
w

o
73

L)

©

o

(3
62

NASA-CR-193239

DEPARTMENT OF COMPUTER SCIENCE

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

'4

r

BUILDING A GENERALIZED DISTRIBUTED SYSTEM MODEL

By

R. Mukkamala, Principal Investigator

Annual Report

Prepared for

National Aeronautics and Space Administration
langley Research Center

Hampton, Virginia 23681

Under
Research Grant NAG-I.lll4

Wayne Bryant,Technical Monitor

ISD-Systems Architecture Branch

June 1993

O,
*,,,4

N

N rU O"
I _ e-I

t_ U t"
e" ,-I

Z _ C_

Q.

_m,.O
L,I.J

zu_
I-,4 ill,

lw:
+-,0 I-.

_0
_ml ,a.

C

O'_E

r_lQa
r_
o_o_

! <[
<[c_ .-.J
v3 uJ uJ
,_ZO
Zu_O

,,D

f_

https://ntrs.nasa.gov/search.jsp?R=19930020030 2020-03-17T04:49:45+00:00Z

DEPARTMENT OF COMPITI'ER SCIENCE

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

BUILDING A GENERALIZED DISTRIBUTED SYSTEM MODEL

By

R. Mukkamala, Principal Investigator

Annual Report

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23681

Under

Research Grant NAG-I-1114

Wayne Bryant, Technical Monitor

ISD-Systems Architecture Branch

t

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

June 1993

Building a Generalized Distributed System Model

R. Mukkaxaala

E.C. Foudriat

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529-0162.

Annual Report and Renewal Request

Abstract

The key elements in the 1992-93 period of the project are:

• Extensive use of the simulator to implement and test

- Concurrency control algorithms

- Interactive user interface, and

- Replica control algorithms

• Investigations into the applicability of data and process replication in

real-time systems, and

In the 1993-94 period of the project, we intend to:

• Concentrate on efforts to investigate the effects of data and process

replication on hard and soft real-time systems. Especially we will con-

centrate on the impact of semantic-based consistency control schemes

on a distributed real-time system in terms of

- Improved reliability

- Improved availability

- Better resource utilization, and

- Reduced missed task deadlines

• Use the prototype to verify the theoretically predicted performance of

locking protocols, etc.

1 Introduction

In the 1992-93 proposal, we proposed to test the simulator more extensively.

This has been achieved by using it to test the performance of replica control

algorithms and concurrency control algorithms. In addition, we have now

constructed a user interface using which it is possible for a user to specii)

the selection of nodes (by their machine name) and the way they need to

be connected. In addition, the user may specify the location of the code

for execution at these nodes. The simulator would then start the required

execution.

The investigations into the use of replication in distributed real-time sys-

tems has been preliminary and no reports or papers have yet been published.

However, there is strong evidence that this area will be a strong candidate

for future system architectures. For this reason, we propose to further pur-

sue this approach in the coming year. This should lead to several conference

publication and possibly journal submissions.

In this report, we summarize our progress in these areas and then de-

scribe the proposed work for 1993-94.

2 Distributed System Prototype

As stated above, we have used the current prototype tool to implement and

test concurrency control algorithms and replica control algorithms. Hertz.
we will summarize these efforts.

2.1 Concurrency Control Algorithms

Using the previously developed modules of the prototype, we have success-

fully implemented and tested an optimistic concurrency control algorithm

using time stamping. The algorithm is optimistic in the sense that it relies

mainly on transaction backup as a control mechanism hoping that conflicts

between transactions are minimal. In this case, a transaction consists of

three phases: read-phase, validation-phase, and a write-phase. The details

of the implementation, and the way the prototype modules are combined

are discussed in an attached report.

2.2 Replica Control Algorithms

Replica control is necessary to assure mutual consistency in distributed sys-

tems, when a high degree of fault-tolerance needs to be provided. As part

of this effort, a replication algorithm is implemented using a weighted vot-

ing method, where a quorum of votes must be obtained to execute read or

write operations. The Global transaction module (GTM) of the prototype

has been slightly modified to meet the requirements of the replica control

algorithm. The details of the work are described in an attached report.

3 Interactive User Interface to the Prototype

The main objective of this project were to implement a system which will a_-

tomatically establish a customized configuration of workstations connected

on a network (distributed system). Some of the parameters which the user

may wish to input to the system are: names of sites to be included in the

system; the algorithm/program code to be run on the system, the logical

topology by which the chosen sites are to be connected; and the logfile where
the output file should be directed to. The system has also been used to test

a token-ring protocol specified via the interface. The details of the effort are

described in an attached report.

4 Distributed Real-time Systems: Current efforts

Due to the importance of reliability and timeliness in real-time systems, the

apphcation of distributed systems in this area is now well recognized. In

this context, we started looking at both hard and soft real-time systems

(centralized) and the work in distributed database systems (non-real time).

We find that by effectively combining ideas from these two systems, we can

build distributed real-time systems, especially using the data and process

replication ideas.

5 Proposed Research Efforts in 1993-94

During the next grant period (August 1993 - July 1994), we propose to

mainly concentrate on the issues related to distributed real-time systems.

Especially, we propose to study and solve the following problems.

How can data replication be effective used to improve reliability, avail-

ability, and reduce number of tasks missing deadlines?

This effort will require the study of currently existing non-replicated

algorithms, and solving some of the system bottlenecks by employing

replication. While the answer for improvements seems to be obvious,
how to maximize the benefits is not at all obvious.

Can Replication be also used to reduce the non-deterministic delays

involved in the communication subsystem? If so what is the added

cost, and other effects due to increased load?

Several efforts in minimizing the non-determinism in the communi-

cation network delay, especially for high priority traffic are already

in progress and published in literature. However, none have studied

replication as a means to achieve it. We propose to consider replica-

tion of channels, replication of transmissions, and replication of servers

to achieve it. Obviously, we need to take into consideration the co_t

involved with the proposed schemes.

What is the effect of replica consistency requirements on the perfbr-

mance of the system? Obviously, the more stringent the requirements,

the worse will be the performance. But we would like to study this

aspect in a more comprehensive manner.

* Develop newer scheduling algorithms that can incorporate the zlew

consistency requirements.

Further develop and use the current distributed system prototype Io

test and implement distributed algorithms. It will also be used ill _he

distributed systems class to be offered in Fall 1993.

Implementation of an Optimistic Concurrency

Control Algorithm using Timestamps

Sastry.A.V.R.R

Shubhangi Kelkar

Pradeep Sankaranthi

December 11, 1992

Introduction :

Concurrency control is the activity of coordinating concurrent accesses to a database ill a

multiuser database management system(DBMS). Concurrency control l)ermits users to ac-

cess a database in a multiprogrammed fashion while preserving the illusion that each user

is executing alone in a dedicated system. The concurrency control prol)lem is colnplicated

in distributed DBMS(DDBMS) because users may access data stored ill different COmlmter

in a distributed system and a concurrency control mechanism at one conlputer cannot ill-

stantaneously know about interactions at other computers. Most current approaches to

concurrency control in database systems rely on locking of data objects as a control mecha-

nism. In this project an optimistic concurrency control using timestamps is iml)lememed. It

is optimistic in the sense that they rely mainly on transaction backup as a control mechanism

hoping that conflicts between transactions will not occur. This approach has the advantage

that it is completely general, applying equally well to any shared directed graph structure

and associated access algorithms. Since locks are not used, it is deadlock fi'ee. The idea

behind this optimistic approach is quite simple and may be sumlnarized as follows.

Any transaction consists of two or three phases:a read phase, a validation phase, and a pos-

sible write phase. During the read phase, all writes take place on local copies of the nodes to

be modified. Then, if it can be established during the validation phase thai the changes that

the transaction made wilt not cause a loss of integrity, the local copies made are global ill the

write phase. In the case of a query, it must be determined that the result the query would

return will actually be correct. The step in which it is determined that the transaction will

not cause a loss of integrity (oi" that it will return the correct result) is called vali(lation.

If validation fails the transaction will be backed up and start over as again as a new

transaction. Thus a transaction will have a write phase only if its previous validation suc-

ceeds.

Timestamp ordering (T/O)is a techniquewherebyserializationorder is selectedapriori
and transactionexecutionis forcedto obey this order. Eachtransactionisassigneda unique
Timestamp by its TransactionManager. Ttle TM attachesthe timestamp to all readsand
writes issuedon behalfof the transaction,and Data Managersare required to processcon-

flicting operations in timestamp order.

Implementation:

Message formats and the sequence of events/messages are shown in the table 1. Fig 1
shows the interaction between various modules.

Tile way this system functions is as follows. User submits his transaction which it_volves

a series of Reads and/or Writes to the User Transaction Manager(UT). UT verifies the Syll-

tax of the transaction and passes this request to Global Transaction Manager (GTM) wi! h a

timestamp attached to it. GTM takes this transaction and assigns a unique transaction l i) to

this transaction. It then enqueues the transaction in its transaction queue in the incvcasiug

timestamp order. GTM maintains the status of both local and remote transactions at any

tiine. GTM then parses the transaction and divides the transaction int.o SUl)lr;lllsa('l.i(,tl_.

Each subtransaction status is maintained in a subtransaction queue under the corresl)onding

transaction queue. The execution of transaction- now involves execution of these subtrans-

actions. GTM sends a request to Replica Control (RC) for location and quorum(l(/W)

information about each object. All tile messages that is sent to RC bear a timesta_np (m

them. RC maintains a list of all sites participating in the functioning of tl,e overall systcLll,

information about the objects residing at the site viz. objectid, site_id, votes required for

read or write.

RC then sends a reply to GTM stating the site(s) at which the data object in qllesli(m

will be available. GTM takes this information and then send a n_essagc to local l,'['i_l for

execution of subtransactions which are local. If the subtransaction requires al_ ol)jcct that

is remote to this site then GTM sends a message to remote GTM for exec.utioll of the sub-

transaction at that site. At the level of LTM it is not possible to (listinguisll bctweeli local

and remote transactions. If the subtransaction is a READ operation then LTM sends a

request for Physical read to Resource manager(RM) where the actual datal)ase is located.

