
We consider the attitude stsbilizalion of a rigid spacecraft using

control ton]__ueJSU.l_lied by gas jet.actustorl about only two.of its princi-
pal axes. Hm, me case _ me uncontrolled p_tcipa_ axis of the
spacecr_ is not m axis of symamm/ is considered. In this case. the
complete spaotmraR dynamics are small time locally controllable. How-
ever, the spacecraft e.armot be uymptodcally tulMlized to an equilibrium
attitude using llme-/nvariant omtimaotm fcedbeck. A discontinuous stabil-
izing feedback control strategy is ccmma:t_ which stabilizes the space-
craft tO an equilil_ltmt iglitud¢. Next. the case where the uncontrolled
prttmiim/axis of the slmc¢_ b an _ of symmetry is considered. In
this ease, the complete spacecraR dynamics are not even accessible. How-
ever, the sp_ecra_ dynamics arc strongly accessible and small time
locsily conm_lable in a reduced sense. The reduced spacecraR dynamics
cannot be uymptoflc, aRy _ to an equililx'ium attitude using time-
invarisrg comimmus feedback, bux again i discontinuous stabilizing feed-
back control strategy is comm_cted. In both cases, the discontinuous
feedback commllers are consuuc-,ed by switclting between one of several
feedback functions.

1. Intr_lu_ion

We consider the attitude stabilization of a rigid spacecraft
using control torques supplied by gas jet actuators about only two
of its principal axes. A ngid spacecraft in general is controlled by
t_nsi_hndent actuators about its principal axes. The situation

eae may arise due to the failure of one of the actua-
tors. The linearization of the complete spacecraft dynamic equa-

tions it an_ equilibrium attitude has an uncontrollable eigenvalue
at the origin. Consequendy, controllability and stabilizability pro-
perties of the spacecraft cannot be inferred using classical lineari-
zation ideas and requires inherently nonlinear analysis. Moreover, a
linear feedback control law cannot be used to asymptotically stabil-
ize the spacecraft to an equilibrium a_mcle. An analysis of the
controllability properties of a spa¢o_al't with two independent con-
m01 torquesismade in [7]. In [7] itisshown thata necessaryand

sufficientconditionfor complete controllabilityof a spacecraftwith
controltorquessuppliedby was jetactuatorsabout only two of its
principalaxes isthatthe uncontrolledprincipalaxismust not be an

tryof the spacecraft.In (6],itisshown thata rigid
trolled by two pairs of gas jet actuators about its

'.principalaxes cannot be asymptoticallystabilized m an equilibrium
attitmle using a time-invariant continuously differentlable,i.e., C 1,
feedback conaul law. Monmver, using some of the theoretical
results in (9] and [12], it also follows that there does not exist any
dm¢-invariant continuous feedback control law which asyrnptou-
caUy stabilizes the spacecraft to an equililrium attitude. However
a smooth C I feedback control law is derived in [6] which locally
asymptotically stabilizes the spacecraft to a circular attractor, rather
than an isolated equililmum.

We first consider the case where the uncontrolledprincipal
axis of the space, cmR is not an axis of symmetry. In this case,, the
complete spacecraft dynamiea are small time locallycontrollableat
any equilibrium attitude. However, as stated earlier, the spacecraft
cannot be asymptotically stabilized to any equilibrium attitude
using a dme-invariant continuous feexlbackcontrol law. Using

localconmollabilityresults,an algorithmwhich locallyasymptoti-
callystabilizes the spacecr_ to an isolated equilibrium .is

in [7]. That algorithmis extremely coml_licatedand zs oaseo on
Lie algebraic methods in [g]. The algorithm yields .a. pie_. wi.sc
constant discon_uous controL Although very compucn_ me
alsoriom is the _y one Wopoud in the utenuu_ .thusfirw_ch
locally asymptotically stabilize# the spaoecr_ a_tuae to an equm-
brium. In thispaper a new digamtinuous stabilizingfeedback con-
u:ol su'ategy is conm'ucted which sud_ the spacecraft to an
equilibrium attitude. The control swategy is simple and is based on
physical considerations of the problem.
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We next consider the case where the uncontrolled princip_

axis of the spacecraft is an axis of symmetry. In this
complete spacecraftdynamics are not even accessible. Under some
rather weak assumptions, the spacecraft dynamic equations are
strongly accessible and small time locally controllable at any
equilibrium atntude in a reduced sense. The reduced spacecraft
dynamics cannot be asymptotically stabilized to an equilibrium atd-
rude using time-invariant conunuous feedback. Nevertheless, a
discontinuous feedback control strategy is constructed which
achieves attitude stabilization of the spacecraft.

