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Abstract

We consider the amtitude stabilization of a rigid spacecraft using
control torques supplied by gas jet actuators about only two of its princi-
pal axes. mﬂncasewmd:euxmmmuedpnncipalaxisofuw
spacecraft is not an axis of symmetry is considered. In this case, the
complete spacecraft dynamics are small time locally controllable. How-
ever, the spacecraft cannot be ptotically stabilized to an equilibrium
atitude using tme-invariant feedback. A discontinuous stabil-

back control strategy is constructed. In both cases, the discontinuous
feedback controllers are constructed by switching between onc of several
feedback functions.

1. Introduction

We consider the atitude stabilization of a rigid spacecraft
using control torques supplied by gas jet actuators about only two
of its principal axes. A ngid spacecraft in general is controlled by
three i ndent actuators about its principal axes. The situation
consi here may arise due to the failure of one of the actua-
tors. The linearization of the complete spacecraft dynamic equa-
tons at any e%n:)ilibﬁum atitude has an uncontrollable eigenvalue
at the origin. Consequently, controllability and stabilizability pro-
perties of the spacecraft cannot be inferred using classical lineari-
zation ideas and requires inherently nonlinear analysis. Moreover, a
linear feedback control law cannot be used to asymptotically stabil-
ize the spacecraft to an equilibrium attitude. An analysis of the
controllability properties of a spacecraft with two independent con-
trol torques is made in (7). In (7] it is shown that a necessary and
sufficient condition for complete controllability of a spacecraft with
control torques supplied by gas jet actuators about only two of its
principal axes is that the uncontrolled principal axis must not be an
axis of s try of the spacecraft. In [6], it is shown that a rigid
spac t controlled by two pairs of gas jet actuators about its
printﬁ?:l axes cannot be asymptotically stabilized to an equilibrium
ani using a time-invariant continuously differentiable, i.c., cl,
feedback control law. Moreover, using some of the theoretical
results in (9] and [12], it also follows that there does not exist any
time-invariant continuous feedback control law which asymptot-
cally stabilizes the spacecraft to an equilibrium attitude. However
a smooth C! feedback control law is derived in [6) which locally
asymptotically stabilizes the spacecraft to a circular attractor, rather
than an isolated equilibrium.

We first consider the case where the uncontrolled principal
axis of the spacectaft is not an axis of symmety. In this case, the
complete spacecraft dynamics are small time locally controllable at
any equilibrium attitude. However, as stated carlier, the spacecraft
cannot be asymptotically stabilized to any equilibrium attitude
using a time-invariant continuous feedback control law. Using
local conwollability results, an algorithm which locdly‘asymptoti-
cally stabilizes the to an isolated equilibrium is
in (7]. That algori is extremely complicmd and is based on
Lie algebraic methods in (8]. The algorithm yields a piecewise
constant discontinuous control. Although very complicated, the
algorithm is the onl oneptopocedindxeliterattgtethusfuwhgc)\
locally nympwnuli‘ y stabilizes the spacecraft attitude to an equili-
brium. In this paper a new discontinuous stabilizing feedback con-
nolsntegyisconsn'uctedwhichsabilimd\espacecnﬁwan
equilibrium attitude. The control strategy is simple and is based on
physical considerations of the problem.
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We next consider the case where the uncontrolled principai——,)—éﬁ”
axis of the spacecraft is an axis of symmetry. In this case, the |- ’

complete spacecraft dynamics are not cven accessible. Under some
rather weak assumptions, the spacecraft dynamic equations are

strongly accessible and small time locally

controllable at any

equilibrium attitude in 2 reduced sense. The reduced spacecraft
dynamics cannot be asymptotcally stabilized to an equilibrium atd-
wude using time-invariant continuous feedback. Nevertheless, a
discontinuous feedback control strategy is constructed which

achieves attitude stabilization of the spacecraft.