RM acts as a scheduler for reads and writes for read and write requests. RM replies to LTM

with a Physical Read done message. If however, tile operation involves writing the data

object, then LTM sends a message to Local Transaction Recovery Manager (I_TRM) asl_ing

it to write the data item logically. This is different from physical write which is not doue

until a commit message is received. LTRM on receiving the logical write request store the

object_id and corresponding value in a structure. It then sends a message to RM asking for

the timestamp of the item to be written. RM reads the timestamp of the item and sell(Is

it to LTRM. LTRM preserves this timestamp value in corresponding subtransaction's data

structure. Then LTRM sends a message Logical Write Done to LTM.],TM i)ropagal(,s this

messageto GTM. On receiving/not receivingsuccessfulwrite done(logical)from all the sites
(quorumlimit), the GTM make a decision to commit/abort the subtransaction. A two-phase

commit protocol is used to ensure that either all sites "commit" or "abort" a transaction,

thus maintaining data consistency. If GTM receive all the logical write done messages for all

its write subtransactions it sends a commit message to LTM. I,TM p_sses this message, to

LTRM. LTRM now checks if the timestamp associated with the item is same _ts the tintes-

tamp of the item at the time of logical write. For this to accoml)lish, it sends a message

to RM asking for timestamp again. RM replies with item's timestamp. I,TRM checks the

received timestamp with the timestamp of the item stored in its data structure. If both are

same it issues a message Physical Write request to RM. This procedure ensures consistency

of the data item. RM replies with a Physical write done message after it modifies the value

of the data object in the actual database. Having received the Physical Write Done message

from RM, LTRM sends a commit done message to LTM which i)a.sses tim' sa,,," to (VI'N'I.

GTM then lets the UT know that the submitted transaction is successfully done.

The original code which implemented two phase locking as a mea.ns of obtaining serial-

izability is modified to suit our requirements in the following maimer.

UT

• Timestamps are included in all the messages that are sent

• Osn is updated eachtime a message is sent/received

(these steps are repeated in all the modules)

GTM:

• Timestamp is taken from message received from the UT/l/emote C'I'M aml i)_lt, th(_

message in the queue (addtransaction()) based on timestamp ordering.

• After it get a reply from the RC,GTM sends a message to Lq'M instead of G(',(IM (as

in the original code).

GCCM and LCCM

• completely eliminated since we are not using two phase locking.

RC

• All messages are embedded with a logical clock field.

LTM

• In the LTM.h timestamp field is added to the _ltmstruct structure for each iteln.

LTRM

• In the LTRM.h we added numAcksExpected and aborted fields to check for tlLe con-

sistency of the original data item.

• All calls to LCCM are eliminated because none of the locks need be acquired before.

* Four morecasesareadded.
READ_ITEM_TS_FIRST,READ_ITEM_TS_AGAIN,ITEM_TS_FIRST_TIME:
ITEM_TS_SECOND_TIME

Thesecasesare introduced to checkif the item in question is modified by any other
transaction beforecommitting this transaction.

RM
• Eachdata object will havea timestamp associatedwith it. Everytime, this ol)jc('l is

modified the timestamp field is updated to the logical clock valueat that time.

• Two morecasesareaddedto handleread requestsfrom LTRM.
READ_ITEM_TS_FIRSTand READ_ITEM_TS_AGAIN

Opcodes.h
• Four newopcodesdescribedaboveare included in the opcodestable.

Conclusions:

For rigorous testing of the current code a small delay can be introduced in the transactions

submitted so that some confilicts can be simulated. Alternatively, original code calJ be

refined so that each of the transaction managers act as servers instead of waiting in a tight

loop for the messages to come. Thus the server will fork off a process for each of the messages

it received.

IN

oil

L

u

_N

E
L

ojml

Jml

m

L

w

Distributed Systems Project Operations and Message formats

December 9, 1992

Step# Operation

a,

I).

So.

a.

b.

UT module sends a transaction to GTM. The transaction may look

like:

Read A

Read B

Write C

Write D

where each Read/Write is called a "Subtransaction".

The message format is :

[TIME_STAMP][USER_TRANSACTION_REQUEST(L)][USEtl-TRANSACTION-I! EGIN(I)]

[USERJD(I)][READ_OP(I)][ITEMID(I)][WRITE-OP(I)]

[ITEM_ID(I)][DATA(I)]...[USER_TRANSACTION-EN O(I)]

GTM enqueues the incoming transactions on the basis of the time stamp

and then makes subtransactions for every Read/Write of an item

(eg. A, B) and sends a request to RC for complete knowledge

of replication and qourum needed for R/W.

The message format is :

[TIME_STAMP][QOU RUM_READ(WRITE)_REQU EST(L)I[US Elt_TItANSA ('/1"IO N-I I)(l)]

[SUB_ID(I)][ITEMJD(I)][R/W JD(I)]

RC finds an optimal list of sites needed for R/W qourum of an

item in a subtransaction. RC sends this list to GTM.

The message format is :

[TIME_STAMP][QOURUM_READ(WRITE)_REPLY(L)][U SER_TRANSA CTIO S-ll)(I)]

[SUB_ID(I)][ITEM_ID(I)][R/W_ID(I)][QUORUM(I)][NUM-SITES(I)]

[SITENAMEI(I,S)][VOTEI(I)]...

[QOURU M_READ(WRITE)_REFUSED(L)][USER_TRANSACTION-ID(I)]

[SUB_ID(I)][ITEM_ID(I)][R/W-ID(I)]

If a subTx is a READ(local):

A "read" operation is sent to LTM.

The message format is :

[TIM E_STAM P] [REA D_REQ U EST_LO CAL(L)] [US ER_TRA N S A CTI O N _I l)(I)]

[SU B_ID(I)][ITEMID(I)]

If a subTx is a WRITE(local):

A "write" operation is sent to LTM.

The message format is :

[TIME_STAMP][WRITE_REQUEST_LO CAL(L)][USER-TRAN SACTIO N-I D(I)]

[SUB_ID(I)][ITEMJD(I)][VERSION (I)][DATA(I)]

Step# Operation

5b

6a,6b

7a,7b

8a,8b

If a subTxis a READ(remote):
A "read"operationis sentto remoteGTM.
Themessageformatis :
[TIME_SWAMP][READ_REQUEST_REMOTE(L)][USER-TRANSACTION_ID(I)]
[SUB_ID(I)][ITEM_ID(I)]

If a subTxis a WRITE(remote):
A "write" operationis sentto remoteGTM.
Themessageformatis :
[TIME_STAMP][WRITE_REQUEST_REMOTE(L)][USER-TRANSACTION-ID(I)]
[SUBJD(I)][ITEM JD(I)][VERSION(I)][DATA(I)]

sameas10a(Nowrequestis local).

Local READ operation:

LTM passes the read operation to RM of the site.

The message format is :

[TIME_STAMP][PttYSICAL_READ_REQUEST(L)][USER_TRAN SACTIO N-ID(I)]

[SUB_ID(I)][ITEM_ID(I)]

Local READ reply from RM to LTM.

The message format is :

[TIME_STAMP][PItYSICAL_READ_DONE(L)][U SER_TRA NSACTIO N-ID(I)]

[SUB JD(I)][ITEMJD(I)][DATA(I)]

Local READ done reply from LTM to GTM:

The message format is :

[TIME_STAMP][READ_DON E_LOCAL(L)][USER_TRA N SACTION_ID(I)]

[S UB_ID (I)][ITEM_ID(I)][DATA(I)]

Step# Operation

10a,10b

lla,llb

12a,12b

13a,13b

14a,14b

RemoteREAD doneis passedbackto the GTM at which
it originated.
The messageformat is :
[TIME_STAMP][READ--DONE-REMOTE(L)][USER-TRANSACTION-ID(I)]
[SUB_ID(I)][ITEM_iD(I)][DATA(I)]

LocalWRITE operation:
GTM passesthe writeoperationfor anitem mentionedin a
subTxto its LTM.
Themessageformatis :
[TIME_STAMP][WRITE_REQVEST_LOCAL(L)][USER_TRANSACTION_ID(I)]
[SUB_ID(I)][ITEM_ID(I)][DATA(I)]

LTM passes WRITE operation to LTRM :

The message format is :

[TIME_STAMP][LOGICAL_WRITE_REQUEST(L)][USER_TRA NSACTION_I1)(l)]

[SUBID(I)][ITEM_ID(I)][DATA(I)]

Operation

LTRM sends a request to RM for the item's original timeStamp.

[TIME_STAMP][READATEM_TS_FIRST][USER_TRANSACTION_ID(I)]

[SUBJD(I)][ITEM_ID(I)]

Operation

RM sends the reply by stuffing the item's timeStamp in the message.

[TIME_STAMP][ITEM_TS_FIRST_TIME][USER_TRAN SACTIO N_ID(I)]

[SUB_ID(I)][ITEM_ID(I)][ORIGINAL_TIMESTAMP]

LTRM sends "write done" reply to LTM.

LTRM actually stores tile value in a datastructure along with tile item's

original timeStamp it received in the earlier message

(Physical write is still not done.)

