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Consumer preference models are widely used in new product design, marketing management,
pricing and market segmentation (Green and Srinivasan 1990, Wittink and Cattin 1989). The success
of new products depends on accurate market share prediction and design decisions based on consumer
preferences. The vague linguistic nature of consumer preferences and product attributes combined with
the substantial differences between individuals creates a formidable challenge to marketing models.
The most widely used methodology is conjoint analysis. Conjoint models as currently implemented
represent linguistic preferences as ratio or interval-scaled numbers, use only numeric product attributes
and require aggregation of individuals for estimation purposes. It is not surprising then that these
models are costly to implement, are inflexible and have rather poor predictive validity not substantially
better than chance, which in turn affects the accuracy of market share estimates.

A fuzzy set preference model can easily represent linguistic variables either in consumer preferences
or product attributes with minimal measurement requirements (ordinal scales), while still estimating
overall preferences suitable for market share prediction. This approach results in flexible individual-
level conjoint models which can provide more accurate market share estimates from a smaller number
of more meaningful consumer ratings. Fuzzy sets can be incorporated within existing preference model
structures, such as a linear combination, using the techniques developed for conjoint analysis and
market share estimation. The purpose of this article is to develop and fully test a fuzzy set preference
model which can represent linguistic variables in individual-level models implemented in parallel with
existing conjoint models. The potential improvements in market share prediction and predictive
validity can substantially improve management decisions about what to make (product design), for
whom to make it (market segmentation) and how much to make (market share prediction).

A FUZZY SET PREFERENCE MODEL

A General Preference Model

The underlying theory of conjoint measurement is that an overall preference for a product or service
can be de-composed into a combination of preferences for its constituent parts (attributes such as taste
and price), which are combined using an appropriate combination function. An example is a weighted
sum of T attribute preferences, where the preference for alternative m is defined as

T

(1) y(w) - £<w, x e . (m) ) + wfl
i-l

where a numeric value ( et (m) ) is used for the linguistic evaluation of the ith attribute (e.g. "good"
represented by 6 on a 1 to 7 scale). These attribute evaluations are the independent variables that are
combined to calculate the dependent variable; an estimated overall preference. Crisp attribute
importance weights w, are statistically estimated using subject ratings of both attribute and overall
evaluations on a separate group of "estimation" products. The weights are then used to predict overall
preferences for a second group of test products ("holdouts"), which are compared to the subject's
actual ratings to assess predictive validity in a cross-validation test.

Since the attribute evaluations given by subjects are often linguistic terms on a labelled rating scale,
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a preference model should represent linguistic preferences accurately. The combination function should
be appropriate for linguistic variables, producing an overall linguistic preference. Since the meaning
of linguistic terms also varies among subjects, it is particularly important to use individual-level
models. The appeal of using fuzzy sets in preference models comes from representing linguistic
variables in a mathematical structure that closely corresponds to subject preferences.

Fuzzy Sets and Linguistic Variables

Fuzzy sets are a good representation for the uncertainty or vagueness inherent in the definition of
a linguistic variable (Zadeh 1975). Linguistic variables are prevalent in describing products ("large")
and in expressing preferences ("somewhat good"). Since conjoint analysis is based on preferences,
a fuzzy set preference model is uniquely suited to this situation. Consumer ratings such as "good" are
inherently vague, with a gradient of membership as to which other ratings belong, and a lack of sharp
boundaries between ratings. Combinations of ratings, such as "good price AND somewhat good taste",
are also expected to be fuzzy, in that classical logic does not adequately describe the combination
operator "AND" (Turksen 1986).

Fuzzy sets are defined for each of the 7 linguistic ratings on a Likert scale. The domain variable
for these sets is a numeric subjective evaluation on a 0 to 100 scale. Seven subjective evaluations (0-
100) are anchored to linguistic terms as prototypes, with 6 additional evaluations assigned as crossover
points and 2 additional endpoints, for a total of 15 domain elements in each set. The rating 75 might
be prototypical (i.e. have a membership of 1.0) of the set "good" for example. The fuzzy sets for the
linguistic terms good and very good are shown in Figure 1. The sets are graphed for subjective ratings
above 50, where they have the highest membership. The fuzzy set "good" is shown as: { (50,0.30),
(55,0.45), (60,0.60), (68,0.80), (75,1.0), (83,0.80), (90,0.60), (100,0.45)}. There are no assumptions
about a functional form, a distribution or an axiom such as additivity in the fuzzy set definition, nor
of any measurement properties beyond ordinality in the underlying subjective evaluations.

