@ https://ntrs.nasa.gov/search.jsp?R=19930020030 2020-03-17T04:49:45+00:00Z

Old Dominion University Research Foundatior

o @

NASA-CR=-193239

P e
DEPARTMENT OF COMPUTER SCIENCE)71/ 702D
COLLEGE OF SCIENCES |
OLD DOMINION UNIVERSITY ;b

NORFOLK, VIRGINIA 23529

BUILDING A GENERALIZED DISTRIBUTED SYSTEM MODEL

By

R. Mukkamala, Principal Investigator

Annual Report

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23681

N93-29219
Unclas
0171915

G3/61

Under

Research Grant NAG-1-1114
Wayne Bryant, Technical Monitor
ISD-Systems Architecture Branch

D SYSTEM
62 p

BUILDING A

(01d Dominion Univ.)

June 1993

(NASA-CR=-193239)
ERALIZED DISTRIBUTE

GEN
M0O0EL

o -

DEPARTMENT OF COMPUTER SCIENCE
COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23529

BUILDING A GENERALIZED DISTRIBUTED SYSTEM MODEL

By

R. Mukkamala, Principal Investigator

Annual Report

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23681

Under

Research Grant NAG-1-1114
Wayne Bryant, Technical Monitor
ISD-Systems Architecture Branch

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

June 1993

Building a Generalized Distributed System Model

R. Mukkamala
E.C. Foudriat

Department of Computer Science
Old Dominion University
Norfolk, Virginia 23529-0162.

Annual Report and Renewal Request

Abstract

The key elements in the 1992-93 period of the project are:

¢ Extensive use of the simulator to implement and test

— Concurrency control algorithms
— Interactive user interface, and
— Replica control algorithms

¢ Investigations into the applicability of data and process replication in
real-time systems, and

In the 1993-94 period of the project, we intend to:

¢ Concentrate on efforts to investigate the effects of data and process
replication on hard and soft real-time systems. Especially we will con-
centrate on the impact of semantic-based consistency control schemes
on a distributed real-time system in terms of

— Improved reliability

— Improved availability

— Better resource utilization, and
Reduced missed task deadlines

e Use the prototype to verify the theoretically predicted performance of
locking protocols, etc.

1 Introduction

In the 1992-93 proposal, we proposed to test the simulator more extensively.
This has been achieved by using it to test the performance of replica control
algorithms and concurrency control algorithms. In addition, we have now
constructed a user interface using which it is possible for a user to specify
the selection of nodes (by their machine name) and the way they need to
be connected. In addition, the user may specify the location of the code
for execution at these nodes. The simulator would then start the required
execution.

The investigations into the use of replication in distributed real-tinie sys-
tems has been preliminary and no reports or papers have yet been published.
However, there is strong evidence that this area will be a strong candidate
for future system architectures. For this reason, we propose to further pur-
sue this approach in the coming year. This should lead to several conference
publication and possibly journal submissions.

In this report, we summarize our progress in these areas and then de-
scribe the proposed work for 1993-94.

2 Distributed System Prototype

As stated above, we have used the current prototype tool to implement and
test concurrency control algorithms and replica control algorithins. Here.
we will summarize these efforts.

2.1 Concurrency Control Algorithms

Using the previously developed modules of the prototype, we have success-
fully implemented and tested an optimistic concurrency control algorithm
using time stamping. The algorithm is optimistic in the sense that it relies
mainly on transaction backup as a control mechanism hoping that conflicts
between transactions are minimal. In this case, a transaction consists of
three phases: read-phase, validation-phase, and a write-phase. The details
of the implementation, and the way the prototype modules are combined
are discussed in an attached report.

2.2 Replica Control Algorithms

Replica control is necessary to assure mutual consistency in distributed sys-
tems, when a high degree of fault-tolerance needs to be provided. As part
of this effort, a replication algorithm is implemented using a weighted vot-
ing method, where a quorum of votes must be obtained to execute read or
write operations. The Global transaction module (GTM) of the prototype
has been slightly modified to meet the requirements of the replica contral
algorithm. The details of the work are described in an attached report.

3 Interactive User Interface to the Prototype

The main objective of this project were to implement a system which will au-
tomatically establish a customized configuration of workstations connected
on a network (distributed system). Some of the parameters which the user
may wish to input to the system are: names of sites to be included in the
system; the algorithm/program code to be run on the system, the logical
topology by which the chosen sites are to be connected; and the logfile where
the output file should be directed to. The system has also been used to test
a token-ring protocol specified via the interface. The details of the effort are
described in an attached report.

4 Distributed Real-time Systems: Current efforts

Due to the importance of reliability and timeliness in real-time systems, the
application of distributed systems in this area is now well recognized. In
this context, we started looking at both hard and soft real-time systems
(centralized) and the work in distributed database systems (non-real time).
We find that by effectively combining ideas from these two systems, we can
build distributed real-time systems, especially using the data and process
replication ideas.

5 Proposed Research Efforts in 1993-94

During the next grant period (August 1993 - July 1994), we propose to
mainly concentrate on the issues related to distributed real-time systems.
Especially, we propose to study and solve the following problems.

¢ How can data replication be effective used to improve reliability, avail-

ability, and reduce number of tasks missing deadlines?

This effort will require the study of currently existing non-replicated
algorithms, and solving some of the system bottlenecks by employing
replication. While the answer for improvements seems to be obvious.
how to maximize the benefits is not at all obvious.

Can Replication be also used to reduce the non-deterministic delays
involved in the communication subsystem? If so what is the added
cost, and other effects due to increased load?

Several efforts in minimizing the non-determinism in the communi-
cation network delay, especially for high priority traffic are already
in progress and published in literature. However, none have studied
replication as a means to achieve it. We propose to consider replica-
tion of channels, replication of transmissions, and replication of servers
to achieve it. Obviously, we need to take into consideration the cost
involved with the proposed schemes.

What is the effect of replica consistency requirements on the perfor-
mance of the system? Obviously, the more stringent the requirements,
the worse will be the performance. But we would like to study this
aspect in a more comprehensive manner.

Develop newer scheduling algorithms that can incorporate the new
consistency requirements.

Further develop and use the current distributed system prototype to
test and implement distributed algorithms. It will also be used in the
distributed systems class to be offered in Fall 1993.

Implementation of an Optimistic Concurrency
Control Algorithm using Timestamps

Sastry.A.V.R.R
Shubhangi Kelkar
Pradeep Sankaranthi

December 11, 1992

Introduction :

Concurrency control is the activity of coordinating concurrent accesses to a database in a
multiuser database management system(DBMS). Concurrency control permits users to ac-
cess a database in a multiprogrammed fashion while preserving the illusion that each user
is executing alone in a dedicated system. The concurrency control problem is complicated
in distributed DBMS(DDBMS) because users may access data stored in different computer
in a distributed system and a concurrency control mechanism at one computer cannot in-
stantaneously know about interactions at other computers. Most current approaches to
concurrency control in database systems rely on locking of data objects as a control mecha-
nism. In this project an optimistic concurrency control using timestamps is implemented. It
is optimistic in the sense that they rely mainly on transaction backup as a control mechanism
hoping that conflicts between transactions will not occur. This approach has the advantage
that it is completely general, applying equally well to any shared directed graph structure
and associated access algorithms. Since locks are not used, it is deadlock free. The idea
behind this optimistic approach is quite simple and may be sumimarized as follows.

Any transaction consists of two or three phases:a read phase, a validation phase, and a pos-
sible write phase. During the read phase, all writes take place on local copies of the nodes to
be modified. Then, if it can be established during the validation phase that the changes that
the transaction made will not cause a loss of integrity, the local copies made are global in the
write phase. In the case of a query, it must be determined that the result the query would
return will actually be correct. The step in which it is determined that the transaction will
not cause a loss of integrity (or that it will return the correct result) is called validation.

If validation fails the transaction will be backed up and start over as again as a new
transaction. Thus a transaction will have a write phase only if its previous validation suc-
ceeds.

Timestamp ordering (T/O)is a technique whereby serialization order is selected apriori
and transaction execution is forced to obey this order. Each transactionis assigned a unique
Timestamp by its Transaction Manager. The TM attaches the timestamp to all reads and
writes issued on behalf of the transaction, and Data Managers are required to process con-
flicting operations in timestamp order.

Implementation:

Message formats and the sequence of events/messages are shown in the table 1. Iig |
shows the interaction between various modules.

The way this system functions is as follows. User submits his transaction which involves
a series of Reads and/or Writes to the User Transaction Manager(UT). UT verifies the syn-
tax of the transaction and passes this request to Global Transaction Manager (GTM) with a
timestamp attached to it. GTM takes this transaction and assigns a unique transaction 1D to
this transaction. It then enqueues the transaction in its transaction queue in the increasing
timestamp order. GTM maintains the status of both local and remote transactions al any
time. GTM then parses the transaction and divides the transaction into subtransactions.
Each subtransaction status is maintained in a subtransaction queue under the corresponding
transaction queue. The execution of transaction- now involves execution of these subtrans-
actions. GTM sends a request to Replica Control (RC) for location and quorum(R/W)
information about each object. All the messages that is sent to RC bear a timestainp on
them. RC maintains a list of all sites participating in the functioning of the overall system,
information about the objects residing at the site viz. object.d, site_id, votes required for
read or write.

RC then sends a reply to GTM stating the site(s) at which the data object in question
will be available. GTM takes this information and then send a message to local /TN for
execution of subtransactions which are local. If the subtransaction requires an object that
is remote to this site then GTM sends a message to remote GTM for execution of the sub-
transaction at that site. At the level of LTM it is not possible to distinguish between local
and remote transactions. If the subtransaction is a READ operation then LTM sends a
request for Physical read to Resource manager(RM) where the actual database is located.
RM acts as a scheduler for reads and writes for read and write requests. RM replies to L'I'M
with a Physical Read done message. If however, the operation involves writing the data
object, then LTM sends a message to Local Transaction Recovery Manager (LTRM) asking
it to write the data item logically. This is different from physical write which is not done
until a commit message is received. LTRM on receiving the logical write request store the
object_id and corresponding value in a structure. It then sends a message to RM asking for
the timestamp of the item to be written. RM reads the timestamp of the item and sends
it to LTRM. LTRM preserves this timestamp value in corresponding subtransaction’s data
structure. Then LTRM sends a message Logical Write Done to LTM. LTM propagates 1his

o

-

message to GTM. On receiving/not receiving successful write done(logical) from all the sites
(quorum limit), the GTM make a decision to commit/abort the subtransaction. A two-phase
commit protocol is used to ensure that either all sites “commit” or “abort” a transaction,
thus maintaining data consistency. If GTM receive all the logical write done messages for all
its write subtransactions it sends a commit message to LTM. LTM passes this message to
LTRM. LTRM now checks if the timestamp associated with the item is same as the tines-
tamp of the item at the time of logical write. For this to accomplish, it sends a message
to RM asking for timestamp again. RM replies with item’s timestamp. LTRM checks the
received timestamp with the timestamp of the item stored in its data structure. If both are
same it issues a message Physical Write request to RM. This procedure ensures consistency
of the data item. RM replies with a Physical write done message after it modifies the value
of the data object in the actual database. Having received the Physical Write Done message
from RM, LTRM sends a commit done message to LTM which passes the same to G'I'M.
GTM then lets the UT know that the submitted transaction is successfully done.

The original code which implemented two phase locking as a means of obtaining serial-
izability is modified to suit our requirements in the following manner.
uT '

e Timestamps are included in all the messages that are sent

e Osn is updated eachtime a message is sent/received
(these steps are repeated in all the modules)

GTM:
e Timestamp is taken from message received from the UT/Remote G'T'M and put the
message in the queue (addtransaction()) based on timestamp ordering.

o After it get a reply from the RC,.GTM sends a message to LTM instead of GCCM (as
in the original code).

GCCM and LCCM
e completely eliminated since we are not using two phase locking.

RC
o All messages are embedded with a logical clock field.

LTM
¢ In the LTM.h timestamp field is added to the _ltmstruct structure for each item.

LTRM
e In the LTRM.h we added numAcksExpected and aborted fields to check for the con-
sistency of the original data item.

¢ All calls to LCCM are eliminated because none of the locks need be acquired belore.

o Four more cases are added.

READ_ITEM_TS_FIRST, READ_ITEM_TS_AGAIN, ITEM_TS_FIRST_TIML,
ITEM_TS_.SECOND_TIME

These cases are introduced to check if the item in question is modified by any other
transaction before committing this transaction.

RM
e LFach data object will have a timestamp associated with it. Everytime, this ohject is
modified the timestamp field is updated to the logical clock value at that time.

¢ Two more cases are added to handle read requests from LTRM.

READ_ITEM_TS_FIRST and READ_ITEM_TS_AGAIN

Opcodes.h
e Four new opcodes described above are included in the opcodes table.

Conclusions:

For rigorous testing of the current code a small delay can be introduced in the transactions
submitted so that some confilicts can be simulated. Alternatively, original code can be
refined so that each of the transaction managers act as servers instead of waiting in a tight
loop for the messages to come. Thus the server will fork off a process for each of the messages
it received.

Distributed Systems Project Operations and Message formats

December 9, 1992

Step# | Operation

1 UT module sends a transaction to GTM. The transaction may look
like:

Read A

Read B

Write C

Write D

where each Read/Write is called a “Subtransaction”.

The message format is :
[TIME_STAMP][USER-TRANSACTION-REQUEST(L)][USER_TRANSACTION_BEGIN(I)]
[USER_ID(I)][READ-OP(I)][ITEM_ID(I)][WRITE_OP(I)]
[ITEM_ID(I)][DATA(I)]...[USER_TRANSACTION_END(I)]

2 GTM enqueues the incoming transactions on the basis of the time stamp
and then makes subtransactions for every Read/Write of an item
(eg. A, B) and sends a request to RC for complete knowledge
of replication and qourum needed for R/W.

The message format is :
[TIME_STAMP][QOURUM_READ(WRITE)_REQUEST(L)][USEll_'l‘l{ANSA(,T'l‘l()N_]l)(])]
[SUBID(D)[ITEMID(D][R/W_ID(I)]

3 RC finds an optimal list of sites needed for R/W qourum of an
item in a subtransaction. RC sends this list to GTM.
The message format is :

a. [TIME_STAMP][QOURUM_READ(WRITE)_REPLY(L)][USER_TRANSAC']‘ION_II)(I)]
[SUBID(D][ITEMID(I)][R/WID(I)[QUORUM(I)]J[NUM SITES(1)}
[SITENAMEL(L,S)][VOTE1(I))...

b. [QOURUM_READ(WRITE).REFUSED(L)][USER.TRANSACTION_ID(I)]
(SUB_ID(D))[ITEMID(D)][R/W_ID(I)]

Sa

a. If a subTx is a READ(local):
A “read” operation is sent to LTM.
The message format is :
[TIME_STAMP][READ_REQUEST_LOCAL(L)][USER-TRANSACTION_ID(T)]
[SUBID(D){ITEM.ID(I)]

b. If a subTx is a WRITE(local):

A “write” operation is sent to LTM.

The message format is :
[TIME_STAMP][WRITE_REQUEST_LOCAL(L))[USER_TRANSACTION_ID(I)]
[SUBID(D))[ITEMID(I)][VERSION(I)][DATA(T}]

Step#

Operation

5b

6a,6b

7a,7b

8a,8b

If a subTx is a READ(remote):
A “read” operation is sent to remote GTM.