The message format is :

[TIME_STA MP][LOGICAL_WRITE_DONE(L)][USER_TRA N SA CTION_ID(I)]

[S U n_I D(I)I[ITEM_ID(I)]

Step# Operation
15a,15b

16a,16b

16

17a,17b

18_,18b

19a,19b

20a,20b

A "prepared"messageis sentto GTM by LTM when
a "write donereply" is received.
The messageformatis :
[TIME_STAMP][PREPARED(L)][USER_TRANSACTION-ID(I)]
[SUB_ID(I)][ITEMJD(I)]

Whencorrect# of "prepared"messagesare/(arenot) receivedby
GTM for all write subTx'sof aTx, a commit/abortmessage
is sentto localLTM for updates(finalphysicalWR) andall
GTMs(remote)whichareinvolvedin updates.
localmessageformatsare(commitandabort)(GTM to LTM):
[TIME_STAMP][TRANSACTION_COMMIT_LOCAL(L)][USER_TRANSACTION-II)(I)]
[TRANSACTION_ABORT_LOCAL(L)][USER_TRANSACTION_ID(I)]

Remotemessageformatsare(commitandabort)(GTM to GTM):
[TIME_STAMP][TRANSACTION_COMMIT_REMOTE(L)][USER_TRANSACTION-ll)(1)]
[TRANSACTION_ABORT_REMOTE(L)][USER_TRANSACTION_ID(I)]

Commitor Abort is passed to LTRM by LTM

The message format is :

[TIME_STAMP][COM MITIOCAL(L)][USER_TRANSACTIO N_ID(I)]

[ABORT_LOCAL(L)][USER_TRANSACTION_ID(I)]

LTRM asks RM for tile item's timeStamp again.

The message format is :

[TIME_STAMP][READ_ITEM_TS_AGAIN][USER_TRAN SACTION_ID(I)]

[SUBJD(I)][ITEMJD(I)]

RM sends a reply by including the item's timeStamp in the message

The message format is :

[TIME_STAMP][READ JTEM_TS.AGAIN][USER_TRA N SACTIO N_ID(I)]

[SUBAD(I)][ITEM_]D(I)]

LTRM sends a message to

A. RM if the timeStamp received matches with the

earlier timestamp it got in reply to ITEM_READ_TS_FIRST message.

Tile message fromat is:

[TIME_STAMP][PttYSICAL_WRITE_REQUEST][USER_TRANSACTION_I1)(I)]

[SU B_ID(I)][ITEMAD(I)]

B. if the timestamps of item it received in response to

READ_ITEM_TS_FIRST and READ_ITEM_TS__AGAIN don't match it

sends an abort message to LTM.

[TIME_STAMP][COMMIT_DONE][USER_TRANSACTION_ID(I)]

Step# Operation

21a,21b

22a,22b

23a,23b

24

25

The "Physical write done" is sent back LTRM.

The message format is :

[TIME_STAMP][PHYSICAL_WRITE_DONE(L)][USER_TRANSACTION_ID(I)]

[SUB_ID (I)][ITEM_ID(1)]

"Commit Done" is sent back to LTM.

The message format is :

[TIME_STAMP][COMMIT_DONE(L)][USER_TRANSACTION_ID(I)]

"Commit Ack" is sent back to GTM.

The message format is :

[TIME_STAMP][COMMIT_ACK(L)][USER_TRANSACTION_ID(I)]

Remote GTM sends the "Commit Ack" back to original GTM

The message format is :

[TIME_STAMP][COMMIT_ACK_REMOTE(L)][USER_TRANSACTION_ID(I)]

GTM when receives enough # of commits ACKs from all

involved sites, it announces "User Transaction Done" to UT

The message format is :

[TIME_STAMP][USER_TRANSACTION_DONE(L)][USER_TRANSACTION_ID(1)]

Distributed Systems Replica Control Project

A Group Project for CS 763

Group Members: Rongli Jiang, Pat MullaUy, Kent Stevens

Abstract

Replica Control is necessary in distributed systems to assure mutual consistency and

provide a degree of fault tolerance. 1"2 If data is not replicated among the nodes of the

distributed system, a node failure can be responsible for significant system degradation.

In this project, a replication algorithm is implemented using a weighted voting method,

where a quorum of sites and votes must be obtained to execute a read or write
transaction.

Introduction

The purpose of this project is to design and implement a Replica Control (RC)

algorithm which is based on a weighted voting scheme 3. In order to obtain permission

to commit a read or write transaction, a number of votes representing a quorum of

votes must be established according to the following expression:

read quorum + write quorum > total number of votes. A majority group is then deter-

mined by the expression 2 Vsite 1 + Vsite 2 ... Vsite n2 + 1. The weighted voting scheme

improves the overall probability that a read or write quorum can be achieved under

conditions where replicated copies of data have been limited. For simplicity and to

easily observe operation of the algorithm, voting weights are statically assigned to

each site and stored in linked list data structures. Voting quorum values are main-

tained at each site by transaction number, and are loaded during node initiation. The

necessary data structures used to compose and decompose messages are referenced

when a transaction occurs in the system.

The algorithm has been designed to be extensible and compatible with the full

implementation of the distributed network system. In the distributed network im-

plementation, voting assignments can be deterministically assigned based on factors

such as the states of a site or by parameters which may include reliability of the site
or resources available to the site.

Assumptions

In order to successfully implement this project within the limited time available,

various assumptions were made to limit the project scope. The assumptions are:

• The replica control algorithm will not consider partitioning.

• Voting assignments of the sites are established a priori to system operation

and are statically maintained during system operation.

1

• Only one transaction will be processed by the distributed replica control

algorithm at a time. Since our model does not contain any provisions for

concurrency control, multiple transactions could possibly cause conflicts

which would affect algorithm performance.

• Transaction messages are sent and received through statically assigned
socket numbers. Dynamic port assignments are not considered in this im-

plementation, however would be a feature which would be implemented in a

distributed system.

• The program provides limited error recovery for timing out quorum request

responses. A time-stamp file has been incorporated in the TRANSACTION

data structure in which the initiation time of the transaction is recorded.

• This project uses a minimally functional Global Transaction Manager (GTM)

to process, format, and communicate user inputs to the RC module. All data

structures used in this project are pointer based and are easily extensible.

The structures can be easily modified to handle greater numbers of transac-

tions and more complex message structures.

• Some of the functions performed by the GTM have been transferred to the

Replica Control (RC) module for this project. A Simple Global Transaction

Manager (SGTM) has been implemented for this project.

• The user will input transaction ID from the keyboard, which will be processed
through the SGTM to the RC module. An extensive user interface was not

attempted, since the focus of this project was to implement the RC algorithm.

Messa_le Formats

The following describe the message formats used for passing messages between the
distributed sites in this system:

SGTM = RC

• [READ_REQUEST][TRANSACTION_ID][ITEM ID]

• [WRITE_REQUEST][TRANSACTION ID][ITEM_ID]

SRC,m SGTM

• [TRANSACTION_COMPLETE] [TRANSACTION_ID] [ITEM_ID]

° [TRANSACTION ABORT][TRANSACTION_ID][ITEM_ID]

RC m, RC (Remote)

• [LOCK_REQUEST][TRANSACTION_ID][ITEM_ID]

• [LOCK_REFUSED][TRANSACTION_ID][ITEM_ID]

• [LO CK_GRANTED][TRANSACTION ID][ITEM_ID]

2
w

Data Structu res

There are four basic data structures used in the project. The tables and figures

included in this section show the data structures as they relate to the elements of a

transaction. Figure 1 shows the TRANSACTION structure. Figure 2 shows the

logical item structure which maintains replica information. Figure 2 also shows the

physical item structure which contains the site number and the number of votes for

each site. Figure 3 shows the site_info structure which contains the data about the

locking and voting status of a site.

Transection

ID

site info Structure

i

J

i

*next i" Sitename
i

i

s_vote

I
l
I

Status

Siteterdh

Sitename

Read/Write

Quorum

Total

Votes

Num Sites Num Sites Number of

Sent Reply Sites

Send

Time
• Site List * Next

II

Transaction

ID

Figure 1. TRANSACTION Data Structure

3

TRANSACTION Data Structure

Field Field Description

The transaction identification number. This number is an integer

trans_id which is used to identify and synchronize transactions as they are

received and processed by the sites.

Read or Write quorum. This integer specifies whether the node is
rw_quorum attempting to achieve a read or write quorum.

total votes Total votes is an integer obtained by the transaction.

num_sites_sent This value is incremented when a message is sent to a remote site.

hum sites reply Calculated value obtained by adding the message obtained from each
- - siteto obtain the totalnumber ofsiteswhich replied.

hum_sites The totalnumber ofsiteswhich have a specifieddata item.

send_time This isthe system time when the transaction was initiated.

*site list This is a pointer to the site listwhich is used to determine the
- site_infodata for a specificsiteand described inthe site_infotable.

*next This isa pointertothe next transaction.

Logical Item

Item ID --

Read _ Write
Quorum Quorum

!

___ s,,. I I I I I

, , I
--i i , i

!
Physical Item Vote

Figure 2. Relationship of Physical and Logical Items

4

physical_item Data Structure

Field Field Description

site Referenced by the pointer *phirst of the logical_item data structure.
Integer identifying the site number.

vote Integer identifying the number of votes for the site.

*phext Pointer to the next physical item.

logical_Item Data Structure

Field Field Description

Corresponds to the item_id number. Used as the primary key to
item_ID reference the replica data.

rquorum

w_quorum

Read quorum obtained by calculating the majority number of votes

by applying the equation vsite 1 + vsite22 ... Vs_te n +1.

Obtained by calculating the majority number of votes by applying

the equation vsi_ 1 + vsi_2 2 ... vsite n +1.

site_num Holds the number of copies for this item which are in the system.

*phirst Pointer to the Physical Item data structure.

*logext Pointer to the logical_item data structure.

I SiteLenglh
Status

Vole
• next

I

Site Name

Figure 3. Site_info Data Structure

site_info Data Structure

Field Field Description

Pointed to by the site_list pointer in the TRANSACTION datasitename
structure. Contains the site name for the transaction.

sitelenth An integer representing the string length of the site name.

status Indicates whether a site has replied to a transaction request.

s_vote Number of votes at the local site.