2. Kinematic and Dynamic Equations

The orentation of a rigid spacecraft can be specified using
various parametrizations of the special orthogonal group SO (3).
Here we use the following Euler angle convention. Consider an
inertial X, X, X coordinate frame; let x; x7 x3 be a coordinate

frame aligned with the principal axes of the sp

acecraft with origin

at the center of mass of the spacecraft. If the two frames are ini-
tially coincident, a serics of three rotations about the body axes,
performed in the proper sequence, is sufficient to allow the space-
craft to reach any orientation. The three rotations are [14]:

a positive rotation of frame X,X,X4 by an angle ¥ about

the X, axis; let x; X2 X3 denote the
frame;

resulting coordinate

a positive rotation, of frame X1 X3 x5 by an angle 8 about the

:

x, axis; letx; x, x3 denote the resulting frame;

a positive rotation of frame x| x; x3 by an angle ¢ about
the x, axis; let x x2 x3 denote the final coordinate frame.

A rotation matrix R (y,8,¢) relates components of a vector in the

inertial frame to components of the same vector

in the body frame

[14]. We assume that the Euler angles are limited to the ranges

—n<\y.¢<1t,-1|:/2<6<1:/2.

Q.n

Suppose @, 0, Wy are the principal axis components of the abso-
lute angular velocity vector ® of the spacecraft. Then expressions

for @y, Wy, (n are given by
W = ¢ - \ilsine .
W, = 8cosd + \ilcosB sind ,
W =~ Bsing + ycos cosd .

2.2)
(2.3)
2.4)

Since these equations are invertible, we can solve for ¢, 0,y in

terms of ;. W, W3 obtaining
6 = @, + W,sing tand + xcost tand ,
9= W,c08¢ — wysing ,
V = sing sec® + w;cosd secO .

(2.5
2.6)
@n

Next we consider the dynamic equations which describe the
evolution of the angular velocity components of the spacecraft
Let J = diag U1, /2, J3) Ji 20,0 = 1, 2, 3, be the incrtia mamx
of the spacecraft in a coordinate frame defined by its principal
axes. Let H be the angular momentum vector of the spacecraft

relative to the inertial frame. Then we have
Jo=RWyO.0H .

Differentiating (2.8) we obtain .
Jo=S@RWONH +RVO.NH

where
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0 w -
Swy=-w; 0 (2.10)
w, —oy 0

We assume that the control torques ’; and u“, are applied about
axes represented by unit vectors by and by respectively. This
implies that

ROWO.0OH =bu’y +bu'y. 211

Without loss of generality, we assume that b, = (1,0, 07 and
by = (0, 1, 0)7. Thus the equations describing the evolution of the
angular velocity of the spacecraft are given by

Ji@y = Uy = Jouy +u’y, (2.12)
Jiy = (I3 =Ty +u’y, (2.13)
Jain = (J] = J )y . (2.14)

3. Controllability and Stabilizability Properties
of Complete Spacecraft Dynamics

As background for our subsequent development, we consider
the controllability and stabilizability properties for the complete
dynamics of the spacecraft with control torques only about two
principal axes. Define

it}

uy 71—

[“2] R

Ty

From Section 2 the state equations can be rewritten as

@) = 3,00y + 4y , @3.n
Dy = a0y + U3z, (3.2)
iy = a300;, (3.3)
o= o, + 0;sing tand + w;cos tand , (3.4)
@ = wycosd — wysing , (3.5)
\i.r = m,sin secO + wscosd sech , (3.6)

* where

J2

_ It is easily verified that the linearization of the equations about an
equilibrium has an uncontrollable cigenvalue at the origin. This
implies that an inherently nonlinear analysis is necessary in order
to characterize the controllability and stabilizability properties of
the complete spacecraft dynamics. Morcover, a linear feedback
control law cannot be used to asymptotically stabilize the space-
craft to an equilibrium attitude.

We now present fundamental ncsultsl on the comrollagility and
stabilizabili roperties of the complete spacecraft dynamics
described bt; egua%:?l; (3.1)-(3.6). The reader in referred to0 [13]
for additional details.

- Theorem 3.1: The complete spacecraft dynamics described by state
equations (3.1)-(3.6) are strongly accessible if and only ifJy#J,
i.c., the uncontrolled principal axis is not an axis of symmetry.
Theorem 32: The complete spacecraft dynamics described by state
equations (3.1)~(3.6) are small time locally contoilable at any
equilibrium if and only if J; # J3.