The message format is :
[TIME_STAMP][READ-REQUEST-REMOTE(L)][USER_TRANSACTION_ID(I)]

[SUBID(I)][ITEMID(I))

If a subTx is a WRITE(remote):
A “write” operation is sent to remote GTM.

The message format is :
[TIME_STAMP][WRITE-REQUEST-REMOTE(L)][USER-TRANSACTION_ID(I)]

[SUBID(I)][ITEMID(I)][VERSION(I)][DATA(I)]
same as 10a (Now request is local).

Local READ operation:
LTM passes the read operation to RM of the site.
The message format is :

[TIME_STAMP)[PHYSICAL_READ_REQUEST(L)][USER_.TRANSACTION ID(1))
[SUB_ID(I)][ITEMID(I)]

Local READ reply from RM to LTM.

The message format is :

[TIME_ STAMP)[PHYSICAL_.READ_DONE(L)]{[USER.TRANSACTION.ID(1)]
[SUBID(I))[ITEMID(I)}{DATA(I))

Local READ done reply from LTM to GTM:

The message format is :
[TIME_STAMP]{READ_DONE_LOCAL(L)}[USER.TRANSACTION_ID(1)]
[SUBID(D)[ITEMID(I)][DATA(I)]

Step#

Operation

10a,10b

11a,11b

12a,12b

Remote READ done is passed back to the GTM at which
it originated.

The message format is :
[TIME_STAMP][READ DONE_REMOTE(L)}[USER.TRANSACTION_ID(I)]

[SUB_ID(I)){ITEM_ID(I)}[DATA(I)]

Local WRITE operation:
GTM passes the write operation for an item mentioned in a
subTx to its LTM.

The message format is :
[TIME_STAMP}[WRITE_REQUEST.LOCAL(L)][USER_.TRANSACTION_ID(I))

[SUBID(I)][ITEM_ID(I)][DATA(I)]

LTM passes WRITE operation to LTRM :
The message format is :

[TIME_STAMP][LOGICAL_WRITE_REQUEST(L)][USER_TRANSACTION _.ID(1}]
[SUB_ID(I)}[ITEM_ID(I)][DATA(I)]

Operation

13a,13b

LTRM sends a request to RM for the item’s original timeStamp.
[TIME_STAMP][READITEM_TS_FIRST][USER.TRANSACTION_ID(I)]
[SUBID(D]ITEM.ID(I)]

Operation

14a,14b

RM sends the reply by stuffing the item’s timeStamp in the message.
[TIME_.STAMP]{ITEM_TS_FIRST_TIME][USER_-TRANSACTION_ID(I))
[SUBID(D)[ITEM.ID(D][ORIGINAL_.TIMESTAMP)]

LTRM sends “write done” reply to LTM.

LTRM actually stores the value in a datastructure along with the item’s
original timeStamp it received in the earlier message

(Physical write is still not done.)

The message format is : A
[TIME_STAMP][LOGICAL_.WRITE_DONE(L)]J[USER.TRANSACTION_ID(I)]
[SUBID(D]{ITEM_ID(1))

Step#

Operation

15a,15b

16a,16b

16

17a,17b

18a,18h

19a,19b

20a,20b

A “prepared” message is sent to GTM by LTM when

a “write done reply” is received.

The message format is :
(TIME_STAMP][PREPARED(L)][USER_.TRANSACTION.ID(I)]
[SUBID(I))[ITEMID(I)]

When correct # of “prepared” messages aref(are not) received by

GTM for all write subTx’s of a Tx, a commit/abort message

is sent to local LTM for updates(final physical WR) and all

GTMs(remote) which are involved in updates.

local message formats are(commit and abort)(GTM to LTM):
[TIME_STAMP)[TRANSACTION.COMMIT.LOCAL(L)J[USER_.TRANSACTION_ID(1)]
[TRANSACTION_ABORT_LOCAL(L)]{USER.-.TRANSACTION _ID(1)]

Remote message formats are(commit and abort)(GTM to GTM):
[TIME_STAMP)[TRANSACTION_.COMMIT_REMOTE(L))[USER_.TRANSACTION_I)(1)]
[TRANSACTION_.ABORT_REMOTE(L)}[USER_TRANSACTION_ID(I)]

Commit or Abort is passed to LTRM by LTM

The message format is :

[TIME_STAMP]{COMMIT _LOCAL(L)][USER_-TRANSACTION_ID(1)]
[ABORT_LOCAL(L)][USER_-TRANSACTION_ID(I)]

LTRM asks RM for the item’s timeStamp again.

The message format is :

[TIME_.STAMP][READ ITEM_TS_AGAIN]J[USER.-TRANSACTION_ID(I)]
[SUBID(D}[ITEMID(I))

RM sends a reply by including the item’s timeStamp in the message

The message format is :

[TIME.STAMP][READ ITEM_TS_AGAIN][USER_-TRANSACTION_ID(I)]
[SUBID(D)[ITEM_ID(I)]

LTRM sends a message to

A. RM if the timeStamp received matches with the

earlier timestamp it got in reply to ITEM_READ_TS_FIRST message.

The message fromat is:
[TIME_.STAMP}[PHYSICAL_WRITE_REQUEST][USER_.TRANSACTION_ID(I)]
[SUBID(D)[ITEMID(I)]

B. if the timestamps of item it received in response to
READ_ITEM_TS_FIRST and READ_ITEM_TS_AGAIN don’t match it
sends an abort message to LTM.
[TIME.STAMP][COMMIT_DONE]{USER.TRANSACTION_ID(1)]

Step#

Operation

21a,21b

22a,22b

23a,23b

24

25

The “Physical write done” is sent back LTRM.

The message format is :
[TIME_STAMP][PHYSICAL_WRITE_DONE(L)][USER.TRANSACTION_ID(I)]

[SUBID(I)]ITEM.ID(I)]

“Commit Done” is sent back to LTM.

The message format is :
[TIME_STAMP][COMMIT_DONE(L)][USER-TRANSACTION_ID(I)]

“Commit Ack” is sent back to GTM.

The message format is :
[TIME_STAMP][COMMIT_ACK(L)][USER_TRANSACTION_ID(I)]

Remote GTM sends the “Commit Ack” back to original GTM

The message format is :
[TIME_STAMP][COMMIT.ACK-REMOTE(L)][USER-TRANSACTION_ID(I)]

GTM when receives enough # of commits ACKs from all
involved sites, it announces “User Transaction Done” to UT

The message format is :
[TIME_STAMP][USER_TRANSACTION_DONE(L)][USER-TRANSACTION_ID(I)]

Distributed Systems Replica Control Project

A Group Project for CS 763
Group Members: Rongli Jiang, Pat Mullally, Kent Stevens

Abstract

Replica Control is necessary in dzstrtbuted systems to assure mutual consistency and
provide a degree of fault tolerance.” 12 If data is not replicated among the nodes of the
distributed system, a node failure can be responsible for significant system degradation.
In this project, a replication algorithm is implemented using a weighted voting method,
where a quorum of sites and votes must be obtained to execute a read or write
transaction.

Introduction

The purpose of this project is to design and implement a Replica Control (RC)
algorithm which is based on a weighted voting scheme®. In order to obtain permission
to commit a read or write transaction, a number of votes representing a quorum of
votes must be established according to the following expression:
read quorum + write quorum > total number of votes. A majority group is then deter-
2 Usite 1+ Usite2 ... Usiten

2

improves the overall probability that a read or write quorum can be achieved under
conditions where replicated copies of data have been limited. For simplicity and to
easily observe operation of the algorithm, voting weights are statically assigned to
each site and stored in linked list data structures. Voting quorum values are main-
tained at each site by transaction number, and are loaded during node initiation. The
necessary data structures used to compose and decompose messages are referenced
when a transaction occurs in the system.

mined by the expression + 1. The weighted voting scheme

The algorithm has been designed to be extensible and compatible with the full
implementation of the distributed network system. In the distributed network im-
plementation, voting assignments can be deterministically assigned based on factors
such as the states of a site or by parameters which may include reliability of the site
or resources available to the site.

Assumptions

In order to successfully implement this project within the limited time available,
various assumptions were made to limit the project scope. The assumptions are:

« The replica control algorithm will not consider partitioning.

« Voting assignments of the sites are established a priori to system operation
and are statically maintained during system operation.

+ Only one transaction will be processed by the distributed replica control
algorithm at a time. Since our model does not contain any provisions for
concurrency control, multiple transactions could possibly cause conflicts
which would affect algorithm performance.

» Transaction messages are sent and received through statically assigned
socket numbers. Dynamic port assignments are not considered in this im-
plementation, however would be a feature which would be implemented in a
distributed system.

« The program provides limited error recovery for timing out quorum request
responses. A time-stamp file has been incorporated in the TRANSACTION
data structure in which the initiation time of the transaction is recorded.

+ This project uses a minimally functional Global Transaction Manager (GTM)
to process, format, and communicate user inputs to the RC module. All data
structures used in this project are pointer based and are easily extensible.
The structures can be easily modified to handle greater numbers of transac-
tions and more complex message structures.

+ Some of the functions performed by the GTM have been transferred to the
Replica Control (RC) module for this project. A Simple Global Transaction
Manager (SGTM) has been implemented for this project.

+ The user will input transaction ID from the keyboard, which will be processed
through the SGTM to the RC module. An extensive user interface was not
attempted, since the focus of this project was to implement the RC algorithm.

Message Formats

The following describe the message formats used for passing messages between the
distributed sites in this system:

SGTM = RC
+ [READ_REQUEST][TRANSACTION_IDJ[ITEM_ID]
« [WRITE_REQUEST][TRANSACTION_IDJ[ITEM_ID]

SRC = SGTM
» [TRANSACTION_COMPLETE]JTRANSACTION_ID]J[ITEM_ID]
« [TRANSACTION_ABORT][TRANSACTION_IDJ[ITEM _ID]}
RC = RC (Remote)
« [LOCK_REQUESTITRANSACTION_ID]JIITEM_ID]
« [LOCK_REFUSED]JTRANSACTION_IDJITEM ID]
+ [LOCK_GRANTED][TRANSACTION_IDJITEM_ID]

Data Structures

There are four basic data structures used in the project. The tables and figures
included in this section show the data structures as they relate to the elements of a
transaction. Figure 1 shows the TRANSACTION structure. Figure 2 shows the
logical item structure which maintains replica information. Figure 2 also shows the
physical item structure which contains the site number and the number of votes for
each site. Figure 3 shows the site_info structure which contains the data about the
locking and voting status of a site.

‘next 4 Sitename | =« o .
|
r s_vote
I
site_info Structure { Status
1
Sitelenth
\ —1
Sitename
!
Transaction || Read/Write | Total || Num Sites || Num Sites || Number of Send ‘ She Li N
- - - a a 2
1D Quorum Votes Sent Reply Sites Time e List ext
X
Transaction |
ID

Figure 1. TRANSACTION Data Structure

TRANSACTION Data Structure

Field Field Description
The transaction identification number. This number is an integer
trans_id which is used to identify and synchronize transactions as they are
received and processed by the sites.
Read or Write quorum. This integer specifies whether the node is
rw_quorum . X >
attempting to achieve a read or write quorum.
total_votes Total votes is an integer obtained by the transaction.

num_sites_sent

This value is incremented when a message is sent to a remote site.

num_sites_reply

Calculated value obtained by adding the message obtained from each
site to obtain the total number of sites which replied.

num_sites The total number of sites which have a specified data item.
send_time This is the system time when the transaction was initiated.
*site list This is a pointer to the site list which is used to determine the
- site_info data for a specific site and described in the site_info table.
*next This is a pointer to the next transaction.
Logical Item
I 1l
Read Write Site . .
tem ID Quorum Quorum Number phirst logext
|
ltem 1D =
Ca— Site
Physical ltem Vote
| SRR * phext prm Site

Figure 2. Relationship of Physical and Logical Items

physical_item Data Structure

Field Field Description
. Referenced by the pointer *phirst of the logical_item data structure.
site Integer identifying the site number.
vote Integer identifying the number of votes for the site.
*phext Pointer to the next physical item.
logical_Iltem Data Structure
Field Field Description
jtem_ID Corresponds to t}.\e item_id number. Used as the primary key to
reference the replica data.
Read quorum obtained by calculating the majority number of votes
r-quorum by applying the equation Usite 1 + vsuze 2. Usiten
Obtained by calculating the majority number of votes by applying
w_quorum the equation Usite 1 + Usit; 2...Vsiten s 1
site_num Holds the number of copies for this item which are in the system.
*phirst Pointer to the Physical Item data structure.
*logext Pointer to the logical_item data structure.
Site Name Lii:;m Status 3:‘: * next
1
Sito Name | = & &
Figure 3. Site_info Data Structure
site_info Data Structure
Field Field Description
sitename Pointed to by tbe sit,e_l.ist pointer in the TRANSACTION data
structure. Contains the site name for the transaction.
sitelenth An integer representing the string length of the site name.
status Indicates whether a site has replied to a transaction request.
s_vote Number of votes at the local site.

Implementation

General

Two major modules were needed to provide a functional demonstration of the RC
algorithm. An SGTM was developed to provide a user interface and to communicate
transaction requests to the RC module. In a fully implemented distributed system, the
SGTM would also handle all of the communication between local and remote sites and
would handle many different types of local messages between other functional modules
of the system such as concurrency control, deadlock detection, etc. To confine the scope
of this project, the RC module was designed to communicate with remote sites instead
of the SGTM module as shown in Figure 4.

Site 1

SGTM

RC

Site 2 / Site 3

Figure 4. SGTM and RC Communication Configuration

The SI InterProcess Communication Library was used to transmit and receive
messages between local and remote sites. Limited exception handling functions were
added to provide some degree of robustness to the system.

Functional Description

The following is a description of the operation of the main functions and procedures
of the RC program module.

main(argc,arguv)

The main procedure obtains operator inputs for the module port and SGTM port
and assigns them to the first two positions of the argv array. The procedure call
gethostname is to the SI library which retrieves the name of the host to a string array

which is then mapped to an integer value. The siConvertName procedure call takes
the module name and converts it to an integer, and returns an integer which is checked
to determine if the operation was successful. The init_rc_datatables() procedure
creates the replica table and a locking table by reading the _replicadata file and
_lockdatsa file from the local site. The replica data table is initialized by reading from
the file itemid, site number, and the number of votes for each site. The locking
table is initialized by reading into the data structure the itemid and the lock status

(0 not locked, 1 locked).

The sockets for SGTM and RC are then initialized by the init_rc_socket procedure.
This procedure initializes the RC and SGTM with the port numbers entered by the
user at the keyboard.