5

!mplementation

General

Two major modules were needed to provide a functional demonstration of the RC

algorithm. An SGTM was developed to provide a user interface and to communicate

transaction requests to the RC module. In a fully implemented distributed system, the

SGTM would also handle all of the communication between local and remote sites and

would handle many different types of local messages between other functional modules

of the system such as concurrency control, deadlock detection, etc. To confine the scope

of this project, the RC module was designed to communicate with remote sites instead

of the SGTM module as shown in Figure 4.

Site 1

SG_TM _

RC

Figure 4. SGTM and RC Communication Configuration

The SI InterProcess Communication Library was used to transmit and receive

messages between local and remote sites. Limited exception handling functions were

added to provide some degree of robustness to the system.

Functional Description

The following is a description of the operation of the main functions and procedures

of the RC program module.

main(argc, argv)

The main procedure obtains operator inputs for the module port and SGTM port

and assigns them to the first two positions of the argv array. The procedure call

gethostname is to the SI library which retrieves the name of the host to a string array

which is then mapped to an integer value. The siConvertName procedure call takes

the module name and converts it to an integer, and returns an integer which is checked

to determine if the operation was successful. The init_rc_datatables0 procedure

creates the replica table and a locking table by reading the _replicadata file and

_lockdata file from the local site. The replica data table is initialized by reading from

the file itemid, site number, and the number of votes for each site. The locking

table is initialized by reading into the data structure the itemid and the lock status

(0 not locked, 1 locked).

The sockets for SGTM and RC are then initialized by the init_rc_socket procedure.

This procedure initializes the RC and SGTM with the port numbers entered by the

user at the keyboard.

Following the initialization functions, the main function enters an infinite while loop.

The loop calls the SI library function siReceivefrom0 function which continuously

polls the ports received data. In this project, there are two possibilities for receiving

data: data received from a remote RC at another site, or data received from the local

SGTM. When a message is received, the message is first compared to the moduleport

variable and if the comparison is true, the procedure process..from_remote_RC() is

called. If the moduleport comparison is false, the message is compared to the

GTMport variable. If this comparison is true, the function

process_from_local_GTM procedure is called.

process_from_remote_RC(sd, msg, bytes)

This procedure processes message requests for read/write transactions, or replies to

a local request to read/write a data item. The procedure first parses the message into

the op_code, trans_id, and item id fields of the transaction. A switch statement

determines what to do based on the message op_codes LOCK_REQUEST,

LOCK_GRANTED, and LOCK_REFUSED.

process_from_local GTM(msg, bytes)

This procedure is used by the RC module to find the replica data for the transaction

itemid. The procedure first parses the op_code transid and itemid from the

message, and then checks to determine if the itemid exists. If it does not, a message

is sent to the SGTM to abort the transaction. If the transaction is valid, it is appended

to the head of the transaction queue. A LOCK_REQUEST is then sent to all sites

which have been identified in the sites list. The RC increments the hum_sites_sent

variable after each successful LOCK_REQUEST. If enough votes have been received

from each of the sites is equal to the quorum, the RC sends a COMPLETE to the

SGTM. If there is only one copy of the item on the system and it is local, the lock_table

will be checked to determine whether to complete or abort the transaction. The

procedure then appends the initiation time on the transaction which will be used in

determining the transaction time out status.

do_remote_request(sender_name, trans_id, item_id)

This function is called from the process_from_remote_RC() procedure when a lock

request is made from a local site to the remote sites. The function first calls the

7

lock status0 function to determine the transaction lock state. The lock_status

function uses the item_id to find the locking status of the transaction from the

lock_table. If the lock status is a (1), the op_code variable is set to

LOCK REFUSED, if the status is a (0), the op_code variable will be set to

LOCK_GRANTED. To provide a measure of fault tolerance, if the locking status is

not one of the two states already described, or the item_id does not exist at that site,

the lock_status variable will default to LOCK_REFUSED. The outgoing message is

then constructed and sent to the module port where it is sent to the remote sites using

the SI library call siSendto().

calculate_quorum(sender_name, op_code, trans_id, item_id)

This function is called from the process_from_remote_RCO procedure when

LOCK_GRANTED or LOCK_REFUSED is received from a remote site. The function

first navigates the TRANSACTION data structure queue to find the correct trans_id.

After finding the correct trans_id, the site_info data structure is used to determine

the number of votes (s_votes) for that site. If the op_code has been set to

LOCK_GRANTED by the transaction, the total votes is added to the total by the

number contributed by that site. If the total number of sites which have replied is equal

to the total sites which sent messages and the number of votes received is not enough

for a quorum, a trans_abort message will be sent back to the requesting site. If the

total number of votes is equal to the read or write quorum number, a TRANSAC-

TION_COMPLETE message is sent back to the requesting site. The transaction is

also deleted from the transaction queue. If the total number of sites that responds is

equal to the total number of sites which sent messages and an insufficient number of

votes has been received, then a trans_abort message is sent to the SGTM. To handle

a potential time-out situation where a site is waiting for a message, a timestamp is

placed in the message to indicate when the message was initiated. If the last site has

not replied in a period of 10 seconds, the transaction will be deleted from the queue

and the op_code set to TRANSACTION_ABORT and sent to the local SGTM. This

procedure will not work under all conditions unless a method such as a system timing

message is implemented to increment the time-out checking. This would be necessary

since the SI library function siReceivefrom() does not have provisions for handling

time-out checking for individual messages.

delete_transaction(rid)

This function looks for the target transaction and manipulates pointers to delete the

transaction from the queue.

lock_find(itemid)

This function looks up the item in the lock_table using the itemid to find the locking

status of the transaction.

add_transaction(opcode, transid, itemid)

This function adds a transaction to the head of the transaction queue. The function

first finds the replica data by using the itemid. The data structure for the transaction

is then initialized with default values. The data structure for the site_list is then

created for this transaction and the site name is obtained from the mapping table and

8

appended to the structure. As shown in Figure 2, the site and the votes for that site

are then appended to the site information.

init rc datatablesO

This procedure is called from the main procedure and is used to read in the

transaction and locking data from files stored at the local site. The procedure first

obtains the data file name from the local site. It then opens the replica data file and

reads the transaction number, site number, and number of votes from each site into

the transaction queue. The compute_site_num0 function is called to calculate the

number of sites contained in that transaction id. The compute_quorum function is

then called to calculate the value of the read or write quorum. The sitenamefile file

is then opened, and the values are read to initialize the siteno to sitenme table. The

Lockfile is then opened and values of itemid and the lock (0 not locked, 1 locked)

are read to initialize the lock_table.

skip(c, fp)
This function is used by the previous procedure to pass over various formatting C ,)

expressions which are contained in the files which are used to initialize the locking
and TRANSACTION data structures.

compute_quorum (ptrl)

This function is used by the init rc datatables() procedure to calculate the read

or write quorum for a given transaction. The for loop in the function sums the number

of votes from each site which has replied to a read or write transaction request. The

read quorum is then calculated by using the equation Vl + v2 ... Vn2 + I and the write

V l + V2 ... Vn

quorum is calculated by using the equation 2 + 1. The equations used to

determine the quorums conform to the constraints mentioned in the Introduction for

a voting algorithm.

compute_site_num (ptr l)

This function is used by the init rc datatables0 procedure to calculate the number

of sites which have a particular data item.

Operational Description

As shown in Figure 5, the operator first initializes the SGTM and RC modules at

each site, and specifies socket numbers for both transmitting and receiving messages.

Following initialization, the RC at each site enters a loop as a server where it waits

for messages which occur at the receive port. When a message arrives, it is categorized

as to its origin: whether it is from the local SGTM or from a remote RC which is located

at another site(s). As described in the functional description section, the message is

then parsed to determine its type (LOCK_REQUEST, LOCKGRANTED,

LOCKREFUSED). Depending on the type of message received, either a read or write

quorum is calculated, or a request lockrequest message is constructed. If a

LOCK_GRANTED, LOCK_REFUSED message is selected, the procedure deter-

9

InHialize

Sitos

|
Wail for

Mossages

process_f rom_local_GTM _process from remote_RC

I ,oo_.,. I I \ s,.,,, / I l_°b'"°°"/I
l " I /i " J I i

I s..° I I =oo,..,o.°.1 I.o-o,°o,-I
I L°ck-Roquost I I I i I Tran, I I [?n?. I
I ,o.,,.... I i " _ I_o_o...I I _:o:,, I

._ .trio. I / sit, /

Figure 5. Replica Control Process

mines if a quorum is available. If the quorum is present, a success message is sent
otherwise, the transaction is aborted, or ifa site has not replied, the process will wait
until the time-out period has elapsed.

Conclusion

This project has provided a unique perspective on the Replica Control problem as it

relates to managing replicated data across a distributed network. The project has
provided the following insights into this problem:

• A Replica Control algorithm must have sufficient performance and must

provide adequate protection to the replicated data to prevent inconsistency
in the data resident at that site.

• The algorithm must provide error detection and processing mechanisms
which allow recovery after anomalous behavior by sites on the network.

A weighted voting scheme is clearly more desirable than the single-vote
majority consensus algorithm since it increases the overall probability that a

quorum can be achieved under conditions where replicated data objects are
limited. However, this method of handling replicated data is not as desirable
as using coteries. 3

10

Even though coteries may be the most desirable method of replica control,

they are much more complex to implement, and their performance suffers as
the number of sets increases.

As was mentioned in the assumptions, transactions are given a time-stamp to give

this RC implementation a degree of recovery from a site or gross communication link

failure. In this project, no provisions were made for detecting corrupted messages and

for accommodating dynamic site states in the distributed system.

References

1. S.B. Davidson, Replicated Data and Partition Failures, Distributed Systems
edited by S. Mullender, ACM Press, New York, NY, 1989.

2. M. Raynal, Distributed Algorithms and Protocols, J. Wiley & Sons Ltd., 1988.

3. H. Garcia-Molina and D. Barbara, How to Assign Votes in a Distributed System,
J. of the ACM, 32(4): 841-860, Oct. 1985.

