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HIDDEN MARKOV MODELS FOR FAULT DETECTION IN DYNAMIC SYSTEMS

AWARDS ABSTRACT

'The invention is a system failure monitoring method and apparatus which learns

the symptom-fault mapping directly from training data. The invention first estimates the

state of the system at discrete intervals in time. A feature vector is estimated from sets

of successive windows of sensor data.. A pattern recognition component then models

the instantaneous estimate of the posterior class probability given the features. Finally,

a hidden Markov model is used to take advantage of temporal context and estimate

class probabilities conditior,^d on recent past history. In this hierarchical pattern of

information flow, the time series data is transformed and mapped into a categorical

representation (the fault classes) and !integrated over time to enable robust decision-

making.
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HIDDEN MARKOV MODELS FOR FAULT

DETECTION IN DYNAMIC SYSTEMS

BACKGROUND OF THE INVENTION

10

Origin of the Invention:
The invention described herein was made in the performance

of work under a NASA contract, and is subject to the provisions
of Public law 96-517 (35 USC 202) in which the contractor ha...

15 elected not to retain title.

Technical Field:
The invention relates to system monitoring apparatus employ-

20
ing intelligent classifiers such as neural networks responding to
measured control inputs and system responses or symptoms causally
related to the control inputs for classifying the current state of the
system relative to its known failure modes.

25 Background Art:
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5
1 Introduction

Continuous monitoring of complex, dynamic systems is an increas-
ingly important issue in diverse areas such as nuclear plant safety,

10 production line reliability, and medical health monitoring systems.
Recent advances in both sensor technology and computational ca-
pabilities have made on-line permanent monitoring much more fea•-
sible than it was in the past.

Health monitoring of complex dynamic systems is a, basic re-
15 quirement in many domains where safety: reliability and longevity

of the system under- study are considered critical. The system of
interest might be a nuclear power plant, a large antenna system,
a telecommunications network, or a human heart. Health moni-

20 
toring can involve a variety of tasks such as detection of abnormal
conditions, identification of faulty components, or prediction of
impending failures. The availability at low cost of highly sensitive
sensor technology, data acquisition equipment, and VLSI compu-
tational power, has made round-the-clock Permanent monitoring

25 an attractive alternative to the more traditional periodic manual
inspection.

The specification will focus on the problem of accurately de-
termining the state of the monitored system as a function of time.
In particular, it is assumed that a sequence of observed sampled

30 sensor readings y are available at uniformly- spaced discrete time
intervals — without loss of generality the sampling interval is as-
sumed to be 1. Each -y is a k-dimensional measurement. Given a
sequence of such sample vectors, ^y(t), y(t – 1), ... , ^y(0), the task

35 
is to infer the current state of the system at time t.

It is assumed that the system must be in one, and only one.
of a finite set of ►n states, LA;j. 1 < i < in, at any time. Let. Q be

ti
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the discrete random variable corresponding to the (unobservable)
state of the system, taking values in the set {w^, ... , w„,}. Note
that the words "states” and "classes" will both be used in this
specification but refer to the same thing. One of these states is

5 deemed "nor,mal", the other 'm — 1 correspond to fault conditions.
This assumption, that the known fault classes are mutually exclu
sive and exhaustive, limits the proposed method to problems where
only single--faults occur at any given time and all faults can be de-

10 scribed in advance. The first limitation, single fault detecti-1, is a
known limitation of most fault detection methods and is inherent in
the underlying 'aature of the sensor information available and the
nature of the faults themselves. For example, it is possible that
in somr- problems, multiple faults result in predictable cornbina-

15 tions of single fault symptoms —however, this is usually a domain-
specific issue and is beyond the scope of discussion in this specifi-
cation. In practice, since faults are often relatively rare compared
to the sampling interval at which decisions are made, the prob-

20
ability of two independent faults occurring within the same time
interval is extremely small. It will be shown below that the sec
and limitation, the assumption that the known faults {w2, ... , Win 
comprise the ;set of all faults which could potentially occur, ca,n
be relaxed in a general domain- independent mariner. It is also

25 assumed throughout that the monitoring process of the invention
is entirely passive and cannot effect any changes in the system.

2 Background on Fault Detection for Dynamic

30	 Systems

In the typical dynamic system fault detection problem certain sig-
nals are easily and directly measurable ( the "sensors") while others
may be unobservable for various physical and practical reasons.

35 For some applications. direct statistical analysis of the observed
signals is sufficient to detect all faults of interest. For example. it
may be sufficient to detect a change in the mean value of a time

r

1
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series. However, it is more typical that the observed signals must
be transformed in some manner in order to infer the relevant fault
information. In the ideal case where the system dynamics and
measurement process can be completely modelled in an accurate

5 manner., a variety of optimal control-theoretic methods for fault de-
tection can be derived using on-line state estimation and statistical
analysis of the residual error signals (see Willsky [1j for an overview
of such methods). FIG. 1 is a block diagram of this method where

10 u( t ) is the system input and y(t) is the observed system output.
In practice, however, particularly for large complex systems, it

is common to find that the system model may not be that reliable,
if indeed there is any system model available. A common technique
(Isermann [2j, Frank [31) is to fit a dynamic model to the relation-

15 snip between the measured input and output signals of the system.
In FIG. 1, u(t) and y(t) are the measured input and output signals
respectively, and v(t) represents unmeasured, disturbances to the
system.

20
The model is often a linear difference equation (in the discrete

time case) relating inputs and outputs, e.g.,
P	 9

y ( t ) + L a=y(t -- i) = L Oju(t — i — b) +" e ( t )	 (1)
t-1=1

25 
where e (t) is an additive noise term, p and q are the orders of the
model, and b is a delay term. In this example the observed data
at time t would be y(t) = Ju(t), y(t)} and the model parameters
would be denoted as B = {a1i .... aP , 01, ... ,,13q}.

3o Typically the order or structure of the model (p and q) can be judi-
ciously estimated based upon known system properties — however,
the parameters B of the model are estimated in an on-line man-
ner using observed input/output data. The lumped parameters of
t1he model can often be related to particular system components.

35 Hence, fault detection occurs by observing changes in the values
of the estimated parameter values of the fitted model (compared
with some model of their normal condition), which in turn depend

D.
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on the system components. This method has become known as the
parameter method of fault detection — faults are detected by an-
alyziag changes in the parameters of the fitted model. How much
the parameter vector needs to change to be considered a real fault

5 is the decision part of the problem and is beyond the scope of this
specification, as it is a held for the application of statistical decision
theory and pattern recognition (Frank [31).

The focus of this specification is on the problem of detect-

10 ing changes in the underlying system state from parameter esti-
mates 0(t), W t --- 1), ... using both data-derived estimates of the
parameter-state dependence and prior knowledge or t'he temporal
behavior of the system. As mentioned earlier the system is assumed

4

to always be in one, but only one, state wi , 1 < i < vi, at any point
15 in time, i.e., the states are mutually exclusive and exhaustive. It

is also assumed that the distribution of parameters conditioned on
a given state, p(#lf2 = wi ) (where both are measured at the same
time t) is stationary, but that there may be some overlap of these

20 
state-conditional distributions. This specification will refer to the
dependence p(HJQ = w.;) as the instantaneous model between the
parameters and states. In the case of complete overlap (where two
or more states Possess identical distributions) there is naturally
no way to identify the underlying states just by observing the pa-

25 rameters and knowing the instantaneous inodel. However. as will
be shown later in this specification, even when there is significant
overlap in the instantaneous model, accurate state identification
is still possible by taking temporal context into account using a

y	 hidden Markov inodel.
30 It will be assumed herein that the application is such that a

database or fault librar;ij can be generated for both the normal
class w i and the fa,,.ilt classes {w2 , ... , w,,, 1. The database consists
of pairs of symptom vectors and class labels, {N, Q(6)1, where B is
the d-dimensional parameter vector estimated from the observed

35
system data. Note that the mapping from H to Q(6) need not

-	 be one-to-one, since- the conditional dependence of N given that
a
i

^^1
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Q(N) = w; is typically probabilistic in nature.
The assumption of availability of labelled training data rules

out applications where it is not possible to gather such data —
perhaps no such data has been collected in the past and it is not

5 possible to simulate faults in a controlled manner. However, there
are many applications where either a fault library already exists,
or can be created raider controlled conditions (perhaps by testing
a particular system in a laboratory). The important point is that

io for fault diagnosis problems for which such symptorn-fault data is
readily available, standard supervised classification or discrimina-
tion methods can be used to learn a fault diagnosis model from
this database.

It is important to note that the parameter estimation technique
15 generally requires far less precise knowledge about the system than

the previously-mentioned state-space approach ,find, hence, tends
to be both more widely :t.r)plicable and more robust from a practi-
cal standpoint. For example, in the case of the antenna monitoring

20
problem to be described later, both the presence of non-linearities
and the inherent complexity or the system make it difficult to de- 	 a
velop an accurate state-space model. In contrast, the parameter
model method can be implemented with relative ease. Naturally,
if there is enough knowledge of the system available such that the

25 state-space approach is feasible, then this should give better results
since it tales advantage of more information.