Following the initialization functions, the main function enters aninfinite while loop.
The loop calls the SI library function siReceivefrom() function which continuously
polls the ports received data. In this project, there are two possibilities for receiving
data: data received from a remote RC at another site, or data received from the local
SGTM. When a message is received, the message is first compared to the moduleport
variable and if the comparison is true, the procedure process_from_remote_RC()is
called. If the moduleport comparison is false, the message is compared to the
GTMport variable. If this comparison is true, the function
process_from_local_GTM procedure is called.

process _from_remote_RC(sd,msg,bytes)

This procedure processes message requests for read/write transactions, or replies to
a local request to read/write a data item. The procedure first parses the message into
the op_code, trans_id, and item_id fields of the transaction. A switch statement
determines what to do based on the message op_codes LOCK_REQUEST,
LOCK_GRANTED, and LOCK_REFUSED.

process_from_local_GTM(msg, bytes)

This procedure is used by the RC module to find the replica data for the transaction
itemid. The procedure first parses the op_code transid and itemid from the
message, and then checks to determine if the itemid exists. If it does not, a message
is sent to the SGTM to abort the transaction. If the transaction is valid, it is appended
to the head of the transaction queue. A LOCK_REQUEST is then sent to all sites
which have been identified in the sites list. The RC increments the num_sites_sent
variable after each successful LOCK_REQUEST. If enough votes have been received
from each of the sites is equal to the quorum, the RC sends a COMPLETE to the
SGTM. If there is only one copy of the item on the system and itislocal, the lock_table
will be checked to determine whether to complete or abort the transaction. The
procedure then appends the initiation time on the transaction which will be used in
determining the transaction time out status.

do_remote_request(sender_name,trans__id,item_id)
This functionis called from the process_from_remote_RC() procedure when alock
request is made from a local site to the remote sites. The function first calls the

lock_status() function to determine the transaction lock state. The lock_status
function uses the item_id to find the locking status of the transaction from the
lock_table. If the lock status is a (1), the op_code variable is set to
LOCK_REFUSED, if the status is a (0), the op_code variable will be set to
LOCEK_GRANTED. To provide a measure of fault tolerance, if the locking status is
not one of the two states already described, or the item_id does not exist at that site,
the lock_status variable will default to LOCK_REFUSED. The outgoing message is
then constructed and sent to the module port where it is sent to the remote sites using
the SI library call siSendto().

calculate_quorum(. sender_name, op_code,trans_id,item_id)

This function is called from the process_from_remote_RC() procedure when
LOCK_GRANTED or LOCK_REFUSED isreceived from a remote site. The function
first navigates the TRANSACTION data structure queue to find the correct trans_id.
After finding the correct trans_id, the site_info data structure is used to determine
the number of votes (s_votes) for that site. If the op_code has been set to
LOCK_GRANTED by the transaction, the total votes is added to the total by the
number contributed by that site. If the total number of sites which have replied is equal
to the total sites which sent messages and the number of votes received is not enough
for a quorum, a trans_abort message will be sent back to the requesting site. If the
total number of votes is equal to the read or write quorum number, a TRANSAC-
TION_COMPLETE message is sent back to the requesting site. The transaction is
also deleted from the transaction queue. If the total number of sites that responds is
equal to the total number of sites which sent messages and an insufficient number of
votes has been received, then a trans_abort message is sent to the SGTM. To handle
a potential time-out situation where a site is waiting for a message, a timestamp is
placed in the message to indicate when the message was initiated. If the last site has
not replied in a period of 10 seconds, the transaction will be deleted from the queue
and the op_code set to TRANSACTION_ABORT and sent to the local SGTM. This
procedure will not work under all conditions unless a method such as a system timing
message is implemented to increment the time-out checking. This would be necessary
since the SI library function siReceivefrom() does not have provisions for handling
time-out checking for individual messages.

delete_transaction(tid)
This function looks for the target transaction and manipulates pointers to delete the
transaction from the queue.

lock_find(itemid)
This function looks up the item in the lock_table using the itemid to find the locking
status of the transaction.

add_transaction(opcode,transid,itemid)

This function adds a transaction to the head of the transaction queue. The function
first finds the replica data by using the itemid. The data structure for the transaction
is then initialized with default values. The data structure for the site_list is then
created for this transaction and the site name is obtained from the mapping table and

appended to the structure. As shown in Figure 2, the site and the votes for that site
are then appended to the site information.

init_rc_datatables()

This procedure is called from the main procedure and is used to read in the
transaction and locking data from files stored at the local site. The procedure first
obtains the data file name from the local site. It then opens the replica data file and
reads the transaction number, site number, and number of votes from each site into
the transaction queue. The compute_site_num() function is called to calculate the
number of sites contained in that transaction id. The compute_quorum function is
then called to calculate the value of the read or write quorum. The sitenamefile file
is then opened, and the values are read to initialize the siteno_to_sitenme table. The
Lockfile is then opened and values of itemid and the lock (0 not locked, 1 locked)
are read to initialize the lock_table.

skip(c,fp)

This function is used by the previous procedure to pass over various formatting (: ,)
expressions which are contained in the files which are used to initialize the locking
and TRANSACTION data structures.

compute_quorum(ptrl)

This function is used by the init_rc_datatables() procedure to calculate the read
or write quorum for a given transaction. The for loop in the function sums the number
of votes from each site which has replied to a read or write transaction request. The

. . . U1+ ves]
read quorum is then calculated by using the equation 21702...0n + 1 and the write

2
quorum is calculated by using the equation U—lv‘z‘z‘v—" + 1. The equations used to

determine the quorums conform to the constraints mentioned in the Introduction for
a voting algorithm.

compute_site_num(ptrl)
This functionis used by the init_rc_datatables() procedure to calculate the number
of sites which have a particular data item.

Operational Description

As shown in Figure 5, the operator first initializes the SGTM and RC modules at
each site, and specifies socket numbers for both transmitting and receiving messages.
Following initialization, the RC at each site enters a loop as a server where it waits
for messages which occur at the receive port. When a message arrives, it is categorized
as toits origin: whether it is from the local SGTM or from a remote RC which is located
at another site(s). As described in the functional description section, the message is
then parsed to determine its type (LOCK_REQUEST, LOCK_GRANTED,
LOCK_REFUSED). Depending on the type of message received, either a read or write
quorum is calculated, or a request lock_request message is constructed. If a
LOCK_GRANTED, LOCK_REFUSED message is selected, the procedure deter-

Initialize
Sites

1

Wait lor
Messages

process_from_local_GTM process_from_remote_RC
Message

Origin

]

Find Replica
Data

!

Add
Transaction
to Queue

l

Send Lock Refused Lock Granted
Lock_Request Trans T'b’"“
10 all sites - Abort/

: Success
l Send lo

Add » Remote
Transaction Site
Time

fock_granted

lock_request fock_retused

Not Locked Quorum

Obtained

Wait

Figure 5. Replica Control Process

mines if a quorum is available. If the quorum is present, a success message is sent
otherwise, the transaction is aborted, or if a site has not replied, the process will wait
until the time-out period has elapsed.

Conclusion

This project has provided a unique perspective on the Replica Control problem as it
relates to managing replicated data across a distributed network. The project has
provided the following insights into this problem:

+ A Replica Control algorithm must have sufficient performance and must
provide adequate protection to the replicated data to prevent inconsistency
in the data resident at that site.

+ The algorithm must provide error detection and processing mechanisms
which allow recovery after anomalous behavior by sites on the network.

+ A weighted voting scheme is clearly more desirable than the single-vote
majority consensus algorithm since it increases the overall probability that a
quorum can be achieved under conditions where replicated data objects are
limited. However, this method of handling replicated data is not as desirable
as using coteries.

10

« Even though coteries may be the most desirable method of replica control,
they are much more complex to implement, and their performance suffers as
the number of sets increases.

As was mentioned in the assumptions, transactions are given a time-stamp to give
this RC implementation a degree of recovery from a site or gross communication link
failure. In this project, no provisions were made for detecting corrupted messages and
for accommodating dynamic site states in the distributed system.

References

1. S.B. Davidson, Replicated Data and Partition Failures, Distributed Systems
edited by S. Mullender, ACM Press, New York, NY, 1989.

2. M. Raynal, Distributed Algorithms and Protocols, J. Wiley & Sons Ltd., 1988.

3. H.Garcia-Molina and D. Barbara, How to Assign Votes in a Distributed System,
J. of the ACM, 32(4): 841-860, Oct. 1985.

11

Appendix |

Replica Control

Project Source Code

12

1V APAINT

2661 ‘90 920 | j0 | Ibey

26-9-21 H°3D3n0s 31y

3 1pudg

‘Jopeay, Wa3iT1eo160) 3an43s

/x

*aseqeiep

943 ULYIIM wal| elep 3IsJly Byl 03 Jajuiod Byl SuULBIULEN ./

‘peay ananbTsuedy, SNVHL

MuKNCc NOILOVSNVYL 3onJ43s
2381179318, ojul 331S 319nJ3s
w3 puss ul
/+ WA3ISAS 3Yyy ul satdod ,/
/+ SOUISTUNU SBY WAL ./ !sa3isTunw Ul
Adau"sa31sTwnu ul
{3uasTsayls wnu Jut
152304 jE30) Ul
{unJaonb My Ul
!p1Tsueay ut

} NOILJVSNVYL 3onJ

s

ISNVYL NOILJIVSNYYL 39nJ3s sapadA)

“3sanbaJ uolloesuedy paiessuab Ajjes
® 40 UotjewJozuy patinbas ay3 j1e sulejulew aun1anuas sty

{1xabB0}, we3)1 T yed1B0) 3onU3S
-3saiyd, w3l estsAyd 3onu3s
‘wnuTa3ls ul
‘wnJonb M Jul
fwnaonb ™ juy
‘a1 we3y 3ul

/»
o)
»/

2

T Y WRITTeI T80T IomIyS T

/x
'9seqeiep ayl ulylim wall elep di410ads e uo uojewaoyuy
S940IS YOIyM JUWB)S 3ISL) PaNUL] B S| aJN3aNJIS SIyl 4/

[
«{
Jaxau, ojulTe3is 3on43s
l330A"s Ut
Isnjeys Ul
!yauayails uy
‘08l aweuayls Jeyd
) ojutTalls 3I9na3s

'

"3dN12NJ3S NOILIVSNVYL 3yl 40 JUaW3)2 Ue S| 3] -wol3oesued;

€ Ul pajsanbas wall elep & jo Adod e sassassod yoiym ayts
Jenoiised e uo uorlewdogur 21419ads S3plAcud 3UN33NJIS S1YL ./

.

«{
Jaxeyd, waltT1eatsAyd 39nJ43s
‘ajoA 3uy
l211s U

) w3 T1eotsAyd 3ona3s

/s

‘WRlL BIep 3y3 sassassod

HoLyM a3ts senatyled e Aq papiaodd sv30A Jo Jaqunu 3yYy saJo3s
PUE 3.n33NJ1s W31 182160) 3yl YIIM Pasn §| aun3ondys Siyl »/

(2] [W3LIXVWI319e3™00) 3ul

* (083 [3LISXVK] aweus11s o3 oua (s, Jeyd

_ ‘37es0) 3Tawny
‘awlyT1es01, wl 39nJ3s

oL 3LISXVH 3uljapy
0§ WIALIXVW duljapg

3137dWOI_NOILIVSNVYL uljapy
1408V NOILIVSNVYL suljapy
a3sN43y_%I07 auljopy
GILNVIO_XI07 auLjopy
153nD3Y X207 8ul}epy
1S3n03Y 3114 3uljopg
1S3n03y QV3Y uljop#

QaNI07T 10N Bul4apg
Q3X201 uLjap#
3131dW0D" 1ON 3uljop#
3137dW0D aul japy
a31143¥ LON auljapy
0317d3y aul japg
93tJM aulyopg

Peay suljapy

OO0 O —MNM 2N O

wY" IS /Uood /245 /50/ 4" Bue L [/3WOY/,, apniouLs
<y auwly> apnyduLy
<y°yjews apnjouly
<y-oipis> apnjoulg

H_J¥ au}jopg
H J¥ jopuyLy

1V 4PRINT

2661 ‘40 990 6 40 | abed

26-%-21 2730¥n0S 314

75 T =7/ ¥ XU > 9P dojjT

2((3uL)jo09z1s ‘apod doy ‘[3ud)Bswy)Adoaq
0 = 3ud
/» 3p02~do ay3 139 4/

/« SP191} S3| 03Ul abessaw ayl IsJed »/

I(aulyoew Japuas<-ps ‘aweu” uapuss)Adodas
/s SWEU JBpUaS 339 ,/

! [pg)aweu Japuss Jeyd
Y00 UL
!p1Tsuedy 3ut
‘prrwelt 3uy
!apoo~do 3jui
13ud 3uy
)

/x"WR11l ejep B 33ium/peas 03 3sonbay pajelaiul

Al1e30) B JOy SIS DIOWSJ WoJy SIL)doJ JO WAL EIEp PlAY A))eI0)

B JO 31lJ4m/pRas B JO) SISINDBL 2Q JAYILa 1)iM sabessaw asayj *SI)npow
JY dj0WaJ WoJy PIALadaJl sabessaw sassadcold aunpadodd S1Yl :3S0dY¥Nd «/

IsaiAgq Jut
’
.mm@c Jeys
-PSx IS
<=
‘

\'l#iilllliilCC{CCIliﬁltC*ttt’*CC*C’*C*&’iii'ﬁiiillﬂililtiﬁ’iilk’klil*i’ﬁii\
(s21Aq ’‘bsw ‘ps)Jy ajowsd wod) ssadoud ploa
\’CiCC&&iiC’Cl’lillIiill'Ilﬁiil”lliii’iﬁtﬁiiiﬁlCCCﬁ’ii&t.iiiiilﬁlllil&ﬁflt\

<=
LR R NN AN NSNS RN RN AR R RN SRR E RN RN AN A SRS NN AR m s nmnnnn)
/n WVY¥904d NIVW 40 ON3 »/

\'i'."lil*ii’i‘iCCCﬁﬁﬁl."ﬁlfﬂﬁ**‘*’fi’*ﬁlIlliiiiﬁiilililllﬁii*l’lillfiii\

¢

Z(uu\"plieaul 1uod Jopuss :1uoad3,)autyd as)s
1(s33Aq ‘d)W19 1ed0} Woay”ssas0ad
((3J0dW19 ‘3J0d” JIpUIS " AWOIPS)AWIIIS |)41
asya
2(sa3Aq ‘d ‘awodpsy)ay a3owed wody” ssasoad
((3doda)npow ‘3u0d J3pUas AWOIPS AWIIIS|)41

{
lanutjuod
{(WU\A3I3Y1S 03 1182 UO Paiey :WLD 3US|1Dy ‘4J9pIS) pIupady
) (IN4SS330nSIS =i J431) 31
1(Ja1y ‘salAqy ‘awoopsy ‘1S3 INPOWRIWOLIBALBIIYLS = d
b
(L)atyn

!()3ax20s 24731ul
2()sa)qejeiep o4 31Ul

{
{oLrxe
J(nU\3BWBUIJIAUODLS 01 118D UO P3| Le4 :JYn ‘148p31s)jIutady
3 € IN4SSIDNSIS =i Jat)st
2(431% '1SOY3 NPOW)EN] JIAUOLS
2(0g ‘3IsoysInpow)aweulsoylab

