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SUMMARY

Predictions and comparisons with the radiation dose measurements on LDEF by thermoluminescent

dosimeters have been made to evaluate the accuracy of models currently used in defining the ionizing

radiation environment for low Earth orbit missions. The calculations include a detailed simulation of the

radiation exposure (altitude and solar cycle variations, directional dependence) and shielding effects (three-

dimensional LDEF geometry model) so that differences in the predicted and observed doses can be attributed

to environment model uncertainties. The LDEF dose data are utilized to assess the accuracy of models

describing the trapped proton flux, the trapped proton directionality, and the trapped electron flux.

INTRODUCTION

Radiation dosimetry data from the Long Duration Exposure Facility (LDEF) mission are being utilized

to evaluate the accuracy of current ionizing radiation environment models and to identify model

improvements needed for future mission applications in low Earth orbit. A calculational program is in

progress to compare model predictions with the different types of LDEF ionizing radiation measurements

(dose, activation, LET spectra, secondary particles, etc.), and the status of this work is summarized in a

companion paper (ref. 1).

The scope of the present paper is restricted to model predictions and comparisons with LDEF

thermoluminescent dosimetry (TLD) measurements of the radiation dose. These TLD measurements provide

one set of data for evaluating the accuracy of environment models describing the trapped proton flux, the

trapped proton directionality, and the trapped electron flux. Assessments of trapped radiation models

utilizing other LDEF data sets from plastic nuclear track detectors and activation sample measurements of

induced radioactivity are in progress.

*Work supported by NASA Marshall Space Flight Center, Huntsville, AL, Contracts NAS8-38770 and NAS8-39386.
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CALCUIw%TIONAL METHOD

Environment Model -- Results from the calculations of Watts, et aI. (ref. 2) are used to model the LDEF

exposure to trapped protons. These calculations are based on the standard AP8 omnidirectional proton flux

model (ref. 3), with altitude and solar cycle variations during the LDEF mission included, and with the

MSFC anisotropy model (ref. 4) applied to determine the trapped proton directionality. In the calculations

here, the directionality was taken into account by using different incident energy spectra along directions

defined by a 3-D angular grid of 720 equal solid angle intervals about the dose point. Example spectra are

shown in Fig. 1.

Spacecraft Model -- The LDEF radiation dosimetry data is influenced by material shielding effects due to

the dosimeter itself, nearby components and experimentsl and the spacecraft Structure. It is necessary to

isolate shieldingeffectsparticular tothe LDEF spacecraft so that the evaluated model uncertainties canbe

attributed to the ambient radiation environment and so that the results have applicability to other missions

with different spacecraft configurations. To help ensure that differences between predictions and

measurements are due to the external radiation environment and not shielding effects, a detailed three-

dimensional geometry/mass model of the LDEF spacecraft and selected experiment'trays has been

developed (ref. 5), and this 3-D model has been used to take into account shielding effects for the dose

predictions here.

Radiation Transport -- Three-dimensional radiation transport calculations were performed using the 3-D

LDEF geometry/mass model and the solid angle sectoring approximation, in which the solid angle around

each dose point is divided into small sectors and the shielding attenuation along "ray" directions through

each sector is computed. Transport calculations using different trapped proton energy spectra for each

direction were carried out using the MSFC code written by Burrell (ref. 6), which employs the straightahead

approximation together with fits to stopping power and range relations to obtain an analytical solutio n of the

transport equation. The attenuation is computed for material along each ray direction representing a solid

angle sector, the attenuated fluence spectrum is folded with the stopping power for tissue, and the results

summed for all rays to Obtain the tissue dose.

An example TLD shielding distribution used in computing the radiation attenuation is shown in Fig. 2.

Shown are areal densities (aluminum equivalent) along rays emanating at the midpoints of 720 equal solid

angle bins surrounding th_e TLD. The TLD in this case is located in one of !he canisters containing tomato

seeds in tray F2 (SEEDS experiment, Exp. No. P0004). The outward directed TLD normal is at q_= 240 °

and 0 = 90 °, where +q_ is measured from south (row 6) and +0 from the zenith direction. Also indicated in

Fig. 2 is the constant shielding corresponding toa spherical geometry model having a radius equal to the

vertical (minimum) TLD shielding, which is the simple geometry model assumed for some of the scoping



estimatesin theLDEF pre-recoverydosepredictions(ref.7). As evident,thesphericalgeometrymodel

substantiallyunderestimatesthedosimetryshielding.