Theorem 33: The complete spacecraft dynamics described by state
equations (3.1)-(3.6) cannot be locally asym_ptou'cally stabilized to
an equilibrium by any time-invariant continuous statc feedback
control law.

Theorem 3.3 holds if J, # J, and also if J; =J,. A weaker
version (with "continuous” replaced by "C!") was proved in (6].
However, Theorem 3.3 follows from [6] using results in [9] and
(12). This negative result also implies that feedback control
approaches based on linearization, Lyapunov methods, center mani-
fold theory, or zero dynamics cannot be used to asympiotically sta-
bilize the spacecraft 10 an equilibrium acitude.

Although the full set of equations (3.1)-(3.6) cannot be
asymptotically stabilized to an equilibrium via continuous feed-
back, one may still wish to design a smooth control law which

stabilizes at least a particular subset of state variables. Consider the
state equations for W, @,, @5, ¢ and @ given by equations (3.1)-
(3.5). These equations are invariant with respect to the Euler angle
y. Asymptotic stabilization of this subset of the original equations
corresponds to stabilization of the motion of the spacecraft about
an attractor, which is not an isolated equilibrium. A result from (6]
shows that the closed loop trajectories can be asymptotically stabil-
ized to the manifold

Q = {(0,0,,0:.00¥) 10 =0, =y =0=0=0) (3.8)
using smooth C! feedback.

We mention that although the complete spacecraft dynamics
described by equations (3.1)-(3.6) cannot be asymptotically stabil-
ized to an equilibrium by continuous feedback, an algorithm gen-
erating a piecewise constant discontinuous control has been
developed in [7] which locally asymptotically stabilizes the com-
plete spacecraft dynamics to an equilibrium. The algorithm
requires that J| # J,, i.e., the uncontrolled principal axis must not
be an axis of symmetry. The algorithm is based on Lie algebraic
methods in {8). The algorithm is extremely complicated and is not
an easily implementable control strategy. However, stabilization of
the complete spacecraft dynamic equations (3.1)-(3.6) is an
inherently difficult problem and the algorithm in [7] is the only
control strategy proposed in the literature thus far.

4. Attitude Stabilization of a Non-Axially Symmetric
Spacecraft with Two Control Torques

In this section, we consider the equations (3.1)-(3.6) describ-
ing the motion of a spacecraft controlled by input torques only
about two of its principal axes. It is assumed that the uncontrolled
principal axis is not an axis of symmetry of the ie.,
Ji #J,. As a consequence of the negative result of Theorem 3.3,
we restrict our study to the class of discontinuous feedback con-
trollers in order to asymptotically stabilize the complete spacecraft
dynamics. However, as shown in the previous section, the com-
plete spacecraft dynamics are small time locally controllable at any
equilibrium arttitude. This suggests that a piecewise analytic feed-
back control law can be constructed which asymptotically stabilizes
the complete spacecraft dynamics to an equilibrium artitude. Here
we present a particular discontinuous feedback strategy, which is
obtained by requiring that the spacecraft undergo a sequence of
specified maneuvers. Without loss of generality, we assume that
the equilibrium attitude to be stabilized is the origin. We first
present a physical interpretation of the sequence of maneuvers that
transfers any inidal state to the origin.

Maneuvers 1.3. Transfer the initial state of the spacecraft to an
equilibrium state in finite time; i.e., bring the spacecraft to rest.

There are control laws based on center manifold theory [1]
and zero dynamics theory [6] which accomplish this in an asymp-
totic sense. Here we use a sequence of three maneuvers, and
corresponding feedback control laws, which bring the spacecraft to
rest in finite time.

Maneuver 4. Transfer the resulting state to an equilibrium state
where ¢ = 0 in finite time; i.c., so that !he}pwecnft is at rest with
¢ = 0. This maneuver is accomplished using the control torque
only.

