
A Self-Learning Rule Base for Command Following in Dynamical Systems1 _ /-*
P ̂ / <s

Wei K. Tsai, Hon-Mun Lee
Department of Electrical and Computer Engineering

University of California at Irvine
Irvine, CA 92717

and
Alexander Parlos

Department of Nuclear Engineering
Texas A&M University

College Station, TX 77843

Abstract

In this paper, a self-learning Rule Base for command following in dynamical sys-
tems is presented. The learning is accomplished though reinforcement learning using an
associative memory called SAM. The main advantage of SAM is that it is a function
approximator with explicit storage of training samples. A learning algorithm patterned
after the dynamic programming is proposed. Two unstable dynamical systems artificially
created are used for testing and the Rule Base was used to generate a feedback control to
improve command following ability of the otherwise uncontrolled systems. The numerical
results are very encouraging. The controlled systems exhibit a more stable behavior and
a better capability to follow reference commands. The rules resulting from the reinforce-
ment learning are explicitly stored and they can be modified or augmented by human
experts. Due to the overlapping storage scheme of SAM, the stored rules are similar to
fuzzy rules.

1This research research is funded by the U.S. Department of Energy Idaho Operations Office under
the Grant DE-FG07-89ER12893.

125

https://ntrs.nasa.gov/search.jsp?R=19930020342 2020-03-17T04:45:58+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42806044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I. INTRODUCTION

Expert systems (or knowledge-based systems) technology has many uses, see for example
[1]. In this paper we will focus on automatic generation of the rule-base for controlling
nonlinear dynamical systems often encountered in engineering endeavors. For nonlinear
dynamical systems, there are two basic problems: estimation and control. Estimation
refers to the the problem of reconstructing dynamic (as well as static) behaviors of par-
tially unknown systems from input-output sample pairs. Control refers to the problem
of generating desired system behaviors by exerting some control efforts to the system. In
this paper, we will focus on one sub-problem of the control problem: command following.
The problem is to generate feedback control rules to force the response of the controlled
system to follow a reference command input. Our approach is to generate needed control
by reinforcement learning [2] using an associative memory.

In this paper, we will focus only on the heart of an expert system, the Rule Base. A
rule is of the form: "if Xi = x{, x2 = x^, ..., x^ = x}

d, then the control is u = u-7." We
propose a self-learning Rule Base in which learning is accomplished though reinforcement
learning using an associative memory called SAM (Self-organizing Associative Memory).
Self-learning is one of the main feature of the proposed Rule Base. Self-learning is
especially useful for situations in which the dynamical system has a highly complex
behavior such that even experienced engineers have difficulties in designing control laws.
For such systems, additional rules are needed to supplement the experts' knowledge.
An obvious way to gain additional knowledge is to experiment with an approximately
realistic model of the system by feeding the model with various reference command inputs
and feedback control efforts and observing the output behaviors. Such experimenting is
known as reinforcement learning in the artificial neural network (ANN) literature.

The main advantage of using SAM is that it is an associative memory with explicit
storage of training samples. Each training sample can be interpreted as a rule. The rules
obtained through reinforcement learning are explicitly stored and they can be modified
or augmented by human experts. Such modification or augmentation is useful when the
model of the dynamical system is not entirely accurate and a human expert can modify
a rule learned from the approximate model to incorporate dynamics not described by the
model. Due to the fact that different rules can fire over overlapping regions, the rules
base resembles a fuzzy rule base.

A learning algorithm patterned after the dynamic programming is also proposed. Two
unstable dynamical systems artificially created are used for testing and the Rule Base
was used to generate a feedback control to improve command following ability of the
otherwise uncontrolled systems. The numerical results are very encouraging. The con-
trolled systems exhibit a more stable behavior and a better capability to follow reference
commands.

Since SAM is the essential part of the Rule Base, we now briefly describe the dis-
tinctive features of SAM and basic motivation behind the creation of SAM. SAM can
be considered as a nonlinear function approximator. To obtain the best approximation,

126

techniques of the classical approximation theory, regression theory, and system identifica-
tion theory, which include curve-fitting, Volterra and other basis function approximation
methods, spline methods and others could be applied. In designing SAM, we use local
linear approximation or piecewise linear approximation to represent the identification
model. Similar to the classical spline technique, we employ linear interpolation to gener-
ate a recalled output for an input which is never seen before.