2. Kinematic and Dynamic Equations

The orientationof a rigidspacecraftcan be specified using
various paramemzations of the specialorthogonal group SO(3).
Here we use the following Euler angle convention. Consider an

inertial X z X 2 X 3 coordinate frame; let x I x 2 x 3 be a coordinate
frame aligned with the principal axes of the spacecraft with origin
at the center of mass of the spacecrafL If the two frames are ini-
tially coincident, a series of three rotations about the body axes,
performed in the proper sequence, is sufficient to allow the space-
craft to reach any orientation. The three rotations are [14]:

a positive rotation of f_un¢ X z X 2 X 3 by an angle ¥ about
the X 3 axis; let x I x 2 x 3 denote the resulting coordinate
frame;

a positive rota.don of ..frame xl x2 x3 by an angle e about the

x 2 axis; letx I x 2 x 3 denote the resulting frame;

a positive rotation of frame xt x2" x3' by an angle ¢ about
the x I axis;let x 1 x 2 x 3 denote the final coordinate frame.

A rotation matrix R (V,0,¢) relates components of a vector in the
inertial frame to components of the same vector in the body frame
[14]. We assume that the Euler angles are limited to the ranges

- n <W, 0 < _,-x/2 < O <g/2 • (2.1)

Suppose c01, co_, _ are the principal axis components of the abso-
lute angular velocity vector co of the spacecraft. Then expressions
for c0f co_, co3 are given by

cot = 0 - _sin0, (2.2)

coz = 0cos_ + _cosO sin#_, (2.3)

= - 0sine + _cos0 cos_ , (2.4)

Since these equations are invertible, we can solve for _, 0, _ in

terms of co_, o_, co3 obtaining

= Cot + o_sinO tune + ohcos@ tune, (2.5)

= _cos0 - _sin¢, (2.6)

= c0_sin0 sec0 + c03cos_ sec0. (2.7)

Next we consider the dynamic equations which describe the
evolution of the angular velocity components of the spacecraft.
Let J = diag (-/1, J2, J3), Ji > 0, [ = I, 2, 3, be the inertia matrix
of the. spacecraft in a coordinate frame defined by its principal
axes. Let H be the angular mon_ntum vector of the spacecraft
relative to the inertial frame. Then we have

l¢.o = R (¥,O,_)H . (2.8)

Differentiating (2.8) we obtain

s6)=s(co)R0V,O,O)H+ R (w,o#)H, (2.9)

where
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S ({I))--- 0 1 . (2.10)

-(I)1

We assume thatthe controltorquesu"I and u'2 are appliedabout

axes representedby unit vectors b I and b2 respectively.This

impliesthat

R (_,8A_)H = blu'1 + b2u'2 • (2.11)

Without loss of generality,we assume that81 = (l,0,0)r and

b 2 = (0, l,0)T. Thus the equationsdescribingthe evolutionof the
angularvelocityof the spacecraftare givenby

Jl(_)l = (J2 - J3)C_20}3 + u'l ' (2.12)

J2d)2 = (J3 - Jl)ca_l + u'2, (2.13)

J3d_ = (J1 - Jz)_lc°2 • (2.14)

3. Controllability and Stabilizability Properties
of Complete Slmcec_fl Dynamics

As background for our subsequent development, we consider
the controllability and stabilizability properties for the complete
dynamics of the spacecraft with control torques only about two
principal axes. Define

From Section2 the stateequationscan be rewrittenas

_01 = a loha_ + ut, (3.1)

d)2 = a2cola b + u2 ' (3.2)

d_ = a3ah0_, (3.3)

= o)l+ ¢o2sin* tan0+ co3cos#tan0, (3.4)

6= e.sos#- _sin,, (3.5)

_/= o_2sin t sec0 + c03cos# sec0, (3.6)

where

J2-J3 J3-Jl ]t -J2

a,= j---'_,a2= j--_,a3= j"---_

• It is easily verified that the linearizafion of the equations about an
equilibrium has an uncontrollable eigenvalue at the origin. This
implies that an inherently nonlinear analysis is necessary in order

to characterize the controUability and stabilizabili_ pmperdes of
the complete spacecraftdynamics. Moreover, a Imcar zeeooac
controllaw cannot be used to asymptoticallystabilizethe space-

craftto an equilibriumattitude.