11

Appendix I

Replica Control

Project Source Code

12

t{/'l44_I_

"_I'--I

m m

-I__'->-o

4l 411

. E

0 I_

e- ID

0_

,--_: ,-.

II1 _Z 0 0

_' _ '_
._ >.

A" "-...So.```_,_ A"

O

C

3

|

tO

q-

o L"

® ,.,

4_ • O

"-_ _ .-

._ __ __ I_

X o-

x

0
ar-uj

_" _- o_ "'I o I "J_

xx 4_ lap 4u !

(.p._

If,-

'; _- li

o

.-_ -,.,__,_ 0,_
_.,_C 5 '_ _.. _._ ___

.,- _ .

'_ _ _ '-.._

o- _
_ .. ._'_
- _ _,_

> _ m.t-

_ .- _ _'_

_ o

_3. • '-,,..,..® >,.. _o
•-o_ _ '_"_,_ _ _ o_

O

A" _,"E-..

-- I(/14PRINT

=

>

._ 0mB 4J

C

U _ 0 [.. 4-* 41_ ._

_- _ _ :;:.._,.,
o - o. _.

_- _:, _

.. •

£.4_' II %"- 0 "I_I t/1 ._ (.. r U) 0 v O. t/__ --' _'_ _ I I _ O.O

_ ._ _. r r .c

. " _. _

e tx e u

_U

t| : •
..... ^. _
•-. •_.... _-

L. IL.

: : N
0 •

_ tce • O_

_o
C

• . ,.'1_" L |
(b "O ,--

J I) _0 U m
r Q.,_ L 0

r r cr_.,_

r

1 _ 0

,° _ '_
_. _ _ o_'

u_,_ _,_
4=' Ul

_ . _,,_
_" _ 0

m>

o _ _
• . I._ "0 *. T

"_ _-,_-_, ®,.
.. _,_ ,0_ ,..._ =

_ _

I ¢.$14PR I NT

_J

ILl

0
4-,

0

In

In

,,_ c-
O r"

.._- _ o

0.

tJ -
- tJ _ L

U :_ I- " ol
0 _'0 "0

II 41

,11

tl tl

41 41

tE tE
41 tm
41 41

tl 41

41"041

: "-,:
:|:

._}

: "-,:
41 _tx
_1 Etl
41 10¢

: °,:

,11 ,11

iv

4,.,

_: _" _._ ",
r_tlE I '_ 0 :3

.:_:"-_ __ _ g -_
3 t_ I uJ I

._, J'; -- ,%

**°" (,1 I,t ..ot_sJ 4-_ ,iJ

"0

I

,tJ

0

RI

,4-

41

ul

v

t!

41

"

t,o

W.l(

I0t(

_J O

oncE. "_
,_ o_

• .-.,, ,, ,_ .-£.c_ _.. o

0 '_

. o

0

IV

m

o8
C

' 0

_ U

Iu _v mV

tl

o --_ ;-:;" tc _ _ _ oo_o IO- _-'

'_ _, cm _ ,_c_t_ "_ _"eN eNg N II g% II v N

E
_J
¢=
.,O

E

L
0
C

1- 3

_ 0

'r- _, E
h- ._ I-

"_.%. II 31_

t-
O

E

_J

3
V

®'_
_o

,,.t

0 0_-_ _

.c L "; .-., ,_ =

>.

.=°____ _._..o_-
_ ._,_"-

o
A

o L

e2

r_ v

,
W " _ I
_a _j

"

' _=,,, .-,

_._0 13r

IA > vA #

o
E

o

0

- _
0

t

0

_ • >1

oo=o _o- -,_,- ,-_" _"
_ N _ N _ N ## _ f/) #J v (_--M.1_1 "%. t/) _1 _ {_

I(FI4PRINT

"I
II
::I
0"

la

>_ L

'C ® ® .-, f o
IlO I. II U

f _

_ ,_1| II

I.. .-
_L

_ P - L '-

- ,,,,
- 17

e- L 0 _

m

•1_ tm

,11 41

: :
,It 0

_ U U_

•m o11

ut_ u 0

-I,

I.

t, _ I_'_

°- o °-_wS_ ,,_

t-

O

01

r" C ,-

.°,o-

,,_ ,,
*_.÷_

In

QI

8
o

In

o

l:

0 -"_ ,--

_ =gU L

• "0 _

0

,_ _u_
A _,II

41, ;&
fl }

tl tl
tl } e-
_1 }1 I.

• :7

_ tl J=

"ID_ m
•--_ C •

41 U'II .1_
•11 _'11 CIE

u e" 41 .0._

-b- II _ v
I_ ^ r"

{U "_ L o
J::l '-I_-_" _ '_

r._ _ _. _,..,c L. _, "
_1 41-14-t II

•_ ,_ _'. ,,._ _

" " 5"_

L _

4t _1 ["
_1 f{ 0

fl

0

u

•It o.1_ .1=

_ .-_
-_^

_p

or

C
0

1(/14PRIPIT

Q;

"" ""I

:_{,.

m wl

. _._ $.

_ _, ._
=_

tl
.IX
,11
41
,11
4_
tl
411
tl
tl
.m
tl

tl
tl

tl
4,
tl
41
4,
41
tll
tl
I

tl
41
.I
o
t

t
tl

t
.)
,)

1
¢

c 1

:8 .
t

t

t

t

11 11
.Ii 41

11 ,k
11 11

: : c0
tl tl

o. _

.J _J -_

.. d __

_ ,, .:.,-,._ ,:.,-

_ '=

41 .--@ ,_ I0 0

U _ .."1_ ,_ _ _ _" I:::

?
,.-, ,I _

l}

',,0

Q.

i

I-
v

I!

9
C

,o_.,,.,_ ,__-;,%_ o,-._ o ,_;

OJ rU _U I_.

i(J14p_RINT

IU

e_

!

o

_ ° _ ..

_" _= + _-

.._'c, ++_o_ _'_ "_

i :
® "E ; :

;.-_. : :

'_ ,_ 0 0 _ 4_

.... -_ i_• _ _._ e,g _ r_0 _ _k

" II = tl UtE41_ II NI.-0 _ _' II II v ._

c_, = o c _,-.- E E

0,II ,I

-./--I

II II

: .E: _..... _>_._._

tR 4.,

S
: ,

• t_ _ m

tl tl ._ U

e

>: _

4' ._ _

:_-. ,, _-

, _..... ",'..

•1_ I ,IX _ t-- 4-' ,-- _J UI • n O. *'_

>, _. _" E o ®r,_ 0 • _.

_,, _.- _ ,, , ^,^_, ,_'-

1 IJll I- L. rMt'_J

tl _ u

• •
t_ e V)

4_ 4I

0 ,1_ tl

t_o tl _ J=

u _ •

.:o.o
^^ : _

•-- L

I (,,'14PIq [NT

Iq.PI 4P_|NT

41 41 m

41 tl _

-- _ .k 41

41 • 0

- g _i_ _

,_ , +-',; ,..

_. +
+ _ +..,-++2

I_I O_ +II t,._<l ..
L +''-'N

X

0

II

11.

_'

L L

g_

41 "It

41+ ."
41 t_
tl

41 _tl

,P,+,P,"
41 IX_
41 Cl..+
41 41

41 ,la

41

" 1

AN INTERACTIVE USER INTERFACE FOR A

DISTRIBUTED SYSTEM ON N NODES

by

Yagnamurthy Sekhar

Shailesh Rao

Gary Carlson

TEAM 1

DISTRIBUTED SYSTEMS PROJECT

CS 763

10 December 1992

GOALS -- The goals of this team's programming effort are to implement a

program which will automatically establish a distributed system (DS), based

upon parameters which are input by the initiating user, AND allow the user to

interact with this DS in real time.

PARAMETERS -- Ideally, some of the PARAMETERS which a user maywish

to input might include: {N.B. not all of the below will be available in this implem.}

names of sites to be included in the DS {node list}

algorithm or program to be run after network is established

network topology desired

verbose or non-verbose reporting; report to a Iogfile

connection type

OBJECTIVES --The programming team (Team) chose to list the OBJECTIVES

in order of achievability. This list will serve as objectives for future efforts and

inspiration for further thinking or research into this aspect of programming for

DS. Some of the means of implementation are indicated within the braces; a

brief summary of mechanisms and operations follow in the section labelled

"SUMMARY," as well as in the comments within the source code. A detailed

description of the implementation is provided in the section labelled

"DETAILS."

Choose a programming language {C}

Define the important parameters {see above}

Choose the exact type of connection {sockets}

Choose network topology for this project implementation {logical ring}

Choose an algorithm for this project implementation {token passing}

Define the format of the message {see DETAILS}

Build the network of nodes {see DETAILS}

Begin circulating messages in accordance with the chosen protocol

Allow user to change certain parameters during execution {not implem}

SUMMARY

Message Format- Token_bit(int 011); source(string, e.g.

horus.cs.odu.edu); destination(string, e.g. lilac.cs.odu.edu); data(string);

ack(int 011); msg_id(int). The strings are delimited by \n, allowing them to

vary in length.

Connection type -- Sockets are used in this implementation as the means of

communication. At present during network activation, the Pilot "remote execs"

the server program on the successor node and then listens on its in_port for 5

minutes. If nothing is heard, Pilot passes the NULL string and then terminates

itself. In a real system, some mechanism other than a timeout and

self-termination would be desirable to cope with failure of the completion of the

ring.

Algorithm choice -- Specify the algorithm to be run as .c unless only .o

available, in which case we need to know machine and architecture types. The

Team has chosen to design, code, and implement a general purpose token

passing program to exercise the established network. When the algorithm is

called, whatever it is, the following will be passed as arguments:

list of active nodes on Distributed System

Socket descriptors to be used for message passing

Algorithm to be used or address where its code may be found

Termination -- System termination is presently effected by passing a NULL

string to one's successor in the ring. If string =- NULL, the node passes the

NULL string to its successor and then terminates itself.

