ERROK);

}

knotpt = clifKnotptSet(NULL, JOINTg, jVect);

recInfo(myTid,'°SETTING KNOTPT\n");

/" make sure the clifKnotptSet succeeded _/

if (knotpt == NULL)

{

recError(myTid,"Unable to allocate knotpt structure.\n");

clifModeRelease(mode);

return(ERROR);

}

/* move the robot with the appropriate key, mode and knotpt */

if (clifRobotMove(myTid,key,mode,knotpt,CLIF_WAIT) != OK)

recError(myTid,"Move failed.kn");

recInfo(myTid,"MOVING ROBOT TO jVect: %f %f %f %f %f %f %f %f %f\n",

jVect[O], jVect[l], jVect[2], jVect[3], jVect[4], jVect[5],

jVect[6], jVect[7], jVect[8]);

/_ release mode and knotpt structures */

clifNodeRelease(mode);

clifKnotptRelease(knotpt);

return(OK);

}
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/*

m_

*/

NOTICE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1992 ALL RIGHTS RESERVED.

Permission to use, distribute, and copy is granted ONLY for research

purposes, provided that this notice is displayed and the author is

acknowledged.

This software was developed at the facilities of the Center for

Intelligent Robotic Systems for Space Exploration, Troy, New York,

thanks to generous project funding by NASA.

File:

Written By:

Date:

Purpose:

_otes:

To Be Done:

sgrinc.h

Anna B. Hron

26 OCT 1992

HEADER FILE FOR sgrincMsgHs-_dler routine.

Modification History:

#ifndef INCsgrincH

#define INCsgrincH

/,=_ ........ INCLUDE FILES .... ======*/

#include <stdio.h>

#include <stdlib.h>

#include <msgLib.h>

#include <recLib.h>

#include <mcsLib.h>

#include <btsLib.h>

#include <ctos.h>

#include <string.h>

#include "clif. h"

#include <unistd.h>

#include <errno.h>

#include <netdb.h>



/* INCLUSION OF sockLib.h */

#ifndef INCsockLibH

#define INCsockLibH

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define MAX_HOST_NAME_LENGTH 128

/* SOCKET FUNCTION PROTOTYPES ==========*/

typedef int SOCKET_TYPE;

void sockServerCreate(TID_TYPE sgrincTid, ROBOT_KEY If_key, ROBOT_KEY rt_key,

unsigned short portnum, long sec,

long usec, int (*acceptFunc)(int fd),

int (*¢allFunc)(int fd, TID_TYPE sgTid,

ROBOT_KEY l_key, ROBOT_KEY r_key));

int sockEstablish(const unsigned short portnum, struct sockaddr_in *sa,

const SOCKET_TYPE sockType);

int sockConnectAccept(int s);

int sockStrmRecv(int s, register char *data, unsigned dataSize);

#endif INCsockLibH
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/* .......... GRINC FUNCTION PROTOTYPES ==========*/

int sgrincMsgHandler (TID TYPE myTid, MSG TYPE *msg);

#endif INCsgrincH
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,$

•* File :

•* Written By:

• * Date:

$,

,$

•. Modification History:

*/

sgrincLib.c

Anna B. Hron (Keith Nicewarner)

26 OCT 1992

Common stream socket routines.

MODIFIED TO SUIT OPERATIONS OF GKINC.

#include <stdio.h>

#include <unistd.h>

#include <errno.h>

#include <netdb.h>

#include <sys/types.h>

#include <sys/socket.h>

#include "sgrinc.h"

/, create simple stream socket monitor for a ,single, client */

void sockServerCreate(TID_TYPE sgrincTid, ROBOT_KEY If_key, ROBOT_KEY rt_key,

unsigned short portnum, long sec,

long usec, int (*acceptFunc)(int fd),

int (,callFunc)(int fd, TID_TYPE sgTid, ROBOT KEY l_key,

ROBOT_KEY r_key))

int fdServer;

int fdClient = -1;

struct sockaddr_in addrServer;

fd_set readfds;

struct timeval timeOut;

struct timeval *timeout;

int nttmPending;

if((fdServer = sockEstablish(portnum, &addrServer, SOCK_STREAM)) < O)

{

perror("establishing stream socket");

return;

}

listen(fdServer, 3);

printf("\nSimple stream socket server running.\n");

if((sec == O) *k (usec == 0))

timeout = NULL;
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else

{

%imeOut.tv_sec =sec;

timeOut.tv_usec = usec;

timeout = _timeOut;

}

_hile(1)

{

FD_ZERO(kreadfds);

FD_SET(fdServer, _readfds);

if(fdClient != -I)

FD_SET(fdClient, _readfds);

/* block until message pending or timeout */

while(((numPending =

select(getdtablesize() , &readfds,NULL,NULL, timeout)) < O)

_ (errno == EINTR));

if(numPending =: O)

{

if(timeout != NULL)

printf("Server timed out after %id seconds,"

"%Id microseconds of no client calls.\n",

timeout->tv_sec, timeout->tv_usec);

break;

}

{

if(FD_ISSET(fdServer, _readfds))

{

if((fdClient = sockCor_nectAccept(fdServer)) == -I)

perror("accepting client connection");

break;

}

else if((acceptFunc != NULL) &_ acceptFunc(fdClient))

break;

}

if((fdClient != -1) _k FD_ISSET(fdCIient, _readfds))

/* LOOP ONLY TERMINATES WHEN MESSAGE IS 'q'*/

if((callFunc != NLrLL) k& callFunc(fdClient, sgrincTid, if_key,

rt_key))

break;

}
close(fdServer);

if(fdClient != -I)

close(fdClient);

** Establish a stream socket in a given port,
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** return address and file descriptor.