As an aside, mention should also be made of l-.nowledge-based.
or artificial intelligence models which employ qualitative models of
system. behavior to detect faults. First-generation knowledge-based

30 systems typically use experiential heuristics (described in the form
of expert-supplied rules) to describe symptom-fault relationships.
More sophisticated second-generation inethods ( under the broad
heading of "inodel-based reasoning") use qualitative causal models

35 
of the system to represent `-first- principles" knowledge (Bratko,

l J'Letic and Lavrac [4] and Davis [51) .
In principle. this allows the systein to identify faults which have



never occurred before. Both approaches have limited applicability
at present in terms of handling the dynamic and uncertain nature
of many real-world problems. In general, the qualitative symbolic
representation i^: iot particularly robust for dealing with noisy, con-

5 tinuous data, containing temporal dependencies. Furthermore there
are many applications for which neither domain experts nor strong
causal models exist, thus making the development of a knowledge-
base very difficult.

10

SUMMARY OF THE DISCLOSURE

The present invention learns the symptom-fault mapping directly
15 from training data. The invention first estimates the state of the

system at discrete intervals in time. A feature vector B of dimension
k is estimated from sets of successive windows of sensor data. A
pattern recognition component then models the instantaneous es-
timate of the posterior class probability given the features, p(w i lQ),

20 1 < i < ; n. Finally, a hidden. Markov model is used to take ad .-
vantage of temporal context and estimate class probabilities con-
ditioned on recent past history. In this hierarchical pattern of
information flow, the time series data is transformed and mapped

25 into a categorical representation (the fault classes) and integrated
over time to enable robust decision-making. It is quite generic to
systems which mist passively sense and monitor their environment
in real-time„

The invention is a method of monitoring a system having a
30 normal working state corresponding to normal operation of the

system and a plurality of individual failure states corresponding to
different failure modes of the system, the system exhibiting respec-
tive sets of measurable parameters including inputs and behavior
symptoms causally related to the inputs. The method begins by

35 defining plural transition probabilities for plural pairs of the states,
each transition probability being related to the probability that the

a
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system will change from one to the other of the pairs of states at
any time. The method continues with observing a set actual val-
ues of the parameters in a current one of the sampling intervals.
From this, an instantaneous probability is obtained which is an

5 estimate of the probability of one of (a) the set of actual values
being observed. and (b) the system being in the one state, given
the other of (a) and (b). Plural respective intermediate proba-
bilities are then computed corresponding to respective ones of the

io states, each intermediate probability being equal to the correspond-
ing instantaneous probability of the one state multiplied by a sum
over plural states of the intermediate probability for a given state
computed during the previous sampling interval multiplied by the
transition probability between the given state and the one state.

15 Finally, a posterior probability that the system is in one of the
states given the sets of actual values observed over the current and
previous sampling intervals is computed for each state from the in-
termediate probability of the current sampling interval for states.
Whether the system is in a failure state is determined by compar-
?o 

it g the posterior probabilities of all the states, and an. indication
thereof is issued.

In one embodiment, the instantaneous probability is an instan-
taneous estimate of the probability that the system is in the one

25 state given the set of actual measurements, divided by an uncon-
ditional probability of the system being in the one state. In this
embodiment, computing a posterior probability is performed by
equating the posterior probability with the intermediate probabil-
ity computed for the current sampling interval.

30	 In another ,embodiment of the invention, the instantaneous
P: probability is a probability of the actual values of the current sam-

pling interval being observed given the system being in the one
state. In this latter embodiment, computing the posterior proba-
bility is performed by dividing the intermediate probability by an

35
unconditional probability of observing the sets of actual values of
the currerat and previous sampling intervals.

lot
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In this latter embodiment, the instantaneous probability may
be obtained by first obtaining from a classifier responsive to the
parameters an instantaneous estimate of the probability that the
system is in the one state given the set of actual measurements;

5 and then transforming the classifier's instantaneous estimate to the
instantaneous probability using Bayes' rule. On the other hand, the
instantanous probability may be obtained directly from a classifier
trained to output the instantaneous probability for each state in

io response to the set of actual values.
Defining plural transition probabilities includes observing a

mean time between failures (MTBF) characteristic of each of the
failure states and computing each corresponding transition prob-
ability therefrom. Computing the corresponding transition prob-

i5 ability includes dividing they time period of the sampling intervals
by the MTBF and subtracting the resulting quotient from unity.

Obtaining an instantaneous probability for each one of the
states includes observing the frequency of each failure state of the

20

system and the corresponding parameter values over a period of
time relatively long compared to the sampling intervals, construct-
ing a training data set associating the frequency of each failure state
with different sets of corresponding parameter values, and using a
classification algorithm operating on the training data to infer from

25 the parameter values observed during the current sampling interval
the instantaneous probabilities of the current sampling interval.

The classification algorithm directly provides an instantaneous
probability for each one of the states that the system is in the re-
spective state given the set of parameter values observed during

30 the current sampling interval. Using the classification algorithm
includes transforming the instantaneous probabilities to the instan-
taneous probabilities using Bayes' rule. It further requires, in one
embodiment, twining a neural network on the set of training data,

35 
and then inputting the parameter values of the current sampling
interval to the neural network while permitting the neural network
to infer the instantaneous probabilities of the current sampling in-

1
i
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terval.
In another embodiment, obtaining an instantaneous probabil-

ity for a failure state is accomplished without training data related
to that failure state and accomplished by determining for each

5 parameter of that failure state upper and lower bounds on the pos-
sible values thereof, and computing the instantaneous probability
of that failure state from + '^e upper and lower bounds. Computing
of the instantaneous probabilities includes multiplying together all

to reciprocals of tl:a.e differences between the upper and lower bounds
of the parameters of that failure state. Preferably, in this embodi-
ment, there are only two system states: a normal state and a failure
state.

In a preferred implementation, observing the parameters in-
15 cludes monitoring measurements of input commands and perfor-

mance variables of the system and converting the measurements to
parameters indicative of changes in the measurements. The param-
eters can include autoregressive coefficients of the measurements,
variances of the measurements and mean values of the measure-

20
ments.

The computing of the posterior probabilities from the inter-
mediate probabilities includes, for the posterior probability of the
observed set of parameter values given each state of the system, di-

25 viding the i:itermediate probability of the corresponding state given
r

the observed set of parameter values by a probability of observing
1

the observed set of parameter values.
z

BRIEF DESCRIPTION OF THE DRAWINGS
30

FIG. 1 is a diagram illustrating a method of fault detection of .j
the prior art.

35	
FIG. 2 is a block diagram of an apparatus embodying the	 1

present invention, of which FIG. 2A illustrates an antenna point-
ing system being monitored and FIG. 2B illustrates fault detection

{
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,

apparatus embodying the invention.

FIG. 3 is a graph comparing estimates of probability of the true
class for normal conditions as a function of time obtained from the

5 neural-Markov embodiment of the invention and obtained with a
prior art neural network.

FIG. 4 is a graph of estimates of probability of the true •lass

10 corresponding to a compensation loss in the antenna pointing sys-
tem as a function of time obtained from the neural-Markov em-
bodiment of the invention and obtained with a Gaussian-Markov
embodiment of the invention.

15 FIGS. 5A, 5B and 5C are graphs of three separate contempo-
raneous plots aligned vertically along the time axis of estimated
probabilities of three respective classes or states (corresponding to
the nor-nal state, a tachometer fault and a compensation loss fault,

20
respectively) obtained simultaneously with a prior art neural net-
work, over a time interval during which the system is in the three
corresponding states one-at-a-time in succession.

FIGS. 6A, 6B and 6C are a graphs of three separate contempo-

25 raneous plots, aligned vertically along the horizontal time axis, of
estimated probabilities of the three states of FIG. 5A, respectively,
obtained simultaneously with the neural-Markov embodiment of
the present invention, over a time interval during which the sys-
tem is in the three states one-at-a-time in succession.

30

FIG. i is a diagram of a neural network employed in combina-
tion with the invention.

35	
DETAILED DESCRIPTION OF THE PREFERRED

EMBODIMENTS

;mot„
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3 Learning Symptom-Fault Mappings

This specification focuses on the use of the general parameter es-
timation method. In particular, for the purposes of this speci-

5 fication, the estimated parameters or "symptoms" of the system
correspond directly to the feature vector representation in a classic
pattern recognition model and are derived from the original ob-
servable sensor data 9(t). In turn, the system states (normal and

10
fault conditions) correspond to classes.

The details of the particular classification model used to gen-
erate the symptom-fault mapping are not directly relevant to the
general discussion. If there is prior knowledge that the probabil-

15	 ity dependence of the symptoms conditioned on the faults obeys a
particular parametric form, such as multi-variate Gaussian, then a
maximum-likelihood method to estimate the parameters of the con-
dition.al distributions may be appropriate. More commonly there is
little prior knowledge regarding the symptom-fault dependencies.