We now presentfundamental resultson the controllabilityand
stabilizabilitypropertiesof the complete spacecraftdynamics
described by equations (3.1)-(3.6). The reader in referred to [13]
for additionaldetails.

. rheo,.e,,3.1: compie d..y i..'cs by  te
equations (3.1)-(3.6) are stmogly _cesmble if ana omy u Jl 2,
i.e., the uncontrolled principal axis is not an axis of symmetry.

Theorem 3.2: The complete spacecraft dynamics described by state

equations (3.1)-(3.6) are small time locally controllable at any
equilibrium if and only if J t ¢ J 2.

Theorem 3.3: The complete spacecraft dynamics described by state
equations (3.1)-(3.6) cannot be locally asymptotically stabilized to
an equilibrium by any time-invariant continuous state feedback
control law.

Theorem 3.3 holds if J t _t J2 and also if J t = J2. A weaker
version (with "continuous" replaced by "C 1,) was proved in [6].
However, Theorem 3.3 follows from [6] using results in [9] and

[12]. This negative result also implies that feedback control

approaches based on linearization, Lyapuoov methods, center mani-
fold theory, or zero dynamics cannot be used to asymptoticallysta-

bilizethe _ to an equilibrium attitude.

Although the full set of equations (3.1)-(3.6) cannot be

asymptotically stabilized to an equilita'ium via continuous feed-
back, one may still wish to design a smooth control law which

stabilizes at least a particular subset of state variables. Consider the
state equations for cot, a_2, oh, q_ and 0 given by equations (3.1)-
(3.5). These equations are invariant with respect to the Euler angle
_. Asymptotic stabilization of this subset of the original equations
corresponds to stabilization of the motion of the spacecraft about
an attractor, which is not an isolated equilibrium. A result from [6]
shows that the closed loop trajectories can be asymptotically stabil-
ized to the manifold

f2 = {(c%oh,oh,¢,O,v) : ah = oh = oh = ¢ = 0 = O} (3.8)

using smooth C 1 feedback.

We mention that although the complete spacecraft dynamics
described by equations (3.1)-(3.6) cannot be asymptotically stabil-
ized to an equilibrium by continuous feedback, an algorithm gen-
erating a piecewise constant discontinuous control has been
developed in [7] which locally asymptotically stabilizes the com-
plete spacecraft dynamics to an equilibrium. The algorithm
requires that Jtg J2, i.e., the uncontrolled principal axis must not
be an axis of symmetry. The algorithm is based on Lie algebraic
methods in [8]. The algorithm is extremely complicated and is not
an easily implementable control strategy. However, stabilization of
the complete spacecraft dynamic equmious O.1)-(3.6) is an
inherentlydifficultproblem and the algorithmin [7] is the only
control strategyproposed in the literaturethus far.

4. Attitude Stabilization of a Non-Axially Symmetric
Spacecraft with Two Control Torqmm

In this section, we consider the equations (3.1)-(3.6) describ-
ing the motion of a spacecraft controlled by input tOn:lUeS only
about two of its principal axes. It is assumed that the tm_rolled
principal axis is not an axis of symmetry of the spacecraft; i.e.,
J1 _ J2. As a consequence of the negative result of Theorem 3.3,
we restrict our study to the class of discontinuous feodlxw, k con-
trollers in order to asymptotically stabilizethe complete spacecraft
dynamics. However, as shown in the previous section, the com-
pletespacecraft dynamics are snutll time locally controllable at any
equilibrium attitude. This suggests that a piecewlae analytic feed-
back controllaw can be constructedwhich asymptotically,stabilizes
the complete spacecraftdynamics to an equilibriumamtude. Here
we present a particular discontinuous feedback strategy, which is
obtained by requiring that the spacecraft undergo a sequence of
specified maneuvers. Without loss of generality, we assume that
the equilibrium attitude to be stabilized is the origin. We first
present a physical interpretation of the sequence of maneuvers that
u'ansfers any initial state to the origin.

Maneuvers 1-3. Transfer the initial state of the spacecraft to an
equilibrium state in finite time; i.e., bring the spacecraft to rest.

There are control laws based on center manifold theory [1]
and zero dynamics theory [6] which accomplish this in an asymp-
totic sense. Here we use a sequence of three maneuvers, and
corresponding feedback control laws, which bring the spacecraft to
rest in finite time.

Maneuver 4. Transfer the resulting state to an eg_m'librium state
where 0 = 0 in finite time; i.e., so that the spacer zs at rest with

q_ = 0. This maneuver is accomplished using the control torque u t

only.