*/

int sockEstablish(const unsigned short portnum, struct sockaddr_in *sa,

const SOCKET_TYPE sockType)

{

char myname[MAX_HOST_NAME_LENGTH+I];

int s;

struct hostent *hp;

bzero(sa, sizeof(struct sockaddr_in));

gethostname(myname, MAX_HOST_NAME_LENGTH);

hp = gethostbyname(myname);

if(hp == _[_LL)

return(-1);

sa->sin_family = hp->h_addrtype;

sa->sin_port = htons(portnum);

if((s = socket(AF_INET, sockType, 0)) < O)

return(-1);

if(bind(s, (struct sockaddr *)sa, sizeof(struct sockaddr_in)) < O)

{

close(s);

return(-l);

}

return(s);

/* accept a new socket connect to a server */

int sockConnectAccept(int s)

{

struct sockaddr_in sa;

int len;

len = sizeof(sa);

getsockname(s, (struct sockaddr *)Rsa, Rlen);

return(accept(s, (struct sockaddr *)_sa, _len));

/* THIS WILL BE ADDED WHEN TWO-WAY COMMUNICATION IS ESTABLISHED

connect to an existing socket on a given port on a given host

int sockConnect(const char *hostname, const unsigned shor% por%num,

struct sockaddr_in *sa, const SOCKET_TYPE sockType)

{

struct hostent *hp;

int s;

if((hp = gethostbyname(hostname)) == NULL)

{

errno = ECONNREFUSED;

printf("Unknown host '_s'.\n", hostname);

return(-1);

}



bzero(sa, sizeof(struct sockaddr_in));

bcopy(hp->h_addr, (char *)_sa->sin_addr, hp->h_lenEth) ;

sa->sin_family = hp->h_addrtype;

sa->sin_port = htons((u_short)portnum);

if((s = socket(hp->h_addrtype, sockType, 0)) < O)

{

perror("Error gettin E server stream socket");

return(-1);

}

if(connect(s, (struct sockaddr *)sa, sizeof(struct sockaddr_in)) < O)

{

close(s);

perror("Error connecting to server stream socket");

retul-n(-1);

}

return(s);

},/
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/*

** Stream socket I/O routines

*/

/* _IS WILL BE ADDED WHEN TWO-WAY COMMUNICATION IS ESTABLISHED

write data to stream socket

int sockStrmSend(int s, register char *data, unsigned dataEize)

{

register int bcount = O;

register int br;

while(bcount < dataSize)

{

if((hr = _rrite(s, data, dataSize - bcount)) > O)

{

bcount += br;

data += br;

}

else if(br < O)

{

perror("sockStrmSend");

return(br);

}
}

return(bcount);

},/

/* read data from stream socket */

int sockStrmRecv(int s, register char *data, unsigned dataSize)

{

register int bcount = O; /* counts bytes read */

register int br; /* bytes read this pass */



while(bcount < data.Size)

(

if((br = read(s, data, dataSize - bcount)) > O)

(

bcount += br;

data += br;

}

else if(br < O)

{

perror ("sockStrmRecv '°) ;

return (br) ;

>

>

return (bcount) ;
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/* IMAKEFILE FOR GRINC APPLICATION */

/*===== SEKARCH DIRECTORIES AND LOAD LIBRARIES =====*/

LDLIBS += -irec

LDLIBS += -ic_os

LDLIBS += -imsg

LDLIBS += -Ibis

LDLIBS += -imcs

LDLIBS += -IclifClient

LDLIBS += -ikntpt

LDLIBS += -Iconfig

LDLIBS += -Itrans

LDLIBS += -im

AllTarget(sgrincMsgHandler )

UNIXBinTarget(sgrincMsgHandler, sgrincMsgHandler.o sgrincLib.o )
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% CTOS CONFIGURATION FILE FOR GRINC ON MERCURY

7. File :

Y, Written by:

Y, Date :

Z

Z Purpose:

Z

sgrinc.cf g
Anna Hron

30 Oct 1992

Boots the MCS for running the GRaphical INterface between

Cimstation and the CIRSSE testbed.

Z Mod History: Modified to communicate through sockets

Hotes: Application is on pluto - (may later be changed)

%== TASKS CPUS 0-5 WITH APPROPRIATE CODE MSGHDLRS ==

chassis vxO 1 /usr2/testbed/exp/vxworks/demos/clif/clif.cfg_fast

chassis mercury

sequencer mercury

PREFIX mercury 0

Z===== LOAD CODE =====

Z0 echo LOADING GRINC...

chdir /home/hron/ctos/testbed/grinc

task sgrinctask sgrincMsgHandler 111
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{ File: testbed_menu.sil

Written by: Anna Hron

Date: 13 0ct1992

Purpose: This file contains SIL code for the Cimstation/Testbed

menu interface.

Modifications: This menu will interface with the CTOS message Haz_dler

(and Clif) via sockets.

Also there will be a two-way communication, as well as

several other improvements. -ABH 14 OCT 92-

vat

file_d : integer;

host_name : string;

port_n : integer;

oj_last3 : darray of real;

old_its, old_jts_init : jr;

sum : real;

comp, grip : string;

curr_cell,curr_rob,curr_rob_msg : string;

eng_rob, eng_rob_msg : string;

move_3dof, move_6dof, move_9dof : iv;

last_3dof, 13_zero : darray of real;

fl_ready,fr_ready,cl_ready,cr_ready,puma_ready : iv;

fl_zero,fr_zero,cl_zero,cr_zero,puma_zero : jr;;

{===== GENEKAL DECLAKATIONS =====}

file_d := O;

host_name := 'none';

por__n := O;

oj_last3 == array_create(real,2);

oj_last3[0]:=O.0; oj_last3[1]:=0.0; oj_last3[2]:=0.0;

old_its == [0,0,0,0,0,0,oj_last3] as jr;

old_jts_init == [O,O,O,O,O,O,oj_last3] as jr;

comp := 'not set';

grip := 'not set';

curr_rob := 'none';

cu/-r_cell := 'none';

curr_rob_msg := 'none';

last_3dof == array_create(real,2);