:(121A6Je ’,sY, ’3J0dN1D)j3ulids
‘([11ABIe ‘5%, ‘3s0dajnpow)jiulids

*(3ZISISWISI 4N Jeyd

5] Jul

'salAq ut

pLwaly i

!pt suedy jul

{01 uo32esuedy uy
{apoa do |

ldy Jeys

![1ABue, Jeyd
!obJe 3ul

(ABJe ‘obae)utew

A 0500 0 00 AL 563 Y e s

/% WYY00¥d NIVW »/

AN A 060 s

_ :()diys proa
19718901 _wou} ssasodd pLoa
¥ @063 wouy ssadoud ploa

20)putyTyo0) 3uy
J()s9\qerelep 247 11Ul pioa
B _ {()39%20s 3071 1UL ploA
{(waii 1es1Boy 1Sty ppe, Wali 1ea1bo} 19nJis
‘(Quwalt 1edtboy puadde, Emuwldmu_mod 3oNJ3s
HOI"-3¥1 amu_m>:arumumwlu0m- wa3l jedtsAyd 3snJaas
I(Hwel 1 1eatsAyd puadde, wal 1)estsAyd 3onJ3s
{()unJonb”3ieinojed pLoa

2()asanbas"a3j0wal"0p ploa

{(Hwnaonb”aindwod proa

I(OWUT2315"a3ndwod pPloa

!()Js3ulod 01 pLudyL, wall (es1bo) 3dn13s
!()uoiioesuedy ppe pLoa

{()uolydesuedi puljy SNVYL

f{)uoLidesuedl”alajap plLoa
\liﬁllllll.l*k*Ci’iiiiiilﬁlillllk"”i!lllililill’*i”’ii**iliiilllilll*l’\
/» NOI1VY¥VI23Q NOILINNI «/

\itiilﬁilll’*ﬁlil&&iliﬁl'iiiiil*iIil’#’*’#liiliiliii!illll’#i*#lillil’llil\

~~
o d
(S8 =

‘0811143207 Jeyd
-[oglajijaueualls Jeyo
‘logla1t4ed1day Jeyo

LRET Jult
‘[o2)3dodWin Jeyd
lawoops 1S
‘N1DO3PS, IS
‘1sa1npow IS

2[o2lasodanpow aeyd
‘[og)3soyainpow Jeyd

n{ " JYSy 9PN ouL

_ _ WY¥90¥d T04LNOD VII1d3¥ Q3LN8I¥LISIO G3SVB I10A QaLuoIam | |

<=

e re et Ry

1< 4PRINT

2661 ‘90 939G & jo 2 Ibey

26-%-21 3°3IDWN0S)14

CTINR =="a3d due T)3T
{(p) T sueJ3uolldesuely pul(y SNVEL) = Jid duas

Jauwudd Juy

linoawil ut

faad dwal, SNVAL

!peay ananb suedi dwal, SNV¥L
‘[321S9SWISIBsw Jeyd

[SULIS U]

{apoodo mMau’ajon e31Ls Jul
{13d 811s 4 0juUlTRILS 19NJIS

/x"911S 3I0WAJ €
WoJj PIALIJAL S| dbessaw pIsn <=
494 Jo juedb e Bwl) y9ea wnuonb 1820] Y3 SIILINDIED UOLIGUNY SIY) >3SOJUNd »/

!piTwe3 1 ‘pt suedy‘apos do 3ult
! [0g)aweusapuas Jeyd

\.CCC*’C.C*I""lﬁ’"ﬁl”"’”‘l’ﬁ*'*’I.“"I’C’CiC'CC,C'f’*l.lﬁ“’*’ﬁﬁfﬁ’l.i”\
(Pl wayL'p1 sueds‘apod do ‘aweudapuds) wnionb ajejnoied PLoa

\’lllﬁi!lIlll’CilCﬁﬂ.lﬁl.iIC"*’l’*liiilll”i*llll’lif!CC"’&"C{C’C"'!I'I\

/s u01loun; 3sanbas"ajowss"op jo pu3 ./ {

luaniay
/x» 2/ (
"(201)3tne

f(wU\21!S SJOWSJ 0} OJPUISIS O3 118D UO Paliey :J¥ IJUBL)I, ‘JJIBP3IS)aulidy
/x 2 &/) (IN4SSIIINSIS =i JaL) 31

(4913 ‘1sajnpowy ‘Jud ‘Bsw ’‘JyYOIPS)OIPUBSLS

{ <=
{(3weuJapuas’ U\PY 11UJOIPUBSLS SI0WBJ O3 118D U0 |1ey JY, 'JJ3PIS)Iutidy
) (IN4SS3DINSIS =iddl) 31
(4313 ‘3s0dajnpow
’ WRUJIPUIS)ILUOIPUIS LS = JYOIPS

/x 911S 330Wa2 9y3 03 abessaw Yy puas 5/

L0\ = [3ud)Bsw

1(3U1)309Z1S =+ JUD

I((3ul)y0az1s ‘[Jud)Bsuy ‘piTwalyy)Adooq
J(3u1)}021S =4 UD

I((3uL)yoaz1s ‘[Iud)Bswy ‘pt sues3y)Adesq
1(3Ul)}03ZLS =+ U

2((3ul)yoaz1s ‘[3ud)bswy ‘apod doy)Adooqg
lp=3ud

/» obessaw Buiobino Y3 pIINg L/
/x L &/ (

_ “yeaJq

{g3sn43¥ 1207 = apoado
i3)nejap

_ - _yeaug
{Q3LNV¥9 207 = 3pooTdo :@INI0TLON esed

Iyeauq

£a3sn43¥ 201 = 8poo do 1Q3aNI07 9ses

T 1T &7

(P WAl L)PULTH20) = snjels ¥20)

/x PTWRIL JO SNleIS 00] PUly 4/

{0H0IPS, IS
< [3Z1SOSWIS) Bsw Jeyd
13us 3ul
{apoaTdo jui
!snye3s Yoo} Jul
>
\l. <=

sajls $350d¥Nd »/

230WRJ WoJ S311JumM/pea) JOj SIsanbIs sassasosd uoiIdung siyg
plTweal ‘piTsuedy 4 ul
‘! [oglaweudapuas Jeyd
<=
A0 0 A A A6 4606000406000 K 00 Y e e/
(P! Wwal1 'py sueJ3’wRUIBPUIS) 1SanbaI 10WaL 0P PLOA
\i”illiii*lﬁ**ﬁ‘*llillilllllllﬁlI*lfﬁ*’*”i,llI’iilililikii'lIillllll!llﬂi\

/x UO1I0UNy DY elowaJ WoJyTSSAdoud 30 puz ./ (
usniag
_ /s 9 8/ (
{(aweu” Japuds ’,U\SY WoJy paniasal abessaw plieaul,)siutsd : i1inejap
_ _ _ _ _ uxmen <=
‘(prwelt ‘pL suesy ‘aposTdo ‘sweu Japuas)untonb ajejnsjes $Q3sN43y¥ XJ01 Ised
IxeaJq <z

(P w3l ‘piTSueJl ‘apoo do ‘sueu”Japuss)unsonb azeinajes

4 - - A 185 :QILNVHD X207 esed
Iyeasq (pl wa3) ‘piTsuedy ‘aweu”tapuss)isanbas ajowss op

$1$3nD3Y AD07 ased
/s % u/) (3po3 do) yoims

/x UOLIDUN} 3AL3IDadSE Byl 8InJaxa pue adAl IbESSAW 3yl JUIWISIBQ o/

/e € uf (
(e
{(yU\ "anjea aAllebau e sey Plwayly)iutad
/x € x/ 2 (0> Pl WAL
f((aur)joazis ‘pLrwaily ‘ [3ud]Bswy)idosq
/e PL WYL 3y 399 4/
1(3UL)J03ZLS =+ JUD
In 28/ (
_ (L)ILx3
Z(uu\"anjeA aAliebau e sey pisues] ,)j3uld
/s 2w/ 23 (0 > Pl suedd)yl
J((auL)j0921s ‘p1 suesyy ‘ [1ud) Bsurg)Adooaq
/x J3QUNU pi uol3desueds Yy 339 ,/
2(3U1)303Z1S =+ JUD
\I — ’\ A

_ . Laxe
J(wU\"anjeA aAijebau B sey apod dpo ,)3utyd

¥ (STIeTs XI0T) qagmms—

1V 4PRINT

2661 ‘90 920 6 40 ¢ Ibey

26-9-21 2°3J¥N0S 914

SC(IUTYFOaZTs [IUITBSwy “pT sueayyrAdoog
1(3uL)j0az1S =+ JUD

f((3ui)joaz1s ’[Jud)bswy ‘apoodo”Maug)Adoog
_ uomuCu

11¥08Y NOILOVSNV¥1=apoddo™Mau

!(pi sueJ3)uoiloesuRIY @33]ap
/x @nanb 3y3 wo.y uoiidesuesl 31313q 4/

/« 9bessaw Bujobino ayl pying

/2l »/)
- - __(oi_< 3noauiy) ||

(3uassal1s wnu<-J3d duRl == A)da.u sa3 (s unuc-13d dwal)) 41
fawyTpussc<-aad dway - aWIIUJD = Jnoswy)
{Aepw w3y <-awiy” j€20)
fanoy W3<-awl3”1820) =+ WIIUJD
ulwTwic-aw1 37190 =+ SWLIUID
2335 Wi <-aw1)T1RI0) = BWIIULD
{(371e2013)awL11€20] = BwL3 |@20)
/v BWLI JUBLIND 336,/ I(7INN)3WLI = 3720}

=+ ALIUID

/s “R1D 3yl
01 abessaw jJoge sueJl B puss Uayl ‘sabessall Juas sajts 4o
18303 2y3 sienba Mou Bulpuodsad S3ILS 4o JaqUNU B30 Yl 4] ./

{esAYdaaTsa3 15 TWMIc-3d dusy

/v Ll »/
/x 0L »/
/x 9/

/» 9 «f

In L/

In 6 x/ (
2(201)3txe

{

»/

> €@3sn43¥% AI0 == apod do) i

) as)8

{

uA:C/w <=

115 3j0weJ 03 0JpUISLS 03 118D UO Pajley Q¥ IuBi)Jm 'JJBPIS)JIuiady
/x 6 8/) (IN4SS3IINSIS =i J421) 41
{(4313 ‘1sajnpowy ‘Jus ‘6w ‘W1DOIPS)OIPUISLS

/x K19 3yl 01 abessaw 3yl puds ./

10\ = [3ud)bsw

1(3U1)409Z1S =+ 3UD

1((3ul)joa21s ‘[us)Bswy ‘p(we)13)Adoaq
unu:_vwomu_w =+ U2

7((3ut)jodzys ‘[3ud)Bswy ’‘pi’ suellz)Aidooq
1(3UL)09Z1S =+ JUD

2((3ul)joazts ‘[Iud)Bswy ‘apoodo mMaug)Adoaqg
Ip=3ud

£3131dW0J” NO1 LOVSNVY | =3poodo™ Mau

{(p1 suedy)uoLyoesuedy 939)ap
/x @nanb ay3 wouy uoljdesuedy 313)aQ o/

/x abessaw BuloBino ayi p)ing

»/

- Iv L w/)
(wnaonb MJc-J3d dway =< wuuo>|dmuoum.guanaeouv 4t

/o 9 »/) ¥sye
/» ‘wodonb ayi sjenbs
MOU $310A 18303 3yl 1 W1D 03 Bsw 339)dWOd Sued) puas ‘JIAIMON ./

/x S u/ (

/v QS &/ {
(20L)3 1%
U <=
\311S 2J0WdJ 0} 0IPUISLS 03 118D UC PI)Ley ¥ IUBL]IM ‘459p3s)yautad; !
, /x9S »/) (INISSIINSIS =i J31) 41
~(Ja1y ‘1sa|npowy 'IuUd ‘Bsw ‘) Do3Ips)o3pussLs

/% W19 34yl 01 sbessaw ayy puss ,/

Z10\y = [3ud)Bsu

1(3U1)40921S =+ 3JUD

f((3ur)j03z1s ‘[Iud]Bsurp ‘pi wal13)Adooqg
2(3U}1)403z1S =+ JUD

Z((aui)j0az1s ‘[3ud)bswy ‘pt sueJig)Adoaq
1(3ul)joazis =+ WD

2((3u)409zts ‘(Iud)Bswy ‘apoodo maug)Adooq
Ip=3ud

7 1308V NOILIVSNVY1=apoado mau

/x 5§ »/ >
((unJonb mic¢

_ _ Jyd duwsl > S910AT) <=
©103<-43d dwal) B3 (IU9sTsa31s uNuUc-43d dway == Ardada"sal s wnu<-43d dwal))41
/s
*paJinbay wnsonb 3y3 o3 jenba jou yy13s S| PaALasaJ S330A j0
Jagqunu ay3 Inq ‘sBsw Juas SIS 1eI03 <=
343 03 1enb3 st pat)das YSLyM S3ILS 1€I03 4| WID O BSwW 3JOGE SUEL] PUIS 4/

{330A7 3315 + S3310A 1E103<-J3d cuwd) =S810A™ 1B103<-J3d dway
f++A1de07S93 15T tNU<-13d dway

/v % »/) (Q3LNVYD XI01 == apod do) 41

/v 2 8/ (
{3xauc-d3d 231s=03d 931s

- /x S o (
!910A S<-J43d 2315=930A 331§
{@31143¥=snie1s<-23d aits

/s £ »/) ((sweusepuds ‘sweusyisc<-Jid 3315)AWIJIS{)1

/n 2 «/) (qad aays)a) 1y
{351170318<c-u3d AWl = J3d B3s <=

/x 84N3oNJ3s uoL3desued] ajepdn pue Ojul 330A pue JWeU 33LS IIOWBJ YL PUlY ./
/« 912)0W0O J0U S| wnJonb ay3l ji AJUO 31NdAXT ./

<

ludnyad

/x "3l 2J0oubBL 3snf oS ‘WID 3Yyi 03

paidodal U3aq ApeaJle SBY UCLIOBSURd] Yl IBYI SUBDW SIY) ./
)

1<) 4PRINT

26-%-21 J°30300S :2]14

2661 ‘90 290 6 0 4 IBed
11737

H L) 3 H
((IuL)joezLs ‘plwaiiy ! [02) Bsurg)Adooq
2(U1)40321S =+ 09

E g7 Ay

{
- HIx
{(wu\"anjeA dA13e63U B SBY pLTSuRLL ,)j3uldd) (O > PLSUBLI)SL
2((3u1)joazts ‘pisuedyy ‘[05]Bsuy)Adoag

_ <(3U1)j0azs =+ 09
1((3u1)j0az1s 'spod doy ‘ [03)Bswy)Adooq
0o =00

/s SP)213 d1)tdads s3| Ojul abessow asJed ./

JJ¥oIpsy IS
{nd7a11s, ojyulTa3ls 3ona3s
![oglaweuayls Jeyo
0 = Jaualaits Jut
NN = Jgad ydy, Emu_|pmu_m>:n 39nJ3S
TN = Jad jedtBo), wall 1e2160) 3on43s
{[3Z1S9SN1SIING Jeyd
2320) 3ul
‘pisuedy uy
‘plwayl aut
‘Jojesado ju
lapoddo juy
Il- = 3ud UL
- = 03 ju
0= 3w

3

/x "W19D 33
woJd} paAlddaL s| abessaw 3sanbad

UO13JBSURJ] B IOUO SBILS IJOWAL O <=
3 sobessaw 3sanbeJ wnunob a314m Jo peas sajetiiuy sunpasoud SiYyl :3S044Nd x/

