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ABSTRACT.

In this paper a procedure is proposed to build a fuzzy knowledge base founded on fuzzy belief
networks and Lukasiewicz logic. Fuzzy procedures are developed to assess the belief values
of a consequent in terms of the belief values of its logical antecedents and the belief value of
the corresponding logical function and to update belief values when new evidence is

-available.

INTRODUCTION.

Expert Systems also called Knowledge-based Systems are one of the most fruitful areas of
Artificial Intelligence (Graham 1991). A knowledge base is a collection of logical
propositions whose relationships model the knowledge about a certain topic.

One of the principal issues in building expert systems is related to the design and construction
of knowledge bases capable of modeling real knowledge situations characterized by
uncertainty (Yager 1992). This uncertainty may be produced by following factors: (Lara-
Rosano 1989)

a) It is impossible to assign the whole truth or the whole falsity to propositions, even to those
taken as premises or starting points of a logical discourse.
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b) The logical support of a set of premises or conditions for determining a given conclusion
or result is uncertain.
c) The premises contain fuzzy terms.

In this paper a procedure to build fuzzy knowledge bases is introduced based on fuzzy belief
nertworks and Lukasiewicz logic (Lukasiewicz & Tarski 1930).

BELIEF NETWORKS AND FUZZY KNOWLEDGE BASES

Uncertain knowledge may be represented by a fuzzy knowledge base structured as a fuzzy
belief network (Lara-Rosano 1989). Fuzzy belief networks are weighted directed acyclic
graphs in which the nodes represent propositions, and the arcs express and quantify in a fuzzy
manner the logical dependencies of the consequents in terms of its immediate antecedents,
according to present knowledge. The logical belief functions should be drawn from a specific
fuzzy logic.

Thus, if the nodes represent the propositions qi,q2»-"'(ln> tnen eSLC^ proposition qj draws
arrows from a subset 8j of propositions which are the direct logical antecedents of qj Each

arrow has a weight that expresses the conditional belief on qj given the belief of the

corresponding logical predecessor.

For instance, consider following fuzzy knowledge, where q are propositions and the terms
under brackets represent their corresponding belief values:

Q3 = If John takes a glass water and the water is contaminated with harmful bacteria then

John could get sick [v(q3)=0.8]

and the following uncertain (fuzzy) facts:

q, = John is thirsty and probably takes a glass water [v(qi)=0.7]

QJ = The water could be contaminated with harmful bacteria [v(q2)=0.6]

The question is how to asess the belief value of the hypothesis:

q^ = John could get sick.

In this case, it is obvious that the belief value of q4 is not independent of the belief values of

its antecedents, but a fuzzy function of them. The problem now is to find the most suitable
multivalued logic to assess the belief value of an uncertain logical consequence in terms of the
belief values of its immediate antecedents and the belief value of the implication.
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From the possible multivalued logics it is argued that the most appropriate for use in fuzzy
logical networks is the Lukasiewicz logic. (Lukasiewicz & Tarski 1930). In fact:

a) Lukasiewicz logic is the multivalent logic underlying Zadeh's ordinary fuzzy set theory
(Giles 1976), having equivalent definitions for union (disjunction), intersection (conjunction)
negation and set inclusion. (Zadeh 1965).

b) The fundamental operators & and U are commutative, associative and distributive over one
another and idempotent. (Dubois & Prade 1980)

c) Lukasiewicz logic satisfies the De Morgan Laws and is compatible with the Piaget Group
of logical transformations (Sinclair 1972), but does not satisfy the Middle-Excluded Law.
That is, in this logic a certain proposition could be at the same time more or less true and
more or less false, such as is the actual case in uncertain propositions. (Dubois & Prade
1980).