Maneuver 5. Transfer the resulting state to an equilibrium state
where ¢ =0, 8 = 0 in finite time; i.e., so that the_spacecnft is at
rest with ¢ =0, 8 = 0. This maneuver is accomplished using the
control torque u, only.

In order to complete specification of the uence of
maneuvers, the Euler angle y must be brought to zero. This cannot
be accomplished directly since a control torque cannot be applied
about the third principal axis of the spaeecnft. However, the
resulting state can be transferred to the origin indirectly using three
maneuvers. The three mancuvers Cofre: to three consecutive
rotations about the two controlled principal axes of the spacecraft,
the first and the third being around the first principal axis. This
produces & net change in the orientation of the spacecraft so that
the state of the spacecraft is transferred to the origin in finite time.
The three manecuvers are described as follows.



Maneuver 6. Transfer the resulting state to an equilibrium state
where ¢ = 0.5%, 8 =0 in finite time; i’e., so that the spacecraft is
at rest with ¢ = 0.5x, © = 0. This maneuver is accomplished using
the control torque u, only.

Maneuver 7. Transfer the resuliing state to the equilibrium state
(007,002,03,0.8.¥) = (0,00,0.5x,0,0) in finite time. This mancuver
is accomplished using the control torque 14 only.

Maneuver 8. Transfer the equilibrium state (wy,0,03,0.8.¥) =
(0,0,0,0.5%,0,0) to the equilibrium state (0,0,0,0,0,0) in finite time.
This maneuver is accomplished using the control torque 4, only.

Note that, excluding the first threc maneuvers where the
spacecraft is brought to rest, all subsequent maneuvers arc such
that the angular velocity component is maintained identically
zero. This is accomplished by camrying out mancuvers which
require use of only a single control torque at a time.

It is convenient to introduce some notagon. Throughout,
assume k > 0, and define

. 12'1
k if (xl +

>0} or

12|X2|

{x, + =0 and x, > 0}

<
Gy, xp=|-k if {(x1+

Xl x4l
22: <0} or

Xz‘le

{x, + =0 and x,<0)

L0 if (x;=0 and x;=0]

We use the well-known property that the feedback control
u=-Gxy-X.x2

for the system

Xy = Xq

X.z =y
wransfers any initial state to the final state (¥,,0) in a finite time.
We also use the standard notation that

1 ifxl>0
sign(x)) =4 -1 if x;<0.
Oifxl=0

Our mathematical construction of a control strategy which transfers
marbiminitiglstqteoﬁhcspacmﬁtotheoﬁginisbuedona

sequence of equilibrium subsets and & sequence of control func-
tions which transfers a state in one subset to another. Consider the
following equilibrium subsets

My = ((0),02,03.0.0¥) = (0.0.0.0.9.¥), 6.8,y arbitrary},
My = ((0,02,0.4.0,¥) = (00,006.¥), 0,y arbitrary),
M = ((01,02,03.0.8¥) = 00.000¥), ¥ arbitrary},
M, = {(©,.0,,03.0.0.9) = (00,00.58.0.¥). ¥ arbitrary}.

We now present the feedback control laws that accomplish the
uential maneuvers described above; for each case we show that
a desired terminal state which defines the maneuver is reached.

Transferring any initial state to a state in M

In order to transfer the arbitrary initial state to a final state
which satisfies @ = @ = @y =0 three sequential mancuvers are
required. The first mancuver results in ©; = ;=0 while @3 » 0
in general; the second maneuver results in @ = ) and w; = (),
whmm,.n),mchosenmgmnteedmuthcendofmethird
maneuver 0 = @, = 0y = 0. These three maneuvers are described
in detail as follows.

Maneuver 1. Let (0f,0f.07.4%8%y") denote an inital st for
8e6)complete spacecraft dynamics described by equations (3.1)-

V) =8 Wy + Uy,
Vz‘diﬂ)jﬂ)""llz.