I1s314q ul

!6sw, Jeyd <=
\:-u-.---:--:.:---n..-----.---;--x---.--x-----:-::-h-..-.n----h::..x.-....\
(s33Aq ‘Ssw)WLD 190} wody ssadosd proa

A0 0 A e e /

/s ()uoiloesuedy™aidlap 40 puz L/ (

ludniag

({
I3xauc-43d suedy = J3d suedy
laad7suedy = J3d au03s

{

luanjay
{3xauc-43d suedy = 3xdu<-J1d B403S
)
(P13 == p1_sueJy<-J3d suedi)ji
>
(NN =i J3d sueay)ayiym

/e @nenb 3yi wouy 3| sAOWSL pUB UOLIDESURII BYI 4O 3007 ./

{43d_sueay = 43d aso3s
!peay ananb suedy = J3d suesy

{

/% WRISAS 3Y) UL UOL3IJBSURUY ON ./ ‘utnjad

S ¥XFUT-PeIY NNt SuUeTy = peey SnenbosueTy————
b
(P13 == pi~sueJic<-peay ananb suea3)yy

laad ado3s,
!nd suedy,

SNv¥L
SKVYL

<=
/x "ananb uoi3desueJl Byl WO UOLIOBSUBJIY Y3 918130 :3SOUNd o/

pLy Ul <=
\-..-;::xxx:u--:-:.xx:-xx:::.x.-x:-.x.-:x:nx::-:-::::.::.-..-x:xnnnun\
(P13)uoyisesuedy aiajap pioa

X A At Attt g]

/x ()uolidesuesi puiy 3o pu3 5/ (

ICTINNIUINIBY
(7NN = J3d suedy)dy

{
f3x3uc-43d suedy = J3d suedsy
{(1d suedy) uaniay
(P13 == pi suesic-a3d suedy)jt
)
(1NN =i J3d suedy)a)iym

‘peay ananbsuedy = Jid suedy

laad suedl, SNVAL
)
‘p1a
/x"J83utod 0N € udniay
‘PUNO4 J0U 4] *PJOI3J UOLIDESURL) 3 <=
Y3 J0 Jajuiod Byl UJINIBL puE Bnanb BYI UIYILM UO(3deSuRJ] 8yl putld :350diNd &/
\-.x-.-x::---:.-:.:xx-xnn-..-;.-xx-x:x--x--xx:::xx--:-:---x.xxxxxx-\

(P13)UCLIDBSURLI PUL}y SNYYL

\:::n-:r:x:::n:-x::::::xx:xn:::n:x::x:xxxrru|n::::x:x:x::::lx:xnnxx:xxxx:\

/» uol3ouny unusonb aje)najes jo puz ./
luaniad

/e Dl &/ (
/v Ll &/ (
/e 2l &/ €

/a Yl x/ {
2(201)3 1%
.sA:C/U <=
11S 330WAJ 03 0JPUISLS 03 11€3 UD P3jLRy 1J¥ JUBL]D, 'JIIPIS)IULJdy
/s 9L «/) (IN4SS3IINSIS =i JAL) 31
{(4aty ‘isa)npowy ‘3us ‘Bsw ’'WLDOIPS)OIPUBSLS

/x W19 3yl o1 abessaw ay) puss ./

240\ = [3ud)Bsw

1(IUL)J0BZLS =+ JUD

2((3ur)joazts ‘[Iuo1bswy ‘Pl waliR)Adooq
(3UL)309Z1S =+ 3JUD

1/ T 4PRINT

2661 ‘Y0 93Q 6 30 g IBed

_ 26-%-21 3°32un0S :9)14

. TJn ~ J39pTS¥yFIuTady
) (IN4SSI2DINSIS = Jat) 4t
$(J4313 ‘1saInpowy ‘Iud ‘jnq 'W19OIPS)0IPUISIS
10\ = [3ud]ynq

1(3u1)30921S =4 JUD

{((3u1)40021s ‘[IU3)4NqY ‘plwalip)Adosq
2(IUL1)30921S =+ JUD

f((aut)joazis ‘[3us] yngy ‘pisuea3y)Adooq
(3UL) 03218 =+ UD

{((au1)joaz1s ‘[3ud]3nq3 ‘Jojeuadoy)Adooq
{1908V NOI1DVSNVYL = Joledsado

‘0 = o
J(plsueJ3)uotioesue.y 933}ap

/v W19 03 3 <=

Joqe U |10BSURJY PUIS 1@30] SI 11 PUB WIISAS 3yl Ul SISIN® Ados auo asn{ 41
>

(1 == S211S unuc-peay ananb suedi)y 1
2031143y = snieis<-43d a31s

/xx/?
(@3X307 == %901)4!
/agn/{
¢
luanjay
€ 2(201)3tx8 ,
. <
(nU\W1D O3pUaSES 03 1183 LD Pajley DY IUBLYD, ‘JJBpas)jauiady’
Y (In4$S3IDINSIS =i Jay) 41
{(4313 ‘Isa)npowy ‘3ud ‘inq ‘WLH0IPS)0IPUISLS
00\s = [3U214nq
2(3U1)}0821S =+ UD
f((3u)j00z1s ‘ [3ud)4nqQY ‘pLual1p)Adedq
1(3UL)J0dZLS =+ JUD
{((aul)joazis ‘[3ud] jnqy ‘plsuelsp)idosq
uﬁucmvmoou_m =+ JUd
f((3ur)joaz1s ‘ [3u2}3nq3 ‘Jojedadoy)idoag
‘3131dW0D”NOILIVSNVYL = Jojesado
0 = 3w
_ ‘(ptsuedy)uollsesuesy”sia)ap
/» 96€SS3W 3137dWOD NOILIVSNVYEL © WIS 03 puss /
)
(unJonb™mJ<-peay ananb sueJy
=< $330A™ |€301<-pRay ananb suedy)i
/x P3AL3234 UB3q 3ABY S3I0A yBnous 41 ¥JBYy) L/
_ {0311d3Y = snieys<-43d a31s
{930A78<-43d 2315 =+ S210A 1B303<-pE3Y dnenb sue.)
_ IR,
(Q@3X307 LON == ¥20))4!
‘(P11)pul4 %90] = ¥20]
I« SN1BIS X00) Joj 3)1qe3 X90) Ul F0OT ./
/« 9315 1B30) 3yl jo snjeys ¥90) ay: 139 ,/
/x9x/2
asy@
/xSx/{
{

_ _ ‘+43Uas”S31 1S WNU<-pRAY ananb sued3
/» UAS 311S WNU 3yl 3SEAIOUL ‘IUBS S| SBESSAW Jajpy ./
) as)?
{

»/

R qrAwr.| m ISTFIuTIdy
, , w (INJSSIINSIS =i 43i1)41
<(4a31y “Isainpowy ‘us ‘4nq ‘Jy¥oIps)oipussis
{
S(aweual s<-J3 <=
d a311s’,u\py 1lUJo3puasts a3owdJ 03 1183 U0 1Bj J¥, ‘JJaPIS)Iuiudy
) (IN4s5323nS1S =jJat) 41
24913 ‘340de npow
‘aweualts<-43d 3315)31UjOIpUBS IS = Jyoaps
/x Y 3l0wad 0 puas /
/%Se/)
((3soys npow ‘aweudlis<-uad a11s)dwoa1s)yy

/s 1B30] JO 3I0WAJ S| 3ILS BY) i BUIWIIIBG ./
/uln/)
_ N (J3d 2a118)a)iyn
$3s1] a315<-peay ananb suedy = 43d 331
/% 3SL] 331S 341 Ui pauleIuOD S31IS |1 03 I6ESSAW [SINDIY NJO] © PUSS 4/

L0\ = [3ua)yng

J(IUL)40321S =4 JUD

$(€3u1)40321s ' [IUS)4ng3 ‘pluelip)Adosg
S(IUL)H09ZLS =4+ IUD

“((aut)yoez1s ’[3Ud) 3nq3 'pisueu3y)Adooq
{(IUL)J0IZLS =+ JUD

J((3up)goazis ‘[3ud) 4nqy .apos~doy)Adoaq
‘153N03¥ X207 = aped> do

p = 3ud

/x 9bESsaw 1S3IND3Y NJ01 39NJISUO) ./

J(pwwaii ‘pisuedy ‘apoa do)uo|3oesueasppe
/» @nanb uolldesuedy ayy jo pesy ay3 o3 uo|l1deSUEJ] PPY &/

(
Iuaniay
¢
(zoL)arxe
*(uU\NLD 0IPUSSLS 01 11ED UO Pajiey 0¥ 3UBLYD. ‘JJ3PIS)Haulady
} (IN4SSIINSIS =i J31) 3¢
f(4313 "1se)npowy ‘ud 'ynq ‘W1H0IPS)OIPUISLS
S0\ = [3ud14nq
1(1U1)}0dZ1S =4+ JUD
{((3u1)y09z1s ‘(3ud)4nqy ‘plul1y)Adooq
{(3U1)}03ZIS =+ U
((auL)oszis ‘[IUd]4ngy ‘pisued3g)Adoaqg
J(3uUl)joazts =+ UD
I((3ul)joazls ‘ [3Ud]4nq3 ‘JoleJsadoy)Adoag
1408V NOILIVSNVHL = Joledado
0 = U
“(wU\"2seqejep ayl ui 3Isixe jou Sa0p wa)! eiep ayl,)s3uiad
/x

THLD 34l 03 4/ <=

/+ 9bESS3W j.0qe UOLIDBSUBLY B puas OS ‘WwalsAs ay Ul W33l Yans oN ,/
)

(1NN == J3d 1e2160))41
J(plwaitysazutod 03 plwslt = J43d jed160)
/x P31l 3y Joj elep edt)dad puly o,/

«
HEILXD

1O TAPRINT

2661 ‘70 930 6 30 9 ¥bey

26-%-21 2°30¥n0S :a)14

\&lﬁﬁi’iiCC’If’*ﬁ‘ll".illlil’i’liI’liiillﬁlf”i”lliIilliiili{lltliiiil’i\

/a ()uoilsesuedy ppe jo puz ./ ¢

{
{43d sueu3"dway = peay ananb sued3
!peayananb suedy = 1xsuc-Ji3d suesy dwa)
) asye

{
fa3d sues3"dway = peay snanb suedy
/¥ IUBWR13 1S4y Se JJasu] ./
>
(1NN == peay enanb sued3)ji

/s @n3nb uoljoesuesl 2yl OJUL IJBSU] L/

(¢

2axoyde-aad yd = Jad yd

layd ogut"asts = s3d ojuiTau03s

c4adogul”a3ls = Ixau<-41d OjulaJ03S
‘3137dW0D JON = SN3els<-13d ojul a31s
1930A<-43d yd = 930A7s<-43d ojui"a3ls

- (MWBUS)IUB)IIS = YIUR)al1iS<-J4ad ojui"aals

I (sueus .oEccou»mA-gunrowc_uuu_mv>nugum
I([9315<-43d yd)aweual s 03 oual1s ‘aweus)Adolls

1((0jU17931S 39NJIS)J0IZLS ‘|)30))eI(, OJUL™BILS 3IONJIS) = Lwnlo»c_luumm
3
/« UOLIJBSUBLY SY) JOJ ISL) 93LS 318D 4/ (IINN =i J3d yd)ajiym

faxayd<-43d yd= 4ad yd

{a3d ojuiTe31s = Jad ojuiTeu03s
{ayd ojurTe31s = 151 93 15¢c-13d sued 1 dway

STINN = 3IXauc-J3d ojul”aals

‘3137dW0DLON = sniels<-J3d ojui~aals
1930A<-J3d yd = 930A s<-43d 0jul B1tS
J(aWeus)uaJ3s = YIUd1aats<-13d ojul ealLs
!(oweus ‘aweuayls<-Jid ojui a31S)Adodas
un_ou_mA-Luntcnuchcou_mboulocwu_m ‘aweus)Adauys
/s 919e1 Buiddew dy3 woJy BwWeU 311S 3135 L/

1((ojui~aa1s _
19NJ4315)403Z1S 1)201183(x 04Ul 23LS 39n43S) = 13d oguiTaaLs

/s uolloESUBJ3 3yl 4Oy 1S1)Talls ajead) ./
{3sdatyd<-a3d jes160) = J3d yd
lunJonb™Mc-43d jeo160} = wnJonb Mic-13d suedy “duay

_ (1S3ND3IY I11YM_== apoado) 4|
< wnionb J<-43d 1e3160) = wnuonb Muc-J3d suesy dway

(1S3N03Y Qva¥ == apoado) 4y

fwNuTa31s<-a3d Je0160) = $a3ts wnu<-J3d suesy dwe)
{3137dW0DTJON = 2123)0W0d<-J41d sues3 dwa)

‘0 = AydeuTsa31s T wnuU<-43d suedy dusy

‘0 = S930A 1B303<-J3d sues3 dway

‘pisuedy = pi suedi<-43d suedy dway

/% ®JN3oniis eiep ayy pying ./

J(Pwwait)sazurod 03 piwait = Jid jestbo)
/v PIW3IL 3yl Joj eIEP EOL)dad PULY 4/

{C(SNVY1)309Z)5 ‘|)2011e3(, SNV¥L) = 43d suedy dway

3ud JuL

Y [3Z1S9SKIS) 3ng Jeys
lJojedado uL

’ [og)aweus Jeys

10N = 23d ojul adois,

2 OjuUi 331S 3oNi3S
TINN = Jad ojuiTeals, =

04Ul a11ls 39nJ3s
STINN = d yd, w33t~ jearsAyd 31on43s

1IN = Jad jeatbo, w331 1es160) 39n43s
1NN = J3d suedyTdway, SNVYL

<=
/x andnb uolideuedy ay3 yo Jucuy a3yl 03 uOL}desued) PPV :3S0d¥Nd &/

‘plwal juy
‘pisuedy jul
Zapoado 3ul

A A0 M e e e/

£

(plwait ‘pisuedy ‘sposdojuoiioesuesy ppe pLoa

L o O S SO RS

(
uﬁ—-vmgsuvL
(0 > [01[1}a19e3 X207)41
(
_ HY
uﬁn—un_uwdnmu 390\)Hudniad
(01 [1]31983 %20} == pLwIL)}1
)
(0 =< [01[11319.37)207)a 1ym
=1
1
) <=
/n *ananb uolidesuedy 3yl Wodj uol3desued) Y3 839190 :350d¥Nd «/
‘plw3t 3ul

00 A A 0

(Plwa()puty 0] 1ul

A0 A et s/

/% ()H197 18901 W04} 7SS3304d 4O PUBL/(

‘Aepw lc-awi3”1e00] =+ a3 puas<-peay ananb suedy

fanoy w3 <-awil”1e20) =+ 3w} puIs<-peay ananb sued)
{UlWTWI<-awL3T1E20) =+ BWL3 puUIS<-peaY aNanb sued)

{238 wi<-awl3 1e20) = awi) puas<-peay snanb suedy
‘(371ev01p)2wi31e00] = Awi3_1e90)

JCTINNYBWLY = 37 1e20)

/» 3wl) BUlpUdsS ojui Ind pue Wil WS3ISAS JUJIND ay3y aulwJalag 4/

/xla/{
/x OjULTAILS IXBU 399 ,/ f3xauc-43d a3ls = Jad e1s
/x95/{
/u9n/{
{

luaniad
{
HEHIDRIEC

.