20 In, this case non-parametric discriminative methods such as linear
discri ninants, nearest-neighbor (kNN) methods, decision trees, or
neural network may all be useful approaches depending on the e
exact nature of the problem at hand. Recent studies using several

j

well known data sets have shown that all of these classification25
models perform roughly equally well in terms of predictive accu-
racy, i.e., their classification performance on independent test data
sets was often statistically indistinguishable from each other (Ng
and Lippmann [G], Weiss and Kapouleas [7]).	 Hence, other at-

30	 tributes of the classification method such as complexity, the ability
to handle high dimensional problems, small-sample performance,
explicit knowledge representation, and so forth, can become the
deciding factors for a given application.

One particular requirement is imposed on the classification
35 method to be used, namely that it produce estimates of the pos-

terior probabilities of the classes w i , 1 < i < in. given the input
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symptoms H, i.e., p(Q = Wi lk). In many practical applications esti-	 !'
mation of posterior probabilities (as opposed to a simple indication
of which class is most likely) is very useful to allow one to control
the false alarm rate, the rejection rate, and so forth.

5 Rather than deal with the time series data directly one usually
seeks to extract invariant characteristics of the time series wave-
forms, where the invariance is with respect to different environ-
mental conditions of operation of the system conditioned on a par-

10 ticular class. These invariant characteristics correspond directly to
the estimated system parameters discussed earlier, i.e., what are
called system parameters in the control literature can be treated
as feature vectors for readers more familiar with pattern recogni-
tion terminology. This feature extraction stage can critically affect

15 the classification r ;-rformance of the overall system. Note that the'

terms symptoms ar A features are used interchangeably herein.
j7
<f

One feature extraction method is employed whereby the data is 	 J
windowed into separate consecutive blocks, each containing an in-

zo
teger number T samples. Many variations of this sampling scheme
are possible, for example, the use of overlapping block or recursive
estimators. This specification is confined to the relatively simple 	 ^J
case of disjoint, consecutive blocks, each of which contain T sam-

25 ples. In practice T is chosen to be large enough to give reasonably
accurate estimates of the features so as to reduce the sampling

k

variance across different windows. For autoregressive models such
3

•as Equation (1), the 8 coefficients are estimated from all of the ob-
servations in a given window of consecutive samples using standard

30 methods such as least squares estimation, i.e.,

.. NO	 =	 f	 -t( t ),7( t - 1),..., I(t -(T - 1))^,

35 9(t - T)	 =	 f	 (t - T), /(t - (T + 1)),...	 i(t - (ZT - 1 ))^.	 (2)

and so forth.
What has been expressed at this point, assumin g that a par-

>Ii
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titular estimation method and classification algorithm had been
chosen, is simply a framework for generating estimates of the state
of the system at any point in time, i.e., at intervals of time T
the classification system will produce estimates of the posterior

5 class probabilities given the features which are estimated over the
[t, t — T] time interval. This approach makes an independent deci-
sion at each time instant, i.e., class probability estimates or symp-
tom data from the past do not influence the present estimates.
Clearly this is suboptimal given the fact that faults are Persistent

10 over time and, hence, that better class estimates could be obtained
by making use of past information. Two obvious approach spring
to mind in order to model this temporal context. In the first, one
could introduce some form of memory into the classification model.
Examples of such memory methods include recurrent neural net-

15 works (i.e., networks where the outputs are fed back to the inputs
after a unit delay, as in Pineda [8], Pearlmutter [9) or a "window
in time" technique whereby the classifier is trained not only on
feature values at time t, but also on values from time t — T back
to t — MT where Al is the memory of the model (Waibel et al.

20 [10]). This approach of implicitly modelling temporal context has
the significant disadvantage of making it much more difficult to
train the classifier. The second approach (which is now described),
of using a hidden Markov model, is much more elegant in that
it combines over time the instantaneous estimates of the trained

25 classifier by taking advantage of prior knowledge about the gross
statistical properties of the failure modes of the system.

4 Hidden Markov models for modelling tempo-
30	

ral context

The use of discrete-time, finite-state, hidden Markov models for
smoothing classification decisions over time is now described. Note
that for the purposes of this discussion the terms "class" and
"state- are equivalent, i.e., both refer to the set of normal and

35 fault conditions {w 1 , .... w,,,.}.
A first-order temporal TMarkov model is characterized (in the
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present context) by the assumption that

p(St(t) = w,10(t - T),... I Q(o)) = p (Q ( t ) = w,jst(t - fl),	 1 < i. < m, (3)

5	 for all t.

This means that the conditional probability of any current state
given knowledge of all previous states is the same as the conditional
probability of the current state given knowledge of the system state

10 at time t — T. Hence, assuming stationarity, to calculate the prob-
ability of any state at time t, one need only know the initial state
probabilities 7r(0) = [p(Q(0) = w i ),p(SZ(0) = w2 ), ... , p(S2(0) =
wm )] and the values p(Q(t) = w,lQ(t — T) = wj ),1 < i, j < M.

The m x m matrix A, where atj = p(Q(t,) = wi lQ(t — T) = wj),
15 is known as the transition matrix and characterizes the Markov

model. Given A and 7r one can calculate the probability of any
state at any time t.

It is now assumed at this point of the discussion that the
discrete-time Markov model described above can be used to model

20 the failure behavior of the system of interest, i.e., at any time t,
given that the system is in a particular state j, the probability
that the system will be in state i at time t + T is described by the
state transition probability a,ij = p(Q(t) = wi l SZ(t — T) = wj ). The
implications of using such a model and the use of failure rates to

25 estimate the transition probabilities will be discussed below. How-
ever, at this point the specification focuses on how the model is
used. Markov models such as this can be used for reliability anal-
yses to determine long-term failure rates and modes of a system
(Papazoglou and Gyftopoulos [11]).

30 However, the goal here is somewhat different, namely to moni-
tor the system in real-time. The key point is that the states of the
system are not directly observable, but are hidden, i.e., the moni-
toring system has no direct way to measure the state of the system,

	

even for past time. Instead, various symptoms or features H(t) are	 i
35 observable. These features are a probabilistic function of the states:

in fact the classification models mentioned earlier can estimate an

	

instantaneo, as symptom-state mapping p(Q(t) = w (H(t)). By rnak-	 E
i

I
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ing the appropriate conditional independence assumptions, one can
estimate p(Q(t) = wi la(t), H(t — T) ... , e(0)) without explicitly pro-
viding the 0(t — T), ... , 8(0) as direct inputs to the classifier.

The hidden Marlov formalism provides an exact solution to
5 this problem provided the underlying conditional independence as-

sumptions are met. It has been widely applied with significant
success in speech-recognition applications (Rabiner [12]). Let the
probability of the observed data be p(b t ) = AW0, ... , 6(0)}. It is
convenient to work in terms of an intermediate variable a, where

10
ai(t) = p( Q ( t ) = w i1 fi t) -	 ( 4)

To find the posterior probabilities of interest it is sufficient to be
able to calculate the a's at any time t since by Bayes' rule

15	 p(s O = wil (b t,) = 
a=(t) 

=	 a=(t)	 (5)
p(('t)	 Ejn 1 aj(t)

A recursive estimate is derived as follows:
in

a'i( t ) 	 EP	 Wi, -6t,Q(t — T) =Wj I
j=1

	

\	 /

20	
in
1: P( Q(t) = wi, B(t), C -T , Q(t — T) = wj
j=1 \in

E P(	 Q(t — T) = Wj)P( 4b t-T, Q(t — T) = Wj)
j=1
m	

/	 1
EP(Q ( t ) = Wi,d(t)14Dt-T,Wt —T) =Wj)aj(t —T)

25	 j=1
(by the definition of a;)
in 

(2(t)jQ(0  w i, 4 t- •T, M t — T) -- W, X

j=1

p(WO =Wilt—T,W t —T) =wj)aj(t —T)
30 in

	

_ E?(	 Wi) P(Q(0=wil -tt-T,Wt,— T)=wj)aj(t—T)
j=1

(assuming that H(t) is independent of past observations
and past states, ghy en the present state)

in

35	 = E?(	 w'i)p(Q(t)=WilQ(t— T)= Wj)c1j(t—l')
j=1

(assuming that Q(t) is independent of past observations
given the past state Q(t - T))
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m

= P(e( t)^( t ) = w^) E aija (^ _ T )
j=t

The first term can be derived from the classifier's estimate of
p(Q(t) = w i J6(t)) and Bayes' rule. This estimate provided by the

5 classifier is referred to as the instantaneous probability. (Alter-
natively, a classifier could be employed which has been trained to
provide instantaneous estimates of the first term itself, namely an
estimate of the probability for each state of having made the actual

10 observations, thus obviating the need to invoke Bayes' rule.) The
terms in the sum are just a linear combination of the a s from the
previous time-step. Hence, Equation 6 gives the basic recursive
relationship for estimating state probabilities at any time t.