Equations (3.1)-(3.3) can now be rewritten as

@y =V, (a.1)
W= vy, (4.2)
@y = 3300 . 43)

Apply the feedback control functions
V== ksignu), .
vy = — ksigney, .
It is easy 13 see that after a finite time given by
lodt ™ 1wy o
max( , ), @y = @, = 0; at this instant let wy = &y where
the constant value @3 can be cvaluated.
Maneuver 2. Apply the feedback control functions
v, = - ksign(w; - o),

vy = = ksign(e - @2) .

where

1
TR R S
o =|—=—| » ™ = — w; signl; signa; .
. 2‘03'

©
It is again easy to sec that after a finite time given by <
ml=m,'.mz=m2'.andinaddiﬁonitcanbeshownthato),= 32’—.
Maneuver 3. Apply the feedback control functions

vy = - ksigney ,

vy = — ksignw, .

m.
It can be seen that after a finite time given by -f— @ =0,0,=0
and it can be shown that @3 = 0.
Consequently, the resulting state after these three sequential
maneuvers is (0,0,0.61,0',y!) e M, for some U DR
Transferring a state in M, to a state in M, (Maneuver 4)

Let (0,004'0%,y") € M, denote a state of the spacecraft.
Apply the feedback control functions

uy==-G@ w),

Uy = 0.
It follows that

w=0,0;=0,

8=0",y=v.
satisfy equations (3.2), (3.3), (3.5, (3.6) while equations (3.1),
(3.4) become

(bl == G(°) wl) ’

o= .
Conseqw:mly,1 after a finite time @, =0, ¢ = 0; and thus a state
(0,0,0.,6',81,y}) € M is ansferred to the state (0,0,0.0,8'.y") €
M, in finite ime.
Transferring a state in M, to a state in M5 (Maneuver 5)

Let (0,0006%y") € M, denote a state of the spacecraft
Apply the feedback control functions

u; =0,
u;*-G(e.(D)).
It follows that
©=0,03=0,
0=0.¥=v,

satisfy equations (3.1), (3.3), (3.4), (3.6) while equations 3.2
(3.5) become

(:‘h=-G(e'u)2)’
0=w;.



Consequently, after a finite time ®, =0, 6 = 0; and thus a state
(0,0,00,8' W) € M, is ransferred to the state (0,0,00,0,y') € M3
in finite time.
Transferring a state in M, to a state in M, (Maneuver 6)

Let (0,0,000y") € M, denote a state of the spacecraft.
Apply the feedback control functions

ul =_G(¢-O.5ﬂ. 0)1) N

u=0.

It follows that
w,=0,03=0,
8=0,y=y',

satisfy equations (3.2), (3.3), (3.5), (3.6) while equadons (3.1),
(3.4) become

(.b‘ = - G(¢ - 0.5m, 0)1) R

o= ) .
Consequently, after a finite time w; =0, ¢ = 0.5%; and thus a state
(0,0,0,0,0W") € M, is transferred to the state (0,0,0,0.51,0,y!) €
M 4 in finite time.
Transferring a state in M, to (0,0,0,0.5%,0,0) (Maneuver 7)

Let (0,0,0,0.5%,0,y") € M, denote a state of the spacecraft.
Apply the feedback control functions

u, = 0,

Ug =-— G (\v, 0)2) .
It follows that

w = 0 s Wy = 0 ,

¢=05x,6=0,
satisfy equations (3.1), (3.3), (3.4), (3.5 while equatdons (3.2),
(3.6) become

(:")2 == G (\Pv 0)1) »

y=0,.
Consequently, after a finite. time @, =0, ¥y = 0; and thus a state
(0,0,0,0.5%,0,y') € M, is transferred to the state (0,0,0,0.5%,0,0) in
finite time.
Transferring (0,0,0,0.57,0,0)" to (0,0,0,0,0,0) (Maneuver 8)

Let (0,0,0,0.57,0,0) denote the state of the spacecraft. Apply
the feedback control functions

uy=-G o),

uy=0.
It follows that

w,=0,m=0,

0=0,y=0,
satisfy equations (3.2), (3.3), (3.5), (3.6) while equatons (3.1),
{3.4) become

6)1 =’G(¢v 0)1) s

0=0.
Consequently, after a finite time w; =0, ¢ = 0; and thus the state
(0,0,0,0.5%,0,0) is transferred to the state (0,0,0,0,0,0) in finite time.