13_zero == array_create(real,2);

{ ..... CIRSSE READY POSITIONS ...... }

last_3dof[O]:=O.O; last_3dof[1]:=45.0; last_3dof[2]:=90.O;

fl_ready == [-130,O,O,O,-45,180,1ast_3dof] as jr;

fr_ready == [130,O,O,O,-45.180,1ast_3dof] as jr;

cl_ready == [-130,0,0,0,0,0] as jr;

cr_ready == [130,0,0,0,0,0] as jr;

puma_ready == [0,-45,180,0,45,g0] as jr;

{ ..... PUMA ZERO POSITIONS ..... }

13_zero[O]:=O.O; 13_zero[l]:=.O; 13_zero[2]:=O.O;

fl_zero == [-130,O,O,O,O,O,13_zero] as jr;

fr_zero == [130,O,O,O,O,O,13_zero] as jr;

cl_zero == [-130,0,0,0,0,0] as jv;

cr_zero == [130,0,0,0,0.0] as jr;

zero_puma == [0,0,0,0,0,0] as jr;
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{ ...... REMOVE EVERYTHING FROM THE WORLD ..... }

set_up_new_world();

{===== MENU DEFINITIONS ..... }

{ TOP MENU }

testbed_menu == mk_imenu('TESTBED', ulist('SOCKET CONNECT','CELL',(Iist(

'CURR ROBOT','!INFO!')).'HOME',Iist('MOTION','OFF'),'GRIPPER',(Iist(

'COMPLIANCE','!INFO!')),'CURRENT POSITION','END SESSION'),

"testbed_menu_handler);

set_msg(testbed_menu,'CURR ROBOT',curr_rob);

set_msg(testbed_menu,'COMPLIANCE',comp):

{ SUB MENUS }

connect_menu == mk_imenu('SOCKET CONNECT',ulist((Iist('HOSTNAME','!INFO!')),

(Iist('PORTNUMBER','!INFO!')),'CONNECT - OK'),"connect_menu_handler);

set_msg(connect_menu,'HOSTNAME',host_name);

set_msg(connect_menu,'PORTNUMBER',porZ_n);

cell_menu == m.k_imenu('CELLS',ulist('2xgDOF ARMS','2x6DOF+2x3DOF ARMS'),

"cell_menu_handler);

home_menu == mk_imenu('HOME',ulist('CURRENT TO HOME','ALL TO HOME',

'CURRENT TO ZERO','ALL TO ZERO'),"home_menu_handler);

motion_menu == mk_imenu('MOTION',ulist('TO GOAL','VIA PATH',' ..... >',

'PREVIEW/CREATE','VIEW STORED PATH','ON','OFF'),"motion_menu_handler);

gripper_menu == .uk_imenu('GRIPPER'.ulist(list('CURR ROBOT','!INFO!'),'OPEN',



'CLOSE'),"gripper_menu_handler);
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{===== DEFINE FUNCTIONS FOR EACH MENU SELECTION =====}

{ TOP MENU }

procedure current_rob ;

vat

crob_armo : anno_string;

begin

set_msg(testbed_menu, 'CURR ROBOT' ,curt_rob) ;

if (curt_cell = '2x9') then

begin

write_msg('SELECT A ROBOT TO WORK WITH : [FL, FR]:');

crob_anno := get_a_string();

if ((crob_anno.val <> 'FL') and (crob_anno.val <> 'FR')) then

begin

activate(testbed_menu);

write msg('ROBOT SELECTION NOT VALID - TRY AGAIN');

end

else

begin

curt_rob := ¢rob_anno.val;

if (¢urr_rob = 'FL') then curr_rob_msg := 'FULL LEFT ARM';

if (curr_rob = 'FR') then curr_rob_msg := 'FULL RIGHT ARM';

write_msg(concat(curr_rob_msg,' IS THE CURRENT ROBOT'));

end;

end;

if (curr_cell = '2x6+2x3') then

begin

write_msg('SELECT A ROBOT TO WORK WITH : [PL, PR, CL, CR]:');

crob_anno := get_a_string();

if ((crob_anno.val <> 'PL') and (crob_anno.val <> 'PR') and

(crob_aruno.val <> 'CL') and (crob_aruto.val <> 'CR')) then

begin

activate(testbed_menu);

write_msg('ROBOT SELECTION NOT VALID - TRY AGAIN');

end

else

begin

curt_rob := crob_anno.val;

if (curt_rob = 'PL') then curr_rob_msg := 'LEF'f PUMA';

if (curr_rob = 'PR') then curr_rob_msg := 'RIGHT PUMA';

if (curt_rob = 'CL') then curr_rob_msg := 'LEFT PLATFORM';

if (curt_rob = 'CR') then curt rob_msg := 'RIGHT PLATFORM';

write_msg(concat(curr_rob_msg,' IS THE CURRENT ROBOT'));

end;

end;

if ((curr_cell <> '2x9') and (curr_cell <> '2x6+2x3')) then

begin



end; {

ac%ivate(tes%bed_menu);

write_msg('SELECT A WOP_KCELL BEFORE TRYING TO ENGAGE A ROBOT');

end;

END current_rob }
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procedure comp_o_f ;

v_Lr

comp_sure : ailno_string;

begin

if ((comp = 'not set') or (comp = 'OFF')) then

begin

write_msg('D0 YOU WANT COMPLIANCE OF THE **CURRENT** ARM ON? (yln)');

comp_sure := get_a_string();

if (comp sure.val = 'y') then

begin

comp := 'ON';

sil_sock1_data(file_d,('C 0 '*curr_rob));

writeln('SENT COMPLIANCE ON THROUGH SOCKET');

end;

end

end;

else {COMPLIANCE = ON}

begin

write_msg('DO YOU WANT COMPLIANCE OF THE *,CURRENT** ARM OFF? (yln)');

comp sure := get a string();

if ((comp sure.val = 'y') or (comp_sure.val = 'Y')) then

begin

comp := 'OFF';

sil_sockl_data(file_d,('C F '*curt_rob));

writeln('SENT COMPLIANCE OFF THROUGH SOCKET');

end;

end;

procedure currentPosition;

begin

write_msg('WILL QUERY TESTBED CURRENT POSITION, AND UPDATE CIMSTATION');