The Fuzzy Set Preference Model

A fuzzy set preference model is developed to represent linguistic ratings ( ei (m) ) in the vector
preference model. This new model is, in effect, a "fuzzified" vector conjoint model from Equation
1. Subject ratings are represented by the fuzzy set definition for the linguistic term applicable to each
rating (e.g. "good" for 6), instead of the number associated with the rating (1-7). These fuzzy sets
are combined in a linear preference model using attribute weights in a manner similar to the
combination of "crisp" (non-fuzzy) numbers in the vector model. The inputs to the fuzzy conjoint
model are the fuzzy sets defined for each attribute rating ( e, (m) ). The membership of each domain
element yy in the calculated overall preference set ( ^-(y^m) ) for product m is defined as

7

i-l

where \IM (xjtm) is the membership degree of the subject's linguistic rating A, for the ith attribute of
product m for domain element x,, w, is a crisp attribute importance weight (1-7), and T is the number
of attributes. For example, the membership of the domain element "good" in the overall calculated
set B' is the weighted sum of the membership of the domain element "good" in each of the attribute
evaluation sets. The attribute and overall evaluation domain variables x and y are both subjective
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evaluations from 0 to 100. The crisp weight wt is a directly elicited subject rating of the attribute's
importance from 1 to 7. Attribute importance weights are normalized to produce an overall fuzzy
membership value between 0 and 1. The overall preference is a convex linear combination of fuzzy
sets representing attribute evaluations.

The fuzzy conjoint model requires only ordinal measurement of the fuzzy sets representing attribute
and overall evaluations. There are no assumptions about interval or ratio scale properties, avoiding
the need for extensive diagnostic procedures which are often required by crisp preference models. The
fuzzy conjoint model and a general class of fuzzy set models (including approximate reasoning using
mm/max norms) have been proven to preserve monotonic weak ordering of inputs through fuzzy
operations (Turksen 1991). The membership function must only establish a weak order relation, that
of being connected, transitive and bounded. Given such a structure, Turksen has proven that there
exists an ordinal scale for the convex linear combination of fuzzy sets. The fuzzy conjoint model
requires only ordinal attribute evaluations, which are easily obtained in a conjoint scenario using a
rating scale. The membership values for each linguistic term \IM (xjt-) can be pre-specified or can
be based on an elicitation procedure which obtains set parameters from each subject. Since an accurate
ordering of overall evaluations is sufficient for choice prediction, the minimal measurement
requirements of the fuzzy conjoint model are well suited to preference data.

THE TEST OF FUZZY AND CRISP CONJOINT MODELS

Hypotheses

The purpose of this research is to test the fuzzy conjoint model, both in terms of predictive validity
and market share estimation. The experimental design should permit both the fuzzy and crisp conjoint
models to be properly implemented at an individual-level, with sufficient estimation and holdout stimuli
for a strong test of predictive validity. The experimental procedures should take advantage of
computer software to fully adjust the attributes and values to be most appropriate for each subject.
Two specific hypotheses tested are:

HI: The fuzzy conjoint model will predict the first choice and even more of the ordered
sequences of choices of more subjects than the crisp vector conjoint model.

H2: Improvements in predictive validity should be related to the representation of vagueness
in product attributes and fuzzy set definitions.

Experimental Design

The experimental design has two main factors: the product category, which varies within subject,
and the vagueness of the attribute information, which varies according to the linguistic or numeric
attributes selected by each subject. Vagueness is defined as the number of linguistic attributes selected,
ranging from 0 to n, where n is the number of attributes in the stimulus design. Since most products
have some characteristics that are linguistic, it is important to permit the subject to select this type of
attribute. The experimental design allows both fuzzy and crisp conjoint models to be implemented
from the same subject ratings of full profile stimuli collected in a computer-assisted conjoint task.

A key component of the experimental design in conjoint analysis is the stimulus design, which
specifies a small number of combinations of attribute levels designed to permit effective estimation of
crisp conjoint parameters (attribute weights). A total of 24 hypothetical stimuli are used in this
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experiment to provide 18 estimation stimuli and 6 cross-validation holdout stimuli on which to test each
model at an individual level. Since the fuzzy conjoint model does not require estimation and does not
use regression analysis or other statistical techniques, the 18 estimation stimuli are only necessary to
estimate the crisp conjoint model. The 6 holdout stimuli are designed to be realistic, requiring trade-
offs between attributes (no dominated alternatives).

