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ABSTRACT

We present a distributed approach to traffic signal control, -where the signal tuning parameters at a
given intersection are adjusted as functions of the local traffic condition and of the signal tuning
parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using
only local information to improve traffic flow. This distributed approach provides for a fault-
tolerant, highly responsive traffic management system.

The signal timing at an intersection is defined by three parameters: cycle time, phase split, and
offset. We use fuzzy decision rules to adjust these three parameters based only on local
information. The amount of change in the timing parameters during each cycle is limited to a
small fraction of the current parameters to ensure smooth transition. We show the effectiveness of
this method through simulation of the traffic flow in a network of controlled intersections.

1. INTRODUCTION

With the steady increase in the number of automobiles on the road, it has become ever more important to manage
traffic flow efficiently to optimize utilization of existing road capacity. High fuel cost and environmental concerns
also provide important incentives for minimizing traffic delays. To this end, computer technology has been widely
applied to optimize traffic signal timing to facilitate traffic movement.

Traffic signals in use today typically operate based on a preset timing schedule. The most common traffic control
system used in the United States is the Urban Traffic Control System (UTCS), developed by the Federal Highway
Administration in the 1970's. The UTCS generates timing schedules off-line on a central computer based on average
traffic conditions for a specific time of day; the schedules are then downloaded to the local controllers at the
corresponding time of day. The timing schedules are typically obtained by either maximizing the bandwidth on
arterial streets or minimizing a disutility index that is generally a measure of delay and stops. Computer programs
such as MAXBAND [1] and TRANSYT-7F [2] are well established means for performing these optimizations.

The off-line, global optimization approach used by UTCS cannot respond adequately to unpredictable changes in
traffic demand. With the availability of inexpensive microprocessors, several real-time adaptive traffic control
systems were developed in the late 70's and early 80's to address this problem. These systems can respond to
changing traffic demand by performing incremental optimizations at the local level. The most notable of these are
SCATS [3,4,5], developed in Australia, and SCOOT [5,6], developed in England. SCATS is installed in several
major cities in Australia, New Zealand, and parts of Asia; recently the first installation of SCATS in the U.S. was
completed near Detroit, Michigan. SCOOT is installed in over 40 cities, of which 8 are outside of England.

Both SCATS and SCOOT incrementally optimize the signals' cycle time, phase split, and offset The cycle time is
the duration for completing all phases of a signal; phase split is the division of the cycle time into periods of green
signal for competing approaches; offset is the time relationship between the start of each phase among adjacent
intersections. SCATS organizes groups of intersections into subsystems. Each subsystem contains only one
critical intersection whose timing parameters are adjusted directly by a regional computer based on the average
prevailing traffic condition for the area. All other intersections in the subsystem are always coordinated with the
critical intersection, sharing a common cycle time and coordinated phase split and offset Subsystems may be linked
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to form a larger coordinated system when their cycle times are nearly equal. At the lower level, each intersection can
independently shorten or omit a particular phase based on local traffic demand; however, any time saved by ending a
phase early must be added to the subsequent phase to maintain a common cycle time among all intersections in the
subsystem. The basic traffic data used by SCATS is the "degree of saturation", defined as the ratio of the effectively
used green time to the total available green time. Cycle time for a critical intersection is adjusted to maintain a high
degree of saturation for the lane with the greatest degree of saturation. Phase split for a critical intersection is
adjusted to maintain equal degrees of saturation on competing approaches. The offsets among the intersections in a
subsystem are selected to minimize stops in the direction of dominant traffic flow. Technical details are not
available from literature on exactly how the cycle time and phase split of a critical intersection are adjusted. It seems
that SCATS does not explicitly optimize any specific performance measure, such as average delay or stops.

SCOOT uses real-time traffic data to obtain traffic flow models, called "cyclic flow profiles", on-line. The cyclic
flow profiles are then used to estimate how many vehicles will arrive at a downstream signal when the signal is red.
This estimate provides predictions of queue size for different hypothetical changes in the signal timing parameters.
SCOOTs objective is to minimize the sum of the average queues in an area. A few seconds before every phase
change, SCOOT uses the flow model to determine whether it is better to delay or advance the time of the phase
change by 4 seconds, or leave it unaltered. Once a cycle, a similar question is asked to determine whether the offset
should be set 4 seconds earlier or later. Once every few minutes, a similar question is asked to determine whether die
cycle time should be incremented or decremented by a few seconds. Thus, SCOOT changes its timing parameters in
fixed increments to optimize an explicit performance objective.

