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ABSTRACT

In the course of previous composite structures test programs, the need for

and the feasibility of developing analyses for scale-up effects has been demonstrat-

ed. The analysis techniques for scale-up effects fall into two categories. The

first category pertains to developing analysis methods independently for single,

unique failure modes in composites, and using this compendium of analysis methods

together with a global structural model to identify and predict the response and

failure mode of full-scale built-up structures. The second category of scale-up

effects pertains to similitude in structural validation testing. In this latter

category, dimensional analysis is used to develop scale-up laws that enable extrapo-

lation of sub-scale component test data to full-scale structures. This Work-In-

Progress paper describes the approach taken and some accomplishments in the first

category of analysis for scale-up effects. A building block approach is proposed

where each structural detail is analyzed independently; then, the probable failure

sequence of a selected component is predicted, taking into account load redistribu-

tion subsequent to first element failure. Layup dependence of composite material

properties severely limits the use of the dimensional analysis approach and these

limitations are illustrated by examples.

INTRODUCTION

The high cost of design and testing of full-scale composite structures has

necessitated the use of scale model testing and analytical scaling techniques for

structural response prediction. Recent experience (References i and 2) in structural

testing indicates that scale-up effects in composite structures are strongly influ-

enced by the structural configuration and substructural arrangement. This is because

of the multitude of failure modes that may occur in built-up composite structure.

Even in the case of structural elements with a single unique failure mode, scaling

effects are influenced by factors unique to composite materials, such as layup,

(References 3 through 7) and, therefore, a complete set of scaling rules can not

always be established.

i This work was performed under NASA/Northrop Contract NASI-18842, entitled "Innova-

tive Composite Fuselage Structures."
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The analysis techniques for scale-up effects fall into two categories. The

first category pertains to developing analysis methods independently for single,

unique failure modes in composites and using this compendium of analysis methods

together with a global structural model to identify and predict the response and

failure mode of full-scale, built-up structures. Examples of this technique are the

building-block approach of Reference I, the semi-empirical approach of Reference 2,

and the global/local analysis procedure of Reference 8. The second category of

scale-up effects pertains to similitude in structural validation testing. In this

category, dimensional analysis is used to develop scale-up laws that enable extrapo-

lation of sub-scale component test data to full-scale structures. The applicability

of this technique is limited to self-similar scale models. Examples in this category

are the static and dynamic beam and plate models of References 3 through 7.

In this Work-In-Progress paper, both approaches to scale up law development

are reviewed. The applicability and limitations of the existing methods are summa-

rized. Layup dependence of composite material properties severely limits the use of

the dimensional analysis approach and these limitations are illustrated by examples.

A simplified similitude relationship for shells and curved panels is presented.

Finally, the building-block approach, where each structural detail is analyzed inde-

pendently, and the probable failure sequence on a selected component is predicted,

taking into account load redistribution subsequent to first element failure is de-

scribed.

BACKGROUND

Several scale-up law development approaches have been investigated in the

literature. Application of the principles of similitude to transversely impacted

composite beams was studied in Reference 3. In this reference, a set of scaling

rules was established for the dynamic response of composite beams subjected to low

velocity impact. Potential scaling conflicts were also discussed. A test program

was then conducted to verify the rules established from dimensional analysis. The

results of the tests indicated that within elastic range of beam response, the dura-

tion of impact and the impact force closely followed the theoretical scaling rules.

The impact duration scaled as the geometric scale factor and the impact force as the

scale factor squared. The scatter in the test data was approximately ilO percent,

which was attributed to the deviation of the specimen thickness from the nominal

thickness of the laminate.

Two important observations were made in Reference 3. First, the rate

effects were found to be insignificant for the material and layup considered. Since

the rate effect may cause a scaling conflict in the dimensional analysis, this obser-

vation justifies the use of the principle of similitude for certain type of compos-

ites. Secondly, where the impact resistance strength is concerned, significant size

effects were noted. Smaller specimens were stronger than the larger specimens. The

latter observation, if verified in general, will limit the scale-up of model tests.

Experimental investigations of scaling rules for composite plate response to

impact were conducted in References 4 and 5. In these references, a set of scaling

rules was established based on dimensional analysis. By considering the equations of

motion of the plate, and assuming that material properties were unchanged, References

4 and 5 showed that geometric dimensions must be scaled uniformly. That is, the

scale factors for length, width, and thickness of the plate should be identical. The
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time parameter must also be scaled in accordance with the geometric scale factor.

The experimental results in these references showed that, when the impact velocity is

sufficiently low so that no significant material damage is produced, the strain

response closely followed the scaling rules. The strain response was the same for

different size specimens with time scaled by the geometric factor and the impactor

mass scaled by the cube of the geometric factor.

It should be noted that in the preceding studies (References 3, 4, and 5)

damage due to impact was not considered in scaling. No attempts were made to relate

the extent of damage with specimen size. This is because the extent of impact damage

is known to be a strong function of size and boundary conditions and is usually

analyzed by applying fracture mechanics. This requires more complex scaling analysis.

Scaling effects in the large deflection response of composite beams were

studied in References 6 and 7. Reference 6 investigated the static response and

Reference 7 investigated the dynamic response. The beams were loaded under an eccen-

tric axial compressive load to promote large deflections and global failure. The

static test results (Reference 6) showed that the beam response followed the scaling

rules in the small deflection, elastic region; however, deviations from the scaling

rules appeared as the beams underwent large deflections and rotations. That resulted

in a significant size effect in the failure behavior. The smaller beams failed at a

higher normalized load and higher normalized end displacement than the larger beams.

This observation of size effects agrees with the results of Reference 3.