}

end,

sil_sockl_data(file_d, ('W '*curr_rob));

sil_sock_recv(file_d, recxjv);

writeln(rexjv);

{ .......... END CheckPosition

procedure sendingOff ;

vat

k : integer;

begin

refresh_actions := cdr(refresh_actions);



end;
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old_its := old_jts_init;

_rite_msg( 'OFF = TESTBED ARMS NO LONGER RESPONDING TO CIMSTATION MOVES. ');

{ END sendingOff }

{===== SUPPORTING FUNCTIONS AND PROCEDURES =====}

process cell_2bots();

begin

refresh(O.O);

{ TRY TO FIND A WAY TO DO A REMOVE ALL HERE }

install('FL','left_gdof');

moveto('FL',fl_ready);

install('left_gripper','/home/hron/silma/tools/left_gripper_o.ee');

mount('left_gripper','FL');

install('FR','right_gdof');

moveto('FR',fr_ready);

install('right_gripper','/home/hron/silma/tools/right_gripper_a.ee');

mount('right_gripper','FR');

{..... COLORS TO MATCH ACTUAL TESTBED ..... }

paint('FL',cyan); paint('FL/linkO',gray);

palnt

pamnt

pamnt

paint

paLnt

paint

palnt

paint

palnt

paint(

paint(

('FL/link3/linkO',white);paint('FL/link4',white);

('FL/linkS',white); paint('FL/link6',white);

('FL/linkT',white);paint('FL/linkS',white);

('FL/linkn',white);

('left_gripper',silver); paint('left_gripper/fts',ivory);

('FR',cyan); paint('FR/linkO',gray);

('FR/link3',white); paint('FR/link4',whi_e);

('FR/link5',white); paint('FR/link6',white);

('FR/link7',white); paint('FR/link8',whi_e);

'FR/linkn',white);

'right_gripper',silver); pain_('right_gripper/fts',ivory);

end;

hide('teacher');

view_all();

process cell_4bots();

begin

relresh(O.O);

{ TRY TO FIND A WAY TO DO A REMOVE ALL HERE }

install('CL','left_half_plat');

moveto('CL',cl_ready);

ins_all('PL','c_puma');

moveto('PL',puma_ready); {CIRSSE READY}

moveto('PL',pose_of('CL_flange'));

affix('PL','CL_flange');

install('left_gripper','/home/hron/silma/tools/lef__gripper_o.ee');

mount('lef__gripper','PL');



end;

paint('left_gripper',silver); paint('left_gripper/fts',ivory);

install('CRJ,'right_half_plat');

moveto('CRJ,cr_ready)i

install('PR','c_puma');

moveto('PR',puma_ready); {CIR_SE KEADY}

moveto(_PR',pose_of('CR_flange_));

affix('PR',JCR_flange');

insta11('righ__gripper','/home/hron/silma/tools/right_gripper_a.ee');

mount('right_gripper','PR');

paint('right_gripper',silver); paint('right_gripper/fts',ivory);

hide('teacher');

view_all();

{
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process all_to(where:string);

vat

fl_w,fr_w, puma_w : jr;

begin

wait(where) ;

if (where = 'ready') then

begin

fl_w := fl_ready; fr_w

puma_w := puma_ready ;

end

else

begin

fl_w := fl_zero; fr_w

puma w := puma_zero;

end;

:= fr_ready;

:= fr_zero;

if (curr_cell = '2x9') then

begin

moveto('FL',fl_w);

moveto('FR',fr_w);

end;

if (curt_cell = '2x6+2x3') then

begin

una/fix('PL','CL_flange');

unaffix('PR','CR_flange');

moveto('PL',puma_w);

move_o('PR',puma_w);

affix('PL','CL_flange');

affix('PR','CR_flange');

moveto('CL',l,-130.O);

moveto('CR',1,130.O);

end;

moveto('CL',2,0.O);

moveto('CR',2,0.O);

moveto('CL',3,0.O);

moveto('CK',3,0.O);
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if ((curr_cell <> '2x9') and (curr_cell <> '2xS÷2x3')) then

begin

activate(tesSbed_menu);

write_msg('SELECT A WOKKCELL BEFORE TRYING TO READY A ROBOT');

end;

end; { ...... END all_to ..... }

process one_to(where :string) ;

var

where_jv : iv;

begin

wait (where) ;

if (where = 'ready') then

begin

if (curt_rob = 'FL') then where_jr := f1_ready;

if (curr_rob = 'FR') $hen where_jr := fr_ready;

if (curr_rob = 'PL') _hen where_jr := puma_ready;

if (curr_rob = 'PR') then where_jr := puma_ready;

if (curr_rob = 'CL') then where_iv := el_ready;

if (curr_rob = 'CR') then where_jr := cr_ready;

end

else

begln

if (curr_rob = 'FL') then where_iv := fl_zero;

if (curt_rob = 'FR') then where_jr := fr zero;

if (curt_rob = 'PL') _hen where_Iv := puma_zero;

if (curr_rob = 'PR') then where_jr := puma_zero;

if (curr_rob = 'CL') _hen where jv := el_zero;

if (curr_rob = 'CR') then where_jr := or_zero;

end

if (curt_cell = '2x6+2x3') then

begin

unaffix('PL','CL_flange');

unaffix('PK','CR_flange');

end;

moveto(curr_rob,where_jv);

if (curt_cell = '2x6+2x3') then

begin

moveto('PL',pose_of('CL_flange_));

affix('PL','CL_flange');

affix('PR','CR_flange');

end;