This paper is organized as follows. Section II motivates the selection of a model class
for the dynamical systems under consideration. Section III provides a description of
SAM. Section IV describes the reinforcement learning and section V presents simulation
results. The paper concludes in section VI.

II. THE NONLINEAR INPUT-OUTPUT MODEL

In this paper, we assume the nonlinear dynamical system is described in the following
Nonlinear MIMO (Multi-Input and Multi-Output) Input-Output form:

y(k) = f (y (k - l) , y (k - 2) , . . . , y (k - n) , u (k) M k - l) , . . . M k - q)) , (1)

where y(k) € 5RP, u(k) 6 3fm, A; is a discrete time index, and /(•) is a general vector-
valued nonlinear function of multiple variables. The above system could represent either
a genuine discrete-time system or a sampled continuous-time system.

The above input-output model is also known as the Nonlinear Auto-Regression with
eXogenous inputs (NARX)[4j. The above model also includes dynamical systems with
noise and disturbance, either at the input or at the output, or at both places. The overall
input vector u(k) could be decomposed into three parts: the control input components,
the disturbance input components (i.e., the un-intended inputs either due to noise or
exogenous disturbances), and the measurement noise components.

III. A BRIEF DESCRIPTION OF SAM

A. The Overlapping Local Linear Approximation

The approximation method adopted for SAM is an overlapping local linear approximation
(OLLA). Consider the generic scalar function approximation problem:

y = f(x] ,3 /e^ 1 , *€»", (2)

For each x of interest, we assume that there exist a neighborhood of x, N(x), such that,
for all x 6 -/V(z), f(x) is well approximated by a linear functional:

f(x) = aTx + b, (3)

where a is a d-dimensional weight vector and 6 is a scalar. The function can be viewed in
the ffi**1 space as a linear hyperplane by denning the augmented state vector z = [1, XT]T,

127

and the augmented weight vector w = [6, aT]T. The hyperplane is then described by the
equation /(x) = WTZ.

To determine the local hyperplane, only d -f 1 linearly independent prototypes - a
prototype is defined to be a vector of the form [xr, f(x)]T - from the neighborhood N(x)
will be needed. If there are exactly d + 1 linearly independent prototypes available, one
can solve the following linear equation to obtain the local parameters w.

1 x} .

1 Xj .

1 X? . Xd J

/(i1)

(4)

Once the local w(x) is determined, the recalled value /(x) can be computed simply via
the formula /(x) = aTx + 6.

Now suppose there are less than d+ 1 linearly independent prototypes available, i.e.,
there are less equations to determine uniquely the local weight w(x). There are many
options here, and we decided to use the minimum norm solution to (4). The minimum
norm solution is equivalent to a least square minimization problem:

mm w\

s.t. Aw = /
(5)

where A is matrix in the left hand side of equation (4), / is the vector in the right hand
side of (4), and the || • || is the usual Euclidean norm (£2 norm). The solution to (5) is
well-known: a pseudo-inverse solution described by the following equation:

w = AT(AAT)~ lf. (6)

We now briefly describe the storing and retrieval mechanism of the OLLA method. In
storing, a new sample [XT, /(x)]T will be stored in its entirety, i f / (x) cannot be adequately
linearly approximated by the already stored prototypes in N(x). Let /(x) denote the
value recalled from the present memory, i.e., with no more than d+1 prototypes stored in
the memory in the neighborhood N(x), /(x) is computed based on (3) with the weights
computed using either (4) or (6). The value /(x) is said to be recalled from the memory.
The user of the linear SAM then chooses a tolerance £2 such that if

then the sample [XT,/(X)]T is stored into the memory.
The reason that the approximation method described above is called an overlap-

ping method is that, in a small neighborhood, the function could be approximated by
several linear hyperplanes computed based on several overlapping (intersecting) sets of
prototypes. This overlapping property is the main difference between the linear SAM
approximation approach and the classical local linear parametric regression method [5].