In summary, the feedback control strategy outlined above can
be implemented by sequential switching between the following
feedback functions.

Maneuver 1. Apply
u) (x) = - a,0,03 - ksigno, ,
uj (x) = = a0, — ksigna, ,

until (@;,0;,®4) = (0,0,@;) for some value By; then go to Manu-
ever 2.

Maneuver 2. Compute

m,_[zt:lm,l]% . [3k|m,|]%_ A
1 = ———-2|03| ) == —2|0—3| signdy signaq ;
apply

uf () = - a5 - ksign(wy - @),

uF(x) = - a0, - ksign(w, - ;) ,

until (@y,@,,05) = (ml‘,u){,g;-); then go to Maneuver 3.
Maneuver 3. Apply
ud (x) = - a 0,0y - ksignw; ,
u3 (x) = - a3 - ksigney ,
until (0,0,,04) = (0,0,0), ic., (0),0,,05,0.8,y¥) € M; then go to
Maneuver 4.
Maneuver 4: Apply

ut(x)=-G@ o),
uj(x)=0,

until (0y,0,,04,4) = (0,0,0,0), i.c., (W},03,03,0.8,y) € My; then go
to Maneuver S.

Maneuver 5: Apply
ufx)=0,
ui(x)=-G(@®, o),

until (6;,00,6,4,8) = (0,0,0,0,0}, i.c., (©),05,011,0,0,y) € M3; then
£o to Maneuver 6.

Maneuver 6: Apply
ufx)=~G(o-05m w),
ugx)=0,

until (@,09,04,0,8) = (0,0,0,0.57,0), i.c., (,w211,0.0,¥) € M,
then go to Maneuver 7.

Maneuver 7: Apply
ul(x)=0,
ul.,(x) = ‘G(\V' Cl‘z) ’
until (0,09,04,$.8,y) = (0,0,0,0.57,0,0); then go to Maneuver 8.
Maneuver 8: Apply
ufx)=-G@ o),
ujx)=0,
until (©;,0,,00,6,8,¥) = (0,0,0,0,0,0).

This feedback control strategy achieves attitude stabilization
of the spacecraft by executing a sequence of maneuvers. This stra-
tegy is discontinuous and nonclassical in nature. Justification that it
stabilizes the complete spacecraft dynamics to the equilibrium arg-
tude (at the origin) in finite time, under the ideal model assump-
tions, follows as a consequence of the construction procedure. A
computer implementation of the feedback control strategy can be
casily carried out.

§. Attitude Stabilization of an Axially Symmetric
Spacecraft with Two Control Torques

From the analysis made in Section 3, we find that the com-
plete dynamics of a spacecraft controlled by two conwol torques
supplied_by gas jet actuators, as described by equations (3.1)-(3.6),
fail to be controllable or even accessible if the uncontrolled princi-
pal axis is an axis of symmetwry of the spacecraft, ie., if J; =/,
Due to the lack of controllability, the control algorithm proposed in
(7] is not applicable to this case. In this section we concentrate on
the case where the uncontrolled principal axis of the spacecraft is
an axis of symmerry, ie., J, =/, In particular we ask the ques-
tion: what restricted control and stabilization properties of the
spacecraft can be demonstrated in this case? Our analysis begins
by demonstrating that, under appropriate restrictions of interest, the
spacecraft equations can be expressed in a reduced form. Controlla-
bility and stabilizability propertics for this case follow from an
analysis of the reduced equations.