From Equation (6), a more practical recursive estimate is de-
rived ass follows: First, the term p(emio(t) = wi) is replaced by

15 
p(Q(t) = wiJ®(t))/p(Q(t) = wi ) (where the denominator is the prior
probability of state i and is estimated prior to operation in the
standard manner). Second, the aj (t — T) terms are each replaced
by p(Q(t — T) = wj ((bt_T ). These two substitutions together are

20 equivalent to dividing both sides of Equation 6 by p((P t ) and give
the equivalent recursive relation:

p(Q = (Vil ip t ) = 
PAO = wile(0) M a i,p(Q( t — T) = wil'bt -T)p(S O = Wi ) j=1

25 The additional assumptions made in the derivation of Equation
6 (besides the first-order Markov assumption on state dependence)
require some comment. The first assumption is that B(t) is in-
dependent of both the most recent state and the observed past
data, given that the present state is known. This implies that the

30 observed symptoms are statistically independent from one time
window to the next, given the state information. For disjoint, non-
overlapping, blocks of data this will generally be true if the feature
sampling rate , is greater than any significant frequency compo-
nents in the underlying observed time-series 7(t). For overlapping

35 
blocks of data, or where T is comparable to the time constants of
the dynamic system, observed symptoms would no longer be inde-
pendent and the model would be modified to include a measure of
this dependence. The second assumption, that the present state

(6)
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only depends on the previous state but not the past observations,
seems quite reasonable: there is no reason to expect that states in
the future depend on the actual observed data, values in the past.

Note that the state probabilities are calculated here based on
5 past information. Alternative estimation Strategies are possible.

For example, using the well-known forward-backward recurrence
relations (Rabiner 12) one can update the state probability esti-
mates using symptom information which occurred later in time,
i.e., estimate p(Q(t) = wi (6(t -1- U), ... ,6(t), „ .. , 9(0)). From an

10 operational standpoint this allows further smoothing of glitches
and a consequent reduction in false alarms — the disadvantage is
that there is a latency of time U before such an estimate can be
made. Another approach is to use the Viterb;i algorithm to esti-
mate the most likely joint sequence of states, i.e.,

15	

max{p(Q(t) = w,;, ... , Q(0) = wj J(DE)}.

Which scheme is used depends largely on the particular apph-
cation and each can easily be implemented using a variation of
the recursive equations derived above. The probability estimation

20 method based only on past and present measurements (as described
in Equations 5) and 6) is the most direct method for on-line moni-
toring and will be assumed throughout the rest of the specification.

25 5 The Nature of the Markov transition matrix

In the previous sections herein, the existence of the transition ma-
trix A has been assumed. The question naturally arises in practice
as to how the entries in this matrix are obtained. For speech r acog-

30 
nition applications there is typically an abundance of training data
from which A can be estimated by the use of iterative maximum
likelihood procedures such as the Baum-Welch algorithm. How-
ever, for reliability monitoring, while there may be data obtained
under specific normal and fault conditions, there will typically not
be a set of training data corresponding to a sequence of state tran-

35 
sitions. Hence. in practice, prior knowledge regarding the overall
system reliability and behavior must be brought to bear in or-
der to provide estimates of A. The invention adopts it divide-and-

4

i
}

i	 1

j'

a^
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conquer approach by dividing the states into 3 categories: first
is the normal state, then the intermittent states, and finally the
"hard-fault" states. The difference between the latter two is that
intermittent failures allow the possibility of returning to the normal

5 state whereas the "hard- fault" states do not.

5.1 Specification of the "normal-normal" transition prob-
ability, a ll

10 The use of a first-order Markov model to describe failure processes
implicitly assumes that the lengths of times between failures are
distributed geometrically. This follows .rxom the fact that for a
discrete-time Markov model the probability that the system stays
in state i for n. time steps is p` 1 (1 — p) where p = a 1 1 . The

15 memoryless assumption which leads to the geometric distribution
of inter -failure durations i s quite robust and plausible for many ap-
plications and is widely used in reliability analysis to model failure
processes (Siewiorek and Swarz [13)).

By relating the Markov transition parameters to overall failure
20 statistics of the system, the invention can both check the validity

of the geometric distribution assumption ,.),nd also determine the
transition probabilities themselves. The xpected length l of time
spent in state w l , given that it starts in state w l , is

,Do
25	

E[l] _ E nalri 1(1 — (I II)( ^ )
►^.1

1 -	 (S)1—all

(0)

30 in units of time T. Thus, the mean time between failure (NITBF)
of the system can be expressed as

MTBF _ 1
(10)

T	 1 — all

and, hence.
35	 T

	

a ll = 1 — 
N4T13F	

(11)

where the MTBF and T are expressed In the salve time units. In
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this manner, MTBF statistics can be used iv; the basis for estimat-
ing ce ll . The MTBF of the system can typically be either specified

•s,
by a reliability analysis (for a new system) or can be estimated
from a problem database (for a system which has been iii use for

5 some time). Note that T will be chosen to be much smaller than
the MTBF in practice.

5.2	 Specification of the fault transition probabilities

Transition probabilities into both intermittent and hard faults fromio
the normal state are found by weighting 1 — a ll (the probability
of the system entering a fault state at the next time step given
that it is currently in the , +ormal state) by the anticipated relative
likelihood of occurrence of each fault state. 	 These relative likeli-
hoods may be derived from reliability analyses or can be estimated

15
empirically if a problem database exists. 	 '

The mean anticipated duration of intermittent failures can be
used to calculate the self-transition prob=ability for intermittent
states in an analogous manner to the way in which the MTBF
was used above to find a l l.  Knowledge of intermittent fault Jura-

20
tion is typically more subjective in nature than finding the MTBF
and may require knowledge of the physics of the fault condition.

Conceptually, hard faults present a problem (in the context
of Markov monitoring) Since once such a fault occurs the system
can not return to the normal state until the fault is physically re-

25
paired, which in turn typically requires downtime of the system.

In practice, a sensible approach is to define an "absorbing" State
which indicates that the system has been halted. Hence. the only
allowable transition out of a hard fault state is into the halt state.
The length of time which the system may spend in the hard fault

30
state, before the halt state is arrived at, is largely a function of the
operational environment: if the Markov monitoring system itself
is being used as part of an overall alarm system, or if the fault is
detectable by other means, then an operator may shut clown oper-
ations quick ly. On the other hand, if the fault sloes not manifest

35
i tself in any significant observable manner and if the Markov mon-

itoring system is being used only for off-line data anal ysis. then
the system may remain in the hard fault state for a lengthy period

N^



-23-

of time. Hence, deciding how the self-transition probabilities are
chosen for the bard-fault classes will be quite specific to particular
operational environments.

To complete the Markov transition matrix it is sufficient to
5 note that "fault-to-fault" transitions are normally disallowed ex-

cept in cases where there is sufficient prior knowledge to believe
that intermittent faults can occur directly in sequence.

5.3 Comments on Robustness and Dynamics
10

The process of defining the Markov transition matrix is obviously
quite subjective in nature. While this could be viewed as a weak-
ness of the overall methodology, one can argue that in fact it is
a strength. In particular., it allows the effective coupling of rela-

15 
tively high- level prior knowledge (in the form of the Markov tran-
sition matrix A) with the "lower-level" data-driven estimation of
p(Q10). Naturally, the latitude in specification of A leads to ques-
tions regarding; the :sensitivity of the method to misspecification.
While a systematic sensitivity study is beyond the scope of this

20 specification, empirical results using this method suggest that un-
less the parameter-state conditional densities are almost entirely
overlapped, then the model is quite robust to variations in A —
typically, only the length of time to switch between states ("time
to detect") is directly affected.

25 
For a typically reliable system the dynamics of the iMarkov

model will be such that it will remain in the normal state for long
stretches of time. It is important to realize that the relatively static
behavior of the model should not undermine the reader's assess-
ment of its practical utility: for many problems it is often extremely

30 
difficult to design detectors of rare events which have both a low
false alarm rate and a high detection rate. For example, in the
next section an application is described in which the system snakes
classification decisions ever y 6 seconds or so, while the TMTBF is on
the order of a few days. For this application, if the lNlarkov model

35 
component of the inethod is omitted and only the instantaneous
state estimates are used, the false alarm rate increases dramatically
to the extent that this non-Markov method would be completely
impractical for Ilse In an operational environment.

9e1
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t.

ALTERNATIVE EMBODIMENT OF THE INVENTION

5 The problem of interest is that of detecting faults or changes
in the observed characteristics of time series data which is being
monitored on-line from a dynamic system. Problems which fall into
this category include fault detection in large complex hardware s-ys-
temf (such as nuclear power plants, chemical process plants, large

10 
antenna systems) and biomedical monitoring of critical signals in
liumaIls (such as pacemakers and So forth). If there exists instan-
taneous good models of (1) the system which is being monitored,
(2) any noise which might be present in the measurement process
and (3) the likely behavior of the system when a fault occurs, then

15 
standard model-based techniques exist which can accurately detect
changes.

In practice however, particularly for large complex systems,
there is often little prior knowledge available in the form of accu-
rate models, rendering the model-based method ineffective. Hence,
it is common in commercial products to use much simpler threshold20 
alarm methods which trigger an alarm whenever a derived param-
eter of interest (from the observed time series), or the amplitude of
the time series itself, exceeds some pre-specified limit. The prob•-
lein with this approach is that it is likely to be very sensitive to
false alarms if noise is present and will not detect subtle changes

25
in the characteristics of the sir —al under observation.