Product Categories

Two product categories are tested in this research, with each subject completing the conjoint
experiment for the delivered pizza and compact car categories. For the pizza category, subjects are
to pick a large, 4 item pizza to order for home delivery. For the car category, subjects are instructed
to rate cars they are given information on in order to select a few to test drive. Some product
attributes in any category are naturally vague and linguistic. For a pizza, taste, quality and consistency
are attributes described with linguistic terms. For the car category, linguistic attributes such as
acceleration (adequate, moderate, strong) and interior space (limited, somewhat roomy, roomy) are
provided. Subjects select their four most preferred attributes from a pre-tested set of equal numbers
of linguistic and numeric attributes. In addition to subject-specific attribute selection, the software
further customizes the levels of all numeric attributes to each subject. For example, the price values
used in product displays are directly elicited from each subject. The software combines a general
stimulus design specifying attribute level combinations with a subject-specific set of attributes and
attribute values to provide a unique and meaningful set of alternatives for each subject.

Measurement

The measurement scale used for attribute and overall preferences is a Likert scale labelled with 7
linguistic terms representing 3 positive, 3 negative and 1 neutral evaluation. The linguistic terms are:
very poor (1), poor (2), somewhat poor (3), neutral (4), somewhat good (5), good (6) and very good
(7). The subject is instructed to pick the linguistic term that best represents his or her evaluation and
to respond using the corresponding number (1-7). This labelled scale makes it possible to use either
numbers or fuzzy set definitions for the corresponding linguistic terms as inputs to the conjoint models
(Equations 1 and 2). For the fuzzy set model, membership values are assigned to the IS elements of
each of the 7 fuzzy sets based on either experimental data and expert assessment (pre-defined) or based
on each subject's response to an interactive set definition module in the conjoint analysis software.
The later technique has been implemented successfully (Willson 1991), demonstrating that preference
models can obtain fuzzy set parameters from ordinary subjects with relative ease. The results in this
paper use only pre-defined set definitions in order to assess the success of the model separate from the
issue of interactively defining individual sets. The same pre-defined sets have been used in all research
involving the fuzzy conjoint model to allow an overall assessment across product categories, subject
types and preference model implementations.

Experimental Procedures

The preference experiment is administered by custom written computer software given to subjects
on a diskette (Willson 1991). Subjects can run the software on any IBM-compatible personal computer
without any installation. The software provides all of the information needed, validating responses and
recording data and monitoring information on the distribution diskette, which is returned by the
subject. Volunteer subjects were recruited from marketing classes at the University of Toronto and
paid $10 (CAN) for completing the study. Each product category takes about 25 minutes to complete,
with the entire experiment taking 58.9 minutes on average. The software describes the product
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category, obtains the attributes and prototypical values for each subject and then presents hypothetical
combinations of these values according to the stimulus design. Subjects rate the products based on the
information presented, with the software providing help and carefully logging all subject responses and
times for subsequent analysis. Analysis software then automatically validates subject data, determining
choice predictions and market shares for crisp and fuzzy set models.

Prediction Tests

Practitioners and researchers have used relatively weak prediction measures in conjoint analysis.
Paired comparisons of alternatives, for example, result in prediction rates for the first choice of each
pair that are only 40 percent better than chance (Currim and Sarin 1984). Relatively few results are
reported for prediction among multiple alternatives, and even then only the rate of prediction for the
top ranked alternative. Green (1984) reports that the best first choice prediction rate among current
conjoint models is 53 percent for 4 holdout products. A stronger prediction measure to use is the
number of correct ordered predictions for each subject, ranging from 0 to 6 in this research. Due to
a promotion, advertising or inventory situation, a consumer could easily purchase a second or third
choice product, particularly if preferences are relatively close together. Since all models are
individual-level, the prediction test is a cross-validation test using each subject's six holdout profiles,
with model estimation based only on the ratings given by that subject for the 18 estimation profiles.

To determine prediction for a subject, the attribute evaluations of each holdout profile are used
together with any estimated parameters to predict the subject's overall evaluation. The subject's actual
overall evaluations are then compared to the model's calculated overall evaluation for each of the six
holdout profiles in the order of preference. The comparison continues until the correspondence in
ranking between subject ratings and estimated model ratings is broken. For the crisp models, the
procedure uses the calculated crisp preference scores ( y (m) ) and the subject's overall evaluations.
For the fuzzy conjoint model, a fuzzy similarity measure is used to calculate the sum of the Euclidean
distance between corresponding elements in the calculated and actual fuzzy sets, without first de-
fuzzifying either set. The formula for the similarity of two sets is

(3)

where B(yjrl) is the fuzzy set for linguistic term / (subject's actual overall evaluation) and B'(y]tm)
is the calculated set for product m from Equation 2. The squared difference of the degree of
membership of they'll element of each set is summed for all elements in the two sets. The square root
of the sum added to 1 and then divided by 1 defines the similarity measure. The similarity is computed
for product m to each of the 7 possible linguistic terms /. The similarity score ranges from 0 to 1 and
provide only ordinal information, which is sufficient to determine prediction.

