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SUMMARY

A model was developed to determine the origin of orbital debris impacts measured on the trailing

surfaces of LDEF. The model calculates the expected debris impact crater distribution around LDEF

as a function of debris orbital parameters. The results show that only highly elliptical, low inclination

orbits could be responsible for these impacts. The most common objects left in this type of orbit are

orbital transfer stages used by the U.S. and ESA to place payloads into geosynchronous orbit. Objects

in this type of orbit are difficult to catalogue by the US Space Command; consequently there are

independent reasons to believe that the catalogue does not adequately represent this population. This

analysis concludes that the relative number of catalogued objects with highly elliptical, low

inclination orbits must be increased by a factor of 20 to be consistent with the LDEF data.

INTRODUCTION

Most of the man-made objects in low Earth orbk that are tracked and catalogued by the US

Space Command are in near circular orbits. The number of objects in elliptical orbits are so few that

models which describe the directional properties of orbital debris generally assume that all orbits are

circular. Such an assumption leads to the conclusion that orbital debris will not impact the trailing

surfaces of other spacecraft in circular orbits (ref. 1).

However, objects in elliptical orbits, especially those with low inclinations, are more difficult to

detect and catalogue than objects in circular orbit. This is because elliptical orbits spend a smaller

fraction of their time at low altitudes where ground based sensors can detect them, and there are fewer

ground based sensors located to detect low inclination orbits. Consequently, the US Space Command

catalogue is not likely to be representative of the various orbit classes of large objects. This lack of

representation of elliptical orbits by the catalogue is likely to increase with decreasing orbital debris

size. The orbital lifetime of small debris in circular orbits at low altitudes is much shorter than

elliptical orbits. Calculations of collision probabilities integrated over these lifetimes lead to a

prediction that orbital debris in elliptical orbits could be important to impacts on spacecraft at low

altitudes (ref. 2).

The "Chemistry of Micrometeoroids Experiment" located on LDEF bay A03 has found a

significant fraction of the impacts on a trailing surface to be of orbital debris origin (ref. 3). The
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purpose of this paper is to determine in more detail the types and relative contributions of orbits

responsible for these impacts, and the implications to impacts on other LDEF surfaces. This will be

accomplished by using collision probability theory to calculate the expected impact crater distribution

around LDEF for various types of orbital debris orbits. This expected impact crater distribution is

then compared with that observed on LDEF.

FUNDAMENTAL LDEF DATA AND ASSUMPTIONS

Parts of two sets of LDEF data will be used here: The results of chemical analysis of the

Chemistry of Micrometeoroids Experiment (CME) given in references 3 and 4, and the flux as a

function of direction around LDEF as measured by the Space Debris Impact Experiment and reported

in reference 5_ f0U0wing is a brief:summary of that data and the assumptions-used _ _pa-per

concerning that data.

In analysis completed on the CME, 15% of the impacts on the experiment's rear located gold

surface (location A03) was determined to be man-made, 29% was determined to be meteoroid, and

56% had no residue, so their source is unknown. The planned rear locations were actually facing 172

degrees from the spacecraft orbital velocity vector. For the purpose of this paper, all of the impacts

into gold which had no residue will be assumed to be the results of meteoroid impacts. This would

seem to be a valid assumption because all debris impacts on the rear surface would be at a much lower

velocity than most meteoroid impacts. High velocity impacts into a dense material like gold are more

likely to cause vaporization, leaving no residue in the surface. About 80% of the man-made impacts

contained only aluminum. The remaining 20% of non-aluminum impacts represents a small sample

of 5, and although it may not be statistically significant, only one of those 5 was paint.

Analysis of the CME aluminum surface (location A11) has concluded that 17% of the impacts

are non-aluminum man-made, 39% was determined to be meteoroids, and 44% had no residue or the

residue was aluminum. The lower density of the aluminum surface would suggest that vaporization is

less likely to occur on these surfaces than the gold surface. Consequently, meteoroid impacts are

more likely to be identified than impacts on the gold surface. This would suggest that the residue was

aluminum in some fraction of the pits where no residue could be identified. As will be shown, any

orbiting source which impacts the gold surface has an even greater chance of impacting the aluminum

surfacel So, some of the unidentified impacts into aluminum should be expected to be aluminum. If

one assumes the same ratio of aluminum to non-aluminum impacts on the aluminum surfaces as was

measured on the gold surfaces, one would expect more than the 44% of the unidentified pits to be

man-made aluminum impacts.