128

B. The Architecture of SAM

C. The Storage and Retrieval Scheme of SAM

We now describe the detailed computation scheme to implement the storing and retrieval
schemes aiming to minimize searching time for both storing (learning) and recall. There
are many ways to implement these computation structures. The description here is most
conveniently interpreted as a sequential algorithm. However, the algorithm can be easily
parallelized given a proper hardware architecture.

We have developed three storing schemes: tree scheme, mesh scheme, and the hybrid
scheme. In this paper, we will only described the mesh scheme. A simple mesh storing
scheme is described as follows. In the following description, let the current training
sample be x. Let £] > 0 be a user specified scalar such that a linear interpolation of x
by a set of d + 1 closest vectors to x { x ' : ? = ! , . . . , < f - f l) will be allowed only if

| |x-xi<e i. (8)

The condition(S) will be referred to as the ^.-neighborhood condition. Define the interpo-
lation index:

/(i) = |/(x)-/(x)|, (9)

where /(x) is the recalled value generated by SAM for x. £4 is another user-specified
parameter which is used by the algorithm to define a hypercube neighborhood. The only
requirement is that the hypercube region defined by

{x : Xi -£4 < x, < x,- + e4,Vi = l , . . . , d ,} , (10)

contains the £-neighborhood defined by (8). The mesh will be called the SAM mesh.

1. Initialization: Let the first training sample be x. Then let the entry node to the
mesh represent the vector a; and each node that will be added to the mesh represent
a particular prototype. The node storing x will have 2d pointers pointing to the
set of mesh neighbors:

x1 = [x(/ ,x2 , . . . ,xd]T ,

X2 =

XH X3 Xd]
T

! ,x£,X3,. . .,xJT, (11)

where
x f < x , - < x f / , x ,w-xf <2e4 , V i= l , . . . , r f , (12)

129

are components of either genuine or pseudo prototypes - if no genuine prototype
vectors satisfying (12) are found, then create artificial (pseudo) prototypes to make
up the mesh and to mark boundaries of the mesh. A node storing a pseudo proto-
type x does not carry actual value of /(x).

2. For the current training prototype x, compute the interpolation set and the inter-
polation index as follows: search in an £-neighborhood of x to find a set of d + 1
closest vectors to x, denoted by N(x). Compute the interpolation index of x as in

(9)-

3. For the current training prototype x, check if /(x) can be well interpolated from
previously stored prototypes according to (7). If this is so, the current training
sample is discarded.

4. Else, extend the SAM mesh by adding x and /(x) to the SAM mesh.

The retrieval scheme for the mesh scheme is trivial: Suppose the cue vector is x and
SAM is asked to supply an approximate /(x).

1. Retrieve the e-neighborhood set N(x) of x.

2. If there is a almost matching prototype, say x, then return the value /(x). Other-
wise compute the recalled values based on (10).

IV. THE REINFORCEMENT LEARNING ALGORITHM

The reinforcement learning algorithm proposed is described below. First we describe
the feedback structure. Let A; be the discrete time index. Let uj(k) be the reference
command inpu t at time k. For each k the algorithm iterates through the index i to
generate a desirable incremental feedback control u l

e(k). The overall input u(k) is the
difference between reference input Uf (k) and feedback control uc(k): u(k) = u j (k)—u c (k) .
For training, the overall feedback control u c(k) is decomposed into two parts: the current
control uc(k) recalled from SAM, and the i-th trial incremental control u l

e(k): u'c(k) =
u l

e(k) + uc(k). Let J'(k) = (y l(k) — w/(&)) 2 be the error at time k using the z'-th trial
incremental control. At time index A:, the following is done:

1. Set uc(k) = SAM(y(k}}.

2. Set i +- 1.

3. Generate a trial incremental control u'e(k);

4. Set u(k) = u j (k) — (u l
e(k) + u c(k)) and generate the output y l(k + 1) with u (k) \

5. If J'(k) < J""1^), store the relation y*(k) -> u^k) + uc(k) into SAM; else set
i «— i + 1 and go to step 3.

6. Set k «- k + 1

130

V. NUMERICAL SIMULATION RESULTS

We tested two artificial SISO (Single-Input-Single-Output) systems. The error measure
we use to gauge the overall performance of the predictor is a normalized:

- y(k) \

where yd(k) is the actual output at time fc, y(k) is predicted output at time &, N is the
total number of samples taken in time.