2

DETAILS -- This section describes the means by which our more involved

objectives were achieved. Included in such descriptions will be the problems

encountered or discussed, the resolution decided upon with justification, and

the procedure by which the resolution was effected.

Connection type m TCP sockets are used for communication between nodes

owing to its reliabilty and intrinsic suitability for this distributed system.

Establish the network topology and protocol -- Naturally, the system must be

activated on a single node, the one on which the user is logged on. We call this

node the "pilot," and label it P0. (See Figure 1.) Once executed, the program
functions as follows:

Explanation of PILOT & SERVER portions of program

The distributed system with INTERACTIVE USER INTERFACE developed by

Team 1 to complete the course project consists of two parts. Detailed

descriptions of these two parts will follow with their respective pseudocode

portions. The source code for the system is in two files pilot.c and server.c.

-- The first part is a PILOT program which

(1) takes input from the user,

(2) starts the entire process and

(3) calls the application algorithm. In our implementation, this is the

token ring protocol. PILOT initializes the ring protocol by pumping a token into

the ring when it has confirmed that the ring is properly established.

-- The second part is a SERVER program which establishes and maintains

connections with its predecessor and successor.

pilot.c:

The user of the distributed ring system runs the executable code of

the file PILOT from a terminal. The program starts by requesting that the user
input a list of the machines to be included in the network. Thus the PILOT

program has the information of the members of the system. By default the

machine from which PILOT is started is included in the system.

The PILOT program creates a socket to which its successor node can

connect as part of the ring. The PILOT then forks a process which remotely

executes the SERVER program on the successor node, found on the list which

was input by the user.

The port number of the out_socket created by the PILOT is passed as

an argument to the successor node. That node also needs the name of the

3

machine to which it should connect, hence this is also a parameter to be passed

to the remotely executed "SERVER" process as an argument. The final

argument to the remote execution is the port number of the in_socket of the

PILOT. This is neccessary because the PILOT program, after starting its

successor, waits on an in_socket for the last member of the ring to get

connected to the PILOT, thus completing the ring. So the last node must know

the port number of the socket on which the PILOT is ready to accept connection.

This port number is therefore passed as a parameter to successive SERVER

programs but only the last node uses this information; all other processes just

pass it on to the next process. Once the ring is completed, the PILOT process

forks a child which pumps the token into the ring and then 'exec's the program

written for simulating the token ring protocol.

begin

take list of nodes from user;

create two sockets: in_sd, out_sdl

bind both sockets to arbitrary ports;

fork();

if (child)

rsh server process on next machine

pass in_port, out_port and Iocalhost name as

parameters;

if(parent)

wait on out_sd for successor to get connected;

pass the list of machines to be in the ring;

wait on in_sd for the last member to get connected;

/* ring is completed*/

fork();

if(parent)

pause();/* parent can be assigned any future

work*/

if(child)

put the token onto the ring through out_sd;

exec the token ring program and pass to the

program in_sd, out_sd, list of members as

parameters;

4

end.

server.c:

The SERVER process gets as parameters three values:

* pre_port, the port on which its predecessor is waiting for

connection;

* pilot_port, the port number on which PILOT will be expecting

connection from the last member of the ring, so this value is to be passed on to

the last member of the ring; and

* pre_host, the name of the predecessor.

By using the pre_host and pre_port parameters, the SERVER

process gets itself connected to its predecessor and waits to receive the list of

members of the ring. Once it gets the list it looks to see its own position in the

ring. If it is not the last member, it gets the name of its successor node from the

list. It then creates an 'out sd' socket for the successor node to connect to.

Then it forks a child process which remote starts the SERVER process on the

successor node and passes to it as parameters the port number of out_sd,

pilot_port and its own name. Parent waits on out_sd for the successor node.

Once successor node is connected it passes the list of members of the ring

which it got from its predecessor and it then 'exec's the token ring simulation

process. When the last member of the ring when gets the list from its

predecessor and finds out that it is the last node, it does not remote execute

SERVER process again. Instead, it knows that PILOT is waiting on pilot_port for

completion of the ring. It simply connects to the PILOT and then itself'exec's the

token ring simulation process.

Pseudocode for the SERVER process is as follows:

begin

get the pre_port, pilot_port, pre_host as parameters;

create in_sd socket and connect to pre_host at pre_port;

receive list of members of the ring;

open out_sd socket and bind it to a port;

find out own position in the list;

if(! last member)

{ get the nexthost name;

fo rk0;

5

if(child)

if(parent)

remote start server on nexthost, pass out_sd port

number, pilot_port, Iocalhost name as

parameters;

wait for connection on out_sd;

pass list of members to successor;

exec token ring simulation process and pass as

arguments in_sd, out_sd, list of members.

}
if(last member)

{
get PILOT host name from the list;

connect to PILOT host on pilot_port;

exec token ring simulation process and pass as

arguments in_sd, out sd, list of members.

} ' end.

The details for the TOKEN RING portion of the program are as
follows:

The Token Ring program that is implemented as the application being run on

the distributed system is a simple simulator that emulates the token ring

protocol. The token format used is a character string with different fields, each

performing a particular function. We use a template frame that serves both as a

message and a frame. The first integer in the template is a 0 if it is a frame and a 1

if it is a token. The program works as follows:

The program waits on the input socket till it receives a message. A message in

this program can only be one of two types" either the template string described

above or a kill signal. In the case of the latter, the program terminates. If it

receives the former then •

It checks the first field (which is read as an integer) and if it is a 1 then

The message is a token. In which case the program decides whether to send a

message on the outsocket or not. This is decided based on a randomly

generated probability (if > 0.5, then send). If the decision to send a message is

made, the program randomly decides the destination, picking a number from

the list of nodes on the ring. Eventually, it sends a message (the data field of the

message is fixed in this program for simplicity) and logs the message on its log

6

tile by giving it a unique message id. It then converts the first integer to a 0 and

sends out the template as a token. This way the token is kept circulating on the

ring.

If the first field of the message was a 0 then the program knows that this is a

message as opposed to a token. In this case, the program checks the

destination field and compares it with its own name field. If they match, this

implies that the message is destined for the machine in question. The program

logs the fact that it received the particular message and sets the ack bit to a 1 (

on the same template message string) and sends it back out on the ring. (

source removal policy followed).

If the destination field was not its own, then it checks to see if the source field is

its own, which implies the message has come back to itself after having been

received by its destination and hopefully, having been acknowledged. If this is

true, the program logs the message and discards it.

If none of these cases is true, it means the message is just circulating and is

destined for someone else. So the program just sends it out on its out socket.
w

Begin message passing

create and release a token; /* Pilot does this */
for each node

if token_present {

use pseudo-random number generator (pmg) to decide

whether to send message or pass token;

if (decision = = send_msg) {

use prng to select a destination node;

send_msg;

ciculate token

} /* endif decision == send_msg */

else forward_token;

} /* endif token_present */

if rcv_msg {

if (msg for me){

process_msg;

send_ack; }

else if (source = = self)

remove_msg;

/* endif msg for me */

7

else pass_msg;

} /* endif rcvmsg */

I USER _ff

Sockets, _ .g.

Once the network is established, each

server process 'exec's the application.

t
$3 Network Connection

-- A Server process running on a node

-- The application Algorithm

Figure 1. Network Topology

FUTURE ENHANCEMENTS --These are "wish-list" as well as "failure-

proofing" items which were impractical to implement within the time frame of

this semester. They can be used as ideas for future projects and as

springboards for further thinking on the subject.

If implemented in Xwindows, parameters could be chosen from

pull-down lists.

-- Store parameters in a formatted file which would be read by the "pilot"

process. This would relieve the user from typing them in, yet the

parameters would not be hard-coded into the program.

-- Add or remove nodes at will during execution of the program

-- Ping a node before attempting to establish a connection. If not alive,

remove the inactive node's name from the node_list; continue with

8

successor node in node list. When network is established and Pilot has

received the node_list once again, it compares this received list to the

original which was circulated. Report number of currently participating

nodes and names of inactive nodes to the user; query the user whether

they wish to add substitute nodes or continue. If additional nodes were

specified, these would be added to the network, and a final node_list,

superseding the original, would be circulated to all so that every node will

have an identical list from which to pick its nodes.

Maintain a complete Iogfile of all network activity. This might ultimately

prove to be a burdensome overhead, clogging the network with reporting

messages. However, it could be useful for debugging and/or analysis on

a small scale program.

m Build a user-specified topology rather than only a ring. By making the

"Pilot" program more intelligent, it could create the topology specified by
the user.