1V APRINT

2661 ‘70 220 6 jo / eBed

26-%-21 2°3J¥N0S :a1t4

I Jeqd <=
B \ll’tl*”.ﬁilll.i”ilﬁllCCCClﬁ'ﬁ’*RC*C’*”*CII!'I!'*Ck&ii!*i&liﬂﬁililiilil\
(ds ’'2)diys pioa

\l'iliﬁ’llilﬁ'l’*l.C&ili'i.ill’!iiiliiiiliiﬁii"illl’ll*ﬁiilii*ii*ll’kﬁ{'i\

/s (elep itup jo puz 4/ (

_ "anwvoMOdu»
/x 219e3)20) jo jJo3 sueaw siyl «/ ‘|- = [Q][1+1]131Qe3T¥20)
{
$(%9012 ‘PIWAILY ‘up¥ipxa ‘dj)juedsy
4207 = [1)[1}a19e3_%00)
‘ptuwdly = [[1)3)1qe3”¥20]
el
)
(0 =< plwa3IL)ajiym
(39013 ‘PLUBILY ‘WPXIPXa "dy)juedsy
0 = !

(

HERIEYS

(21149907 U\ SY @)1 uado 3,ue) :ua04u3u\, '4J3p3IS)3utady
Y CNON == dy)y1L
/x 21983 BuUIX0) JUE 4/ I(udu ‘9)133207)uadoy = dy

1(dj)aso)dy
{
{([1)oweualts 03 oual s ‘,S%, ‘d4)uedsy
' a4l
- b
(Cul-u ‘[l]3WRUDI1S 0) 0UR3LIS)dWIIIS)a]IYM
f({1Jsweud3ls o3 ouadLs ', s%,, ‘dy)jueasy
o=t
{
(1-)3xa
(o 14oweuUdlLs ‘LU* SY @)Ly uado I,ue) :JoJIFu\, 'J4opas)autady
o Y (1NN == dy)31
/x 91GE1 3WRUIIIS 0} OUBLLS ALLILU] 4/ I(ydpn ‘9)ijaweuadis)usdoy = dy
{
I(1 43d)wnaonb”a3ndwos
I(dadunuT a3 15T 9andwoo
) (axaboj<-LJa3d=143d !NN=i}43d !Japeay=|aid) Joy

2(dy)asoyoy
¢
{(PI1WRL LR ‘wPk%n ‘dj)juedsy
uI_
{
2(3315% "up%u .awVwcmuww
a4t
©(243d ‘330a ‘3315)wall”1ed1sAyd puadde=zJid
@s)a
<(143d ‘@30A ‘a31s)weliTed1sAyd 3sa1; ppe=zJad
(0==f) 3!
2(3310A% ‘,py ‘dy)juedsy
Hdy 'i/))diys
} (0<311S) 3)1ym
{(331sy ‘yp%n ’dy)juedsy
ucuw
_ maaw fyidiys
2(lad ‘puwaiHwall” jesibo) puadde=|Jad
as)a
H(plwsl)wal i 1ea160) 35414 ppe=|dad
(0==1) 41
) (p<plwdll) aytym

/x 9)1qe3 aseqeiep ed))das ayy 21@as) ,/

I(1-)11xs

{(a114e011day ‘u* sy uado 3,ue) :uodu3u\, 'JI8p1s)sautady
) (71INN==d}) 4|
/+ @114 oseqeiep ay3 uadp o/ (udn’3)1ed11daY)uadoy=dy
(ueIEPAI0Y T, ‘3114%207)30243S
_s(asoya\npow ‘a)1$Y207)1L343S
*(u/r¥d/345/80/47Bue L[f/3wOy/, ‘3114%207)Adouas
(wBWRUIILST, ‘a)L4BwWeUsyiS)Iedr s
_‘(1soysinpow ‘a)|jaweua3is)Iessas
*(n/ryd/24s/sQ/4"Buey [fawoy/, ‘a)ijaweuslis)Adails
‘(ue3epealidad, ‘ajiyesiyday)iesdss
_2(1soya\npow ‘ajijearday)iessis
“(u/ryd/a4s/sa/4" buey [fawoy/,, ‘9114801 1day)Adoays

/s BWeu 311y elep 339,/

/8° <=
3114 aseqeiep 3yl wo.; ISEQEIBP 1€30] Yl SIINJIUCY aJnpadodd siy| "mmommau o/

21NN = gaad, weaLTearsAyd 3onuas
TTINN = 1J3d, wa31 (21601 3onu3s
‘f- = 320] 3ul

J}- = 330A Ul

l- = 3118 |

l- = plwall Juy

[71w

djx 3714

t
:
H

b,

A0 A e s/
()se)qeseiep 94 11Ul pLoa

A 065 A s e

(
luanysd
$(nUN\ILULIPUSS LS 03 1182 UO Pa)iey JY w)sIutud
> (WN4SS300NSIS =i Jat)4t
(4213 ‘3Joduin ‘auydewAW " 1S9)NPOW) I LUTOIPUISLS = WLIDOIPS
/axs UOLJBWIOJUL J3AIDS WLD 336 4u/
(
uan3ay
S(uU\IIUTIUSLIDLS 03 11ED UO Paley gy, ‘JIIPAS) $3uiady
) (INISSIINSIS =i 491) 41
$(4217 '1S3)NpOWy)IIUIIUL|ILS
/adoqunu 3Jod 1994402 B YILM ¥ 3Y) 33e(IIU] L/
I(3J0danpow ‘,,s%, ‘3JodAw 1S3)npow)4iutads
J(3soyainpow ‘aulysewds 1 53 npow)Adalls
(
HGIPEYSC)
P (nU\BWBUII2AUOD S 03])BD UO Pajley 13y, ‘J49p3S)IuLIdy
) € IN4SSIINSIS =i J31)41L
2(J431% ‘3ISO0YD)NPOW)MENIJIAUODLS
:(08 ‘3soyajnpouw)sweulsoyiab
)} <=
/x "38%205 ¥ 93 sdletitul aunpasosd siyy 13SOM¥Nd «/

*l***ﬁiilliiilll#***#*i’i*liliiiiﬁl!il#lﬁilffi‘*l***l'ﬁlii’l’"*i“‘ilfiiil\
()33%208 227 3LUl P1OA

17T 4PRINT

2661 ‘Y0 290 6 j0 g Ibey

26-%-21L 3°30uN0Ss :371td

_‘0 = uns ut
710N = gd3d , waliTeoisAyd 3onugs

/"Wt Iseqeep Jejnoiided e <=
ssassod UyoLym Sa31S JO JaqUNU 101 IY3 SAULWISIIP Sunpadosd SIYL :3SOdENd =/

f143d , wail jeotbo} 39nJ3S
\'ﬁiiC'ﬁi.*”’fl"&iiﬁ'iI'C’i’ii’lillllIllliiﬁIﬁlfICQIliﬁkiiilhli’liﬁliili\

(143d)unu 93 1s 93ndwod PLoA

\i"'i'l'tCkCCCCiiﬁiﬂiii-iiii’iiiliitlﬂ*il*ll*’ifi**lliiililIliiilliﬁliiii\

{
2y 4+ 2/uns = unsonb M<-|J3d
{1 + g/uns = unionb J<-|43d
/xiSM01104 SE pIjeIndied aJe sundonb ajium pue peas ay /

{
l+4 3UNOS
{930A¢-243d =4+ uns
) (Ixeyd<-zaad=zaid 7InN=i243d f1sdiyde-|aiad=243d) o4
!0 = 3unod
{p=ns

= 3unod ul

0 = wns ulL

17NN = 2430 4 wel LT eatsAyd 19nJ3s
. b
/» "SIULEJIISUOD BAOQE 3yl 03 8nJl ploy Ing

siseq Jejndlided e IAeYy 10U Op SUN <=
Jonb @3iJm pue peaJ pasinbas Sy3 23EIND1EI YILyM aunpadosd siyl Ui suciaenbs ayl

2/5910A a1qissod Jo # 18301 < S330A ajtJm 1eI0) (2)

$930A JO ¥ 18101 < sununob 311JM pue PeaJ JO SII0A 1810} (|

tsuoijenbs BuiMO})0j Yl JOj <=
a4y spioy pue pajyblam si undohb pajejnojed 8yl *SII0A JO JAQUNU (€301 Y UO

peseq wWajl aseqeiep Jejnodiided e <=
Joj pauainbas sunuonb 3314m pue pead ay) saindwod aunpadodd SLYl :3S0dYNd

J1aad , wely jes160) 39nJas
\C!i’ICIli.l’l'Ili.ll{.ﬁ.iIiil'iliililllﬁlllt*ll*&lIklﬁiiﬁ'iil”i!ﬁ&illlkll\
(143d)yunagonb” a3ndwod piLoA

\Cii’ill“’i**’klliﬁI’liﬁ‘ii’ﬂ..ﬂ’ﬁi*#*’*kIiiilllillliilil*ill#lkil&ﬁiiilil\

{
I(2aid)udnial

1zJ43d=1xayd<-43d
I1INN=axayd<-2aad
1330A=330A<-242d
l8315=3318<-243d
{((wa31 T yeatsAud 39n435)40321S ‘|)2071e(, WAL 1ea1sAYd 39nJ1s)=7.3d

21N = gdad, weilTyesisAyd 3onu3s
b
/+"34N30N43s uollewdoul <=
1S1] 331s s,uR)L aseqelep e 0) SIS juanbasqns sppe 94npadodd SiY) :3ISOMANd »/

{a3d, wellTeatsAyd 39nu3s

{930A 3uy

l931s ul

\CC&*CQli{C'IICIii’i*ﬁiiﬁ*ii*ﬁ'ﬁllllkliiik{ll iliilfﬁitlllk“kCﬁllillililil\
(13d ‘a30A ‘a31s)wayi” yesisAyd pusdde , wa3l jedatsAud 1onJ3s

000000 050 .0 e W/

{

—HtZIrdyuargeT
l243d=3s41yd<-|Ja3d

‘1INN=1xayd<-2J3d
1@30Az930A<-243d
!91ts=d31s<-243d
f((waa 1T 1eo1sAyd 39n13SY403Z1S *|)20718(, w3317 eatsAyd 319na3s)=p.3d
SN = 2Jad, wa3l1TiearsAyd 3ond3s
)
/e "WR1; IsEQRIEP SIYl JO4 ISI) 31LS 3yl O} WAL aseqelep Jejhoijsed
B S3553550d YOIYM 3315 ISJL) BYI SPPe 3unpacosd S1Y) :ISOJNNG o/

{143d, we31T1e2160) 319nJ3S
l83oA ul
I9311s Ul <=
A et e/
(143d ‘a30a ‘a3rsyweitTes1sAyd 3suiy ppe , weit jearsAyd 3ond3s

0000000000000 0 B e .

(
1(1J3dyudniay

{143d=3xa60)<-43d

{1INN=3x3601<- | Jad

{7INN=3S4tyd<-ja3d

‘PRl i=q] wa3i<-Jad
((wa31T1e2160] 319n43S)403ZiS ‘|)20)]1€3(, Eou_ldmu_mmd 3I9NJ3s)=|43d
3NN = LJad, weliT1eatbo} 39n43s
) <=

/4 T@seqeiep ay) 03 swall eiep juanbasqns sppe aunpasoud S1yi :3SOJUNd o/

l13d, we3iT1e0160) 3anJ3s

H-JUT S TREV])
\lll’&i!*”iliiiiﬁlltki!’l.lﬁiiiiﬂliliuﬁlllkCIR’CIllili!#illkk&tl’i’klilii\
(J3d’puRlt)wayl” 1es160) puadde , wayt 1eatboy 3aNJ1s

A0 A 6500000066 A 0 A e Y R e]

(
I(43dyusniag

!l Jad=Japeay
7INN=3x360)<-}43d
Y7INN=3S41yd<-{ 1ad

‘prwali=ql W t<-tJad

{((wa317182160) 19NJIS)J082LS "1)20]1189(, wa3l jedibo} 3onJis)=|Jad
70N = |J3dy wal L T1ed160) 39n43s
)

/~ "9SEQElEp 343 03 WAL BIEP 3SJLy AY) Sppe 3unpavodd SiY)l :3ISOd¥Nd =/

‘prwaiy aut
\lik#k’&ikiii{iliill!’lki&tik!*lllluikllliluil{k{hlkilliiili“!lli*liflil!l\
(plwa3t)welt 1e2160) 1s4iy ppe , wail jealbo] 3onJ3s
\Ckliiiliﬁiltillkililill{il*’k#lililli’!li!ltlillt&ti&**!illiiilillﬁliiill\

(
)

1((d})o396=i2)d)Lym

/x°suolledado uo <=
13313 34n3oNnJ3s aseqelep pie 03} S3)|; elep 30 Buipead Bulinp pasn :3S0d¥Nd «/

‘dia 3714

1T 4PRINT

2661 ‘90 39a 6 40 6 Ibey

26-%-21 3°30¥N0S 9114

A A 50 k]

/s 3714 WYAD0¥d 340 ON3 x/

\.:::::::......:......::::..:......:....:........::......:........:......:......:.-...........:....::...n.:....:.......\

L6

{(paadiuaniag

{3%3b01<- | 43d=1J3d (p1we3t=jq] Wa3i<-J3d 22 1INN=il43d) aj1ym
lJapeay=|J3d

70N = (J3dy we31T)es1bo} 3anJ3s
)

/x WOl aseqejep pasinbas ay3 03 Jejulod e suanias sunpasosd Syl :3S0dind «/
00000 0 s /
(plwayt)sajutod 03 plwell 4 WAl 1e3160] 39NnJ3s

0 T 90 e e At e e i

{
luns=wnu 231 s<-|43d

{

lesuns
> (axayd<-z43d=243d 7nN=izd3d !3sdiyde<-jaad=243d) Joy
Ip=uns

.

AN INTERACTIVE USER INTERFACE FOR A
DisTRIBUTED SYSTEM ON N NODES

by
Yagnhamurthy Sekhar
Shailesh Rao
Gary Carlson

TEAM 1
DISTRIBUTED SYSTEMS PROJECT
CS 763
10 December 1992

GOALS — The goals of this team's programming effort are to implement a
program which will automatically establish a distributed system (DS), based
upon parameters which are input by the initiating user, AND allow the user to
interact with this DS in real time.

PARAMETERS — Ideally, some of the PARAMETERS which auser may wish
toinput mightinclude: {N.B. not all of the below will be avaitable in this implem.}

names of sites to be included in the DS {node list}
algorithm or program to be run after network is established

network topology desired
verbose or non—verbose reporting; report to a logfile

connection type

OBJECTIVES — The programming team (Team) chose to list the OBJECTIVES
in order of achievability. This list will serve as objectives for future efforts and
inspiration for further thinking or research into this aspect of programming for
DS. Some of the means of implementation are indicated within the braces; a
brief summary of mechanisms and operations follow in the section labelled
"SUMMARY,” as well as in the comments within the source code. A detailed
description of the implementation is' provided in the section labelled
“DETAILS.”