Maneuver 5. Transfer the resulting stateto an equilibrium state
where _ = 0, 0 = 0 in finite time; i.e., so that the spacecraft is at
rest with 0 = O, 0 = 0. This maneuver is accomplished using the
control torque u 2 only.

In order to complete specification of the _u.ence of
maneuvers, the Euler angle V must be brought to zero. This cannot
be accomplished directly since a controltorque cannot be applied
about the third principal axis of the s_ However, the
resultingstatecan be transferredto the origin indirectly usingthree
mancuven. The three maneuvers conespond to three consecutive
rotations about the two con_olkd _ axes .of.the, spacecraft,
the first and the third being around the first prmcqau axis. This

produces a net change in the orientation of the s.p_t. so .that
the state of the spacecraft is transfared to the origin m fimte me.
The three maneuvers are described as follows.



IVhmeuver 6, Trimmer the resulting state to an equilibrium state
where 0 = 0.5x, e = 0 in finite time; i.e., so that the spacecraft is
atrestwith 0 = 0.5x,8 = 0. This maneuver isaccomplished using
thecontroltorqueu Ionly.

Maneuver 7. Transf_ the resultingstateto the equilibriumstate

(_,0_,oh,$,O,¥) = (0,0,0,0.5z,0,0)in finitetime. This maneuver
isaccomplished usingthe ¢onnul torqueu 2 only.

Maneuver 8. Transfer the equilibriumstate(¢at,%,oh,¢,O,¥) =
(0,0,0,0.St,0,0)to the equilibrium stale (0,0,0,0,0,0)in finite time.
This maneuver is accomplished usingthe controltorque uI only.

Note that, excluding the first tlu'cc maneuvers where the
spacecraftis brought to rest,a/d subsequent maneuvers are such
that the angular velocity component a h is maintained identically

zero. This is accomplished by carrying out maneuvers which
require use of only a single conl_l torque at a time.

It is convenient to introduce some notation. Throughout,
assume k > 0, and define

x21x21

k if {xl+------._-->0} or

x21x21

{xl + _ = 0 andx2 > O}

x2lx21

G0rl, XT) -k if {x I+T <0}°r

x21x21
(xl+---_--- =0 and x2<01

0 if {xz=0 and x2=0}

We use the well-known propcmy thatthefeedback control

u =-G(xl-X'l, xO

for the system

i I =x2

i2=u

transfers any initial state to the final state (,t't,O) in a finite time.
We also use the standard notation that

i if x I > 0
sign(x 0 = if x 1 < 0.

if xt=0

Our mathematical construction of a conaml strategy which transfers
an arbiwary initial stateof the spaceor_ to the origin is based on a
sequence of equilibrium sul_ets and • sequence of conmol func-
tions which transfers a state in one subset to another. Consider the

following equilibrium subsets

M t = {(w_,(_,ohA),0,¥)= (0,0,0,¢,0,¥),¢,e,¥ arbitrary},

M 2 = {((at,oh,oh,_,e,¥)= (o,o,o,o,e,¥), e,¥ _bimu3,},

M3 = {(oh,o>_,oh,*,e,¥) = (0,0,0,0,0,¥), ¥ arbitrary},

M 4 ffi{(o)l,(o2,oh,¢,O,¥)= (0,0,0,0.5x,0,¥),¥ arbilrary}.

We now present the fecdlmck control laws thataccomplish the

ase_uentialmancuvea,zdescribedabove; for each case we show that
uwnainalstatewhich definesthe maneuver isroached.

Transferring any Initial state to a s_te in M t

In ord_ to transfer the arbimm/ initial state to a finalstate
which satisfies cot = o)2 - oh = 0 three sequential maneuvers are
required. The firstmaneuver resul_ in _ : oh ffi.0 while oh ,, 0
in gen¢_,; the second maneuver _sulm in oh = o){ and oh = o_,
where (_, oh are chosen to guarantee that at the end of the third

maneuver oh = o_ = oh = 0. Them three maneuvers are described
in derailas follows.

 ,er L Let d otean statefor
the complete spacecraft dynamics desoribed by equations (3.1)-
(3.6).

v! ffialohOh + u t ,

v2 = a_o_oh + "a.

Equations(3.1)-(3.3)can now be rewrittenas

(J)l- Vl , (4.1)

(_ = v2 , (4.2)

d)3 = a3_1_2 . (4.3)

Apply the feedback control functions

v I = - k sign_01 ,

v 2 = - k signo h .