The method described above to address the on-line fault de-
tection problem uses a H idden Markov model. The rnethocl is ex-
tremely robust to false alarms, does not require a model of the
system under normal or fault conditions, and can detect subtle

3o changes in signal characteristics. The inethod makes the following
assumptions:

• Al: There is a known set of ni — 1 mutually exclusive and
exhaustive faults, denoted as U;2. ...164;M-1.  where ^^j denotes

	

35	 normal conditions.

• A2: Training data for both normal and fault conditions are
available which consists of tinie series sequences.
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• A.3: The observed time series data is stationary under both
normal and fault conditions.

A4: information about the mean time to failure for each fault

5
mode is available.

However, this method suffers from the significant disadvantage
of assumptions Al and A2, namely that training data is required
for a prespecified set of faults. While data is usually easy to acquire
for normal conditions, it is often impractical to obtain data under

io fault conditions.
In the alternative embodiment of the invention, assumptions

Al and A2 c^n be replaced by a much less restrictive pair of as-
sumptions while still retaining the overall advantages of the inven-
tion. The new assumptions are as follows:

15
• Al*: Training data under normal conditions is available,

e A2*: Physical limits can be placed on any parameters of inter-
est which can be derived from the time series.

20
Assumption Al.* is trivial since it is difficult to imagin. an  appli-
cation where data under normal conditions cannot be obtained.
A..3sumption A2* essentially states that there must exist sufficient
prior knowledge about the observed parameters such that a density
function can be specified instantaneous on these parameters. The
role of this density function will now be explained.

25 The parameters of interest at time t are denoted as a vector
e(t). The parameters are typically statistical estimates of some
characteristic of the time series such the mean, variance, or auto-
regressive (AR) coefficients. As discussed above, it is by observing
changes in these derived parameters that the HMM method de-

30 tects changes in the underlying time series (and, hence, the system
itself). The invention, as described above, requires probability es-
timates of the form PA 0140),(w., (t) ), 1 < i < ni, as a central part of
the model. These in turn are obtained by Bayes rule from the esti-
mates 1)(w;(t)1H(t)) which are learned from the training data. Since

35 the process is assumed to be stationary given w, the reference to
time t. can be dropped at this point.

In the alternative embodiment, the changes are as follows:
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1. For w l (normal conditions) calculate 15(w l (B) using either a
parametric density or a non-parametric density estimate where
the density is fitted to the available training data.

	

5	 2. For w2 (non-normal conditions), specify a prior density in the
form of pprior (e (W2) where w2 signifies non-normal conditions.

The first change is quite straightforward and merely requires that
a multi-variate, density be fitted to the observed parameters —
standard techniques are available for this purpose. Alternatively,

10 if there is prior knowledge available (e.g., such that the parame-
ters obey a multi-variate Gaussian assumption under normal con-
ditions), this can also be used to specify the density directly. The
second change requires that pprior(OIW2) be available. If assump-
tion A2* holds, and in the absence of any other specific information

15 about the parameter behavior under fault conditions, one can spec-
ify a uniform density for pprior(OIw2) where the ranges correspond
to the physical limits oil parameters specified in A2*. In prac-
tice these limits are usually available, For example, the variance
of the signal can be bounded based on the overall energy avail-

2o able to the system — similarly, AR coefficients must obey certain
constraints if the underlying process is stationary. The choice of
the uniform density is the most appropriate when there is no prior
knowledge about the parameters (other than the ranges) — if prior
knowledge is available, other prior densities could be used.

	

25	 Implementation of the Alternative Embodiment: The exact
changes required to implement the new method are now described:

1. Set up a 2-state hidden Marlov model in accordance with the
foregoing description where w l corresponds to normal condi-
tions and w2 is non-normal.

30
2. Obtain the transition probabilities for the Markov portion of

► =	 the model from fault duration data as described above.

3. Determine the functional form of j)(w,10) using methods de-
scribed above.
35.

. For each parameter Hj , 1 < j < P (where P is the number of
parameters), specify upper and lower bounds, tcj and bj respec-
tively, on the possible values which Oj can take.	 1

y
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5. Specify the density Pprior(eIw2) as
J	 1

Pprior(e I w2 ) = 11
j=1 b7	 aj

5 if there is no prior knowledge available other than the range
of parameter values and the density under normal conditions
(p(w 1 18)). If prior knowledge is available then use this infor-
mation to specify Pprior(0JW2)•

6. Perform the process of the invention as described above, except
io	 that in equation (6) the p(e(t)Jw;(t,)) term is now calculated as

described in steps 3 and 5 above.

There are several possible extensions to the alternative embod-
iment, :including the use of on-line adaptation to improve the initial
models and the incorporation of specific fault models in the case

15 where such prior knowledge of fault behavior is available. These
extensions are technically relatively straightforward given the un-
derlying method as described here.

The alternative embodiment requires fewer assumptions than
the foregoing main. embodiment while still retaining many of the

20 advantages of the main embodiment. Implementation is quite sim-
ple and has a very low computational complexity (order of P.m
calculations per time step). In addition, in the alternative embod-
iment, setting up the model simply requires the specification of
some ranges on the parameters of interest and some normal train-

25 ing data — hence, the method should be relatively robust and
could conceivably be used as part of an "off-the-shelf' product by
non-specialists. Given the simplicity and reliability of the method,
it would appear that it may have considerable practical utility for
a wide variety of on-line monitoring applications.

30	 In the remainder of this specification, the description concerns
the main embodiment of the invention.

6 Background on Antenna Fault Diagnosis
35

Application of the hidden Nlarkov model to a real fault monitoring
problem is now described. It is first helpful to provide some back-
ground. The Deep Space Network (DSN) (designed and operated

1

^.i

ii

i
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by the Jet Propulsion Laboratory for the National Aeronautics
and Space Administration (NASA)) provides end-to-end telecom-
munication capabilities between earth and various interplanetary
spacecraft throughout the solar system. The ground component of

5 the DSN consists of three ground station complexes located in Cal-
ifornia, Spain and Australia, giving full 24-hour coverage for deep
space communications. Since spacecraft are always severely lim-
ited in terms of available transmitter power (for example, each of
the Voyager spacecraft only use 20 watts to transmit signals back

10 to earth), all subsystems of the end-to-end communications link
(radio telemetry, coding, receivers, amplifiers) tend to be pushed
to the absolute limits of performance. The large steerable ground,
antennas (70m and 34m dishes) represent critical potential single
points of failure in the network. In particular there is only a single

15 70m antenna at each complex because of the large cost and cal-
ibration effort involved in constructing and operating a steerable
antenna of that size - - the entire structure (including pedestal
support) weighs over 8,000 tons.

The antenna pointing systems consist of azimuth and eleva-
20 tion axes drives which respond to computer-generated trajectory

commands to steer the antenna iii real-time. Pointing accuracy
requirements for the antenna are such that there is little tolerance
for component degradation. Achieving the necessary degree of po-
sitional accuracy is rendered difficult by various non-linearities in

25 the gear and motor elements and environmental disturbances such
as gusts of wind affecting the antenna dish structure. Off-beam
pointing can resudt in rapid fall-off in signal-to-noise ratios and
consequent potential loss of irrecoverable scientific data from the
spacecraft.

30 The antenna servo pointing systems are a complex mix of electro-
mechanical components. FIG. 2A includes a simple block diagram
of the elevation pointing system for a 34m antenna — see Appendix
2 for a brief description of how the pointing system works. A faulty
component manifests itself indirectly via a change in the charac-

35 teristics of observed sensor readings in the pointing control loop.
Because of the non-linearity and feedback present, direct causal
relationships between fault conditions and observed symptoms can
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be difficult to establish — - this finales manual fault diagnosis a slow
and expensive process. In addition, if a pointing problem occurs
while a spacecraft is being tracked., the antenna is often shut-down
to prevent any potential damage to the structure and the track is

5 transferred to another antenna if possible. Hence, at present, diag-
nosis often occurs after the fact, where the original fault conditions
may be difficult to replicate.

io
7 Experimental Results

7.1 Data Collection and Feature Extraction

The observable antenna data consists of various sensor readings (in
the form of sampled time series) which can be monitored while the

15 antenna is in tracking mode. To generate a fault library hardware
:faults were introduced in a controlled manner by switching faulty
components in and out of the control loop. Sensor variables mon-
itored included wind speed, motor currents, tachometer voltages,
estimated antenna position, and so forth.

20

	

	 The time series data was initially sampled at 50 Hz (well above 	 F

the estimated Nyquist sampling rate for signals of interest) and seg-
mented into windows of 4 seconds duration (200 samples) to allow
:reasonably accurate estimates of the various features. The features
are derived by applying an autoregressive-exogenous (ARX) mod-

25 elling technique using the rate feedback conunand as the input to
the model and motor current as output, using the definitions illus-
trated in FIG. 1:

	

P	 q

y(t)+La,.y(t	 Lb;u(t- j)+e(t),	 t= 1,2, ... ,N (12)

	

,,-i	 j_i
30

where y(t) is the motor current, u(t) is the rate command input,
e(t) is an additive white noise process, and a i and b; are the model
coefficients. The model order was chosen by finding an empirical
minimum (using data from normal conditions) of the Al ail e In-
formation Criterion (AIC) which trades-off goodness-of- fit to the

35 
data with model complexity (Ljung [14] ). An Sth order model was
chosen in this manner with p = 6 and q = 2, resulting in b ARX
features. Using this model structure, a separate set of ARX coeffi-
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cients was estimated from each successive 4-second window of data
using direct least mean squares estimation. Hence a new set of fea-
tures, 6(t), is available at a rate of 0.25 Hz compared to the original
sampling rate of 50Hz --- for this particular application this rate

5 of decision-making is more than adequate. The autoregressive rep-
resentation is particularly useful for discriminative purposes when
dealing with time series '^"Lashyap [15]).