It is problematic that a specific performance objective will be appropriate for all traffic conditions. For example,
maximizing bandwidth on arterial streets may cause extended wait time for vehicles on minor streets. On the other
hand, minimizing delay and stops generally does not result in maximum bandwidth. This problem is typically
addressed by the use of weighting factors; the TRANS YT optimization program provides user-selectable link-to-link
flow weighting, stop weighting factors, and delay weighting factors. A traffic engineer can vary these weighting
factors until the program produces a good (by human judgement) compromise solution. Perhaps a performance index
should be a function of the traffic condition; it may be appropriate to emphasize an equitable distribution of
movement opportunities when traffic volume is low and emphasize overall network efficiency when the traffic is
congested. In view of the uncertainty in defining a suitable performance measure, the reactive type of control
provided by SCATS, where there is no explicit effort to optimize any specific performance measure, appears to have
merit. We believe implementing this type of control using fuzzy logic decision rules can further enhance the
appropriateness of the control actions, increase control flexibility, and produce performance characteristics that more
closely match human's sensibility of "good" traffic management

In past work performed by Pappis and Mamdani [7], fuzzy logic was applied to control an intersection of two one-
way streets. It was assumed that vehicle detectors were placed sufficiently upstream from the intersection to inform
the controller about future arrival of vehicles at the intersection. It is then possible to predict the the number of
vehicles that will cross the intersection and the size of the queue that will accumulate if no change to the the signal
state takes place in the next N seconds, for N = 1,2,... 10. The predicted outcomes are evaluated by fuzzy decision
rules to determine the desirability of extending the current state for N more seconds. Each of the possible extensions
is assigned a degree of confidence by the rules, and the extension with maximum confidence is selected for
implementation. Before the extended period ends, the rules are applied again to see if further extensions are desirable.

Here we apply fuzzy logic to the general problem of controlling multiple intersections in a network of two-way
streets. We propose a highly distributed architecture in which each intersection independently adjusts its cycle time,
phase split, and offset using only local traffic data collected at the intersection. This architecture provides for a fault-
tolerant traffic management system where traffic can be managed by the collective actions of simple microprocessors
located at each intersection; hardware failure at a small number of intersections should have minimal effect on overall
network performance. By requiring only local traffic data for operation, the controllers can be installed individually
and incrementally into an area with existing signal controllers. Each intersection uses an identical set of fuzzy
decision rules to adjust its timing parameters. The rules for adjusting the cycle time and phase split follow the same
general principles used by SCATS: cycle time is adjusted to maintain a good degree of saturation and phase split is
adjusted to achieve equal degrees of saturation on competing approaches. The offset at each intersection is adjusted
incrementally to coordinate with the adjacent upstream intersection to minimize stops in the direction of dominant
traffic flow. Through simulation of a small network of streets, the distributed fuzzy control system has shown to be
effective in rapidly reducing delay and stops.
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BIG(x)
2. FUZZY RULE-BASED CONTROL

For completeness, a brief introduction to fuzzy
rule-based control is presented in this section. At
the basis of fuzzy logic is the representation of
linguistic descriptions as membership functions
[8]. The membership function indicates the degree
to which a value belongs to the class labeled by the
linguistic description. For example, the linguistic
description BIG may be represented by the
membership function BIG(x) shown in Fig. 1,
where the abscissa is an input value and the
ordinate is the degree to which the input value can
be classified as BIG. In this example, the degree
to which the number 80 is considered BIG is 0.5,
i.e., BIG(80) = 0.5.

Fuzzy decision rules are typically expressed in the
following form:

If X, is A:, and X? is A: 9 then U is £. .i 1,1 4 1,4 »

where Xj and X2 are the inputs to the controller, U is the output, A's and fl's are membership functions, and the
subscript i denotes the rule number. For example, a rule for engine control may state "If the speed.error is
negative_small and the speed_error_cnange is positive_big, then the throttle_change is positive_small." Given input
values of xj and JC2, the degree of fulfillment (DOF) of rule t is given by the minimum of the degrees of satisfaction
of the individual antecedent clauses, i.e.,

OOF,- =Min{A i t l(Xl),A i>2(x2)}.