To predict a subject's product preference, the most similar set must be the set representing the
subject's actual overall evaluation. For the nth highest overall evaluation, the calculated preference
score should be the nth highest among the six holdout profiles. If the top rated product has an overall
evaluation of good, then the calculated fuzzy set from the fuzzy conjoint model must be most similar
to good, compared to any of the other fuzzy sets. The prediction measure (0-6) for each subject for
both crisp and fuzzy models is then aggregated across subjects in three summary measures as well as
the mean. The number of subjects with first choice predicted, the sum of the prediction measure and
the weighted sum ( n(n+l)/2 where n is the number of correct ordered predictions ) are reported in
results and averaged as an overall comparison.
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Preference Model Implementation

The vector conjoint model (Equation 1) is an appropriate crisp conjoint model for comparison, since
it can be "fuzzified" by using fuzzy sets for linguistic ratings and since its 4 linear parameters are
easily estimated from the 18 estimation products in the stimulus design. Crisp model attribute weights
are estimated using ordinary least squares regression for each subject and product separately. The
fuzzy conjoint model does not need estimation in the conventional sense, but to be comparable to the
crisp model, the estimation data can be used to refine the pre-defined sets for each subject. A cut-off
level or alpha-cut for fuzzy set membership is found by discrete testing of the estimation ratings. The
goal is to consider only the more important higher membership elements in the calculated overall fuzzy
set. For each subject, the cut-off level (among 10 tested) with the highest prediction for the estimation
profiles is then automatically used for the holdout profiles in the prediction test. In previous research
this procedure improved the quality of predictions somewhat (longer predictions), but did not affect
the number of first choice predictions.

RESULTS

Prediction

The predictive validity of the crisp and fuzzy conjoint models is presented in this section,
addressing both hypotheses. The prediction measures reported in Table 1 are the percentage of
subjects for which first choice is predicted, the sum of choices and weighted sum of choices measures
and the mean prediction used for statistical tests. The two product categories (pizza and car) are
combined to provide a sample of SO. A naive model that randomly orders the six holdout profiles is
given in the first column, with the crisp vector conjoint model shown in the second column and the
fuzzy conjoint model in the third column. The results show that the fuzzy conjoint model predicts the
first choice of 82 percent of the subjects, compared to 50 percent for the crisp model and 17 percent
for the naive model. This rate of first choice prediction from six holdouts is much higher than crisp
model results reported in the literature, with the crisp conjoint model results also very good relative
to the best current models (e.g. Green 1984). Previous experiments using the fuzzy conjoint model
and the pizza product add further support, with an average first choice prediction rate of 78 percent
using the experimental software and 72 percent using written questionnaires over a total of 142 subjects
(Willson 1991). The improvement of the fuzzy preference model over the crisp preference model
increases substantially beyond first choice prediction, as reflected in the sum and weighted sum
measures. The advantage increases from 64 percent for first choice prediction to 140 percent for the
sum of choices and 212 percent for the weighted sum measures. The relative improvement of the
fuzzy conjoint model over the naive model is even larger, ranging from 390 percent for first choice
prediction to 11500 percent for the first 5 choices in order (16 percent fuzzy prediction rate versus . 138
percent naive prediction rate).

The overall improvement is obtained by averaging the fuzzy conjoint model improvement over the
crisp model for the first choice, sum of choices and weighted sum measures. The fuzzy conjoint model
is 138 percent better than the crisp conjoint model overall. To conduct a statistical test of differences
in predictive validity, the mean of the prediction measure for each subject is calculated as 2.16, .90
and .28 for the fuzzy conjoint model, the crisp conjoint model and the naive model respectively. On
average, the fuzzy conjoint model predicts the first two choices in order from the 6 holdout profiles,
an occurrence that would be expected by chance only 1 in 33 times. Comparing the mean predictions,
the fuzzy conjoint model is significantly better than the crisp conjoint model with probability of error
less than .0001.