Choose a programming language {C}

Define the important parameters {see above}

Choose the exact type of connection {sockets}

Choose network topology for this project implementation {logical ring}
Choose an algorithm for this project implementation {token passing}
Define the format of the message {see DETAILS}

Build the network of nodes {see DETAILS}

Begin circulating messages in accordance with the chosen protocol

Allow user to change certain parameters during execution {notimplem}

SUMMARY

Message Format — Token_bit(int 0| 1); source(string, e.g.
horus.cs.odu.edu); destination(string, e.g. lilac.cs.odu.edu); data(string);
ack(int 0]1); msg_id(int). The strings are delimited by \n, allowing them to
vary in length.

Connection type — Sockets are used in this implementation as the means of
communication. At present during network activation, the Pilot “remote execs”
the server program on the successor node and then listens on its in_port for 5
minutes. If nothing is heard, Pilot passes the NULL string and then terminates
itself. In a real system, some mechanism other than a timeout and
self—termination would be desirable to cope with failure of the completion ofthe
rng.

Igorit ice — Specify the algorithm to be run as .c unless only .0
available, in which case we need to know machine and architecture types. The
Team has chosen to design, code, and implement a general purpose token
passing program to exercise the established network. When the algorithm is
called, whatever it is, the following will be passed as arguments:

list of active nodes on Distributed System
Socket descriptors to be used for message passing
Algorithm to be used or address where its code may be found

ination — System termination is presently effected by passing a NULL
string to one’s successor in the ring. If string == NULL, the node passes the
NULL string to its successor and then terminates itself.

2

DETAILS — This section describes the means by which our more involved
objectives were achieved. Included in such descriptions will be the problems
encountered or discussed, the resolution decided upon with justification, and
the procedure by which the resolution was effected.

Connection type — TCP sockets are used for communication between nodes
owing to its reliabilty and intrinsic suitability for this distributed system.

Establish the network topology and protocol — Naturally, the system must be

activated on a single node, the one on which the user is logged on. We call this
node the "pilot,” and label it PO. (See Figure 1.) Once executed, the program
functions as follows:

Explanation of PILOT & SERVER portions of program

The distributed system with INTERACTIVE USER INTERFACE developed by
Team 1 to complete the course project consists of two parts. Detailed
descriptions of these two parts will follow with their respective pseudocode
portions. The source code for the system is in two files pilot.c and server.c.
—— The first part is a PILOT program which

(1) takes input from the user,

(2) starts the entire process and

(3) calls the application algorithm. In our implementation, this is the
token ring protocol. PILOT initializes the ring protocol by pumping a token into
the ring when it has confirmed that the ring is properly established.

—— The second part is a SERVER program which establishes and maintains
connections with its predecessor and successor.

The user of the distributed ring system runs the executable code of
the file PILOT from a terminal. The program starts by requesting that the user
input a list of the machines to be included in the network. Thus the PILOT
program has the information of the members of the system. By default the
machine from which PILOT is started is included in the system.

The PILOT program creates a socket to whichits successor node can
connect as part of the ring. The PILOT then forks a process which remotely
executes the SERVER program on the successor node, found on the list which
was input by the user.

The port number of the out_socket created by the PILOT is passed as
an argument to the successor node. That node also needs the name of the

3

machine to which it should connect, hence thisis also aparameter to be passed
to the remotely executed "SERVER" process as an argument. The final
argument to the remote execution is the port number of the in_socket of the
PILOT. This is neccessary because the PILOT program, after starting its
successor, waits on an in_socket for the last member of the ring to get
connected to the PILOT, thus completing the ring. So the last node must know
the port number of the socket on which the PILOT is ready to accept connection.
This port number is therefore passed as a parameter to successive SERVER
programs but only the last node uses this information; all other processes just
pass it on to the next process. Once the ring is completed, the PILOT process
forks a child which pumps the token into the ring and then "exec’s the program
written for simulating the token ring protocol.

take list of nodes from user;

create two sockets: in_sd, out_sd;

bind both sockets to arbitrary ports;

fork();

if (child)
rsh server process on next machine
pass in_port, out_port and locathost name as
parameters;

if(parent)
wait on out_sd for successor to get connected:;
pass the list of machines to be in the ring;

wait on in_sd for the last member to get connected;
/* ring is completed*/

fork();

if(parent)
pause(); /* parent can be assigned any future
work*/

if(child)
put the token onto the ring through out_sd;
exec the token ring program and pass to the
program in_sd, out_sd, list of members as
parameters;

server.c:

The SERVER process gets as parameters three values:

* pre_port, the port on which its predecessor is waiting for
connection;

* pilot_port, the port number on which PILOT will be expecting
connection from the last member of the ring, so this value is to be passed on to
the last member of the ring; and

* pre_host, the name of the predecessor.

By using the pre_host and pre_port parameters, the SERVER
process gets itself connected to its predecessor and waits to receive the list of
members of the ring. Once it gets the list it Iooks to see its own position in the
ring. Ifitis notthe last member, it gets the name of its successor node from the
list. It then creates an 'out_sd’ socket for the successor node to connect to.
Then it forks a child process which remote starts the SERVER process on the
successor node and passes to it as parameters the port number of out_sd,
pilot_port and its own name. Parent waits on out_sd for the successor node.
Once successor node is connected it passes the list of members of the ring
which it got from its predecessor and it then 'exec’s the token ring simulation
process. When the last member of the ring when gets the list from its
predecessor and finds out that it is the last node, it does not remote execute
SERVER process again. Instead, it knows that PILOT is waiting on pilot_port for
completion of thering. It simply connectsto the PILOT and thenitself ‘exec’s the
token ring simulation process.

Pseudocode for the SERVER process is as follows:

get the pre_port, pilot_port, pre_host as parameters;
create in_sd socket and connect to pre_host at pre_port;
receive list of members of the ring;

open out_sd socket and bind it to a port;

find out own position in the list;

if(!last member)
{ get the nexthost name;
fork();

if(child)
remote start server on nexthost, pass out_sd port
number, pilot_port, localhost name as
parameters;
if(parent)
wait for connection on out_sd;
pass list of members to successor;
exec token ring simulation process and pass as
arguments in_sd, out_sd, list of members.

}
if(last member)
{
get PILOT host name from the list;
connect to PILOT host on pilot_port;
exec token ring simulation process and pass as
arguments in_sd, out_sd, list of members.
} end

The details for the TOKEN RING portion of the program are as
follows:

The Token Ring program that is implemented as the application being run on
the distributed system is a simple simulator that emulates the token ring
protocol. The token format used is a character string with different fields, each
performing a particular function. We use a template frame that serves both as a
message and a frame. Thefirstintegerinthetemplateisa Oifitisaframeanda 1
if it is a token. The program works as follows:

The program waits on the input socket till it receives a message. A message in
this program can only be one of two types : either the template string described
above or a kill signal. In the case of the latter, the program terminates. If it
receives the former then :

It checks the first field (which is read as an integer) and if it is a 1 then :

The message is a token. In which case the program decides whether to send a
message on the outsocket or not. This is decided based on a randomly
generated probability (if > 0.5, then send). If the decisionto send a messageis
made, the program randomly decides the destination, picking a number from
the listof nodes onthering. Eventually, it sends a message (the data field of the
message is fixed in this program for simplicity) and logs the message on its log

6

file by giving it a unique message id . It then converts the first integer to a 0 and
sends out the template as a token. This way the token is kept circulating on the
ring.

If the first field of the message was a 0 then the program knows that this is a
message as opposed to a token. In this case, the program checks the
destination field and compares it with its own name field. If they match , this
implies that the message is destined for the machine in question. The program
logs the fact that it received the particular message and sets the ack bitto a 1 (
on the same template message string) and sends it back out on the ring. (
source removal policy followed) .

ifthe destination field was not its own , then it checks to see if the source field is
its own, which implies the message has come back to itself after having been
received by its destination and hopetully, having been acknowledged. If this is
true, the program logs the message and discards it.

If none of these cases is true, it means the message is just circulating and is
destined for someone else. So the program just sends it out on its out_socket.

Begin message passing
create and release a token; /* Pilot does this */
for each node
if token_present {
use pseudo—random number generator (prng) to decide
whether to send message or pass token;
if (decision == send_msg) {
use prng to select a destination node;
send_msg;
ciculate token
} /* endif decision == send_msg */
else forward_token;
} /* endif token_present */

if rev_msg {
if (msg_for_me) {
process_msg;
send_ack; } /* endif msg_for_me */
else if (source == self)
remove_msg;

else pass_msg;
} /* endif rcv_msg */

USER

Interactive Input ™) PILOT &

Sockets, 4.g.
g Once the network is established, each

server process ‘exec’s the application.

S3 Network Connection

@ — A Server process running on a node
An — The application Algorithm

Figure 1. Network Topology

- FUTURE ENHANCEMENTS — These are “wish—list” as well as “failure—
proofing” items which were impractical to implement within the time frame of
this semester. They can be used as ideas for future projects and as
springboards for further thinking on the subject.

— If implemented in Xwindows, parameters could be chosen from
pull—down lists.

— Store parameters in a formatted file which would be read by the "pilot”
process. This would relieve the user from typing them in, yet the
parameters would not be hard—coded into the program.

— Add or remove nodes at will during execution of the program

— Ping a node before attempting to establish a connection. If not alive,
remove the inactive node's name from the node list; continue with

8

successor node in node_list. When network is established and Pilot has
received the node_list once again, it compares this received list to the
original which was circulated. Report number of currently participating
nodes and names of inactive nodes to the user; query the user whether
they wish to add substitute nodes or continue. If additional nodes were
specified, these would be added to the network, and a final node_list,
superseding the original, would be circulated to all so that every node will
have an identical list from which to pick its nodes.

— Maintain a complete logfile of all network activity. This might ultimately
prove to be a burdensome overhead, clogging the network with reporting
messages. However, it could be useful for debugging and/or analysis on
a small scale program.

— Build auser—specified topology rather than only aring. By making the
“Pilot” program more intelligent, it could create the topology specified by
the user. -

/******* PILOT.C **kkkkkkhkhhkhkkhkhk

This is the pilot program for establishing the ring topology with the

machines specified by the user:
*************************************/

#include <stdio.h>
#include <errno.h>
#include <sys/time.h>

#include <sys/param.h>
#include <sys/socket.h>
#include <sys/file.h>
#include <sys/uio.h>

#include <netinet/in systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip icmp.h>
#include <netdb.h>

#define MAXHOSTNAME B0
#define MAXLEN 1024

int i, out_sd, in_sd;

struct host names{
char machine[80] ;
struct host names *next;

struct host_names *hosts = NULL, *temp;
char *buffer, argv(20](40], buf[40], *tmp buf;
char localhost(80], command([80], next host[80],

other host([80], token[MAXLEN];
struct sockaddr_ in serverl, server2, clientl, client2, from:
struct hostent *hp, *gethostbyname () ;
struct iovec *iov;
int num machines, handle_alarm(), psd,

fromlen, child, rex child = 111, num;

/*get the name of the local host */

gethostname (localhost, MAXHOSTNAME) ;

/*allocate space for buffer*/

buffer = (char *)calloc (MAXLEN, sizeof (char));

/*£i111 in the serverl structure for binding the outgoing socket*/

serverl.sin_family = AF_INET;
serverl.sin _port = htons(0);

if ((out_sd = socket (AF_INET, SOCK_STREAM, 0)) < 0){
perror ("creating socket");

exit (200);

}

if ((hp = gethostbyname (localhost)) == NULL) {
perror ("Can’t find host %s\n", localhost);
exit (-1});

}
bcopy (hp->h_addr, & (serverl.sin_addr), hp->h length):

/*bind the socket so that successor can get connected */

if (bind(out_sd, &serverl, sizeof (serverl)) < 0){
perror ("requested port is busy"):
close (out_sd);
exit (300);

}

/* now work on binding the in socket for the last guy to complete */
/* the ring by getting connected back to me*/

serverZ.sin_family = AF_INET;
server2.sin_port = htons(0);
bcopy (hp->h_addr, & (server?2.sin_addr), hp->h_ length) ;

if((in_sd = socket (AF_INET, SOCK_STREAM, 0)) < 0){
perror ("creating socket");
exit (100) ;

}

if (bind(in_sd, &server2, sizeof (sexver2)) < 0){
perror ("requested port is busy"):
close(in_sd):
exit (300) ;

}

fromlen = sizeof (from):

/* create space for holding machine names to be given by user*/

hosts = (struct host names *)malloc(sizeof (struct host names));
temp = hosts;

/*The machine on which this process is run is invariably a member of */
/*the ring topology so let me put my name in the list*/

strcpy (temp->machine, hp->h_name) ;

printf("Give the names of machines to be connected in a ring:\n");
printf ("ONE MACHINE NAME PER LINE PLEASE\n"):

/* Take the list of machines to be connected, RING is the default */
/* topology forced for now. It can be modified*/

while ((scanf ("%s", other host)) != EOF) {
temp->next = (struct host names *)malloc(sizeof (struct
host names)};
if ((hp = gethostbyname (other_host)) == NULL) {
printf("Can’t find host $%s\n", other host);
exit (-1);

}

/* for the sake of uniformity, convert the given name into "dot" */
/* notation like ‘offa.cs.odu.edu’ */

strcpy (temp->next->machine, hp->h_name) ;
temp = temp->next;

}

temp->next = hosts:;

hosts = hosts->next;

temp->next->next = NULL;

/* get the port numbers to which two sockets are bound*/

if (getsockname(in_sd,&clientl,&fromlen)<0){ /*get client socket info*/

perror ("could’t get sockname\n"):;
exit (10);
}

if (getsockname (out_sd, &client2, &fromlen)<0) { /*get client socket info*/
perror{"could’t get sockname\n"):
exit (10);

}

/* prepare the command to be executed by the child. */

sprintf (command, "rsh -n %s /home/yagna_s/cs763/project/server %hu %hu $s",
hosts->machine, ntohs (client2.sin port),
ntohs(clientl.sin port), localhost):;

/*now fork a child and let the child execute the rsh command because */
/*it is a blocking call which won’t return until the remote process */
/*is terminated*/

if((rex_child = fork()) < 0){
perror ("problem with forking the rex_child");

exit (50);
}
else if (rex child == 0)({ /* child process */
system(command) ; -
exit (55);
}
else({ /* parent again */
listen(out_sd, 1); /* listen for connection from successor */
out_sd = accept(out_sd, &from, &fromlen):
printf("%s: Establishing Ring......... Please wait..... \n", localhost);

temp = hosts;
tmp_buf = buffer;

/* prepare the string of all machines of the ring to be passed to */
/* the neighbor*/

while (temp) {
sprintf (tmp_buf, temp->machine);
tmp_buf += strlen(temp->machine);
tmp_buf (0] = '\n’; tmp buf++;
temp = temp->next;
num machines++;

}
/* send the list of machines */
if(send(out_sd, buffer, MAXLEN, 0) < MAXLEN) {
perror ("sending on socket"):;
exit (112);
}
alarm(300);

/* now I am done. I wait for completion of ring by the last node */
/* in the ring */

listen(in_sd, 1)
in_sd = accept (in_sd, &from, &fromlen):;

/*Oh!! Ring is completed. Let me turn off the alarm*/
alarm(0);

hp = gethostbyaddr(from.sin_addr);
printf("%s:Oh!!!!!!Ring is completed from $s\n", localhost, hp->h_name) ;

printf("Now I start the tkn_ring process\n"):