A. Example 1:

The SISO nonlinear system is described by the following equation:

y(k) = u(k) + Q.2y(k - 1) - 0.3(y(fc - l)y(k - 3))t - 0.5(y(fc - 2)y(fc - 4))2,

where y(k) is the output, and u(k) is the input. We made seven different tests. In the
first test, we trained the system with two separate ramp inputs with slopes 0.01 and 0.009
and tested the system with a ramp input of slope 0.0095. The second test is similar to
the first test except that there is a output white noise of magnitude .01. In the third test,
we trained the system with two separate step inputs with magnitudes 1.0 and 0.9 and
tested the system with a step input of magnitude .095. In the fourth test, we trained the
system with two separate step inputs with magnitudes 1.2 and 1.3 and tested the system
with a step input of magnitude 1.25. In the fifth test, we trained the system with two
sinusoids inputs and tested the system with an input which is added to a sinusoid. The
sixth test is similar to the first test except that there is a output white noise of magnitude
.01. In the seventh test we trained the system with two ramp-with-step inputs with step
magnitudes at 1.1 and 1.0, and we tested with a ramp-with-step input at 1.05.

From the Figures attached, it is clear that the controlled system has a better commdan-
iollowing capability than the uncontrolled. The only drawback is that the learning algo-
ri thm does not seems to perform well when there is an output noise.

B. Example 2:

The nonlinear system is described by the following equations:

y(k) = cos[l-u(k)y(k - 1)] + (y(fc - l)y(k - 3))2.

This system is highly unstable, and in this example we demonstrate the stabilizing ability
of the Rule Base feedback control. We trained the systems with two step inputs with
magnitudes 0.55 and 0.45 and tested the system with a step input of magnitude of
0.5. The uncontrolled system exploded at around k = 20 while the controlled system is
marginally stable; it did not explode.

131

VI. CONCLUSIONS

In this paper, a self-learning Rule Base for command following in dynamical systems is
presented. The learning is accomplished though reinforcement learning using an asso-
ciative memory. A learning algorithm patterned after the dynamic programming is also
proposed. Two unstable dynamical systems artificially created are used for testing and
the Rule Base was used to generate a feedback control to improve command following
ability of the otherwise uncontrolled systems. The numerical results are very encourag-
ing. The controlled systems exhibit a more stable behavior and a better capability to
follow reference commands.

There are several directions of further research following this preliminary work. One
is to improve the reinforcement learning algorithm so that the feedback controlled system
responses will more closely follow the reference inputs. We intend to borrow insights from
dynamic programming as the reinforcement learning algorithm proposed is very similar
to the standard dynamic programming algorithm. Another is to test the self-learning
Rule Base with realistic dynamical systems, especially systems with model uncertainty
and output noise. For realistic systems, it would be interesting to investigate how a
human expert can modify and add to the learned Rule Base so as to incorporate his own
knowledge into the final Rule Base. A third direction is to apply the self-learning Rule
Base to other control problems.

REFERENCES

[1] James P. Ignizio,Introduction to Expert Systems: The development and Implemen-
tation of Rule-Based Expert Systems, 1991, New York, N.Y.: McGraw-Hill, Inc.

[2] Robert Hecht-Nielsen, Neurocomputing, 1991, Reading, MA: Addison-Wesley.

[3] L. A. Zadeh,"A Theory of Approximate Reasoning," Machine Intelligence, Vol. 9,
J. Hayes, D. Michie, and L. Mikulich (eds.), New York:Elsevier, 1979.

[4] Chen, S., and S. A. Billings, "Representations of non-linear systems: the NARMAX
model," International Journal of Control, 49, 3, 1013-1032, 1989.