In addition to the ARX features, there are four time domain
features (such as the estimated standard deviations of tachometers

10 and torque sensors) which were judged to have useful discriminative
power. It is worth pointing out that for the chosen sample size of
200 it was found that the assumption that feature estimates do not
have any temporal dependence across windows was justified. This
observation is based on empirical results obtained by analyzing the

15 correlation structure in the training data.

7.2 Model Development

Data was collected at a 34 meter antenna site in Goldstone, Cali-
20 fornia, in early 1991, under both normal and fault conditions. The

two faults corresponded to a failed tachometer in the servo loop
and a short circuit in the electronic compensation loop — these
are two of the most problematic components in terms of reliabil-
i y. '-Che data consisted of 15000 labelled sample vectors for each

25 fault, which was converted to 75 feature vectors per class. Data
was collected on two separate occasions in this manner. Because
the antenna is in ,a remote location and is not permanently instru-
mented for servo component data acquisition, data collection in
this manner is a time- consuming and expensive task. Hence, the

30 
models were trained with relatively few data points per class.

Experiments were carried out with both a feedforward multi-
layer neural network and a simple maximum-likelihood Gaussian
classifier. A general description of the neural network model used
is given in the Appendix. The neural network was chosen over al-

35 
ternative classification models because of its ability to approximate
arbitrary decision boundaries in a relatively non-parametric man-
ner. In addition, by using a I11ean- square error objective function,

the outputs of the network c-an be used as estimates of posterior

5

^s
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class probabilities (Richard and Lippmann [15] and Miller, Good-
man and Smyth [16]). Based on cross-validation results, a network
with a single hidden layer of 12 units was chosen as the working
model. The networks were trained using a conjugate gradient vari-

5 ation of the well known backpropagation method (Barnard and
Cole [18], Powell [191). The Gaussian classifier used a separate,
diagonal covariance matrix for each class, where the components
consisted of maximum likelihood estimates. Using the full covari-
ance matrix was considered impractical given only 150 samples per

10 class in 12 dimensions. Components of the Markov transition ma-
trix A were estimated using a database of trouble reports which
are routinely collected at all antenna sites — see Appendix 3 for a
more detailed discussion.

FIGS. 2A and 2B illustrate a system embodying the present
15 invention monitoring an antenna pointing system, including the

pointing ,system followed by the parameter estimation stage, which
is followed below by the parameter/state conditional probability
model. Finally, the conditional probability model is followed by the
Markov component, showing both past state estimates and current

20 instantaneous estimates being combined as in Equation (6). These
models were implemented in software as part of the data acquisition
system. The results of testing the models on previously unseen data
in real-time at the antenna site are discussed in the next section.

Referring now to FIGS. 2A and 2B, the measured observables
25 from the system being monitored (such as the rate commands,

tachometer readings and torque bias of the antenna pointing sys-
tem) are received by an on-line parameter estimator 10 of a pa-
rameter estimation model 20. The parameter estimation inodel
20 compares a predicted observable (such as the motor output of

30 the antenna pointing system) predicted by the parameter estima-
tor 10 with the actual measurement of that observable ( such as
the actual measured motor output of the antenna pointing sys-
tem) to four; an error signal, which is fed back to the parameter
estimator 10. From this, the parameter estimator 10 provides es-

35 timated parameters during each successive sampling interval. The
estimated parameters may be, for example, statistical quantities
which reflect, the amount of change in each observable. These es-
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timated parameters are then process(' in a conventional classifier
30 such as a neural network providing a mapping between symp-
toms (the estimated parameters) and classes (including the normal
condition state and various types of fault states). The classifier 30

5	 provides instantaneous probability estimates of the states of the
system based upon the estimated parameters. These instantaneous
probability estimates are first transformed to inst-)ntaneous prob-
abilities. The instantaneous probabilities are then processed by a
Markov time correlation model 40 embodying the computation of

10	 Equation 6. Specifically, at each successive sampling interval, the
Markov model 40 performs the hidden Markov model calculation
of Equations 5 and 6 to produce the posterior state probabilities
of the system states, and infers the true system state from the one
posterior state probability dominating the others. This inference

15	 of the true system state is the system dec*-, pion at time t (the cur-
rent sampling interval). Thus, a sequence of hidden Markov model
calculations 50, 60, 70, and so forth are performed. As indicated in
FIG. 2, the results of each calculation 50, 60, 70, and so forth are
saved and used in the next calculation performed during the next

20	 sampling interval. Thus, the calculation 60 performed during the
current sampling interval at time t uses the results of the calcu-
lation 50 performed during the previous sampling interval at time

1
t-1. Moreover, the results of the current calculation 60 are used by
the next calculation 70 performed at time t+1.

25

Each calculation 50, 60, 70, and so forth uses Equation 6 to
compute the intermediate probability of Equation 4 and then em-
ploys the rule of Equation 5 to compute the posterior system prob-
abilities. The intermediate probability is equal to the correspond-

30 ing instantaneous probability of the one state multiplied by a sum
over plural states of the intermediate probability for a given state

computed during the previous sampling interval multiplied by the
transition probability between the given state and the one state.
Finally, the method is completed by computing from the interme-

35 diate probability for each one of the states of the current sampling
interval the posterior probability that the system is in the cor-

responding one of the states. and determining from the posterior
r

4

^;r4
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probabilities whether the system has transitioned to one of the fail-
ure states and, if the system has transitioned to one of the failure
states, issuing an alarm corresponding thereto.

5 Defining plural transition, probabilities includes observing a
mean time between failures (MTBF) characteristic of each of the
failure states and computing each corresponding transition prob-
ability therefrom. Computing the corresponding transition prob-
ability includes dividing the time period of the sampling intervals

10 by the MTBF and subtracting the resulting quotient from unity.

Transforming the instantaneous probabilities to the instanta-
neous probabilities is accomplished using Bayes' rule.

15 7.3 Classification Results

The neural and Gaussian models, both with and without the Markov
component, were tested by monitoring the antenna as it moved at
typical deep-space tracking rates of about 4 mdeg/secon.d. The

20 results reported below consist of summary results over a variety of
different short tests: the cumulative monitoring time was about 1
hour in duration.

25

I

30

35
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5

10

Class
Without Markov model With Markov model
Gaussian Neural Gaussian Neural

Normal Conditions 0.36 1.72 0.36 0.00
Tachometer Failure 1	 27.78 0.00 2.38 _ 0.00
Compensation hoss 34.21 0.00 43.16 0.00

All Classes 16.92 0.84 14.42 0.00

5

Table 1: Percentage misclassifation rates for Gaussian and neural

15	 models both with and without Markov component.

Table 1 sununarizes the overall classification performance for
each of the models, and both for each individual class and for
all classes averaged together. Clearly, from the final column, the

20 neural-Markov model is the best model in the sense that no win-
dows at all were misclassified. It is significantly better than the
Gaussian classifier which performed particularly poorly under fault
conditions. However, under normal conditions it was quite accurate
having only 1 false alarm during the roughly 30 minutes of time de-

25 voted to monitoring normal conditions — this is not too surprising
since in theory at least the ARX coefficients should obey a multi-
variate Gaussian distribution given that the model is correct, i.e.,
for the non-fault case (Ljtulg 14 ). The effect of the Markov model
is clearly seen to have beneficial effects, in particular reducing the

30 effects of isolated random errors. However, for the compensation
loss fault, the Markov model actually worsened the already poor
Gaussian model results, which is to be expected if the non-Xlarkov
component is doing particularly poorly as in this case.

35
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Class
Without Markov model With Markov model
Gaussian Neural Gaussian Neural

Normal Conditions -2.44 - 1.97 -2.46 -4.24
Tachometer Failure -0.40 -3.52 -0.42 -4.22
Compensation Loss -0.82 -3.48 -1.39 -4.71

All Classes -0.87 -2.29 -1.02 -4.34

Table 2: Logarithm of Mean Squared Error for Gaussian and
neural models both with and without Markov component.

Table 2 presents the same data summarized in terms of the
logarithm (base 10) of the mean-square error (MSE), calculated as
follows:

1 N m2
MSE = 1V
	 (p(wi(j)) — Oi(j))	 (13)
j=1i=i

where p(w.i(j)) is the classifier's estimate of the posterior probabil-
ity of class i for input j, oi,(j) = 1 if W; is the true class for input
j and zero otherwise, and N is the size of the training data set.
The mean-square error provides more information on the probabil-
ities being produced by the classifier than the classification error
rates. Lower values imply that the probabilities are sharper, i.e.,
the classifier is more certain in its conclusion. The general trend
in Table 2 is that the neural-Markov combination is significantly
better than any of the other combinations.