However, the orbital debris impacts on the aluminum surface appear to have a different character

than on the impacts on the gold surface: 57% of the orbital debris impacts on the aluminum surface

are paint. This could suggest different types of orbits for orbiting paint flecks. In addition, the

limiting threshold size on the gold surfaces is smaller than on the aluminum surfaces, and a larger

fraction of the smaller pits are aluminum. This may also represent a different source of small

aluminum pits, aluminum oxide dust from solid rocket motors. If only pits that are 30 microns and
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larger are counted, the orbital debris flux is reduced to 11% of the total number of impacts on the gold

surface. In addition, ff paint is subtracted out from both the gold and aluminum surfaces, and only

pits that are 30 microns and larger are used, then the ratio of aluminum to non-aluminum, non-paint on

the gold surfaces is about 4. If this same ratio is ex[mcted on the aluminum surfaces, then 29% of the

impacts on the aluminum surface could be expected to be aluminum. This would mean that about

66% of the pits where no residue could be found were aluminum impacts into aluminum, and that the

number of orbital debris impacts on this surface was 46% of the total number of impacts. An orbital

debris flux which is 46% of the total flux on the CME aluminum surface will be adopted in this paper.
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Figure 1. LDEF data used.

The total measured flux on LDEF of impacts craters larger than 0.5 mm as a function of the

surface direction (i.e., the angle between the surface normal vector and the orbital velocity vector) is

shown in figure 1 (ref. 5). The assumption is made that the smoothed curve also shown is

represemative of the actual distribution, and that departures from the curve axe statistical fluctuations

in the data. This assumption seems justified given the error bars, the smoothing effect of similar data

in reference 6, and the fact that there is no theoretical reason for a large change in flux on both

adjacent surfaces.

Also shown in figure 1 are the CME data points obtained by taking 11% of the total measured

flux on the LDEF row 03 (surface direction of 172 degrees), and 46% of the total measured flux on

row 11 (surface direction of 52 degrees). By taking these percentages, the assumption is made that the

chemistry and frequency of orbital debris in the smaller size range of 0.03 nun craters and larger into

gold is also characteristic of 0.5 mm craters and larger into aluminum. A sufficiently large data base

containing the chemistry of impact craters larger than 0.5 mm does not yet exist to test this

assumption. However, it is apparent that for craters smaller than 0.03 nun, both the chemistry and
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frequency of orbital debris do change. Although the statistics are still poor, the CME shows

increased aluminum impacts for these smaller sizes. In addition, both the Microabrasion Foil

Experiment (ref. 7) and the Interplanetary Dust Experiment (ref. 8) have shown an Earth orbiting

population which dominates the meteoroid flux for particle sizes of the order of 1 micron and smaller.

Ground observations by the Goldstone (ref. 9) and Haystack (ref. 10) radar measure an orbital debris

environment larger than 2 mm which exceeds the meteoroid environment; consequently, there is

sufficient data to know that the assumption is not valid over larger size ranges. How inappropriate the

assumption is for figure 1 will have to await further data.

The problem is then to detemaine the distribution of orbital debris orbits that will produce an

orbital debris flux that passes through the CME points on figure 1. Collision probability theory is

used to determine this distribution.

COLLISION PROBABILITY

Theory and Assumptions

The probability that an orbital debris object will collide with LDEF (or any other spacecraft) at a

particular point in orbit is a function of the orbital debris' perigee, apogee, and inclination, as well as

the relative velocity between the two objects and their collision cross-sectional area. Equations

expressing this probability are given in reference 11, as well as equations for the relative velocity

(both magnitude and direction). These equations are used to calculate the relative number of impacts,

or flux, on each LDEF surface for various orbital debris orbits.