RESULTS

TLD measurementsweremadeatvariouslocationson theLDEF spacecraftandat variousshielding

depthsin theexperimenttrays.Fig. 3summarizestheTLD datapresentlyavailableat thelargershielding

depths (_>0.5g/cm2)wheretrappedprotonsdominatethedosecontribution. Thedatashownarefrom

dosimeterslocated: (a)on thetrailing (west)sideof thespacecraft,consistingof themeasurementsby

Frank,et al. (ref. 8) for TLDs locatedin experimenttrayF2 (Exps.P0004andP0006),measurementsby

Frank,et al. (ref. 8) andReitz (ref. 9) in tray C2 (Exp.A0015),andmeasurementsby Bourrieau (ref. 10)

in trayB3 (Exp.A0138-7); (b)on theearth-endof thespacecraft,consistingof measurementsby Frank,et

al. (ref. 8) andReitz(ref. 9) in trayG2 (Exp.A0015);and (c) on theleading(east)side,consistingof

measurementsby Frank,etal. (ref. 8) in tray F8 (Exp.M0004)andby Blake andImamoto(ref. 1I) in tray

D9 (Exp. M0003). In two cases,theExp. M0006 measurementsof Chang,et al. (ref. 12)andsomeof

theExp. M0003measurementsof BlakeandImamoto(ref. 11),TLD assemblieswerelocatedin drawersof

theexperimenttrayswhichwereclosed40 weeksinto themission. Thus,theshieldingchangedduring

flight in thesecases,andresultsfrom thesemeasurementsarenot includedin Fig. 3.

Thedosesin Fig. 3, andin subsequentgraphsof this type,areplottedasafunction of the"vertical"

shieldingthicknessin g/cm2of aluminumequivalentmaterial(basedonequivalentrangesfor 100-MeV

protons),wheretheverticaldirectionis alongthenormalfrom theTLD faceoutwardfrom theLDEF

interior. This verticaldirectiongenerallycorrespondsto thedirectionof minimum shielding,althoughthere

areexceptions,suchasfor theTLDs locatedneartheedgeof thethick detectorstackin Exp.P0006.

Predicteddosesandcomparisonswith thedataof Fig. 3aregivenbelowwith theobjectivebeingto

evaluatetheaccuracyof modelsdescribingthemagnitudeof thetrappedprotonflux andits angular

dependence.Subsequentcomparisonsusingpreviouspredictions(ref. 7) arethenmadewith theTLD data

at thin shieldingdepthswherethedosecontributionis dominatedby incident electronsto assessthe

accuracyof trappedelectronflux models.

TrappedProtonDose

Figs.4-6comparepredictedandmeasureddosesfor TLDs in LDEF experimenttrayslocatedon the

trailing edge,earthend,andleadingedgeof thespacecraft,respectively.Predictionsfor Exps.P0004and

P0006locatedin trayF2 andExp. M0004in trayF8arebasedon adetailedgeometrymodelingof thetray
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contents (ref. 4); for other cases (trays B3, C2, and G2) the tray contents were modeled as a single

homogenized material (aluminum) with reduced density, so the dosimetry shielding is approximate for these

cases. For the TLDs located in the Exp. P0006 detector stack, both measurements and calculations show

appreciable variation of the dose for different locations within the TLD array for the same vertical shielding

depth; the computed doses shown for P0006 are for a point in the middle of the array, and the measured

values are the minimum values observed (ref. 9) across the array. The values shown for the Reitz

measurements in Exp. A0015 are averages of the reported data (ref. 8) for TLD types 100 and 700.

A summary of the predicted and measured doses is given in Fig. 7. These results show that the AP8

trapped proton flux model gives a lower dose than observed from TLD measurements aboard LDEF for all

spacecraft locations and shielding depths, with the predictions usually about a factor of two lower than

measured. The predicted-to-measured dose ratios are practically constant with shielding depth, indicating

that the trapped proton model environment is too low by about the same factor over a wide range of proton

energies. Since the total mission dose is accumulated during the early high-altitude portion of the flight,

which occurred predominately during the solar minimum phase of the solar cycle (ref. 2), these conclusions

refer to the solar minimum version (APSMIN) of the AP8 trapped proton model. (Model comparisons with

available LDEF induced radioactivity measurements, ref. 13, for relatively short half-life radioisotopes

should enable a check of the APSMAX model since the latter part of the flight took place during solar

maximum.)