It is easy to see that after a finite time given by

max(----_,---_), ot = oh = 0; at this instant let oh = _3 where

the constant value _ can be evaluated.

Maneuver 2. Apply the feedback control functions

v I = - ksign(_l - _) ,

v_ = - ksign(_- _),

where
1

o)¢: l j , (_ = - o)_ sign_$_ sign_3 .

It is again easy to see that MI_- a finite time given by -¥-,

mt = oh', oh = _, and in addition it can be shown thatoh =
2"

Maneuver 3. Apply the feedback control functions

v I = - k sign_t ,

v 2 = - ksignoh.

It can be seen that after a finite time given by -_-, _1 = 0, ¢o2 = 0

and it can be shown that oh ffi 0.

Consequently, _e resdting state after these three sequential
maneuvers is (0,0,0,¢_,0_,¥ ') _ M! for some ,t, el, vl.

Transferring a state in M t to s state in M2 (Maneuver 4)

Let (0,0,0,_,0t,_/) e M_ denote a state of the spacecraft
Apply the feedback control functions

u_= - G(_,_t),

u2=0.

It follows that

(_=0,oh=o,

0=0 _ ,_=_,

satisfy equations (3.2), (3.3), (3.5), (3.6) while equations (3.1),
(3.4) become

6_t = - G (#_,w t) ,

_--_1 .

Consequendy. after • finite time oh = 0, ¢ = 0; and thus a state
(0,0,0,_i,01,_ 1) e Mz is transferred to the state (0,0,0,0,01,¥ t)

M z in finite time.

Transferring a state in M 2 to a state in M 3 (Maneuver $)

Let (0,0,0,0,01,¥ l) e M 2 denote a state of the sp_ccrafL

Apply the feedback cont_l functions

_l=0,

u2 = - G (e, oh) .
It follows that

mt=0,oh=0,

¢ ffi 0 ,¥ = yt,

satisfyequations (3.1),(3.3),(3.4),(3.6)while equations (3.2),
(3.5) become



Consequendy, after a finite time 0)2 = 0, O = 0; and thus a state
(0,0,0,0,Ol,_ l) • M 2 is transferred to the state (0,0,0,0,031/l) • M3
in finite time.

Transferring a state in M 3 to a state in M4 (Maneuver 6)

Let (0,0,0,0,0,W 1) a M 3 denote a state of the spacecraft.
Apply the feedback control functions

u I = - G (_ - 0.Sx, cot) ,

u2=O .

It follows that

co.z= 0, _ =0,

0=0,V=_fl,

satisfy equations (3.2), (3.3), (3.5), (3.6) while equations (3.1),
(3.4) become

¢bI = - G (_ - 0.5x, cot),

_--col •

Consequendv, aftera finitetime _t = 0, _ = 0.5_; and thusa state
(0,0,0,0,0,_r) • M 3 is transferredto the state(0,0,0,0.5n,0,_t)•

M 4 in finite time.

Transferring a state in M 4 to (0,0,0,0.5x,0,0) (Maneuver 7)

Let (0,0,0,0.5x,0:q/l) • M 4 denote a state of the spacecraft.
Apply the feedback control functions

"1=0,

u 2 = - G (V, o>_) .

It follows that

cot=0, co3= 0,

_=0.5_,0=0,

satisfy equations (3.1), (3.3), (3.4), (3.5) while equations (3.2),
(3.6) become

_ =- a(v,(_0,

_'=m, z .

Consequenay, _er a finite time ,_ = 0: V = _,._d _.s. _!e
(0,0,0,0.5x,0,¥ _) • M 4 is u-ansferred to me state (u,o,u,o.3x,v,o) m
finite time.

Transferring (0,0,0,0.5x,0,0) r to (0,0,0,0,0,0) (Maneuver 8)

Let (0,0,0,0.5g,0,0) denote the state of the spacecraft. Apply
the feedback controlfunctions

u I = - G(#, _l),

U2=0 .

It follows that

_=0,_=0,

0=0,_=0,

satisfy equations (3.2), (3.3), (3.5), (3.6) while equations (3.1),

(3.4)become

cbt = - G (¢_,cot) ,

_= COt -

Consequently, aftera finitetime col= 0, _ = 0; and thus the state
(0,0,0,0.5x,0,0)istransferredto the state(0,0,0,0,0,0)in finitetime.

In summary, the feedback controlstrategyoutlinedabove can
be implemented by sequentialswitching between the following
fee,dback functions.