Given propositions a,b and their respective belief values v(a), v(b) , Lukasiewicz logic
defines the following operators:

Conjunction: v(a & b) = min [v(a), v(b)]
Disjunction: v(a U b) = max [v(a), v(b)]
Negation: v(-a) = 1 - v(a)
Implication: v(a = > b) = min [1,1- v(a) + v(b)]
Modus ponens: v(a & [a = > b]) = max [0, v(a) + v(a = > b) - 1]

Therefore, in the former example:

v(qi&Q2) = minWqj), v(q2)] = min(0.7, 0.6) = 0.6

v(q3) = 0.8

and the belief value for q^: John could get sick is:

= max[0, v(q!&q2) + v(q3> - 1] = 0.4

a low belief value, indicating a low possibility for John to get sick.

Due to its mathematical logical foundations, this method is as theoretically sound as the
probabilistic methods (Schafer 1976) because it gives belief values for derived propositions
with fully logical consistence with respect to the rest of the network.

Adopting the conceptual frame of fuzzy set theory (Zadeh 1965), we may define the uncertain
implication as a fuzzy logical function such that:

a) if the premise x is true, then the conclusion y has a partial belief v(y) = s(x/y)
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b) if the premise x is false, then the conclusion y may have any belief value.

The value s(x/y) is on the interval [0,1] and will be called the degree of sufficiency or
sufficiency value of x over y , that is the degree of support given by the true proposition x to
the uncertain proposition y. It may be further interpreted as the degree of membership of x to
the fuzzy set S of sufficient conditions for y to be true.

SEMANTIC CLUSTERS OF PREMISES

Let us suppose a set of n premises (xj, X2,...,xn}> each one having its own belief value v(xj)

i=l,2,...,n and associated in a conjunctive way to support a conclusion y. Let us call s(x;/y)

the sufficiency value of premise xj over y. In general, the conjunction (xj & x: & ...) of two

or more premises will have a specific sufficiency value s(xj & Xj .../y) over a conclusion y

according to the synergistic sufficiency of the set, that is, its degree of membership to the
fuzzy set of sufficient conditions for y.

In general, s(xj & xj .../y) will be non-separable in terms of the single values s(xj/y), s(xj/y),

... due to the synergistic effect of the conjunction on y. Moreover, the synergy will be more
pronounced in certain specific conjunctive sets of premises than in others. These privileged
conjunctive sets of premises with higher overall sufficiency are called semantic clusters and
their identification among all possible conjunctive sets of premises is a matter of expertise and
field knowledge.

For instance, a doctor may assign a high belief value to the hypothesis apendicitis, based on a
semantic cluster defined by a couple of symptoms, none of which taken alone would bring
high credibility to the hypothesis.

Every semantic cluster of premises defines a specific implication with its own belief value.

EXAMPLE

For instance, let us have the following reasoning scheme:

xj = It is cloudy

\2 = The barometric pressure is low

y = It will rain

If it is cloudy and the barometric pressure is low, then it is absolutely probable that it will
rain.

In this case, the conclusion whose belief value is going to be estimated is y. The supporting
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premises are xj and \2\ v(xj) and v(\2) are their belief values and s(xj/y) and s(x2/y) are

their single sufficiency values. The logical combining function of the premises is the
conjunction: it is cloudy and the barometric pressure is low, expressed as (xj & X2>. The

conjunction has an overall sufficiency value on y represented as s([xj & X2]/y).

Given the belief values v(xj) =0.8 v(x2) = 0.85 and the overall sufficiency value s([xj &
= 0-9 to estimate v(y), the belief value of y we need to apply the fuzzy expression:

v(y) = max[0, Y(X! & X2> + s([\i &

but \(\i & \2> = min (0.8, 0.85) = 0.8 and s([xj & X2l/y) = 0.9 . Therefore:

v(y) = max[0, 0.8 + 0.9 -1] = 0.7

EVIDENTIAL BELIEF UPDATING OF FUZZY KNOWLEDGE BASES

In real life situations the initial knowledge base normally is composed of a small set of
premises with low belief values, because of lack of evidence. Later on, when evidence
arrives, new premises are introduced in the knowledge base, bringing new synergistic support
to other premises and modifying the belief value of the uncertain implications.