FIGS. 3, 4, and 5 plot the estimated probability of the true class
as a function of time for various models to allow a more detailed
interpretation of the results. Note that, given that the true class
is labelled i, the estimated probability of class i from the neural
network corresponds to the normalized output of output unit i of

the network at time t, i.e.,

o;(t)

A  — ^k_ 1 50)(14)
35 ( where 6i (t) is the value of the i th network output node) while

the 'Markov probabilities correspond to the estimates of p(Q(t.)
,,^ j j (P (t)) , as described earlier in Equation 6.

i

t
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FIG. 3 corresponds to normal conditions and compares the neu-
ral model with and without the Markov processing. The instan-
taneous probability estimates from the neural model have a large
variation over time and are quite noisy. This is essentially due

5 to the variation in the sensor data from one window to the next,
since as might be expected, signals such as motor current contain
significant noise. In addition, a large glitch is visible at about 460
seconds. The neural model gives a low probability that the con-
dition is normal for that particular window (in fact a large glitch

10 such as this looks like a tachometer failure problem), however, the
Markov model remains relatively unaffected by this single error.
Overall, the stability of the Markov model is clearly reflected in
this plot and has sign;ficant advantages in an operational environ-
ment in terms of keeping the false alarm rate to a minimum. Note

15 that at any particular instant the neural network only ever assigns
a probability of up to 0.8 or 0.9 to the trice class. In contrast, by
modelling the temporal context, the neural-Markov model assigns
a much greater degree of certainty to the true class.

FIG. 4 compares the performance of the Gaussian, Gaussian-
20 Markov and neural-MFxkov models on detecting the compensation

loss fault. The variation in the Gaussian estimates is quite no-
ticeable. The Gaussian-Markov model combination, after some
initial uncertainty for the first 90 or so seconds, settles down to
yield reasonable estimates. However, the overall superiority of the

25 neural-Markov model (the upper curve) is evident.
FIGS. 5A through 5C and FIGS. 6A through C show the perfor-

mance of the neural network classifier without and with the hidden
Markov model, respectively, while monitoring the antenna for a to-
tal duration of about 1 hour. Tachometer failure and compensation

30 loss fault are introduced into the system after 14 minutes and 44
minutes .respectively, each lasting roughly 15 minutes in duration.
The difference in the quality of the 2 approaches is clearly visible
in the figures and leaves little doubt as to the utility of the Markov
method.

35 The results presented above clearly demonstrate the abilit y of a
hidden Markov model to enhance the overall quality and reliability
of a monitoring system's decisions. From a practical standpoint.
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the difference is significant: the non-Markov systems would not
be reliable for actual operational use since they are too noisy and
would have an unacceptably large false alarm rate. In contrast, the
Markov-based system is a serious candidate foi field implementa-
tion, particularly for installation in all new antenna designs. How-
ever there are significant opportunities for further improvement in
models of this nature.

to 
8 Detecting Novel Classes

While the neural model described above exhibits excellent perfor-
mance in terms of discrimination, there is another aspect to classi-
fier performance which must be considered for applications of this
nature: how will the classifier respond if presented with data from

15 a class which was not included in the training set. Ideally, one
would like the model to detect this situation. For fault diagnosis
the chance that one will encounter such novel classes under oper-
ational conditions is quite high since there is little hope of having
an exhaustive library of faults to train on.

20 In general, with any non-parametric learning algoritlm, there
can be few guarantees about the extrapolation behavior of the re-
sulting model (Gemara, Bienenstock and Doursat [20]). The re-
spouse of the trained model to a point far away from the training
data may be somewhat arbitrary, since it may lie on either side of

25 a decision boundary, the location of which in turn depends on a va-
riety of factors such as initial conditions for the training algorithm,
objective function used, particular training data, and so forth. One
might hope that for a feedforward multi-layer perception, novel in-
put vectors would lead to low response for all outputs. However, if

30 neural activation units with non-local response functions are used
^;.	 in the model (such as the commonly used sigmoid function), the

tendency of training algor ithms such as backpropagation is to gen-
erate mappings which have a large response for at least one of the
classes as the attributes take on values which extend well beyond

35 the range of the training data values. Drainer and Leonard X21] dis-
cuss this particular problem of poor ext rapolation in the context of

fault diagnosis of a chemical process plant. The underlying prob-
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lem lies in the basic nature of discriminative models which 1

on estimating decision boundaries based on the differences bet
classes. In contrast, if one wants to detect data from novel ck
one must have a generative model for each known class, namel4
which specifies how the data is ge_ierated for these classes. HI

in a probabilistic framework, one seeks estimates of the probal
density function of the data given a particular class, f (OIQ =

from which one can in turn use Bayes' rule for prediction:

10	 An = W, (B) = A610 = WOAQ = WO

Ekl 1 f (O-IQ = Wk)P(Q = Wk)

Generative models have certain disadvaritages: they can a
form poorly in high dimensions, and for a filed amount of data
may not be as efficient in terms of approximating the Bayes deci-
sion boundary as a purely discriminative method.

9 Discussion

The hidden Marlov method for on-line health monitoring proposed
20 in this specificat ion relies on certain ley assumptions which may

or may not be true for particular applications. In particular, for
the purposes of this discussion it is assumed that:

1. Faults are discrete in nature (i.e., they are "hard" failures
3

rather than gradual degradation) and are known in advance.
25

2. There is a fault library of classified data (for some embodirnenlus
of the ,)resent invention) in order to train the model.

3. Symptom estimates are statistically independent froin one win .
-dow to the next, conditioned on the classes.

However, it should be pointed out that these assumptions could
potentially be related and the model further refined. For example..
a fault library may not be necessary if the symptom-fault d-pen-
dence can be specified based on prior knowledge, Similarly, the
assumption of independence of symptom estimates across windows
I s not strictly necessary — it makes the model much simpler. but
could be included in Equation b if such dependence is known to
exist and can be modelled.

5
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10 Conclusion

Effective modelling of temporal context in continuous monitoring
applications can considerablyimprove the reliability and accuracy

5 of a decision system. In particular, it has been shown in this spec-
ification that hidden Markov models provide an effective method
for incorporating temporal context in conjunction with traditional
classification methods. The Markov model approach has the abil-
ity to significantly reduce the false alarm rate of a classification

to system by taking advantage of any time domain redundancy which
may be present. The model was demonstrated on a real-world an-
temaa fault diagnosis problem — the empirical results dernonstrate
clearly the advantage of the Markov approach. In general, the use
of hidden Markov models for continuous monitoring seems to have

1r, promise: applications to other critical applications such as medi-
cal diagnosis in intensive care situations, nuclear plant monitoring,
and so forth, appear worthy of further investigation.

While the invention has been described in detail with reference
to preferred embodiments, it is understood that variations and

20 modifications thereof may be made without departing from the
true spirit and scope of the invention.

25
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Appendix 1: Neural Network Model Description

The following is a description of an example of a popular feed-
forward multi-layer neural network model to familiarize the reader

5 with the general notation and concepts. FIG. 7 shows an example
of such a neural network. The input nodes are labeled n i 1 < i <
K+ 1, the hidden nodes are labelled hi , 1 < j < H, and the output
layers are labelled Ok 1 < k < ►n. In general, there are K -{-1 input
units, where Ii is the number of features. The extra node is always

10 in the "on" state, providing a threshold capability. Similarly, there
are in output nodes, where in is the number of classes.

The number of hidden units H in the hidden layer can influence
the classifier performance in the following manner: too many and
the network overfits the data, whereas too few hidden units leaves

15 the network with insufficient representational power. The appro-
priate network size is typically chosen by varying the number of
hidden units and observing cross-validation performance.