However, the observed data are in terms of a limiting impact crater diameter. Crater diameter is

a function of impact speed and direction, as well as debris size; consequently, impact speed and

direction are also calculated for each LDEF surface. The assumption is made that crater diameter is

proportional to debris diameter raised to the first power and the normal component of velocity raised

to the 2/3 power. The assumption is also made that the flux of orbital debris varies as the orbital

debris diameter raised to the -2.5 power. This later assumption is consistent with previous orbital

debris models (ref. 1) and recent measurements (refs. 9 and 10). These two assumptions are required

to convert flux to a limiting particle diameter to flux as a function of limiting impact crater diameter.

This conversion is then accomplished by weighting the flux to a limiting size by the normal

component of velocity raised to the 2.5 times 2/3 divided by 1.0 power, or 1.67 power (ref. 12).

Results

The orbit sets contained in the US Space Command catalogue for December, 1989 were used to

provide a set of orbits to predict the distribution of craters around LDEF. The resulting calculations

were normalized to pass through the aluminum surface CME data point. The results are shown in
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figure2, assuming an LDEF altitude of 400 km. As can be seen, based on the US Space Command

catalogue, a very small fraction of the craters would be predicted to be on LDEF's rear surface. Past

approximations obtained this same result, and lead to the conclusion that orbital debris directionality

can be approximated by assuming circular orbits. The CME gold surface data point would suggest

that the past assumptions are not valid, and that elliptical orbits are important to orbital debris

directionality. Figure 2 suggests that the relative number of catalogued objects in certain types of

elliptical orbits must be increased by at least an order of magnitude. The amount of increase is a

function of the assumed LDEF altitude. An assumed altitude of 500 km for LDEF would have

underpredicted rear impacts on LDEF even more than shown in figure 2, while an assumed altitude of

300 km would have underpredicted less than shown in figure 2. This implies that the relative number

of orbital debris impacts on LDEF's rear surfaces should increase with decreasing altitude of LDEF.

This introduces some uncertainty in the correct "average" altitude; however, the consequences of this

uncertainty is small compared to the greater than an order of magnitude underprediction shown in

figure 2 for an LDEF altitude of 400 km.
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Figure 2. LDEF crater distribution expected form orbits in US Space Command catalogue.

In order to determine which types of elliptical orbits are contributing to impacts on the rear

surface, the contribution from individual orbits was also calculated. The results of this calculation are

shown in figure 3 for selected orbital debris orbits. The selected orbits fall into three groups: 1. Near

circular orbits. 2. Highly elliptical orbits. 3. Moderately elliptical orbits. The results show that for a

given number of objects in Earth orbit at LDEF's altitude, circular orbits can be expected to produce

about 100 times more craters on LDEF than highly elliptical orbits. Most of the craters from circular

orbits would be on LDEF's leading and side surfaces. Lower inclinations would produce fewer
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craterson theleadingsurfaces;nocraterswould be expected on the trailing surfaces from circular
orbits.
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Figure 3. Predicted distribution of craters around LDEF due to various types of orbits.

The highly elliptical orbits have perigees below LDEF's altitude and apogees near

geosynchronous orbit. This group of orbits is characteristic of orbital transfer stages from

low Earth orbit to geosynchronous orbit. When an object is placed into geosynchronous orbit, an

upper stage rocket is usually left in this type of orbit. The results show that these types of orbits

are expected to produce craters on LDEF's rear surface only if the inclination is low. Highly

elliptical orbits with inclinations larger than about 50 degrees are not capable of producing a

significant number of impact craters on LDEF's rear surface without also producing a larger

number of craters on the CME aluminum surface than was measured. The orbits most capable of

producing a large number of pits on LDEF's rear surfaces are highly elliptical orbits with

inclinations close to the inclination of LDEF, or 28.5 degrees. Orbital debris impacts on the C/vIE

gold surface from this type of orbit will also produce about 3 times as many orbital debris impacts

on the CME aluminum surface. However, figure 1 gives a measured orbital debris flux on the

CME aluminum surfaces which is 40 times larger than the flux on the gold surface. Therefore,

other inclinations must be responsible for most of the orbital debris impacts on the aluminum

surface.
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Inclinations as low as 7 degrees can also produce a significant orbital debris flux on the rear

surfaces. From figure 3, orbital debris impacts on the CME gold surface from highly elliptical 7

degree inclination orbits will also produce about 10 times as many orbital debris impacts on the CME

aluminum surface. This ratio is also less than was determined by the CME, so other sources of orbital

debris are required.