We compute the output value by

100

Fig. 1. Membership function defines a linguistic
description.

u =-

I (DOF,- )

where flf is the defuzzified value of the membership function £,-, and n is the number of rules. The defuzzified value
of a membership function is the single value that best represents the linguistic description; typically, we take the
abscissa of a membership function's centroid as its defuzzified value. In essence, each rule contributes a conclusion
weighted by the degree to which the antecedent of the rule is fulfilled. The final control decision is obtained as the
weighted average of all the contributed conclusions. Although there are several variant methods of fuzzy inference
computation, the above method has gained popularity in control applications due to its computational and analytical
simplicity.

3. TRAFFIC CONTROL RULES

A set of 40 fuzzy decision rules was used for adjusting the signal timing parameters. The rules for adjusting cycle
time, phase split, and offset are decoupled so that these parameters are adjusted independently; this greatly simplifies
the rule base. Although independent adjustment of these parameters may result in one parameter change working
against another, no conflict was evident in simulations under various traffic conditions. Since incremental
adjustments are made at every phase change, a conflicting adjustment will most likely be absorbed by the numerous
successive adjustments.
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3.1 CYCLE TIME ADJUSTMENT

Cycle time is adjusted to maintain a good degree of saturation on the approach with highest saturation. We define
the degree of saturation for a given approach as the actual number of vehicles that passed through the intersection
during the green period divided by the maximum number of vehicles that can pass through the intersection during
that period. Hence, the degree of saturation is a measure of how effectively the green period is being used. The
primary reason for adjusting cycle time to maintain a given degree of saturation is not to ensure efficient use of green
periods, but to control delay and stops. When traffic volume is low, the cycle time must be reduced to maintain a
given degree of saturation; this results in short cycle times that reduce the delay in waiting for phase changes. When
the traffic volume is high, the cycle time must be increased to maintain the same degree of saturation; this results in
long cycle times that reduce the number of stops.

The rules for adjusting the cycle time are shown in Fig. 2 and the corresponding membership functions are shown in
Fig. 5. The inputs to the rules are: (1) the highest degree of saturation on any approach (denoted as "highest_sat" in
the rules), and (2) the highest degree of saturation on its competing approaches (denoted as "cross_sat"). The output
of the rules is the amount of adjustment to the current cycle time, expressed as a fraction of the current cycle time.
The maximum adjustment allowed is 20% of the current cycle time. The rules basically adjust the cycle time in
proportion to the deviation of the degree of saturation from the desired saturation value. However, when the highest
saturation is high and the saturation on the competing approach is low, we can let the phase split adjustments
alleviate the high saturation. It should be noted that the "optimal" degree of saturation to be maintained by the
controller is only 0.55, whereas SCATS typically attempts to maintain a degree of saturation of 0.9. This
discrepancy arises from the method of calculating the maximum (saturated) flow value. We derive the maximum
flow value based on a platoon of vehicles with no gaps moving through the intersection at the speed limit, while
SCATS uses calibrated, more realistic values.

if highest_sat is none then cycl_change is n.big;
if highest_sat is low then cycl_change is n.med;
if highest_sat is slightly low then cycl_change is n.sml;
if highest_sat is good then cycl_change is zero;
if highest_sat is high & cross_sat is not high then cycl_change is p.sml;
if highest_sat is high & cross_sat is high then cycl_change is p.med;
if highest_sat is saturated then cycl_change is p.big;

Fig. 2. Rules for adjusting cycle time.