9

/******* PILOT.C *****************

This is the pilot program for establishing the ring topology with the

machines specified by the user:

#include <stdio.h>

#include <errno.h>

#include <sys/time.h>

#include <sys/param.h>

#include <sys/socket.h>

#include <sys/file.h>

#include <sys/uio.h>

#include <netinet/in_systm.h>

#include <netinet/in.h>

#include <netinet/ip.h>

#include <netinet/ip icmp.h>
#include <netdb.h>

#define MAXHOSTNAME 80

#define MAXLEN 1024

int i, out_sd, in_sd;

struct host names{

char machine[80];

struct host names *next;

}

main(){

struct host names *hosts = NULL, *temp;

char *buffer, argv[20] [40], buf[40], *tmp_buf;

char localhost[80], command[80], next host[80],

other host[80], token[MAXLEN];

struct sockaddr in serverl, server2, clientl, client2, from;

struct hostent *hp, *gethostbyname();

struct iovec *iov;

int num machines, handle alarm(), psd,

fromlen, child, rex child = iii, num;

/*get the name of the local host */

gethostname(localhost, MAXHOSTNAME);

/*allocate space for buffer*/

buffer = (char *)calloc(MAXLEN, sizeof(char)) ;

/*fill in the serverl structure for binding the outgoing socket*/

serverl.sin_family = AF_INET;

serverl.sin port = htons(0);

if((out sd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {

perror("creating socket");

exit(200);

}

if ((hp = gethostbyname(localhost)) == NULL) {

perror("Can't find host %s\n", localhost) ;

exit (-I) ;

}

bcopy (hp->h_addr, &(serverl.sin addr), hp->h_length);

*/

/*bind the socket so that successor can get connected */

if (bind(out_sd, &serverl, sizeof(serverl)) < 0){

perror("requested port is busy") ;

close (out_sd) ;

exit (300) ;

}

/* now work on binding the in socket for the last guy to complete */

/* the ring by getting connected back to me*/

server2.sin_family = AF INET;

server2.sin_port = htons(0) ;

bcopy (hp->h_addr, &(server2.sin_addr), hp->h_length);

if((in sd = socket (AF INET, SOCK_STREAM, 0)) < 0)(

perror("creating socket") ;

exit (i00) ;

)

if (bind(in sd, &server2, sizeof(server2)) < 0) {

perror("requested port is busy");

close(in sd);

exit(300_;

}

fromlen = sizeof(from);

/* create space for holding machine names to be given by user*/

hosts = (struct host names *)malloc(sizeof(struct host names));

temp = hosts;

/*The machine on which this process is run is invariably a member of */

/*the ring topology so let me put my name in the list*/

strcpy(temp->machine, hp->h_name);

printf("Give the names of machines to be connected in a ring:\n");

printf("ONE MACHINE NAME PER LINE PLEASE\n");

/* Take the list of machines to be connected, RING is the default */

/* topology forced for now. It can be modified*/

while((scanf("%s", other host)) != EOF) {

temp->next = (struct host names *)malloc(sizeof(struct

host names)) ;

if ((hp = gethostbyname(other_host)) == NULL)

printf("Can't find host %s\n", other host);

exit (-I) ;

}

/* for the sake of uniformity, convert the given name into "dot" */

/* notation like 'offa.cs.odu.edu' */

strcpy(temp->next->machine, hp->h_name);

temp = temp->next;

}

temp->next = hosts;

hosts = hosts->next;

temp->next->next = NULL;

/* get the port numbers to which two sockets are bound*/

if (getsockname(in sd,&clientl,&fromlen)<0)(/*qet client socket info*/

perror("could't get sockname\n") ;
exit (i0) ;

}

if (getsockname(out sd,&client2,&fromlen)<0) { /*get client socket info*/

perror("could't get sockname\n"):

exit (i0) ;

}

/* prepare the command to be executed by the child. */

sprintf(command, "rsh -n %s /home/yagna_s/cs763/project/server %hu %hu %s",

hosts->machine, ntohs(client2.sin_port),

ntohs(clientl.sin_port), localhost);

/*now fork a child and let the child execute the rsh command because */

/*it is a blocking call which won't return until the remote process */

/*is terminated*/

if((rex child = fork()) < 0) {

perror("problem with forking the rex_child");

exit (50) ;

)

else if(rex_child == 0) {

system (command) ;

exit (55) ;

}

/* child process */

else{ /* parent again */

listen(out_sd, l); /* listen for connection from successor */

out_sd = accept(out_sd, &from, &fromlen);

printf("%s: Establishing Ring Please wait \n", localhost) ;

temp = hosts;

tmp_buf = buffer;

/* prepare the string of all machines of the ring to be passed to */

/* the neighbor*/

while(temp) {

sprintf(tmp_buf, temp->machine):

tmp_buf += strlen(temp->machine);

tmp_buf[0] = '\n'; tmp_buf++;

temp = temp->next;

hum machines++;

)

/* send the list of machines */

if(send(out sd, buffer, MAXLEN, 0) < MAXLEN) {

perror("sending on socket") ;

exit (112) :

)

alarm(300);

/* now I am done. I wait for completion of ring by the last node */

/* in the ring */

listen(in_sd, l) ;

in_sd = accept(in_sd, &from, &fromlen);

-- /*Oh!! Ring is completed. Let me turn off the alarm*/

}

)
*----

alarm(O) ;

hp = gethostbyaddr(from.sin addr) ;

printf(,,%s:Ohll t t r ,Ring is completed from %s\n" localhost hp->h name) •• I , __ e

printf("Now I start the tkn_ring process\n");

/* Initialize the token to start the process*/

/*this is the format of the token agreed to by myself and */

/*tkn_ring*/

strcpy(token, "l\nhorsa.cs.odu.edu\noffa.cs.odu.edu\nNOTE\n0\nl\n");

send(out_sd, token, MAXLEN);

/*Now let me take rest and let my child run the tkn_ring process*/

if((child = fork()) < 0){

perror("problem with forking the child");

write(out_sd, "", strlen("")) ;

exit (400) ;

}

else if(child > 0){ /*parent process*/

pause();

)

else(/* here is my child */

char in socket[10], out socket[10];

sprintf(in socket, "%d" in sd)"

sprintf(out_socket, "%d", out sd) ;

strcpy(argv[0], "tkn_ring") ;

sprintf(argv[l], in socket) ;

sprintf(argv[2], ou__socket) ;

/* pass in_sd, out_sd and list of members in the ring to the */

/* process */

execlp("tkn_ring", argv[0], argv[l], argv[2], buffer, (char *)0);

}

*/

handle alarm()

(

printf("Some thing is wrong, timed out for ring establishment\n");

write(out sd, "", strlen("")) ;

exit (500) ;

/* */

/********** SERVER.C *************************

This is the server program executed by the pilot program on all the

machines which are to be part of the ring

#include <stdio.h>

#include <errno.h>

#include <sys/time.h>

#include <sys/param.h>

#include <sys/socket.h>

#include <sys/file.h>

#include <sys/uio.h>

#include <netinet/in_systm.h>
#include <netinet/in.h>

#include <netinet/ip.h>

#include <netinet/ip_icmp.h>

#include <netdb.h>

#define MAXHOSTNAME 80

#define MAXLEN 1024

int i, out_sd, in_sd:

struct host names{

char machine[80];

struct host names *next;

}
/* --*/

main(argc, argsv)

int argc;

char **argsv;

{

struct host names *hosts = NULL, *temp;

char *buffer, argv[20] [40], buff40], nodes[10] [40], *tmp bur;

char localhost[80], command[80], next host[80],

other host[80], token[10], pre_host[80];
struct s_ckaddr in serverl, server2, clientl, client2, from;

struct hostent *hp, *gethostbyname();

int num_machines, handle_alarm(), psd,

fromlen, child, rex child = iii, hum,

pre_port, pilot_port;

/* server must receive three arguments from pilot and fourth one is */

/* from the shell which is the name of the program*/

if(argc < 4) {

perror("Not enough arguments are passed to the server:");

exit (10) ;

}

pre port = atoi(argsv[l]);

pilot_port = atoi(argsv[2]) ;

strcpy(pre_host, argsv[3]) ;

/*predecessor port I must connect to */

/*in_port of pilot, used by last member*/

/* predecessor's name*/

/* let me find my own name first */

gethostname(localhost, MAXHOSTNAME) ;

buffer = (char *)calloc(MAXLEN, sizeof(char)) ;

/* now I will open a socket for connecting to my predecessor */

serverl.sin_family = AF_INET;

server] +'-'+. port -+ ore port:

if((in_sd = socket (AF_INET, SOCK_STREAM,0)) < 0) {
perror("creating socket") ;

exit (200) ;

)

if ((hp = gethostbyname(pre_host)) == NULL) {

perror("Can't find previous host") ;

exit (-i) ;

}
bcopy (hp->h_addr, & (serverl.sin_addr), hp->h_length) ;

/* I will create a socket for my successor as well */

server2.sin_family = AF_INET;

server2.sin port = htons(0);

if((out_sd = socket (AF INET, SOCK_STREAM, 0)) < 0) {

perror ("creating socket") ;

exit (200) ;

}

if ((hp = gethostbyname(localhost)) == NULL) {

perror("Can't find local host");

exit(-l):

}

bcopy (hp->h_addr, &(server2.sin addr), hp->h length);

if (bind(out_sd, &server2, sizeof(server2)) < 0) {

perror("requested port is busy") ;

close (out sd) ;

close (in sd) ;

exit (300_;

}

/*sleep for a while until my predecessor executes accept()*/

sleep(2);

if (connect(in_sd, &serverl, sizeof(serverl)) < 0) {

close (in_sd) ;

close (out_sd) ;

perror("connecting stream socket") ;

exit (150) ;

}

/* I am part of the ring now!!!!!!!!*/

fromlen = sizeof(from);

if (getsockname(in sd,&client2,&fromlen)<0) { /*get client socket info*/

perror("could't get sockname\n"):

exit(10);

)

sleep (2) ;

if(recv(in sd, buffer, MAXLEN, 0) < 0){

perror("receiving on in_socket for server");

exit(ll);

}

/* Now I got the list of nodes to be in the ring. Thus I know my */

/* successor also */

tmp_buf = buffer:
i = 0;

/* let me sort out the list of nodes to start with */

while(sscanf(tmp buf, "%s", buf) >0) {

strcpy(nodes[i++], buf) ;

tmp_buf += strlen(buf) + i;

}
strcpy(nodes[i], "") ;

/* I should know my position in the ring, whether I am the last */

/* one*/

for (i=0; strcmp(nodes[i], "") : i++)

if(! (strcmp(hp->h_name, nodes[i])))

break;

strcpy(next_host, nodes [++i]) ;

/*hp is still the localhost*/

if(strcmp(nodes[++i], "")) (/* I am not the last one. So let */

/* the other guys also enter ring*/

if (getsockname(out_sd,&clientl,&fromlen)<0) { /*get client socket info*/

perror("could't get sockname\n");

exit (i0) ;

}

sprintf(command, "rsh %s /home/yagna_s/cs763/project/server %d %d %s",

next_host, clientl.sin_port, pilot_port, localhost) ;