Maneuver I.Apply

u 11(x) = - a tco2co3 - k signco I ,

u_(x) = - a2o_ - k sign_,

until(col,¢._,_)= (0,0353)for some value {53;then go to Manu-
ever 2.

M_euver 2.Compute

apply

co_= L=l-_31 j , _ =- L21-_37-3_j 3sign_ sig_, ;

u2(x) = - a _¢o2o_ -ksign(to 1 - _) ,

u 2 (x ) = - a I0)3¢oI - ksign(co 2 - o_) ,

until (co_,o>2,t_) = tto_ 4.02 ,--_-); then go to Maneuver 3.

Maneuver 3. Apply

u3(x) = - a to._co3 - k signcot ,

u23(x) = - a2_cot - k sign_,

until(cot,¢_,co3)= (0,0,0),i.e.,(_t,co2,co3,c_,0,W)• MI; then go to
Maneuver 4.

Maneuver 4: Apply

u_0_)= - G(#,cot),

u_(x)= o,

until (co1,(_,co3,0_) = (0,0,0,0), i.e., (_l,O}2,o_,(_,O,_t) • M2; then go
to Maneuver 5.

Maneuver 5: Apply

._0_)=0,

u23C_)= - G(O,co2),

until(col,_2,_,_,0)= (0,0,0,0,0),i.e.,(co_,c_z,co3,_,0,W)e M3; then
go toManeuver 6.

Maneuver 6: Apply

u_(x)= -G(_ - 0.5_,cot),

u_(x)=o,

until(cot,_,_Ab,0) = (0,0,0,0.Sx,0),i.e.,(_01,¢._,_,_,0,W)• M4;
then go to Maneuver 7.

Maneuver 7: Apply

uTc_)=o,

.70_) = - G(V,c,>z),

until (col,CO2,CO3,_,O,v) = (0,0,0,0.5_,0,0); then go to Maneuver 8.

Maneuver 8: Apply

u_S(x)= - G(_,cot),

u_0_)=o,

until (co_,_,oh,_,0,V) = (0,0,0,0,0,0).
This feedback controlstrategy achieves attitudestabilization

of the spacecraftby executinga sequence of maneuvers. This stra-
tegyisdiscontinuousand nonclassicalin nature.Justificationthatit
stabilizesthe complete spacecraftdynamics to the equilibriumatti-

tude (at the origin)in finitetime, under the idealmodel assump-
tions,follows as a consequence of the constructionprocedure.A

computer implementation of the feedback controlstrategycan bc
easilycarriedout.

5. Attitude Stabilization of an Axially Symmetric
Spacecraft with Two Control Torques

From the analysis made in Section 3, we find that the com-
plete dynamics of a spacecraftcontrolledby two conn'ol torques
supplied_bygas jetactuators,as describedby equations(3.1)-(3.6),

failto be controllableor even accessibleif theuncontrolledprinci-

pal axisis an axisof symmetry of the spacecraft,i.e.,ifJl = J2-
Due to the lack of controllability,the controlalgorithm proposed in
[7] is not applicable to this case. In this section we concentrate on
the case where the uncontrolledprincipal axis of the spacecraft is
an axis of symmeu3,, i.e., Jl --J2. In particular we ask the ques-
tion:what restrictedcontrol and stabilizationpropertiesof the
spacecraft can be demonsmued in this cue? Our analysisbegins
by demonstratingthat,under appropriaterestrictionsof interest,the
spacecraftequationscan be expressedin a reduced form. ControUa-

bilityand stabilizabilitypropertiesfor thiscase follow from an
analysisof the reduced equanons.



Consider the equations (3.1)-(3.6_ _scribin 8 the motion of a

u_t o t controlled by input torques supplied by gas jet actuators
y two of its principal axes. It zs assumed that the uncon-

trolled principal axis is an axis of symmetry of the spacecraft.
From equations (3.1)-(3.6) and J1 = J2 we have

d)1= al%0_ + u I , (5.1)

= azc01o_ + u2, (5.2)

(h = o, (5.3)

= o_I+ co2sin¢ sane+ (_3cos,sane, (5.4)

d= m2cos¢- _sin¢, (5.5)

V = o_2sin0 sec0 + t.03cos0 sec0. (5.6)

If o_j(0) _*0 then o_ cannot be transfen'ed to zero using any
control function. If we assume that o_(0) = 0, then ¢03m 0. Under
the restriction o_(0) = 0, the reduced spacecraft dynamics for this
case are described by

dh = ul, (5.7)

dh = a2, (5.8)

=mx + o_sin¢ tane, (5.9)

6 = a_.ost, (5.10)

= _sin_ secO. (5.11)

The following resultscan beeasilyshown. The proofs of Theorem
5.1 and _ 5.2 ans similar to the proofs of Theorem 3.1 and
Thecnm 3.2 respectively in [13]. Theorem 5.3 follows from the
results in [5], [9] and [12].