3.2 PHASE SPLIT ADJUSTMENT

Phase split is adjusted to maintain equal degrees of saturation on competing approaches. The rules for adjusting the
phase split is shown in Fig. 3 and the corresponding membership functions are shown in Fig. 5. The inputs to the
rules are: (1) the difference between the highest degree of saturation on the east-west approaches and the highest
degree of saturation on the north-south approaches ("sat_diff"), and (2) the highest degree of saturation on any
approach ("highest_sat"). The output of the rules is the amount of adjustment to the current east-west green period,
expressed as a fraction of the current cycle time. Subtracting time from the east-west green period is equivalent to
adding an equal amount of time to the north-south green period. When the saturation difference is large and the
highest degree of saturation is high, the green period is adjusted by a large amount to both reduce the difference and
alleviate the high saturation. When the highest degree of saturation is low, the green period is adjusted by only a
small amount to avoid excessive reduction in the degree of saturation.

3.3 OFFSET ADJUSTMENT

Offset is adjusted to coordinate adjacent signals in a way that minimizes stops in the direction of dominant traffic
flow. The controller first determines the dominant direction from the vehicle count for each approach. Based on the
next green time of the upstream intersection, the arrival time of a vehicle platoon leaving the upstream intersection
can be calculated. If the local signal becomes green at that time, then the vehicles will pass through the local
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if sat_diff is p.big & highest_sat is saturated then green_change is p.big;
if sat_diff is p.big & highest_sat is high then green_change is p.big;
if sat_diff is p.big & highest_sat is not high then green_change is p.med;
if sat_diff is n.big & highest_sat is saturated then green_change is n.big;
if sat_diff is n.big & highest_sat is high then green_change is n.big;
if sat_diff is n.big & highest_sat is not high then green_change is n.med;
if sat_diff is p.med & highest_sat is saturated then green_change is p.med;
if sat_diff is p.med & highest_sat is high then green_change is p.med;
if sat_diff is p.med & highest_sat is not high then green_change is p.sml;
if sat_diff is n.med & highest_sat is saturated then green_change is n.med;
if sat_diff is n.med & highest_sat is high then green_change is n.med;
if sat_diff is n.med & highest_sat is not high then green_change is n.sml;
if sat_diff is p.sml then green_change is p.sml;
if sat_diff is n.sml then green_change is n.sml;
if sat_diff is zero then green_change is zero;

Fig. 3. Rules for adjusting phase split.

intersection unstopped. The required local adjustment to the time of the next phase change is calculated based on this
target green time. Fuzzy rules are then applied to determine what fraction of the required adjustment can be
reasonably executed in the current cycle. The rules for determining the allowable adjustment are shown in Fig. 4 and
the corresponding membership functions are shown in Fig. 5. The inputs to the rules are: (1) the normalized
difference between the traffic volume in the dominant direction and the average volume in the remaining directions
("voLdiff); and (2) the required time adjustment relative to the adjustable amount of time ("req_adjust"), e.g., the
amount by which the current green phase is to be ended early divided by the the current green period. The output of
the rules is the allowable adjustment, expressed as a fraction of the required amount of adjustment. These rules will
allow a large fraction of the adjustment to be made if there is a significant advantage to be gained by coordinating the
flow in the dominant direction and that the adjustment can be made without significant disruption to the current
schedule.

if vol_diff is none then allow_adjust is none;
if req_adjust is very.high then allow_adjust is none;
if vol_diff is very.high & req_adjust is none then allow_adjust is very high;
if vol_diff is very.high & req_adjust is low then allow_adjust is very high;
if vol_diff is very.high t req_adjust is medium then allow_adjust is high;
if vol_diff is very.high & req_adjust is high then allow_adjust is medium;
if vol_diff is high s•req_adjust is none then allow_adjust is very high;
if vol_diff is high & req_adjust is low then allow_adjust is very high;
if vol_diff is high & req_adjust is medium then allow_adjust is high;
if vol_diff is high & req_adjust is high then allow_adjust is low;
if vol_diff is medium & req_adjust is none then allow_adjust is very high/-
if vol_diff is medium & req_adjust is low then allow_adjust is high;
if vol_diff is medium t req_adjust is medium then allow_adjust is medium;
if vol_diff is medium & req_adjust is high then allow_adjust is low;
if vol_diff is low & req_adjust is none then allow_adjust is high;
if vol_diff is low & req_adjust is low then allow_adjust is medium;
if vol_diff is low & req_adjust is medium then allow_adjust is low;
if vol_diff is low & req_adjust is high then allow_adjust is low;

Fig. 4. Rules for adjusting offset.
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4. SIMULATION RESULTS