The present dose predictions based on a detailed LDEF geometry model and an anisotropic trapped

proton environment differ from early scopmg estimates (ref. 7) made as part of the LDEF pre-recovery

predictions in which simple geometry models (sphere and planar) and an omnidirectional trapped proton

environment model were used. The difference is illustrated in Fig. 8 for comparisons with the TLD data of

Exps. P0004 and P0006. While the omnidirectional, spherical geometry calculations (fortuitously) agree

with the data, the more accurate models give doses about a factor two lower than the measurements. This

illustrates that directional effects and a reasonably detailed spacecraft geometry model are needed in utilizing

LDEF data for definitive assessments of uncertainties in the radiation environment.

Trapped Proton Anisotropy

For the low inclination (28.5 °) of LDEF orbits, the dose from galactic cosmic rays is very small due to

geomagnetic shielding, and, except for near-surface shielding depths where the trapped electron

environment is important, the absorbed dose measurements on LDEF are due almost entirely to the trapped

proton exposure during passes through the South Atlantic Anomaly (SAA). In the SAA region at LDEF

altitudes, protons are "mirroring" in the geomagnetic field, with trajectories confined mainly in planes

perpendicular tO the local magnetic field direction and with in-plane asymmetry due to the east-west effect.
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Since LDEF had a very stable orientation during the entire mission, measurements at various positions

around the spacecraft provide data for evaluating the proton anisotropy model used.

In several cases TLD dosimeters at similar shielding depths were located near the trailing (row 3) and

leading (row 9) edges of the spacecraft. These data and predictions in terms of the ratio of trailing-to-

leading edge doses are shown in Fig. 9. The measured anisotropy is generally higher than predicted by the

MSFC anisotropy model; e.g., the measured anisotropy for Exps. P0004/M0004 and Exps. P0006/M0004

is a factor of = 2.4, whereas the calculated anisotropy factor for these cases is = 1.4.

To further investigate the difference found between measured and predicted trapped proton

directionality, several calculations were performed to determine the influence of spacecraft geometry on the

predicted anisotropy. Fig. 10 shows the angular variation of dose at a particular depth (4 g/cm 2) for three

assumed geometries: (a) the curve labeled "LDEF" was computed using the three-dimensional LDEF

spacecraft model, (b) the curve labeled "Cylinder" was computed for a cylindrical spacecraft geometry

having the same diameter, length, and total mass as LDEF but with the mass uniformly distributed within

the cylinder, and (c) the "Plane" curve is for a planar shielding geometry with infinite backing and lateral

dimensions and with the plane normal vector pointed in the plotted direction. These results for different

model geometries show significantly different characteristic shapes for the angular variation of the dose.

The detailed 3-D spacecraft model exhibits a local enhancement of the close on the east side of the spacecraft,

which is not present for the homogeneous cylinder or planar models. This dose "bump" on the east side is

due to the fact that the interior of LDEF underneath the experiment trays contains relatively little mass, so the

high flux incident on the west side "streams" through the hollow interior and contributes to the dose on the

east side. This radiation streaming through the interior of LDEF can also influence the anisotropy observed

at different shielding depths because at deeper depths on the east side the west-side flux contribution

becomes larger. This is illustrated in Fig. 11 where the dose at various depths is calculated around the

center ring of the spacecraft structure using the 3-D LDEF model. At small depths (e.g., 0.5 g/cm 2) the

west side dose is higher, at about 10 g/cm 2 depth the west and east side doses are about the same, and at

larger depths (e.g., 14 g/cm2), corresponding roughly to the bottom of most of the experiment trays, the

east side dose is higher.