[5] Cleveland, W.S., "Robust Locally Weighted Regression and Smoothing Scatter
Plots," J. Amer. Statist. Assoc., Vol.-74, pp. 828-836, 1979.

[6] Friedman, J.H., "Multivariate Adaptive Regression Splines," The Annals of Statis-
tics, Vol. 19, No. 1, pp. 1-141, March, 1991.

132

••
0
c

0
M

£

£
««

>

O
C
«•
•
•

o
a.
E
o
0

o
o

_ o

o

o
K

o .«
• V

(U
_ o

o
n

o
N

E
a

X

t.
t
c
™

c
0
c

5
«*

c
3
h

0

9
C

*•

a
•

3
a.-
- 3
3 0,

i°s
3 • °

° o» •;
tl bZ a

•c; *
• o e i
• CO
030 5

i i t
i I II

•

'"-;::

' 1 ' 1 '

-.--=
"^^

""Z^p-

""— "̂ E^v
*-ifC

-"-Jr̂ l
" 7 J -̂"— '

r̂ ̂ =
— =r.cr:ir.
— — — •^"•^T-

"=:~~^-.

" " '~ ~^ *^-«
"*— ^^^-f

7

— ̂ --^— —

— »« •-=• £Z
1̂-2-̂ ;

'̂— «= ̂ -~a _.

•••:.., "̂ ~i

"""• — ^sJ^
1 ' 1 "^"T

r -- -- .
^_^_-*-— —

-~̂ -*

ii.~
-

S"-

r̂ ~-

•-

__^m

,

_. __

=.=,

^ r̂ "'
~~1 f ^~~

0
•• e

^

_ o
a

_ o

_ o
N

— O
c

_ 0
«

_ o
-

_ o
n

_ o
w

— o

— o

O
a

o
a

O
•

o

0

o
<g o

o
o
0

o
o

o
10

o
o

o
10

oe

£
J
«•

3
0
£

a
c

o
a
E
o
0

o
o

oa

8

O
e

o J
0 %.

o
0

O
n

_ o

— O

a
c

a.

*

TJ
C

a
E

*e.

• A

030

I I III

o
o

_ o

_ o

-_ O

O
C

_ o

" 1-
_ o

_ o

0
CM

— O

O
0

o
R

O
M

O O
o •
»• o

o
c
e

o
«

e
n

o
o

133

o
c

0
c

•

c

a
E
4

o
a

o
c

o

o -if
8 o,

5

_ o

o
«

— o

^s
X

0
4*

*

0
t
0
w

a
c
*«
•
•«*
a
••••
•
TJ
3
*•

C
O
4
E

C
O

I

'•C
•j..

--==-:$
"* "*%,

— *"-̂ i

+•

-wSs
-— ^..

,.—-*£~* "~-

'•'.'.}
i

•*•• —

..2^-i-— --"

s"**"
' r"~~sr3»""

~-:~3.~
— *••"—"• MLm

— *-̂ JT*L>W.- -

.— ̂ * a
. .rrr.rjT.'-sr"'~ta 5 " «---, r ° I

^^-— :" o « •
-- r.. "~'=~ _ ~ 0

V — *-.„ • S
'-ll i S i

.TT.t"— — (A^ ' 0 0 5
--_- .-:;:::,.,.. i| t^ 1 : > iij

1 ' 1 ' 1

«

_ o
N

0
c

_ o«
-
_ e

»

_ 0«

_ 0

- 0
^

-3_r

O
O

o
s

0
t

0
M

O
o

o
o

o
o

o
o

o
o

oa

_ o

U- o

o 2?• 2
o
a

O v

* 1-
(S

o (^B "^

o
N

k- O

0

**

9
tf

a
««
•
•
Q
3
««

C
O

E
J
0_i

""'"-••- , cj __^
1 1 ' 1 '

3
a*

. «• 3

i il:>
i K », o» «1 I II-
1 • 0= 1
1 • CO

1 03° a
U! £
1 : > UJ

|ii1
!
1
/,--;'vi-> _

1 1 ' 1 ' 1

e
e

o
B

•H

-J_

o
o

o
fl

o
M

O
^

o

18
C

o
0

134