Simulation was performed to verify the effectiveness of the distributed fuzzy control scheme. We considered a small
network of intersections formed by six streets, shown in Fig. 6. A mean vehicle arrival rate is assigned to each end
of a street. At every simulation time step, a random number is generated for each lane of a street and compared with
the assigned vehicle arrival rate to determine whether a vehicle should be added to the beginning of the lane. Some
simplifying assumptions were used in the simulation model: (1) unless stopped, a vehkle always moves at the speed
prescribed by the speed limit of the street, (2) a vehicle cannot change lane, and (3) a vehicle cannot turn. Vehicle
counters are assumed to be installed in all lanes of a street at each intersection. When the the green phase begins for
a given approach, the number of vehicles passing through the intersection during the green period is counted. The
degree of saturation for each approach is then calculated from the vehicle count and the length of the green period. At
the start of each phase change, the controller computes the time of the next phase change using its current cycle time
and phase split values. The fuzzy decision rules are then applied to adjust the time of the next phase change
according to the offset adjustment rules; the adjusted cycle time and phase split values are used only in the
subsequent computation of the next phase change time.

Figure 7 shows the average waiting time per vehicle per second spent in the network as a function of time. Figure 8
shows the number of stops per minute encountered by all vehicles. For the first 30 minutes of this simulation, all
intersections have a fixed cycle time of 40 seconds, a green duration of 20 seconds, and start their phases at the same
time. At the end of 30 minutes, intersections A, B, and C shown in Fig. 6 were allowed to adapt their timing
parameters according to the fuzzy decision rules. At the end of 60 minutes, all intersections were allowed to adapt
We see that the improvement in waiting time is minimal when only 3 intersections are adaptive. Furthermore,
when only 3 intersections are adaptive, the minor improvement in waiting time was obtained at the expense of
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Fig. 6. Network of streets used in simulation.

greatly increased number of stops. This is because the cycle time chosen by the adaptive intersections (around 20
sec) is widely different from the cycle time for the fixed intersections (40 sec). The mismatch of cycle times resulted
in a complete lack of coordination between the adaptive intersections and the fixed intersections, where timing
adjustments to facilitate local traffic movement can adversely affect the overall traffic movement When all
intersections were allowed to adapt, all intersections attained similar cycle times (around 20 sec), and significant
reductions in both waiting time and number of stops were achieved.
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Fig. 7. Average waiting time for the case in which all intersections have an initial cycle time of
40 seconds.
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Fig. 8. Number of stops for the case in which all intersections have an initial cycle time of 40
seconds.

Figures 9 and 10 show the results of a simulation performed using the same sequence of events, but with an initial
cycle time of 20 seconds and green duration of 10 seconds for all intersections. In this case, significant reductions in
both waiting time and number of stops were achieved even when only 3 intersections are adaptive. This is because
the cycle time for the fixed intersections closely matches that chosen by the adaptive intersections. Sharing a
common cycle time has enabled the 3 adaptive intersections to have immediate positive effect on overall system
performance.
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all intersections at . i
20 sec cycle time. ' 3 intersections I
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10 20 30 40 50 60
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Fig. 9. Average waiting time for the case in which all intersections have an initial cycle time of
20 seconds.

5. CONCLUDING REMARKS

We have investigated the use of fuzzy decision rules for adaptive traffic control A highly distributed architecture was
considered, where the timing parameters at each intersection are adjusted using only local information and coordinated
only with adjacent intersections. Although this localized approach simplifies incremental integration of the fuzzy
controller into existing systems, simulation results show that the effectiveness of a small number of "smart"
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Fig. 10. Number of stops for the case in which all intersections have an initial cycle time of 20
seconds.

intersections is limited if they operate at a cycle time widely different from the rest of the system. In this case,
constraining the controller to maintain a fixed cycle time that matches the existing system may provide better overall
performance. For the case in which all intersections are adaptive, we need to investigate whether better performance
is achieved by constraining all intersections to share a common variable cycle time.

There is much that can be done to further improve the present fuzzy controller, such as including queue length as an
input and using trend data for predictive control. The flexibility of fuzzy decision rules greatly simplifies these
extensions.
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