/* Initialize the token to start the process*/

/*this is the format of the token agreed to by myself and */
/*tkn_ring*/

strcpy (token, "l\nhorsa.cs.odu.edu\noffa.cs.odu.edu\nNOTE\nO\nl\n");
send (out_sd, token, MAXLEN);

/*Now let me take rest and let my child run the tkn_ring process*/

if((child = fork()) < 0){
perror ("problem with forking the child");

write (out_sd, "", strlen(""});
exit (400);
}
else if (child > 0)({ /*parent process*/
pause (} ;
| ,
else(/* here is my child */

char in_socket[10], out socket[10]:

sprintf (in_socket, "%d", in_sd);
sprintf (out_socket, "%d", out_sd) ;
strcpy(argv{0], "tkn ring");
sprintf (argv(1l}, in_socket);
sprintf (argv([2], out_socket);

/* pass in_sd, out_sd and list of members in the ring to the */
/* process */

execlp("tkn_ring"™, argv[0], argv(1l], argv(2], buffer, (char *)0)

handle alarm()
{
printf ("Some thing is wrong, timed out for ring establishment\n") ;

write(out_sd, """, strlen("")):
exit (500) ;
}

/**********

SERVER.C

Ahkkkhhkkhkhhkhkbhhkhkkhhkk kkkx

This is the server program executed by the pilot program on all the

machines which are to be part of the ring
**/

#include
#include
#include

#include
#include
#include
#include

#include
#include
#include
#include
#include

<stdio.h>
<errno.h>
<sys/time.h>

<sys/param.h>
<sys/socket.h>
<sys/file.h>
<sys/uio.h>

<netinet/in_systm.h>
<netinet/in.h>
<netinet/ip.h>
<netinet/ip icmp.h>
<netdb.h>

#define MAXHOSTNAME 80

#define MAXLEN

1024

int i, out_sd, in_sd:

struct host names{

char
struct

main (argc,

machine([80];

host_names *next:;

argsv)

int argc:
char **argsv;

struct host_names *hosts = NULL,
*buffer, argv([20]([40],
char localhost[80],

char

command [80],

other_host [80], token[10], pre host[80];

struct
struct
int

fromlen,
pre_port, pilot_port;

sockaddr_in serverl,
*gethostbyname () ;

num machines, handle_ alarm(), psd,
rex_child = 111,

hostent *hp,

child,

*temp;

buf [40], nodes[10}[40], *tmp_ buf;
next_host[80],

server2, clientl, client2, from;

num,

/* server must receive three arguments from pilot and fourth one is */
/* from the shell which is the name of the program*/

if (argec < 4){
perror ("Not enough arguments are passed to the server:"):
exit (10);

}

pre_port

atoi (argsv{1l]):

pilot_port = atoi(argsv(2]);

strcpy(pre_ host,

argsv[3]):;

/*predecessor port I must connect to */
/*in_port of pilot, used by last member*/
/* predecessor’s name*/

/* let me find my own name first */

gethostname (localhost, MAXHOSTNAME) ;

buffer

(char *)calloc (MAXLEN,

sizeof (char));

/* now I will open a socket for connecting to my predecessor */

serverl.sin_family = AF_INET;
serverl .-

' _port - pre port:

if((in_sd = socket (AF_INET, SOCK_STREAM, 0)) < 0){
perror ("creating socket"):
exit (200) ;

}

if ((hp = gethostbyname (pre _host)) == NULL) {
perror ("Can’t find previous host"):
exit (-1);

}
bcopy (hp->h_addr, & (serverl.sin_addr), hp->h_length);

/* I will create a socket for my successor as well */

serverZ2.sin_family = AF_INET;
server2.sin_port = htons(0);

if((out_sd = socket (AF_INET, SOCK STREAM, 0)) < 0) {
perror ("creating socket");

exit (200);

}

if ((hp = gethostbyname(localhost)) == NULL) |
perror("Can’t find local host");
exit (-1);

}
bcopy (hp->h_addr, & (server2.sin_addr), hp->h length);

if (bind(out_sd, &server2, sizeof (server2)) < 0){
perror ("requested port is busy");
close (out_sd) ;
close(in_sd):
exit (300);
}

/*sleep for a while until my predecessor executes accept()*/

sleep(2):

if | connect (in_sd, &serverl, sizeof (serverl)) < 0) {
close(in sd);

close (out_sd);
perror ("connecting stream socket"):

exit (150);
}
/* I am part of the ring now!!!!!111%/
fromlen = sizeof (from):

if (getsockname (in_sd, &client?2, &fromlen)<0) { /*get client socket info*/
perror ("could’'t get sockname\n");
exit (10);

}

sleep(2);

if(recv(in_sd, buffer, MAXLEN, 0) < 0}{
perror ("receiving on in_socket for server");
exit (11);

}

/* Now I got the list of nodes to be in the ring. Thus I know my */
/* successor also */

tmp_buf = buffer;
i=20;

/* let me sort out the list of nodes to start with *x/

while(sscanf(tmp_buf, "%s", buf) >0){
strcpy (nodes[i++], buf);
tmp_buf += strlen(buf) + 1;

}

strcpy (nodes (i), ""):

/* I should know my position in the ring, whether I am the last */
/* onex/

for (i=0; strcmp(nodes(i], "“"); i++)
if (! (strcmp (hp->h_name, nodes[i]))) /*hp is still the localhost*/
break;
strcpy(next_host, nodes[++i]);

if (strcmp(nodes [++i], "")){ /* I am not the last one. So let */
/* the other guys also enter ring*/

if (getsockname (out_sd, &clientl, &fromlen)<0) { /*get client socket info*/
perror ("could’t get sockname\n"):
exit (10);

}

sprintf (command, "rsh %s /home/yagna_s/cs763/project/server %d %d ss",
next_host, clientl.sin_port, pilot port, localhost);

/* I will let my child create the next guy in the ring */

if((rex_child = fork()) < 0)¢{
perror("forking rex child"):;
exit (350);

}

else if(rex_child == () {
system(command) ;

exit (1) ;
}

else(/* I am back again with business */

listen(out_sd,1);

if((out_sd = accept (out_sd, &from, &fromlen)) < 0) {
perror ("accepting connection");
exit (13);

1
/* Next node is connected so, pass the list of nodes to him*/

if(send(out_sd, buffer, MAXLEN) < MAXLEN) {
perror ("sending buffer");

exit(14);
}
}
}
else{ /*I am the last node, so connect back to the */
/*pilot to complete the ring*/
serverl.sin_port = pilot port;

if(!(hp = gethostbyname (next _host))) {
perror("pilot host is not found");
exit (111);

}
becopy (hp->h_addr, &(serverl.sin_addr), hp->h length);

printf ("connecting to pilot");
sleep(2);

if (connect(out_sd, &serverl, sizeof (serverl)) < 0) {
close(in_sd);
close(out_sd);
perror ("connecting to pilot socket"):
exit (150) ;
}
}

/*now let me start the actual exhibition of tkn_ring process*/

{
char in_socket[10], out socket[10];

sprintf (in_socket, "%d4", in_sd);
sprintf (out_socket, "%d", out_sd);
strcpy(argv[0], "tkn_ring");
sprintf (argv(1l], in_socket);
sprintf (argv(2], out_ socket);

sleep(5);
execl("/home/yagna_s/cs?63/project/tkn_ring“, "tkn_ring", argv[l], argv(2], buf
1
}

/**/

/********* TKN RING.C **x*kkkkkkkkkkhhkdkhkhkk

This is a simple version of token ring protocol written to exhibit the

use of the distributed system interface given by pilot.c and server.c
***/

#include <stdio.h>
#include <errno.h>
#include <sys/time,h>
#include <math.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/file.h>
#include <sys/uio.h>

#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip icmp.h>
#include <netdb.h>

#define ml 259200
#define ial 7141

#define icl 54773
#define rml 3.8580247e-6
#define m2 134456
#define ia2 8121
#define ic2 28411
#tdefine rm2 7.4373773e-6
#define m3 243000
#define ia3 4561

#define ic3 51349

int idum;
int glixl, glix2, glix3;
float glr(98];
float r;
float randl();

#define MAX_RANDOM_NUMBER 2147483647
#define MAXHOSTNAME 80

#define NOTE "How_do_you do"
#define MAXLEN 1024

char names{20][40]), myname([40], localhost [40];
int maxnodes = 0, insocket, outsocket:;

char token([1024];

char source([40], dest[40], data[500];

int ack, is_tkn, msg_id, next_msg = 0;

char msg[MAXLEN];

FILE *fp, *fopen();
main(argc, argv)

int argc:
char **argv;

{
int 1i;
void decipher () ;
struct hostent *hp, *gethostbyname () ;
char *tmp buf, buf[80];

strcpy (token, "l\nhorsa.cs.odu.edu\noffa.cs.odu.edu\nNOTE\nO\nl\n");

tp = fopen("/tmp/log", "w+");

insocket = atoi(argv(1]);:
outsocket = atoi(argv(2]):

tmp buf = argv[3];
i=0;
while(sscanf(tmp_buf, "$s", buf) >0){
strcpy (names[i++], buf);
tmp_buf += strlen(buf) + 1:
maxnodes++;
}
/*
i = 3;
while{i < argc) {
strcpy(names(i-3], argv{i]):
i++;
printf("$s\n", argv(i]);
}
maxnodes = argc - 3;
*/
gethostname (localhost, MAXHOSTNAME) ;

hp = gethostbyname (localhost) ;
strcpy (myname, hp->h name) ;

for (;:){
sleep(2);
if (recv(insocket, msg, MAXLEN, 0) < 0){
printf("$s\n", msqg);
perror("100:receiving on socket") ;
close (insocket) ;
exit (100) ;

/* strepy (msq, "O\nhorsa.cs.odu.edu\naelle.cs.odu.edu\nNOTE\nO\nl\n");
*/
if(!strcmp(msg, "")){
if(send(outsocket, msg, MAXLEN, 0) < 0)
break:;
}
decipher () ;
if(is_tkn)
handle token();
else
process_msg () ;
}
fclose(fp);
close (insocket) ;
close (outsocket) ;
)
/***/
handle_ token{()
{

double k;
/*
k = (double) (getRandInt (1, 100) /100) ;
*/
k = (double)random() / (double) MAX_RANDOM_ NUMBER;

fprintf (fp, "Received token\n");
fflush (fp):

if (k > 0.0)
serd msaq();

else
send token():
}

/***/

process_msg ()
{
if (!strcmp(dest, myname)) /* this is sent for me*/
process_datal();
else if (!strcmp (source, myname))
handle ack({():
else{
fprintf(fp, "%s: passing message: %d: of :%s : to: %s \n",
myname, msg_id, source, dest);
if (send(outsocket, msg, MAXLEN, 0) < 0){
perror("50:sending Ack"):;
exit (50);
)
}
}

/**/
/*
int getRandInt (b)

int b;

{
double seed = 987654321;

return (((seed)*100) % b);
}

*/

/***/
send msg ()

{

char message [MAXLEN], *tmp_ buf;
int k:
tmp_buf = message;

sprintf (tmp_ buf, "%d", 0):

tmp_buf += sizeof (char); tmp buf([0] = ’\n’; tmp buf++;
sprintf (tmp_buf, "%s", myname);

tmp_buf += strlen (myname); tmp_buf (0] = “\n’;tmp buf++;

do
k = getRandInt (0, maxnodes) ;
while(!strcmp(names[k], myname)) ;

sprintf (tmp buf, "$s", names(k]);

tmp_buf += strlen(names(k]):; tmp_buf (0] = ‘\n’;tmp buf++;
sprintf(tmp_buf, "%s", NOTE):;
tmp_buf += strlen(NOTE); tmp buf[0]
sprintf (tmp_buf, "sd", 0);

tmp_buf += sizeof (char); tmp_ buf[0]
sprintf (tmp buf, "%d\n", ++next _msgqg) ;

]

‘\n’;tmp_buf++;

‘An’;tmp_buf++;

/*Now ready to send this message off*/

if (send (outsocket, message, MAXLEN, 0) < 0){
perror ("200 - "nding message");
exit (200) -

)
fprintf (fp, "Sent message:%d: to :%s\n", (next_msg - 1), names[k]);

fflush(fp);
/*Anyway we have to pass token too*/

if (send(outsocket, token, MAXLEN, 0) < 0){
perror ("300:sending token");
exit (300);
}
fprintf (fp, "Sent Token too\n");
fflush(fp):

/***/

send token{()
{
if (send (outsocket, token, MAXLEN, 0) < 0){
perror ("sending token on the outsocket");
exit (300);
}
fprintf (fp, "Sent Token\n");)
fflush(fp):

}

/***/

process_data()
{
char *tmp buf;

fprintf (fp, ":%s: received message: %d: from :%s:\n",
myname, msg_id, source);
fflush(fp}):

tmp_buf = msg;
tmp_buf += sizeof(char)+strlen(source)+strlen(dest)+strlen(data)+4;
tmp buf[0] = r1/;

fprintf (fp, "sending ack for msg:%d\n", msg_id) ;
fflush(fp):

if (send(outsocket, msg, MAXLEN, 0) < 0){
perror ("300:sending Ack");
exit (300) ;
}
}

/***/

handle_ack () {
fprintf (fp, "%s: received ack from: $%$s: for message :%d\n",
myname, dest, msg_id);
fflush(fp);
}

/***
random number generator between 0 and 1

random ()
***/

float randl (idum)
int *idum;

{
int j:

float ret;
if(*idum < 0)
{
glixl = (icl - *idum) % ml;

glixl = (ial * glixl + icl) % ml:
glix2 = glixl % m2;
glixl = (ial * glixl + icl) % ml;
glix3 = glixl % m3;
for(j = 1:3< 97;3++)
{
glixl = (ial * glixl + icl) % ml;
glix2 = (ia2 * glix2 + ic2) % m2;
glr{j] = (glixl + glix2 * rm2) * rml;
}
*idum = 1; -
}
glixl = (ial * glixl + icl) % mi;
glix2 = (ia2 * glix2 + ic2) % m2;
glix3 = (ia3 * glix3 + ic3) % m3;
J = (int) (1 + (97 * glix3) / m3);
if((3> 97) 11(3 < 1))
{

printf ("halted in random\n");
}

ret = glr(j):

glr(j] = (glixl + glix2 * rm2) * rml:

return (ret);
}
/***
* returns random intege between a and b

* getRandInt ()
'k*************/

int getRandInt (a,b)
int a:
int b;

{

int i;

for(i=0;1<100;i++)
randl (&idum) ;
return (int) (a + (b-a+l)*{(randl (&idum)));
}

/**/

void decipher ()
{
char *tmp buf:
char temp[4];

tmp buf = msg;

sscanf (tmp_buf, "3d", &is tkn):
/* is_tkn = atoi (temp);*

if(!is_tkn){

tmp_buf += sizeof (char):
tmp_buf++;
sscanf (tmp_buf, "%s", source);
tmp buf += strlen(source);
tmp buf++;
sscanf (tmp_buf, "%s", dest);
tmp_buf += strlen(dest);
tmp_ buf++;
sscanf (tmp_ buf, "%s", data):
tmp buf += strlen(data);
tmp_buf++;
sscanf (tmp_buf, "%d", &ack):
/* ack = atoi(temp):*/
tmp buf += sizeof (char):
tmp buf++;
sscanf (tmp_buf, "%d", &msg_id);
}
}

/***'k**/