ThLorem $.1: The reduced dynamics of an axially symmetric
spacecraft controlled by two pairs of gas jet actuators as described
by equations (5.7)-(5.11) are strongly accessible.

Theorem 52: The reduced dynamics of an axially symmetric
spacecraft controlled by two pairs of gas jet actuators as described
by equations (5.7)-(5.11) are small time locally controllable at any
equilibrium.

Theorem 53: The reduced d_,namics of an axially symmetric
spacecraftcontrolledby two pans of gasjetactuatorsasdescribed
by equations (5.7)-(5.11) cannot be asymptotically stabilized to an

equilibrium using a rime-invariant continuous feedback control law.
The implications of the prope_ies stated above are as follows.

For all initial conditions thaz satisfy _(0)= O, the axially sym-
metric spacecraft controlled by two pairs of gas jet actuators as
described by equations (5.1)-(5.6) can be controlled to any equili-
brium attitude. However, any time-invariant feedback conlrol law
that asymptotic_ly stabilizes the spacecraft to an isolated equili.
brium attitude must necessarilybe discontinuous.Thus arbia'ary
rcorientadon of the spacecraft can be achieved if m3(O)= O; if
_3(0) ,t 0, reodentadon of the spacecraft to an equilibrium attitude
cannot be achieved.

Convenianfly, it turns out that sequem_d execution of the
numeuve_t defined as Manueven 3 through 8 in the gevious snc-
don uranst'e_sany initial sutm of the reduced spacecr_ dynamics
(5.7)-(5.11) to the origin in finite time. The physical interpretation
of the manuevm is the same as describedpreviously; the overall
feedback control su'amgy is as follows.

Maneuver 1. Apply

u_0c)= - tsigno)t ,

u_0c)= - ksign0_,

until ((%o)0 = (0,0); then go to Maneuver 2.

Maneuver 2: Apply

u_(x) = - c($, toO,

u_z)=o,

until (mr,(02,0) = (0,0,0); then go to Maneuver 3.

Manuever 3: Apply

a_x)=0,

u_C_)= - c(e,o_,

until(0}I,_0,,_@.0)= (0,0,0,0);dga go to Mlncuvef 4.

Maneuver 4: Apply

a{_(x)= -G(¢ - 0.5_,_i),

u_(z)=0,

until((01,to2,¢_,0)= (0,0,0.5x,0),then go toManeuver5.

Maneuver 5: Apply

u_x) = - G(v, _),

until (mx,_,O,O,¥) = (0,0,0.5_,0,0); then go to Maneuver 6.

Maneuver 6: Apply

u_fz)= - G(¢, c_),

u_C_)=0,

until(o)l,a)2,@,e,W)ffi(0,0,0,0,0,0).

This feedback control strategy achieves at_tude stabilization
of the spacecraft,inthe sense described ._wiously, by executing a
sequence of maneuvers. This strategy is discontinuous and nonclas-
sicalinnature.A computer implementationofthefeedbackcontrol
strategy can be easily carriedOuL

Notice that according to equation (2.4), the condition that
= 0 implies that

-_sint)ao + (cosecos,)dV = o ;

this represents a nonintegrableinvm'iant of the spacecraft motion.
The_fore the reduced spacecraft dynamic equatioas define a non-
linear conuol system of the form smdi_ in [4]. An alummm
discontinuous control m_tegy which achicv_ auimde smbll/zadon
of the spacecraftispresentedin(13].