/* I will let my child create the next guy in the ring */

if((rex child = fork()) < 0) (

perror("forking rex_child") ;

exit (350) :

}

else if(rex child == 0){

system(command) ;

exit (1) ;

}

else{ /* I am back again with business */

listen(out sd, l) ;

if((out sd = accept (out sd, &from, &fromlen)) < 0) {

perror("accepting connection") ;

exit (13) ;

}

/* Next node is connected so, pass the list of nodes to him*/

if(send(out_sd, buffer, MAXLEN) < MAXLEN) {

perror("sending buffer") ;

exit (14) ;

}
}

}
else{ /*I am the last node, so connect back to the */

/*pilot to complete the ring*/

serverl.sin_port = pilot_port:

if(! (hp = gethostbyname(next host))) {

perror("pilot host is not found"):

exit(lll) ;

)

bcopy(hp->h_addr, &(serverl.sin_addr), hp->h length);

printf("connecting to pilot");

sleep (2) ;

if (connect (out_sd, &serverl,

close (in_sd) ;

close (out sd) ;

perror(connecting to pilot

exit (150) ;

}

sizeof(serverl)) < 0) {

socket") ;

/*now let me start the actual exhibition of tkn_ring process*/

char in socket[lO], out socket[lO];

sprintf (in socket, "%d", in_sd) ;

sprintf (ou_ socket, "%d", out sd) ;

strcpy(argv[O], "tkn_ring") ;

sprintf(argv[l], in socket) ;

sprintf (argv[2], ou__socket) ;

sleep(5

execl("

)

);

/home/yagna_s/cs763/project/tkn_ring", "tkn_ring", argyll], argv [2] , bur

/********* TKN RING.C *******************

This is a simple version of token ring protocol written to exhibit the

use of the distributed system interface given by pilot.c and server.c

#include <stdio.h>

#include <errno.h>

#include <sys/time.h>

#include <math.h>

#include <sys/param.h>

#include <sys/socket.h>

#include <sys/file.h>

#include <sys/uio.h>

#include <netinet/in_systm.h>

#include <netinet/in.h>

#include <netinet/ip.h>

#include <netinet/ip_icmp.h>

#include <netdb.h>

#define

#define

#define

#define

#define

#define

#define

#define

#define m3

#define ia3

#define ic3

ml 259200

ial 7141

icl 54773

rml 3.8580247e-6

m2 134456

ia2 8121

ic2 28411

rm2 7.4373773e-6

243000

4561

51349

int idum;

int glixl, glix2, glix3;

float glr[98];

float r;

float randl();

#define MAX RANDOM NUMBER 2147483647

#define MAXHOSTNAME 80

#define NOTE "How_do_you_do"
#define MAXLEN 1024

char names[20] [40], myname[40], localhost[40];

int maxnodes = 0, insocket, outsocket;

char token[1024];

char source[40], dest[40], data[500];

int ack, is_tkn, msg_id, next_msg = 0;

char msg[MAXLEN];

FILE *fp, *fopen() :

main(argc, argv)

int argc:

char **argv;

int i:

void decipher():

struct hostent *hp, *gethostbyname();

char *tmp_buf, buf[80];

strcpy(token, "l\nhorsa.cs.odu.edu\noffa.cs.odu.edu\nNOTE\n0\nl\n"):

fp = fopen("/tmp/log", "w+") ;

insocket = atoi(argv[l]);

outsocket = atoi(argv[2]);

tmp_buf = argv[3] ;

i = 0;

while(sscanf(tmp_buf, "%s",

strcpy(names[i++], buf) ;

tmp_buf += strlen(buf) +
maxnodes++;

}
/*

i = 3;

while(i < argc){

strcpy(names[i-3],

i++;

buf) >0){

i;

argv[i]);

printf("%s\n", argv[i]),"

]
maxnodes = argo - 3;

*/

gethostname(localhost, MAXHOSTNAME);

hp = gethostbyname(localhost) ;

strcpy(myname, hp->h_name);

for (;;){

sleep(2);

if(recv(insocket, msg, MAXLEN, 0) <

printf("%s\n", msg);

perror("100:receiving on socket");

close(insocket);

exit(100);

}

0){

/* strcpy(msg, "0\nhorsa.cs.odu.edu\naelle.cs.odu.edu\nNOTE\n0\nl\n");

*/

if(!strcmp(msg, "")) {

if(send(outsocket, msg, MAXLEN, 0) < 0)

break;

}
decipher () ;

if (is tkn)

handle token() ;

else

process_msg();

}

fclose(fp);

close(insocket);

close(outsocket);

}

handle token()

{
double k;

/.
k = (double) (getRandInt(l, 100)/100);

*/
k = (double)random()/(double)MAX_RANDOM_NUMBER;

fprintf(fp, "Received tokenkn");

fflush(fp);

if (k > 0.0)

se_d ms_(l ;

else

send token() ;

process_msg()

{
if (!strcmp(dest, myname))

process_data();

else if (!strcmp(source, myname))

handle ack();

else{

fprintf(fp, "%s: passing message:

myname, msg id, source,

if(send(outsocket, msg, MAXLEN,

perror("50:sending Ack");

exit(50);

}
}

}

/* this is sent for me*/

%d: of

dest);

0) < 0){

:%s : to: %s \n",

/*

int getRandInt(b)

int b;

{
double seed = 987654321;

return (((seed)*100) % b):

)
*/

send_msg()

char message[MAXLEN],

int k;

tmp_buf = message;

*tmp_buf;

sprintf(tmp_buf, "%d", 0) :

trap buf += sizeof (char) ; tmp buf[0] =

sprintf (tmp_buf, "%s", myname) ;

trap buf += strlen(myname); tmp_buf[0]

'\n'; tmp buf++;

= '\n';tmp_buf++;

do

k = getRandInt(0,maxnodes);

while(!strcmp(names[k], myname)) ;

sprintf(tmp_buf, "%s", names[k]);

tmp_buf += strlen(names[k]); tmp_buf[0] = '\n';tmp_buf++;

sprintf(tmp_buf, "%s", NOTE)',

tmp_buf += strlen(NOTE); tmp_buf[0] = '\n';tmp_buf++;

sprintf(tmp_buf, "%d", 0);

tmp_buf += sizeof(char); tmp_buf[0] = '\n';tmp_buf++;

sprintf(tmp_buf, "%d\n", ++next_msg);

/*Now ready to send this message off*/

if(send(outsocket, message, MAXLEN,

perror("200 '_ ,nding message");

eyit (200) -

0) < 0) {

]
fprintf (fp,

fflush(fp) ;

"Sent message:%d: to :%s\n",

/*Anyway we have to pass token too*/

if (send(outsocket, token, MAXLEN,

perror("300:sending token");

exit (300) ;

}
fprintf(fp, "Sent Token too\n");

fflush (fp) ;

0) < 0) {

(next_msg - i), names[k]);

send token()

{
if(send(outsocket, token, MAXLEN, 0) < 0) (

perror("sending token on the outsocket");

exit (300) ;

}

fprintf(fp, "Sent Tokenkn") ;

fflush(fp) ;

processdata()

(

char *tmp_buf;

fprintf(fp,

fflush(fp);

":%s: received message: %d: from :%s:\n",

myname, msg_id, source);

tmp buf = msg;

tmp_buf += sizeof(char)+strlen(source)+strlen(dest)+strlen(data)+4;

tmp_buf[0] = 'i';

fprintf (fp, "sending ack for msg:%d\n", msg_id) ;

fflush(fp) ;

if(send(outsocket, msg, MAXLEN,

perror("300:sending Ack") ;

exit (300) ;

0) < 0) (

handle ack() {

fprintf(fp, "%s: received ack

myname, dest, msg_id) ;

fflush(fp) ;

)

from: %s: for message :%d\n",

random number generator between 0 and 1

float randl(idum)
int *idum;

{

int j;

float ret;

if(*idum < 0)

(
glixl = (icl - *idum) % ml;

glixl = (ial * glixl + icl) % ml;

glix2 = glixl % m2;

glixl = (ial * glixl + icl) % ml:

glix3 = glixl % m3;

for(j = l:j< 97;j++)

{

glixl = (ial * glixl + icl) % ml;

glix2 = (ia2 * glix2 + ic2) % m2;

glr[j] = (glixl + glix2 * rm2) * rml:

}
• idum = i;

glixl = (ial * glixl + icl) % ml;

glix2 = (ia2 * glix2 + ic2) % m2;

glix3 = (ia3 * glix3 + ic3) % m3;

j = (int) (I + (97 * glix3) / m3);

if((j > 97) If (j < i))

{

printf ("halted in random\n") ;

}

ret = glr[j] ;

glr[j] = (glixl + glix2 * rm2) * rml;

return(ret);

}

• returns random intege between a and b

getRandInt()

int getRandInt(a,b)

int a;

int b;

{
int i;

for(i=0:i<100;i++)

randl (&idum) ;

return (int) (a + (b-a+l)*(randl(&idum))) ;

}

**

void decipher()

{

char *tmp_buf;

char tempi4];

tmp_buf = msg;

sscanf(tmp buf, "%d", &is_tkn) ;

/* is tkn = atoi(temp) :*/

if (!Ts tkn) {

tmp_buf +m sizeof(char);
tmp buf ++;
sscanf(tmp__buf, "%s", source) ;
tmp_buf +- strlen(source);
tmp_buf ++;
sscanf(tmp__buf, "%s", dest);
tmp_buf += strlen(dest) ;
tmp_buf ++;
sscanf(tmp_buf, "%s", data);
tmp_buf += strlen (data) ;
tmp_buf++ ;
sscanf(tmp_buf, "%d", &ack) ;

/* ack = atoi(temp) ;*/

tmp_buf += sizeof(char);

tmp_bu f ++ ;

sscanf(tmp buf, "%d", &msg id);

)

)
**