Each input unit i is connected to each hidden unit j by a link
with weight wiJ , and each hidden unit j is connected to each

20 output unit k, by a weighted link wo k.. Each hidden unit calculates
a weighted sum and passes the result through a non-linear function
F(), i.e.,

/i=K+l	 \
a(hj ) = FI	 wija(ni) I

\ Z _1	 /

25 where a(ni) is the activation of input unit i — typically, this is just
a linear (scaled) function of the input feature. A commonly used
non-linear function in the hidden unit nodes F(x) is the so-called
sigmoid function, defined as

30	 F(x) =	 1 -xl+e

Output unit A; calculates a similar weighted sum using the
weights Wik between the jth hidden unit and the kth output unit,
i.e.,

35	 ak = G0^ 11-Ijk((hj))
J

whe-i-e aA is the activation of the A;th output node. _i , n function
F.

i
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G(x) can be chosen either as linear (e.g. G(x) = x) or as a non-
linear function. For example for a classification problem such as
that described in this specification the sigmoid function is used to
restrict the range of the output activations to the range [0, 11. A

5 classification decision is made by choosing the output unit with
the largest activation for a given set of inputs (feature values); i.e.,
choose class k such that

k = arg max{a=}

to The network design problem is then to find the best set of
weights such that a particular objective function is minimized on
the N training data samples — the training data is in the form of
input-output pairs f x j , y j }, 1 <_ j < N where ^K j is a feature vector
and yj is the desired output. (For simplicity of notation assume

15 that there is only a single output model). Let yj (Q, v j ) be the
network output for a particular set of weights Q and input vector
x . . . The objective function is typically some metric on yj and y j,
whose mean value is estimated on the training data. Commonly
used such objective functions include the mean-squared error

20
N

EMSE = N ('yj yj (^, ?j) ) 2
=1

and the cross-euitropy error

25	
ECE = 1 N 'yj log	 Y 	 +(1 — yj ) log	 1 Yj

N j=1	 yj(S2,? j)	 1 — yjAarj)

From a maximum likelihood perspective the mean-squared er-
ror approach essentially assumes that the training data is perturbed

30 by additive Gaussian noise, while the cross-entropy function as-
sumes a multinomial distribution on the class labels. Despite these
significantly different assumptions, for classification problems there
appears to be little practical difference in terms of classification
performance between these objective functions. For the experi-

35 
ments reported in this specification the mean-squared error objec-
tive function was used.
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Appendix 2: Description of the Antenna Point-
ing System

FIG. 2A includes a block diagram of the elevation axis antenna
5 drive subsystem (there is a corresponding azimuth axis drive for

positioning the antenna in the azimuth axis). The elevation drive
subsystem is a closed-loop control system that consists of a dig-
ital control computer, two 7.5 horsepower direct current motors, {{
two servo amplifiers, two cycloid	 ear reducers two tachometers,P	 ^	 Y	 g	 ^ u

10 and various electronic components for signal conditioning and servo
compensation. The two forward tachometer/amplifier/motor/gear
paths operate in tandem to drive a large bull gear which is at-
tacked to the antenna structure (a 34m dish plus supporting metal
structure).	 Feedback control is provided by both rate feedback

15 from each motor to its tachometer and a position feedback loop.
The antenna position is estimated by an optical encoder and fed
back to the antenna servo controller. The antenna servo controller i.

is a microprocessor-based system which implements a PI (propor-
tional plus integral) control algorithm by integrating both the com-

20 manded position (which is a digital signal sent from a ground sta-
tion control computer describing the desired position) and the ac-
tual position estimate. The digital portion of the control loop (the
antenna servo controller) updates at a 50Hz rate. The reconstruc-
tion filter and the loop compensation components are filters for

25 signal conditioning and control loop compensation. 	 Finally, the
torque bias signal is a voltage measurement proportional to load
torque which is fed back from the gears in order to share the torque
between the two motors, reduce the effect of parameter variations
between them and to effectively bias the cycloid gears away from

30 non-linear regions of operation.

35
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Appendix 3: Specification of the Markov Tran-
sition Matrix for the Antenna Pointing Problem

Training and test data under fault conditions were obtained by
5 switching faulty components in and out of the servo control loop. 	 k

Hence, for the purposes of this experiment, the two fault conditions
were modelled as intermittent faults and fault transitions between

f

these two states were allowed.. The Markov transition matrix A
r

was set as follows:
10	

^

0.999 0.005 0.005
A = 0.0005 0.99 0.005 4.

0.0005 0.005 0.99

This corresponds to a system MTBF of .about 1 hour and 7 minutes
15 given the 4 second decision interval. It also assumes that each fault

is equally likely to occur and that the mean duration of each fault
is about 6 minutes and 40 seconds. The initial state probabilities
were chosen to be equally likely:

20
	 r(0) = (1/3,1/3,1/3).

The actual MTBF of the ystem under operational conditions
was estimated from a problem database to be about 30 hours if
only hard faults are considered. However, if intermittent tran-
sient faults are also considered, the MTBF is effectively reduced to

25 about 1 hour — this estimate is based on empirical observations
of the antenna in an operational tracking mode. Hence, while the
self-transition probabilities of the fault states are set ill a some-
what artificial manner for this experiment, the value chosen for all
correlates well with the effective MTBF of the system.

30 As mentioned previously herein, the state estimates of the
model are relatively robust to changes in the values of the transi-
tion probabilities. For example, increasing 1 — all by ail order of
magnitude causes the estimates to be slightly less stable but does
not introduce any additional false alarms, while reducing 1— a, ,i by

35 an order of magnitude causes no significant difference iii the results
other than the time for the model to switch from normal to a fault
state (after a fault has actually occurred) increases from a single
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4-second interval to 2 or 3 such intervals. It should be pointed out
that the robustness of the method in general to misspecification
errors in the transition matrix is a topic for further investigation.

The geometric distribution was found to be a reasonable fit for
5 the distribution of durations between failures, thus validating the

first-order Markov assumption.

io
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Appendix 4: Kernel Density Estimation

Unless one assumes a particular parametric form for f (.-1 j , then it
must be somehow estimated from the data. The multi-class nature

5 of the problem is now ignored temporarily in favor of a single-class
case.	 The present description focuses here on the use of kernel-

. based methods. Consider the 1-dimensional case of estimating the
density f (x) given samples {xi}, 1 < i < N. The idea is simple
enough: an estimate f (x) is obtained, where x is the point at which

10 the density must be found, by summing the contributions of the
` kernel Ii ((x- xi) /h) (where h is the bandwidth of the estimator, and

K(.) is the kernel function) over all the samples and normalizing
such that the estimate is itself a density, i.e.,

15
N	 X — Xi)f (x) = 1 1: K 

_
Nh i-i	 h

The estimate f (x) directly inherits the properties of K(.), hence it
is common to choose the kernel shape itself to be some well-known
smooth function, such as a Gaussian. For the multi-dimensional

20 case, the product kernel is commonly used:

f	 =	 1	 N	 II	
xk

- ^z
l

(^)	 ^, INh l ... hd i-i k_i	 hk

where xk denotes the component in dimension k of vector :e, and
25 the hi represent different bandwidths in each dimension.

Various studies have shown that the quality of the estimate
is typically much more sensitive to the choice of the bandwidth h
than it is to the kernel shape K(.). Cross-validation techniques are
usually the best method to estimate the bandwidths from the data,

r	 30 although this can be computationally intensive and the resulting
estimates can have a high variance across particular data sets. A
significant disadvantage of kernel models is the fact that all training

-' data points must be stored and a distance measure between a new
' point and each of the stored points must be calculated for each

35 class prediction. Another less obvious disadvantage is the lack of
empirical results and experience with using these models for real-
world applications — in particular there is a dearth of results for

i
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high-dimensional problems. In this context, a kernel approximation
model is described which is considerably simpler both to train and
implement than the full kernel model.
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Appendix 5: Kernel Approximation using Mix-
ture Densities

An obvious simplification to the full kernel model is to replace clus-
5 ters of data points by representative centroids, to be referred to as

the centroid kernel model. Intuitively, the sum of the responses
from a number of kernels is approximated by a single kernel of ap-
propriate width. Algorithms for bottom-up merging of data points
for problems of this nature have been proposed. Here, however, a

10 top-down approach is followed by observing that the kernel esti-
mate is itself a special case of a mixture density. The underlying
density is assumed to be a linear combination of L mixture com-
ponents, i.e.,

L

15	 f \x ) = L aifi(x)
i=1

where the ai are the mixing proportions. The full kernel esti-
mate is itself a special case of a mixture model with ai = 11N
and fi (x) = K(x). Hence, the centroid kernel model can also be
treated as a mixture model but now the parameters of the mix-

20 ture model (the mixing proportions or weights, and the widths
and locations of the centroid kernels) must be estimated from the
data. There is a well-known and fast statistical procedure known
as the EM (Expectation-Maximization) algorithm for iteratively
calculating these parameters, given some initial estimates. Hence,

25 the procedure for generating a centroid kernel model is straightfor-
ward: divide the training data into homogeneous subsets according
to class labels and then fit a mixture model with L components to
each class using; the EM procedure (initialization can be based on
randomly selected prototypes). Prediction of class labels then fol-

30 lows directly from Bayes' rule. Note that there is a strong similarity
between mixture/kernel models and Radial Basis Function (RBF)
networks. However, unlike the RBF models, the user does not
train the output layer of the network in order to improve discrim-
inative performance as this would potentially destroy the desired

35 probability estimation properties of the mod el.
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HIDDEN MARKOV MODELS FOR FAULT
DETECTION IN DYNAMIC SYSTEMS

ABSTRACT OF THE DISCLOSURE
5

The invention is a system failure monitoring method and appa-
ratus which learns the symptom-fault mapping directly from train-
ing data,. The invention first estimates the state of the system at
discrete intervals in time. A feature vector x of dimension k is

10 estimated from sets of successive windows of sensor data. A pat-
tern recognition component then models the instantaneous esti-
mate of the posterior class probability given the features, p(w; lz),
1 < i _< m. Finally, a hidden Markov model is used to take ad-
vantage of temporal context and estimate class probabilities con-

15 ditioned on recent past history. In this hierarchical pattern of
information flow, the time series data is transformed and mapped
into a categorical representation (the fault classes) and integrated
over time to enable robust decision-making.
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