Consider the equations (3.1)-(3.6) describing the motion of a
ﬁecnft controlled by input torques supplied by gas jet actuators
ut only two of its pri ipal axes. It is assumed that the uncon-
wolled principal axis is an axis of symmetry of the spacecraft.
From equations (3.1)-(3.6) and J = J; we have

) = @)Wty + Uy, CRY
Gy = 6,00y + U7, (5.2)
=0, (5.3)
¢ = @) + W,sin¢ 1and + wycosd tanf , (5.4
8 = wycosd — wysing , (5.5
\il = wysing secO + ;cosd secO . (5.6)

If 3(0) # O then @; cannot be transferred to zero using any
control (uncdon. If we assume that 3(0) = 0, then o, = 0. Under
the restriction w3(0) =0, the reduced spacecraft dynamics for this
case are described by

d)l =Uy. (57)
Wy =uy, (5.8
= ©; + W,sing tanf , (59)
8 = wycosd , (5.10)
V = @sing sech . (5.11)
The following results can be casily shown. The proofs of Theorem
5.1 and Theorem 5.2 are similar to the proofs o Theorem 3.1 and

Theorem 3.2 respectively in [13]. Theorem 5.3 follows from the
results in [5], [9] and [12].
Theorem 5.1: The reduced dynamics of an axially symmetric
sp controlled by two pairs of gas jet actuators as described
by equations (5.7)-(5.11) are strongly accessible.
Theorem $2: The reduced dynamics of an axially symmetric
spacecraft controlled by two pairs of gas jet actuators as described
by equations (5.7)-(5.11) are small time locally controllable at any
equilibrium.
Theorem $53: The reduced dynamics of an axially symmetric
spacecraft controlled by two pamrs of gas jet actuators as described
by equations (5.7)-(5.11) cannot be asymptotically stabilized to an
equilibrium using a time-invariant continuous feedback control law.
The implications of the properties stated above are as follows.

For all initial conditions that satisfy y(0) = 0, the axially sym-
metric § controlled by two pairs of gas jet actuators as
described by equations (5.1)-(5.6) can be controlled to any equili-
brium attitude. However, any time-invariant feedback control law
that asymptotically stabilizes the spacecraft to an isolated equili-
brium amitude must necessarily be discontinuous. Thus arbitrary
reorientation of the spacecraft can be achieved if wy(0) =0; if
w4(0) » O, reorientation of the spacecraft to an equilibrium attitude
cannot be achieved.

Convenienty, it tumns out that sequential cxecution of the
maneuvers defined as Manucvers 3 through 8 in the previous sec-
tion transfers any initial state of the reduced spacecraft dynamics
(5.7)-(5.11) to the origin in finite time. The physical interpretation
of the manuevers is same as described previously; the overall
feedback control strategy is as follows.

Maneuver 1. Apply

ulx)= - ksigno, ,

u}x)= - ksignwg .
until (©,0,) = (0,0); then go 0 Maneuver 2.
Maneuver 2: Apply

ufx)=-G@ @),

ufx)=0,
until (;,@,,9) = (0,0,0); then go t0 Maneuver 3.
Manuever 3: Apply

ufx)=0,

uj@)=-G@O 0,
until (09,02,9,8) = (0.0,0,0); then go to Maneuver 4.

Maneuver 4: Apply

utx)=-G@®-05x ),

uix)=0,
until (@,005,6,8) = (0,0,0.5%,0), then go 10 Maneuver 5.
Maneuver 5: Apply

u 15 x)=0,

ujx)=-Gw @),
until (0,0,,0.0.¥) = (0,0,0.5%,0,0); then go to Maneuver 6.
Maneuver 6: Apply

ufx)=-G@ @),

ufx)=0,
untl (©,,05,0.8,¥) = (0,0,0,0,0,0).

This feedback control strategy achieves attitude stabilization
of the spacecraft, in the sense described dp:;iously. by executing a
sequence of maneuvers. This strategy is discontinuous and nonclas-
sical in nature. A computer implementation of the feedback control
strategy can be easily carried out.

Notice that according to equation (2.4), the condition that
@y = 0 implies that

—~(sing)d® + (cosbcosd)d ¥ =0 ;

this represents a nonintegrabie invariant of the spacecraft motion.
Therefore the reduced spacecraft dynamic equations define a non-
linear control system of the form studied in [4). An altermate
discontinuous control strategy which achieves attitude swabilization
of the spacecraft is presented in {13).