Thus, we have two different kinds of belief updating of fuzzy knowledge bases:

a) Belief updating of fuzzy implications.
b) Belief updating of premises.

For belief updating of fuzzy implications, the new evidence is joined to the old one, trying to
identify new semantic clusters or to reinforce the existing ones. Then the new combined
sufficiency values are estimated giving the new belief values for the implications.

In the case of belief updating of premises, because the new evidence, e may confirm or
disconfirm the related propositions, it is useful to apply the following Bayesian formula
proposed by Pearl (1986) to update the belief values:

v'(x) = aL v(x)

where v'(x) is the new belief value of the proposition x under new evidence e, v(x) is the old
belief value, L is a likelihood ratio expressed by:

L = P(e|x)/P(e|-x)
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where P(e|x) is the probability of occurring evidence e giving x. Thus the meaning of L is:
how many times more likely would it be for evidence e to occur under x as opposed to under
not-x

and a is a normalizing factor:

a = 1 / [L v(x) + 1 - v(x)]

The role of a is to maintain the belief value v'(x) less than or equal to one. In order to v'(x)
to be one the old belief value v(x) should be also equal to one and the evidence should
support x, that is, L should be greater than one. If v(x) is less than one, then a would be
smaller than L v(x) and the new belief value v'(x) would be also less than one.

The likelihood parameter L should be assessed by an expert, taking into account the possible
synergy of the new evidence with the old one.

Once the new belief values of the premises and implications are estimated according to the
new evidence, the whole belief network is recalculated applying the rules of fuzzy
Lukasiewicz logic, to have logical coherent belief values for every proposition in the
network.

Suppose in our last example that new evidence comes with certainty:

X3 = Tropical wet wind is blowing from the south; v(x3> = 1

Then we identify a new semantic cluster as (xj & \2 & X3) whose sufficiency value we
estimate say as 0.95

Further let us suppose that this evidence will bring new confirming support to our premise
\l\ It is cloudy. Let us estimate the likelihood ratio L(xj,X3) = P(xj 1x3) / P(xj |-X3> = 3
Then the normalizing factor for xj is:

a = 1 / [L Y(XI) + 1 - v(x)] = 1 / [(3 x 0.8) -I- 1 - 0.8]

a = 1 / 2.6 = 0.3846

The new belief value Y'(XI) will be then:

v'(X1) = a L Y(X!) = 0.3846 x 3 x 0.8 = 0.923

Therefore, it is more likely that it is cloudy. The belief value of the new conjunction (xl &
x2 & x3) is:
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min( 0.923, 0.85, 1 ) = 0.85
and the belief value of y = It will rain will be:

v(y) = max [0, \(\i & \2 & x$ + s([xj & \2 & \j\fy) - 1] = max [0, 0.85 -I- 0.95 - 1] =
0.8

The new incoming evidence has increased the belief value of // will rain from 0.7 to 0.8 due
to an impact over one of the premises and the definition of a new semantic cluster with a
higher sufficiency value.

CONCLUSIONS

In this paper a procedure to build a fuzzy knowledge base founded on fuzzy belief networks
and Lukasiewicz logic was proposed. It is based on a knowledge network structure composed
by uncertain propositions interconnected by fuzzy logical functions according to their logical
dependencies. Under this basis, the belief value of a logical consequent in the knowledge
network is defined and fuzzy procedures are developed to assess it in terms of the belief
values of its logical antecedents and the belief value of the corresponding logical function.

The procedure permits also updating of fuzzy knowledge bases when new evidence arrives.
This updating is then propagated in a logical antecedent-consequent order through the network
until the last conclusions are updated. For this updating a Bayesian formula developed by
Pearl (1986) is applied, requiring the estimation of only one parameter. Due to the analytical
support of a logical mathematical theory, the results have complete logical coherence.
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