291



To examine the second hypothesis, the effects of both the number of set elements used in defining
sets and the number of vague linguistic attributes are considered. The number of non-zero elements
in a fuzzy set can be varied in stages from a single element "crisp" set (one prototype element with
membership 1.0) to the 15 element sets (1 1-14 non-zero elements) used in the prediction results. The
predictive validity of the fuzzy conjoint model is tested using four variations of the same basic fuzzy
set definition using 1,3,7 and IS element sets for each of the 7 linguistic terms. The first three sizes
are defined over 7 domain elements (1 element per rating on the scale), while the larger size is defined
over IS domain elements, with intermediate elements between ratings and two additional endpoint
elements. The prediction results clearly demonstrate a large improvement in adding just 2 set elements
to a single element set, and smaller improvements as set size increases. First choice prediction
increases from 62 to 74 percent over 1 to 3 element sets, and to 82 percent for 7 and 15 element sets.
Prediction means improve from 1.04 to 1.50 for 1 to 3 element sets, a significant increase (p < .03).
Further improvements with 7 and 15 set elements are not significant, although such improvements
would be very valuable in a conjoint study.

Vagueness in product information is also expected to influence model performance. A linguistic
term ("medium") is certainly more vague than a numeric attribute value (price = $12.70). The
number of linguistic attributes (1-3) selected by subjects provides a simple measure of vagueness which
is graphed in Figure 2 according to the number of linguistic attributes selected. The results confirm
that the fuzzy conjoint model performs well at all three levels of vagueness, while the predictive
validity of the crisp conjoint model declines steadily as vagueness in attribute information increases.
For subjects selecting one linguistic attribute, the fuzzy conjoint model has a higher mean prediction
than the crisp model, although the t-value of the difference is not significant (t=0.59). For two
linguistic attributes, the fuzzy set mean prediction is significantly higher than the crisp mean, with a
t-value of 3.31 (p<.003), improving further for three linguistic attributes to a t-value of 3.57
(p<.002). This relative improvement in fuzzy conjoint predictive validity is also reflected in the
correlation coefficient between vagueness and prediction, which is not significant (-.110) for the crisp
conjoint model and is significant (.322, p< .02) for the fuzzy conjoint model. Thus the relative
predictive validity of the fuzzy conjoint model improves with vagueness in attribute information, an
important quality since subjects selected an average of 2. 14 linguistic attributes in their top 4 attributes.
The prediction improvements due to set size and linguistic attributes support the second hypothesis.

Market Share Prediction

Market share prediction is a very important component of conjoint analysis. Most conjoint studies
use computer software to simulate choice and to compare estimated and actual market shares based on
overall preference ratings of a cross-validation group of products (Green and Srinivasan 1990). The
logit choice axiom is widely used to convert preference scores to choice probabilities. The probability
of choosing a given alternative m from a choice set is given by

(4) />(TO) _ ( ey(«> / £ ey(p) )

where P (m) is the probability of selecting product m, given a crisp preference score y (m) and a set
of six hypothetical products (Batsell and Lodish 1981). The choice probabilities are averaged across
subjects to estimate overall market share. Ultimately managers need to know the market share that
would result from a particular attribute level, all else being equal. Preferences can be linked to the
main effects of attribute levels (e.g. price) according to Equation 4 and the stimulus design. Analysis
software tracks the different choices of attributes and attribute orders relative to the fixed stimulus
design among subjects to calculate overall shares for attribute levels, linking these to prototype values.
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For example, the average market share for holdout products with a medium level of price can be
calculated for each model and compared to $13.36, the mean prototype elicited from subjects that
selected the price attribute.

To estimate market shares for the fuzzy conjoint model, the overall preference must be converted
to a crisp number to use in Equation 4. A weighted centroid de-fuzzification method was developed
for this research. The membership value of each set element is weighted by a preference value equal
to the domain variable index (1-15 for IS element sets) and then summed for all elements and divided
by IS. A crisp preference score is calculated as

15

(5) y<i»)-;£<My,,.m>x ») / 15

n-l

where l*.B-(y»'m) is the fuzzy conjoint model output for product m from Equation 2. Market shares
are given in Table 2 for the pizza (n=26) and car (n=24) product categories for the three attribute
levels (labelled in terms of their evaluation as good, average or poor). All comparisons are done by
subject, with the actual share computed from the subject's overall evaluations of the six holdout
profiles. For all three attribute levels and both products, the fuzzy conjoint model market share
correlations with the actual share are higher than the crisp model's. Four of the six fuzzy model
correlations are significant at the .01 level, while none of the crisp model correlations are significant
at this level and only two are significant at the .OS level.