6. Simulation

We illustrate the results of the paper
nonaxially symnftric spacecraft wxih principal moments of inerua
J,=100Kg. M , J2 =250 Kg. M*%, and J5 = 350 Kg. M*. There
is no control torque about the third principal axis and two control
torques, generated by gas jet actuators, are applied about the other
two principal axes. The has an injtial orientation

scribed by the Euler angles ¢°=-x, 00=025x, and

= - 0.5t radians, and an_initial angular velocity given by
wf =03, of =-03, and ©f = 0.1 radians per second. A com-
puter implementation of the feedback control strategy described in
Section 4 was used to asymptotically stabilize the to the
origin. The value of k is chosen to be 1. Fig. 1, Fig. 2 and Fig. 3
show the time responses on the Euler angles, angular velocities and
the control torques respectively. At ¢ = 0.3 seconds, which is the
end of Maneuver 1 of the algorithm, ®, and @, are both zero
while ©y = B = 0.1039 radians per second. At f = 1.73 seconds,
which is the end of Mancuver 3 of the algorithm,
W =w=0=0 and 6= —2.59, 8 = 0.37 and ¥ =-1913 radi-
ans. The subsequent maneuvers described by Steps 4 through 8
results in ¢=6=v=m,=m§= =0 as shown in Fig. 1 and
Fig. 2. It might be observed ig. 3 that until 1.73 seconds,
which is the end of Maneuver 3, the control torques ¥, and u, are
both applied to bring the to rest. But once the spacecraft
is brought to rest, the subsequent maneuvers are such that only one
of the control torques is nonzero in any interval of time. Thus @,
remains zero at all time beyond 1.73 seconds, and o and >, vary
so that only one is nonzero at any time interval beyond 1.73
seconds. Since the feedback control strategy for the reorientation
of an axially symmetric spacecraft is similar to the feedback con-
wrol strategy for the reorientation of a non-axially symmetric space-
craft, we do not consider a seperate example to tllustrate this case.

7. Conclusion

The attitude stabilization problem of a spacecraft using con-

ues sumied by gas jet actuators about only two of its

been considered. If the uncontrolied principal

the complete

spaeeaaﬁdynlmlcsannotpeuympwdau stabilized to an -
i feedb-ci.

with an example of a

ol



complete spacecraft dynamics cannot be stabilized. The reduced
spacecraft dynamics cannot be asymptotically stabilized using con-
tinuous feedback, but again a discontinuous feedback conwrol swra-
tegy was constructed which stabilizes the spacecraft (in the reduced
sense) to an equilibrium attitude in finite time. The results of the
paper show that although standard nonlincar control techniques do
not apply, it is possible to construct a stabilizing control law by
performing a sequence of mancuvers.

One of the advantages of the development in this paper is that
feedback control strategies are constructed which guarantee attitude
stabilization in a finite time. The total time required to complete
the spacecraft reorientation is the sum of the times required to
complete the sequence of maneuvers described. From the analysis
provided, it should be clear that the time required to complete each
mancuver depends on the single positive parameter k in the
corresponding control law. There is a wade off between the
required control levels, determined by the selection of &, and the
resulting times to complete each of the maneuvers and hence the
total time required to reorient the spacecraft. In particular, the time
to reorient the spacecraft from a given initial state to the origin can
be expressed as a function of the value of the parameter k and of
the initial state.

For each of the two attitude stabilization problems considered,
we have presented one example of a sequence of maneuvers which
achieves the desired spacecraft attitude stabilization. There are
many other maneuver sequences, and corresponding feedback con-
trol strategies, which will also achieve the desired attitude stabiliza-
tion of the spacecraft. But cach such swrategy is necessarily discon-
tinuous.

We have demonstrated the closed loop properties for the spe-
cial feedback control strategies presented. Our analysis was based
on a number of assumptions which are required o justify the
mathematical models studied. Further robustness analysis is
required to determine effects of model uncertainities and external
disturbances. Unfortunately, such robustness analysis is quite
difficult since the closed loop vector fields are necessarily discon-
tinuous. Perhaps, feedback control strategies which stabilize the
spacecraft attitude, different from ones presented in this paper,
would provide improved closed loop robusmess.
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