end; { END one_to }

process send_all_to_r();

begin



signal(all_to,where,'ready'); end;

process send_all_to_z();

begin

siEnal(all_to,where.'zero'); end;

process send_one_to_r();

begin

signal(one_to,where,'ready'); end;

process send_one_to_z();

begin

signal(one_to,where,'zero'); end; { ..... END home_menu processes

process gripper_of);

begin

if ((curr_rob = 'PL') or (curr_rob = 'FL')) then

open_ee('left_gripper,)

else

begin

if ((curr_rob = 'PR') or (curr_rob = 'FR')) then

open_ee('right_gripper,)

else

write_msg('NO GRIPPER COMPATIBLE WITH CURRENT P_3BOT');

end;

end;

process gripper_c();

begin

if ((curr_rob = 'PL') or (curr_rob = 'FL')) then

close_ee('left_gripper,)

else

begin

if ((curr_rob = 'PR') or (curr_rob = 'FR')) then

close_ee('right_gripper,)

else

write_msg('NO GRIPPER COMPATIBLE WITH CURRENT ROBOT');

end;

end;
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procedure print_cjv_msg();

{This procedure when added as a closure to the refresh_actions function,

will write the current joint vector of the specified robot, to a data file.}

var

j : integer;

jr_sir : darray of string;

sir_send : string;

mse : real;
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begin

delay(1.0);

{********* AT EVERY SCREEN REFRESH, INSTEAD OF WRITEL/_(...) THERE WILL BE A

SOCKSTRMSEND MESSAGE - ROBOT + JV *****************}

if ((¢urr_rob = 'CR') or (¢urr_rob =

begin

jr_sir := array_create(string,2);

move_3dof := c_jv(curr_rob);

'CL')) then

for j := 0 to 2 do

begin

mse := (old_jts[j+l] - move_3dof[j+1])**2;

SU_ := rose + Sll/U;

jt_str[j]:=word_to_string(make_word(roundoff(move_3dof[j+l]*1000)));

end;

old_jts := move 3dof;

if (sum > (1.0)) then

begin

str_send := curr_rob*' '*jt_str[O]*' '*jr_sir[l]*' '*jZ_str[2];

write_msg('SENDING JOINT VECTOR THROUGH SOCKET');

sil_sockl_data(file_d,str_send);

end

else

writeln('NOT ENOUGH CHANGE IN JTS TO SEND THROUGH SOCKET');

sum := 0.01

end;

if ((curt_rob = 'PR') or (curr_rob = 'PL')) then

begin

jr_sir := array_create(string,5);

move_6dof := c_jv(curr_rob);

for j := 0 to 5 do

begin

mse :: (old_jts[j+1] - move_6dof[j+1])**2;

jt_str[j]:=word_to_string(make_word(roundoff(move_edof[j+%]*%000)));

end;

old_its := move_6dof;

if (sum > (6.0)) then

begin

str_send := curr rob*' '*jt_s_r[O]*' '*jr_sir[l]*' '*jt_str[2]*'

'*jt_str[3]*' '*jt_str[4]*' '*jt_str[5];



write_msg('SENDING JOINT VECTOR THROUGH SOCKET');

sil_sockl_data(file_d,str_send);

end

else

writeln('NOT ENOUGH CHANGE IN JTS TO SEND THROUGH SOCKET');

sum := 0.0;

end;

if ((curr_rob = 'FR') or (curr_rob = 'FL')) then

begin

jr_sir := array_create(string,8);

move_gdof := c_jv(curr_rob);

for j := 0 to 8 do

begin

rose := (old_jts[j+l]

sum := mse + sum;

- move_9dof[j+l]),*2;

jt_str[j]:=word_to_string(make_word(roundoff(move_gdo_[j+1]*lO00)));

end;

old_its := move_9dof;

if (sum > (9.0)) then

begin

sir_send := curt_rob*' '_jt_str[O]*' ',jt_str[i]*' '*j__str[2]*'

' *j t_ sir [3] *' ' *j Z_sZr [4] _' ',j t_str [S],'

'*jt_sZr[6]*' '*jt_str[7]_' ',jt_szr[8];

write_msg('SENDING JOINT VECTOR THROUGH SOCKET');

sil_sockl_data(file_d,str_send);

end

else

writeln('NOT ENOUGH CHANGE IN JTS TO SEND THROUGH SOCKET');

sum := 0.0;

end;

end;

{MAKE THE PREVIOUS PROCEDURE A CLOSURE FOR LATER USE}

print_cjv_msg_cl == mk_closure("print_cjv_msg,map(ob));

{. print_cjv_msg CLOSURE

process cs_move(joint_file:sZring;rob:string);

begin

waif(joinS_file);

waif(rob);

moveto_tabjv(rob,joint_file);

end;



process show(numrobs:integer);

val

which_rob : anno string;

rob_cs : string;

rob_msg : string;

filename : string;

begin

wait(numrobs);
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for i := i to numrobs do

begin

if (curt_cell = '2x9') then

begin

write_msg('SELECT A ROBOT FOR MOTION : [FL, FR]:');

which_rob := get_a_string();

if ((which_rob.val <> 'FL') and (which_rob.val <> 'FR')) then

begin

activate(tes_bed_menu);

write_msg('ROBOT SELECTION NOT VALID - TRY AGAIN');

end

else

begin

rob_cs := which_rob.val;

if (rob_cs = 'FL') then rob_msg := 'FULL LEFT ARM';

if (rob_cs = 'FR') then rob_msg := 'FULL RIGHT ARM';

end;

end;

if (curr_cell = '2x6+2x3') then

begin

write_msg('SELECT A ROBOT FOR MOTION: [PL, PR, CL, CR]:');

which_rob := get_a_string();

if ((which_rob.val <> 'PL') and (which_rob.val <> 'PR') and

(which_rob.val <> 'CL') and (which_rob.val <> 'CR')) then

begin

activate(testbed_menu);

write_msg('ROBOT SELECTION NOT VALID - TRY AGAIN');
end

else

begin

rob_cs := which_rob.val;

if (rob_cs = 'PL') then rob_msg := 'LEFT PUMA';

if (rob cs = 'PR') then rob msg := 'RIGHT PUMA';

if (rob_cs = 'CL') then rob msg := 'LEFT PLATFORM';

if (rob_cs = 'CR') then rob_msg := 'RIGHT PLATFORM';

end;

end;

start(cs_move);

--- write_msg(concat('ENTER THE path/filename-WHICH CONTAINS J0IHT-VEC_)RS ..................