The mean share error of the absolute difference between estimated and actual shares is also lower
for the fuzzy conjoint model in every case. The average market share error is S.09 percent for the
fuzzy model and 7.64 percent for the crisp model. The crisp model estimated market shares have 50
percent more deviation from the actual share. Accurate share estimates are critical to managing
existing products. For pizza, the actual share for a medium price (mean=$13.36) is 48, compared to
24 for a low and 28 for a high price level. This suggests that a price slightly above medium would
be optimal. The fuzzy conjoint model would recommend a similar optimal price based on estimated
shares of 32, 42 and 26 for low, medium and high price levels respectively. The crisp conjoint model
estimated shares of 40, 42 and 18 (for L/M/H levels) differ substantially from the actual shares,
resulting in a much lower optimal pizza price between low and medium. The more accurate fuzzy
conjoint share estimates would allow a manager to charge a higher price, increasing profits without
a loss in market share. Using existing methods, the fuzzy conjoint model substantially improves
market share estimation and predictive validity.

CONCLUSIONS AND DISCUSSION

The results demonstrate the substantial benefits from using fuzzy sets to represent consumer ratings.
The fuzzy conjoint model significantly improves predictive validity compared to existing conjoint
models using identical data in a typical conjoint experiment, predicting the first choice of 82 percent
of subjects. The largest improvements are for the more difficult task of predicting the ranking of
preferences beyond first choice, which is reflected in the overall 138 percent improvement. The results
are consistent across attributes types, product categories, administration methods, stimulus designs and
192 subjects. The underlying measurement properties of the fuzzy conjoint model require only ordinal
information. Results show that both crisp and fuzzy conjoint models perform well using computer
software that fully adjusts to the subject preferences and attributes. Linguistic attributes are clearly
important to consumers, since subjects selected more than two, oh average, among their top four
attributes. The predictive validity of the fuzzy model does not decline when linguistic attributes are
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present, as the crisp model does. The fuzzy conjoint model gives practitioners the flexibility to deal
with linguistic attributes in an individual-level model with increasingly good predictive validity in
situations in which current models are not suitable.

The results also demonstrate the value of identifying situations and subjects for which a fuzzy set
preference model is most appropriate and of adapting conjoint analysis techniques to fuzzy set models
(e.g. statistical estimation, hybrid models, product optimization). Vagueness measures may form an
important part of a more general model relating predictive validity to subject, situation and preference
model characteristics. Alternative preference models based on fuzzy production rule combinations of
attribute values and approximate reasoning also show considerable promise (Willson 1991).

The results also show that the fuzzy conjoint model can be readily applied to marketing problems
using automated software for data collection. The experimental software is easily used by subjects,
providing all of the information needed to implement both crisp and fuzzy models in about 25 minutes
of interaction per product category. Once data is collected, the fuzzy conjoint model is actually easier
to implement and estimate than existing crisp models. Automated analysis software created for this
research can read and verify returned data, generating preference predictions and market shares. In
addition, the fuzzy conjoint model is an important module in a broader intelligent business system
which combines the best fuzzy logic and management science models to provide enterprise-wide
management systems. Improved market share and demand estimates from the fuzzy conjoint model
would be an important input to manufacturing and distribution systems.
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TABLE 1: PREDICTION RESULTS

Prediction Measure: Naive
Model

Crisp
Model

Fuzzy
Model

1st choice rate:
Sum of choices measure:
Weighted sum measure:

16.67%
10.69
19.66

50%
45
80

82%
108
250

Mean prediction:
t-value of mean (fuzzy - crisp):

0.28 0.90 2.16
4.53 (p<.0001)

TABLE 2: MARKET SHARE ESTIMATES BY ATTRIBUTE LEVEL

Attribute Level

Pizza Product:
Good Level:
Average Level:
Poor Level:

Car Product:
Good Level:
Average Level:
Poor Level:

Crisp Conjoint
Mean Abs. Correlation
Share Error W/. Actual

6.26
6.02
4.00

10.34
11.73
7.51

0.627
0.828b

0.866b

-0.191
0.044
0.538

Fuzzy Conjoint
Mean Abs. Correlation
Share Error W/. Actual

5.31
4.74
3.32

5.95
5.98
5.28

0.9173

0.9013

0.9063

0.412
0.298
0.8373

p < .01. b p < .05. Abs. = Absolute Value
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