Moderately elliptical orbits to circular orbits are required to account for the total number of

orbital debris impacts on the CME aluminum surface. A moderately elliptical orbit is one with its

apogee near 1500 km and perigee below LDEF altitude. This type of orbit might be expected as a

result of explosions at altitudes between 1000 and 2000 kin, where nearly all explosions have

occurred which produced long orbital lifetime orbits. As can be seen from figure 3, a moderately

elliptical orbit with an inclination as close as 30 degrees to the LDEF inclination is not capable of

producing a significant crater population on LDEF's rear surface without also producing a much

larger crater population on the side surfaces. Consequently, while this type of orbit, along with near

circular orbits, may be responsible for impacts on the leading and side surfaces of LDEF, moderately

elliptical orbits are not responsible for a significant number of impacts on LDEF's rear surface.

Therefore, the only types of orbits capable of providing the necessary number of impacts on

LDEF's rear surface are highly elliptical, low inclination orbits. This is the type of orbit which is

most difficult to catalogue and maintain by the US Space Command. The US is mostly responsible

for leaving orbital transfer stages in highly elliptical orbits with inclinations near 28.5 degrees, and the

European Space Agency (ESA) is responsible for leaving orbital transfer stages with highly elliptical

orbits with inclinations usually near 7 degrees. At least 2 of ESA's upper stages in this type of orbit

are believed to have exploded (ref. 13); a total of 3 fragments were catalogued from these 2 events.

When the same upper stage exploded in a circular low Earth orbit with a high inclination, 488

fragments were catalogued. Consequently, it is not unreasonable to expect that the catalogue does not

adequately represent this low inclination population.

The December, 1989 US Space Command catalogue was again used to predict the distribution of

craters around LDEF; however, this time all orbits with both apogee greater than 10,000 km and

inclination less than 50 degrees were weighted by a factor of 20. All other orbits were unweighted.

Again the resulting calculations were normalized to pass through the aluminum surface C/vIE data

point. The results are shown in figure 4. As can be seen, the results go through both CME data

points.

There have been 17 satellite breakups (mostly upper stage explosions) in highly elliptical orbits

with inclinations over 50 degrees; an average of less than 4 fragments per breakup were catalogued

(ref. 13). A valid assumption might be that this population is equally not represented by the

catalogue. Such as assumption would require a weighting factor larger than 20 because the higher

inclination orbits do not contribute to impacts on the trailing surface...only to impacts on the leading

and side surfaces. If all orbits with an apogee greater than 10,000 (regardless of their inclination) are

weighted by a factor of 30, the results are almost identical to that shown in figure 4 for the lower

inclination orbits. Because the directional properties of highly elliptical, high inclination orbits are so

close to the directional properties of circular orbits, there is no way to discriminate between weighting

factors of 20 or 30 for these two respective possibilities.
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Consequently, the ratio in the amount of small debris in these highly eUiptical, low inclination

orbits to the amount of small debris in other types of orbits must be at least 20 times the same ratio for

larger, catalogued objects in order to be consistent with the CME LDEF data. If all elliptical orbits

are equally not represented by the catalogue, then the ratio for small debris must be 30 times the ratio

for catalogued objects.
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Figure 4. LDEF crater distribution expected from weighted highly elliptical, low inclination

orbits in US Space Command catalogue.

CONCLUSIONS

Orbital debris impacts on LDEF's rear surface can only be caused by debris in highly elliptical,

low inclination orbits. The US Space Command catalogue underpredicts the relative contribution of

orbital debris impacts on LDEF from this type of orbit by at least a factor of 20. The reasons for this

underprediction are the result of a combination of difficulty in cataloguing objects in these orbits, and

that small debris in highly elliptical orbits is a larger fraction of the flux at low altitudes than is larger,

catalogued debris.
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