While these calculations on geometry effects do not fully explain the difference found between the

measured and predicted dose anisotropy, they do indicate that the observed anisotropy can be substantially

influenced by the spacecraft configuration and that a realistic spacecraft geometry model is necessary in

interpreting the measurements and in applying the data to other spacecraft configurations for future

missions.
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Trapped Electron Dose

Two experiments on LDEF contained TLDs with sufficiently thin shielding that the response is

dominated by incident electrons. Measured TLD doses for these cases have been reported by Blake and

Imamoto (ref. 11) for Exp. M0003 and by Bourrieau (ref. 10) for Exp. A0138-7. Results from these

measurements are plotted in Fig. 12 together with the pre-recovery predictions made by Watts (ref. 7) using

the AE8MIN and AE8MAX trapped electron environment models (ref. 14). The predictions are for a planar

shield with infinite backing, which is expected to be an adequate geometry approximation in this case

because of the shallow shielding penetration of the electrons and secondary bremsstrahlung. The M0003

results reported by Blake and Imamoto for dose in the TLD lithium fluoride have been multiplied by 1.25,

the stopping power ratio of water to lithium fluoride for electrons in the appIicable energy range, to compare

with the calculated results in terms of tissue dose. M0003 measurements were also made for thinner

shielding than shown in Fig. 12, but these data points are not included here because, as discussed by Blake

and Imamoto, the results are suspect at present due to possible TLD saturation effects.

|

i

Fig. 12 shows that for small shielding depths where the incident electron flux is predicted to clearly

dominate the dose (50.1 g/cm 2, corresponding to ,.<15 mils of aluminum shielding), there is general

agreement between t_he predictions arid-measurements. The largest difference is at a shielding depth of about

0.04 g/cm 2, where the predicted dose is lower than measured by a factor of two; near 0.01 g/cm 2, the
_ _ _=2752 __ . -_ = _ . S. . = " " -.

predicted dose is higher by a factor of 1.5. Blake and Imamoto (ref. 11) point out that the flattening of the

measured dose profile near2 x 104 rads for very thin shielding may be due to TLD saturation effects caused

by very high doses in a thin layer of the TLD near the outboard surface and by the steep dose gradient within

the TLD thickness. Thus, this may account for at least part of the difference between measurements and

predictions in the thin shielding region ..<3 x 10 -2g/cm 2 of Fig. 12 rather th_ environment modeling

uncertainties.

CONCLUSIONS

Based on the radiation dose measurements by thermoluminescent dosimeters on LDEF, the AP8 proton

model at solar minimum (AP8MIN) underpredicts the trapped proton flux in low Earth orbit by about a

factor of two. This difference between measurement and prediction is not totally unexpected since a factor

of tWO uncertainty is often associated with theAP8 model, butttie difference here is larger than indicated by

some Shuttle measurements (e.g., ref. 15). The higher radiation dose observed for TLDs on the trailing

edge of the spacecraft is in agreement with calculations using the MSFC model for describing the angular

dependence of the trapped proton environment, although the measured dose anisotropy, based on the

relatively few trailing-to-leading edge TLD positions onboard at common shielding depths, is somewhat
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higher than predicted. For thin shielding where incident electrons dominate the dose, predictions based on

the AE8MIN trapped electron flux model are in general agreement with the TLD measurements (within a

factor of two). Some of this difference may be due to saturation effects in the TLDs, which is still under

investigation (ref. 11).

These conclusions should be regarded as tentative since additional calculations and comparisons with

other LDEF radiation data are still in progress. For example, meagurements of the induced radioactivity in

various metal samples, some located in close proximity to the TLDs, provide additional data for evaluating

the trapped proton flux model and will allow a cross-check of the conclusions here based on model

comparisons with TLD data. Also, a more detailed mapping of the proton anisotropy is available from

activation measurements, and these data are expected to provide a more definitive test of the trapped proton

anisotropy model. These and other model comparisons with the LDEF ionizing radiation data are

underway.
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Figure 10. Influence of geomery model on predicted directionality of absorbed dose

for LDEF mission due to trapped proton exposure.
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Figure 11. Influence of shielding depth On predicted directionality of absorbed dose
from trapped protons. The dose is calculated in the center ring of the LDEF spacecraft
using a 3-D geometry/mass model.
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Figure 12. Comparison of measured and predicted absorbed dose for 0aermplumines-
cent dosimeters on LDEF having thinshielding where the dose !s due to the trapped
electron environment.
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