FOR THE ',rob_msg));

filename := new_read();



end;

signal(cs_move,joint_file,filename);

signal(cs_move,rob,rob_cs);

end;

process show_l();

begin

signal(show,numrobs,1); end;

process show_2();

begin

signal(show,numrobs,2); end;

process show_3();

begin

signal(show,numrobs,3); end;

process show_4();

begin

signal(show,numrobs,4); end;

{.............................. show PROCESS .............................. }
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{process moving_9dof(rob_name:string;joint vec:darray of real);
va/"

temp vec : iv;

begin

wait (rob_name) ;

wait (joint_vec) ;

end;

end3[O]::joint_vec[6]; end3[1]::joint vec[7]; end3[2]:=joint_vec[8];

remp_vec[]:=joint_vec[] ;temp_vec[]:=joint_vec[] ;temp_vec[]:=joint_vec[];

temp_vec[]:=joint_vec[] ;temp_vec[]:=joint_vecO ;temp_vec[]:=joint_vecD;

temp_vec[6]:=end3;

moveto(rob_name,temp_vec);

process moving_6dof (rob_name: string; joint_vec: iv) ;

begin

wait (rob_name) ;

wait (joint_vet) ;

moveto(rob_name,joint vec);

end;

v

process moving_3dof (rob_name :string ;joint_vec :daxray of real) ;
v_

temp vec :

begin

wait (rob_name) ;

wait (joint_vec) ;

moveto(rob_name,joint vec);end;
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{ .... = MENU HANDLER PROCEDURES ..... }

{ TOP MENU .......... }

procedure testbed_menu_handler(s :string) ;

vaur

sure : anno_string;

begin

case s of

{ ' !INIT! ' : }

'SOCKET CONNECT' : begin

if (file_d <> O) then

write_msg('SOCKET SERVER IS NOT READY FOR CONNECTION')

else

call (conne c__menu) ;

end;

'CELL' : call(cell_menu);

'CURR ROBOT' : begin

current rob();

set_msg(testbed_menu,'CUKR ROBOT',curr_rob);

end;

'HOME' : call(home_menu);

'MOTION' : call(motion_menu) ;

'OFF' : sending0ff();

'GRIPPER' : begin

if (curr_rob = 'none') then

write_msg('SELECT ROBOT BEFORE ACTUATING GRIPPER FUNCTIONS')

else

call(gripper_menu);

end;

'COMPLIANCE' : begin

if (curt_rob = 'none') then

write_msg('SELECT ROBOT BEFORE ENGAGING COMPLIANCE FUNCTION')

else

if ((curr_rob = 'CL') or (curr_rob = 'CR')) then

write_msg('NO COMPLIANCE OPTION FOR CURRENT ROBOT')

else begin

comp_o_f() ;

s et_msg (t estbed_menu, 'COMPLIANCE ', comp ) ;

end;

end;

'CURRENT POSITION': currentPosition();

'END SESSION' :

begin

write msg('WILL TERMINATE LINK TO CTOS, REQUIRING REBOOT -

SURE? (yln) ') ;

sure := get_a_string();

if (((sure.val <> 'y') and (sure.val <> 'n')) or

(sure.v_ = 'n')) then

write_msg('LINK TO CTOS NOT TERMINATED');



if (sure.val = 'y') then

begin

wriZe_msg('SENDING MESSAGE TO QUIT');

sil_sockl_data(file_d,'q');

exit_user_tree();

write_msg('THANK YOU FOR USING THE CIMSTATION/CTOS GRAPHICAL

INTERFACE');

end;

end;

end;

'!ABORT!'

end;

: exit_user_tree();

{..... SUB MENUS ..... }

procedure connect_menu_handler (s :string) ;

var

hn_anno : anno_string;

pn anno : anno_real;

begin

case s of

{ '!INIT!' : }

'HOSTNAME' : begin

write msg('ENTER MACHINE NAME THAT WILL ACT AS HOST TO SOCKETS');

Ikn_anno := get_a_string();

host_name := hn_anno, val;

set_msg(connect_menu, 'HOSTNAME' ,host_name) ;

end;

'PORTNUMBER' : begin

write msg('ENTER PORT NUMBER SOCKET CONNECTION (INTEGER)');

pn_anno := get_a_real();

port_n := roundoff(pn anno.val);

setmsg (conn ect_menu, 'PORTNUMBER ',porT_n );

end;

'CONNECT - DR' : begin

writeln('SHOULD BE CONNECTING');

file_d := sil_call1_client(host_name, port_n);

{ OPEN SOCKET CONNECTION W/CTOS }

writeln (file_d) ;

activate(_estbed_menu) ;

end;

'!ABORT!' : menu return();

end ;

{ END connect_menu_handler .}end;

procedure cell_menu_handler(s:string);

begin

case s of

'!INIT!' •

write_msg('WHICH TESTBED FORMAT WILL YOU BE USING?');

J!ABORT!': menu_return();
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end;

'2x9DOF ARMS' : begin

curt_cell := '2x9';

r1_n(cell_2bots);

ac_ivate(testbed_menu);

wri_e_msg('THIS IS THE CIKSSE TESTBED');

end;

'2x6DOF+2x3DOF ARMS': begin

curr_cell := '2xS+2x3';

run(cell_4bots);

ac_ivate(testbed_menu);

write_msg('THIS IS THE CIRSSE TESTBED');

end;

end;