6. Simulatlea

We illustrate the results of the paper with an example of a
nonaxially sssssssss_tric spacecraft wi_h principal moments ofinerna
Jt = I00gg. M ,J2 = 25O g,g.M, and J3 = 350 E&. M'. There
isno controltorqueaboutthethirdprincipalaxisand two control
torques, gcnerated by gas jet actuaua3, are applied about the other
two principal axes. The spacecraft bas an 'miodal orientation
described by the Euler angles ,e f-x, 0 =0.25x, and
._..0=- 0.5_ radlans, and an initial angular velocity given by
o)t =0.3, _=-0.3, and _]_= 0.I radiansper second.A com-
puterimplementationofthefeedbackcontrolstrategydescribedin
Section 4 was used to asymptotically stabilize the spacecraft to the
origin. The value of k is chosen to be 1. Fig. 1, Fig. 2 and Fig. 3
show the time responseson the Euler angles, angular velocities and
the control torques respectively. At t = 0.3 seconds, which is the
end of Maneuver 1 of the algorithm, cot and o_2 are both zero
while ¢,o3 = _j = 0.1039 radians per second. At t = 1.73 seconds,
which is the end of Maneuver 3 of the algorithm,
(0! = o_2 = o)3 = 0, and q)= -2.59, 0 = 0.37 and ¥ = -1.913 radi-
arts. The subsequentmaneuvers described by Steps 4 through 8
resultsin _=0=¥=c..o_ ffi_=o_ =0 as shown inFig. 1 and
Fig.2. Itmight be observedfrom Fig.3 thatuntil1.73seconds,
which is the end of Maneuver 3,thecontrol tmquea u I and u 2 are
both applied to bring the spacecraft to re.st. But o_e the spacecraft
is broughtto rest, the subsequentmaneuvers are such that ovdy one
of the control mt'qucs is nonzero in any interval of time. Thus o_3
remainszeroat all time beyond 1.73 seconds, and m_ and o_ vary
so that only one is nonz_o at any time interval beyond 1.73
second& Since the feedback controlsu'ategy for the recrientation
of an axially symmelrk: spacecraft is simi/m- to the feedback con-
trol suttegy for the reo¢ientuion of t non-axially, symmetric space-
craft, we do not consider a sepertte example to iUusmue this case.

7. Condladea

The attitude stab'dization problem of a spacncr_ using con-
trol torque8 supplied by gas jet actuntm_ about only two of its
principalaxes has been considered. If the uncontrolled principal
axis_isnot an axisof symmeu'v of the smu_n_ the complete
spacecra_ dyn.m_c_ cannot be uymptoucally stabilised to an
equllitriumanRmc using cohtinuous feedl_.k A discontinuous
feedback, conuol s.tr_ae_was conrail, which stabilizesthe
spacan_ toan equllonummitme m finitetime. Ifthe uncon-

la'iacipalaxisisaa axisofslnmmr_ _the sla_c_aILthe



complete spacecraftdynamics cannot be stabilized.The reduced
[3]spacecraftdynamics cannot be uymptotieaUy stabilizedusing con-

tinuousfeedl_ck,but again a discontinuousfeedback connul stra-
tegywu constructedwhich stabilizesthe spacecraft(inthereduced
sense)to an equilibriumattitudein finitetime. The resultsof the [41

paper show thatalthough standardnonlinearcontroltechniquesdo
not apply, itis possibleto consu'ucta stabilizingconn'ollaw by
performing a sequence of maneuvers. [5]

One of theadvantagesof the development in thispaper isthat
feedback controlstrategiesam constructedwhich guaran_c attitude
stabilizationin a finitetime.The totaltime requiredto complete [6]

the spacecraftreorientationis the sum of the times required to
complete the sequence of maneuvers described.From the analysis [7}
provided,itshould be clearthatthe timerequiredto complete each
maneuver depends on the single positiveparameter k in the
corresponding control law. Thin'© is a trade off between the
requiredcontrollevels,dete=mined by the seleotionof k, and the [81
resulting_ to complete each of the maneuvers and hence the
total_ requiredto reorientthe spacecraft.In particular,the time
to reorientthe spacecraftfrom a given initialstateto theorigincan [9]
be expressedas a functionof the value of the parameterk and of
the initial state. [10l

For each of the two attitudestabilizationproblems considered,
we have presentedone example of a sequence of maneuvers which
achieves the desired spacecraftanitude stabilizagon.There arc [11]
many othermaneuver sequences,and correspondingfeedback con-
troistrategies,which willalsoachieve thedesiredattitudestabiliza-
tionof the spacecraft.But each such strategyis necessarilydiscon- (12]
tinuou$.

We have demonstrated the closedloop propertiesfor the SLX:- [13}
cialfeedback controlstramglespresented.Our analysiswas based
on a number of assumptions which are required to justifythe
mathematical models studied. Further robusmess analysis is
required to determine effectsof model uncertainitiesand external [14

disturbances. Unformnamly, such robusmess analysis is quite
difficultsincethe closed loop vectorfieldsare necessarilydiscon-
tinuons.Perhaps, feedback conaxfl strategieswhich stabilizethe
spacecraftattitude,differentfrom ones presentedin thispaper,
would provide improved closedloop robusmess.
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