{ .......... END cell_menu_handler

procedure home_menu_handler(s :string) ;

vat

where : string;

begin

case s of

{ ' !INIT! ' : }

'!ABORT!' : menu_return();

end;

'CURRENT TO HOME' : begin

run(send_one_to_r,one_to);

write msg(concat(curr_rob_msg,' IS AT THE CIRSSE HOME POSITION'));

end;

'ALL TO HOME' : begin

run(send_all_to_r,all_to);

write_msg('ALL ROBOTS ARE AT THE CIRSSE HOME POSITION');

end;

'CURRENT TO ZERO' : begin

run(send_one_to_z,one_to);

write_msg(concat(curr_rob_msg,' IS AT THE ZERO POSITION'));

end;

'ALL TO ZERO' : begin

run(send_all_to_z,all_to);

write_msg('ALL ROBOTS ARE AT THE ZERO POSITION');

end;

end;

{ .......... END home_menu_handler }

procedure motion_menu_handler(s :string) ;

war

ok : anno_string ;

numrobs, k : integer;

numrobs_string: anno_string;

refr_freq : anno_real ;
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begin

case s of

'!INIT!'

'!ABORT!'

: write_msg('SELECT ROBOT(S) MOTION TYPE ..... >

THEN MOVE ROBOT(S) IN DESIRED MANNER');

: menu_return();

'TO GOAL' : begin

refresh(O.O);

write_msg('GOAL MOTION DEPENDS ZIO0 ON THE CTOS TG -

ONLY GOAL POSITIONS SENT');

end;

'VIA PATH' : begin

write_msg('VIA PATH MOTION USES CS TG - SELECT FREQ OF JT ANGLE

NOTIFICATION[sec]');

refr_freq := get_a_real();

refresh(refr_freq.va!);

end;

'PREVIEW/CREATE' : begin

exit_user_tree();

write_msg('USE CS FUNCTIONS TO CREATE/VIEW DESIRED PATH, THEN

-> "-/MOVE/ON".');

end;

'VIEW STORED PATH' : begin

if ((curt_cell <> '2x9') and (curr_cell <> '2x6+2x3')) then

begin

write_msg('CHOOSE A CELL BEFORE TRYING TO MOVE ROBOTS');

menu_return();

end

else

begin

write_msg('ENTER NUMBER OF COMPONENT ROBOTS INVOLVED IN THE PATH

(1-4)');

numrobs_string :: get_a_string()_

if numrobs_string.val = '1' then run(show_l,show,cs_move);

if numrobs_string.val = '2' then r_m(show_2,show,cs_move);

if nuatrobs_string.val = '3' _hen run(show_3,show,cs_move);

if numrobs_string.val = '4' then run(show_4,show,cs_move);

menu_return();

end;

end;

'ON' : begin

write_msg('ON : TESTBED ARMS WILL RESPOND TO NEXT GRAPHICS MOVE,

OK? (yln)');

ok :: get_a_string();

if ((ok.val <> 'y') and (ok.val <> 'Y') and

(ok.val <> 'n') and (ok.val <> 'N')) then

begin



activate(motion_menu);
write_msg('CHOOSEAGAIN:

end;
MUST ENTER yln TO ENGAGE TESTBED.');

if ((ok.val : 'n') or (ok.val : 'N')) then menu_return();

if ((ok.val = 'y') or (ok.val = 'Y')) then

begin

{CHECK THAT A ROBOT IS SELECTED}

if (curr rob <> 'none') then

begin

refresh_actions := cons(print_cjv_msg_cl,refresh_actions);

exit_user_tree();

write_msg(concat(curr_rob_msg,' ENGAGED FOR MOTION - USE CS

FUNCTIONS, TO START TESTBED'));

end;

end;

end; {..... ON ..... }

'OFF' : begin

refresh_actions := cdr(refresh_actions);

old_jts := old jts_init;

{RESETS REFRESH_ACTIONS}

activate(testbed_menu);

write_msg('0FF = TESTBED ARMS NO LONGER RESPONDING TO CIMSTATION

MOVES.');

end; {..... OFF ..... }

end; {..... case ..... }

end; { END motion_menu_handler }

iii

procedure gripper_menu_handler(s:string);

begin

case s of

'!INIT!' : set_msg(gripper_menu,'CURR ROBOT',curr_rob);

'OPEN' : begin

if ((curr_rob = 'CL') or (curr_rob = 'CR')) then

begin

write_msg('THIS ROBOT DOES NOT HAVE A GRIPPER');

activate(testbed_menu);

end

else begin {CASE OF ROBOT WITH GRIPPER}

if ((grip = 'not set') or (grip = 'close')) then begin

run(gripper_o);

grip := 'open';

write_msg('GRIPPER OF _CURRENT,, ROBOT IS NOW OPEN');

sil_sockl_data(file_d,('G O '_curr_rob));



writeln('GRIPPER OPEN SENT');

end

else

write_msg('GRIPPER IS ALREADY OPEN');

end;

end;

'CLOSE' : begin

if ((curt_rob = 'CL') or (currrob = 'CR')) then

begin

write_msg('THIS ROBOT DOES NOT HAVE A GRIPPER');

activate(testbed_menu);

end

else begin {CASE OF ROBOT WITH GRIPPER}

if ((grip = 'not set') or (grip = 'open')) then begin

run(gripper_c);

grip := 'close';

write_msg('GRIPPER OF **CURRENT** ROBOT IS NOW CLOSED');

sil_sockl_data(file_d,('G C '*curt_rob));

writeln('GRIPPER CLOSE SENT');

end

else

write_msg('GRIPPER IS ALREADY CLOSED');

end;

end;

'!ABORT!' : activate(testbed_menu);

end; { ..... case ..... }

end; { END gripper_menu_h__ndler }

{===== tes_bed menu IS TOP LEVEL USER MENU =====}

top_user_menu := testbed_menu;
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Package: Cimstation Socket Interface

File: sil_sock.sil

Written by: Anna Hron, Steve Murphy

Date: 19 Oct 92

Purpose: To connect to sockets and output joint angles.

Modification History:

NOW ACCEPTS VARIABLE HOSTNAME AND PORTNUMBER IN CALL_CLIENT ROUTINE

- ABH - 6 NOV 92

>

import("callclient,map(integer,ob,integer));

function sil ca111_client(hn_string:string; p_num:integer):integer;

begin

sil_calll_client:=callclient(hn_string as_type ob, p_num);

end;

import("callsockdata,map(integer,integer,ob));

function sil_sock1_data(fd_server:integer; sil_string: string): integer;

begin

sil_sock1_data:=callsockdata(fd_server,sil_string as type ob);

end;

import("callsockrecv,map(integer,integer,ob));

function sil_sock_recv(fd_server:integer; rec_string:string):integer;

begin

sil_sock_recv:=callsockrecv(fd_server,rec_string as_type oh);

end;
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/* TNIS CODE WILL CKEATE A SOCKET AND SEND A MESSAGE.

THE SUPPOKTING CODE IS ALSO INCLUDED.

THIS IS CODE FROM /home/nicegarn/Editing/sockLib.

ABH - 14 OCT 92

,/

MODIFICATIONS : call_client NOW ACCEPTS VAKIABLES FOR HOSTNAME

AND POKTNUMBER

#include <stdio.h>

#include <stdlib.h>

#include <lisp.h> /*

#include <compiled.h>

#include <precomp.h>

#include <postcomp.h>

KECOMMENDED INCLUDES - STEVE M. */

#include <unistd.h>

#include <errno.h>

#include <netdb.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

/* #include "sockLib.h" */

#ifndef INCsockLibH

#define INCsockLibH

#define MAX_HOST_NAME_LENGTH 128

typedef int SOCKET_TYPE;

#endif INCsockLibH

/, DUMMY FUNCTION KEQUIKED BY SIL */

init_c_sock() {}

/* MAIN PKOGKAM WHICH ACCEPTS "sockClient(<hostname> <por_num>)"

IT ESTABLISHES A CONNECTION WITH THE SOCKET KUNNING IN CTOS

*/

int callclient(hnstring, pnum)

stringob hnstring;

int pnum;

{



char *hostname;

/* CONVERT hns_ring (SIL) TO hostname (C) */

hostname = 12c_str(hnstring);

return(sockClient(hostname, pnum));
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int sockClient(hostname, portnum)

char hostname[128];

unsigned short portnum;

{

int fdServer;

struc_ sockaddr_in addrServer;

if((fdServer = sockConnect(hostname, portnum, &addrServer, SOCK_STKEAM)) < O)

re_urn(-l);

printf("Got stream server socket.\n");

return(fdServer);

int callsockdata(fdServer, silString)

int fdServer;

stringob silString;

{

char *bur;

/* Convert Silstring to C string */

bur = 12c_str(silString);

/* send data to the socket */

re_urn(sockData(fdServer, bur));

}

int ¢allsockrecv(fdServer, recString)

int fdServer;

sCringob recString;

{

char *bur;

/* CONVERT SILSTRING TO C STRING */

bur = 12c_str(recString);

/* READ DATA FROM THE SOCKET */

return(sockRecv(fdServer,buf));

/* SENDS DATA TO SOCKET RUNNING IN CTDS */



int sockData(fdServer,bur)
int fdServer;

char bur[350];

{

if(sockStrmSend(fdServer, bur, 350) < 0)

return(-1);

return(I);

}
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/* READS DATA FISH SOCKET SERVED BY CTOS */

int sockRecv(fdServer,buf)

int fdServer;

char buf[350];

(

if (sockStrmRecv(fdServer, bur, 350) < 0)

return(-1);

return(I);

}

/* connect to an existing socket on a given port on a given host */

int sockComnect(hostname, portnum,

sa, sockType)

char *hostname;

unsigned shore portnum;

struct sockaddr in *sa;

SOCKET_TYPE sockType;

{

struct hostent *hp;

int s;

if((hp = gethostbyname(hostname)) == NULL)

(

errno = ECONNREFUSED;

printf("Unknown host '_s'.\n", hostname);

return(-1);

}

bzero(sa, sizeof(struct sockaddr_in));

bcopy(hp->h_addr, (char *)&sa->sin_addr, hp->h_length);

sa->sin_family = hp->h_addrtype;

sa->sin_port = htons((u_short)portnum);

if((s = socket(hp->h_addrtype, sockType, 0)) < 0)
(

perror("Error getting server stream socket");

return(-1);

}

if(connect(s, (struct sockaddr *)sa, sizeof(struct sockaddr_in)) < O)

{



close(s);

perror("Error connecting to server stream socket**);

return(-1);

}

return(s);

** Stream socket I/O routines

*/

/* write data to stream socket */

int sockStrmSend(s, data, dataSize)

int s;

register char *data;

unsigned dataSize;

{

register int bcount = O; /* counts bytes written */

register int br; /* bytes written this pass */

while(bcount < dataSize)

{

if((br = write(s, data, dataSize - bcount)) > O)

{

bcount += br;

data += br;

}

else if(br < O)

{

perror("sockStrmSend");

return(br);

}

}

return(bcount);
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/* read data from stream socket */

int sockStrmRecv(s, data, dataSize)

int s;

register char *data;

unsigned dataSize;

{

register int bcount = O; /* counts bytes read */

register int br; /* bytes read this pass */

while(bcount < dataSize)

{

if((br = read(s, data, dataSize - bcount)) > O)

{

bcount += br;



data += br;

}
else if(br < O)

{

perror ("sockStrmRecv") ;

return(br) ;

>
)

return (bcount) ;

}
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