Impact tests were conducted in Reference 7 on the large deflection beam used

in Reference 6. Scaling rules, based on dimensional analysis, were also established

in Reference 7. These rules are similar to those proposed in References 3 through 5.

The experimental results in Reference 7 indicated that load and strain responses of

the unidirectional beam followed the scaling rules quite well. However, the results

were inconsistent for specimens with other laminate layups (cross-ply, angle-ply, and

quasi-isotropic). The significant size effects on failure behavior observed in

static tests (Reference 6) were not found in the impact test results of Reference 7.

From the results of References 3 through 8, the following general

observations can be made on scaling of composites.

i. Scaling rules based on dimensional analysis are not unique. Different sets

of scaling rules may be established for one type of structure.

. Simple scaling rules can only be established for the same family of laminate

layups. This significantly limits the general application of the principle

of similitude on actual structures.

.

Size effects exist in composite structures, which may be caused by material

inhomogeneity. Direct application of the scaling rules may result in

unconservative estimates of full-scale structural response.

.

Structural response beyond the elastic limit does not follow simple scaling

rules. Therefore, the principle of similitude may not be useful for fail-

ure prediction.

5. Extensive tests are required to verify the applicable scaling rules and

establish guidelines for test data interpretation.
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PRACTICAL APPLICATION EXAMPLES

The applicability of classical dimensional analysis principles in composite

structural mechanics was assessed by examining two fundamental problems: (I) axial

tension loading of a narrow laminate and (2) buckling of a narrow laminated plate.

These problems were selected to highlight two important parameters in the scaling of

composites layup and stacking sequence. These parameters are not relevant to the

scaling of metallic structures but have significant effects in scaling of composites.

The applicability of classical dimensional analysis is illustrated by the following

examples.

Consider a 24-ply baseline laminate of l-inch width and subjected to tensile

loading along the 0 degree direction. The laminate stacking sequence is

[±45/02/±45/02/±45/90/0]s , which gives a (42/50/8) distribution of plies. The lamina

mechanical properties are

E L = 18.7 x 106 psi VLT _ 0.3

ET z 1.9 x 106 psi t - 0.0052 in.

GLT _ 0.85 x 106 psi _f - 0.011 in/in.

The calculated Young's modulus in the loading direction is E x = 9.977 x 106 psi.

strain response of the laminate can be approximated by

The

P P (i)

AE x nbtE x

where, P is the applied load, n is the number of plies, and b is the laminate width.

To scale down the laminate and simulate the strain response, two assumptions were

made. First, it was assumed that symmetry of the laminate is maintained and second,

that the orthotropy of the laminate is maintained throughout the scaling process.

These assumptions ensure that Equation i holds true for all of the scaled-down lami-

nates.

Now consider the failure load Pf based upon the maximum strain criterion.

Equation I becomes

pf s nbtEx_ f (2)

The failure load calculated for the baseline laminate is 13,681 lb. For cases of

constant modulus Ex, such as metals, the failure load would vary linearly with the

cross-sectional area of the specimen. This is shown by the solid line in Figure i.

For composite laminates, however, the modulus E x is a function of the thickness

(number of plies) and the layup. Scaling in thickness by adding or reducing the

number of plies gives rise to a nonlinear relationship between the failure load and

cross-sectional area. To illustrate this point, suppose that the laminate width is

given a constant value of b - 1.0 inch while the number of plies is reduced. The

failure loads will depend upon the type of plies (0 ° , ±45 ° , 90 ° ) removed from the

laminate. For example, if the baseline 24-ply laminate is reduced to 22 plies by

removing two 0 degree plies, two ±45 degree plies, or two 90 degree plies, the corre-

sponding failure loads are 11,500 Ib, 13,300 ib, and 12,900 ib, respectively. As the
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number of plies is reduced still further, the possible failure loads are found to lie

in an envelope centered about the linear failure load versus cross-sectional area

relationship as shown in Figure I.

To further illustrate the issues pertinent to the scaling of composite

structures, consider a second problem involving a narrow laminated composite plate

subjected to axial compressive load. The buckling load for a plate of this kind with

clamped ends and free edges is

2
Ncr = k Iz-_l DII

LLJ
(3)

where

L = total length of the plate

DII = bending rigidity in the loading direction

k = a constant equal to 1.0306 for the first buckling mode

From Equation 3, the scaling parameters to be considered in this problem are L and

DII. Because DII depends upon the thickness, modulus, and stacking sequence, this

problem represents one higher level of complexity than the problem discussed previ-

ously.

Consider the same 24-ply baseline laminate as in the first problem, with an

unsupported length L = 3.0 inches. The axial bending rigidity of the plate is 1,777

Ib-in. If the modulus is constant, as for metals, DII varies with h 3 (h is the total

thickness). As the thickness reduces to 22 plies, the possible combinations of layup

and stacking sequence along with the associated bending rigidity and buckling load

are given in Figure 2. Figure 3 shows the buckling load as a function of laminate

thickness. The buckling loads for the composite laminate fall in an envelope centered

about the solid curve, which is the buckling load versus thickness relationship for a

constant modulus material.

The results shown in Figures I and 3 show that scaling in composites, even

for the simplest structural mechanics problems, involves more than dimensional param-

eters. Because of the multiplicity of possible laminate constructions, structural

mechanics methods of analysis must be used to develop similitude rules.

Similar results can be obtained for two-dimensional problems. The

thickness, ply-orientations and stacking sequence effects on bending of a rectangular

composite plate subjected to uniform lateral pressure is shown in Figure 4. The

buckling load of a simply supported rectangular plate is shown in Figure 5. Both

Figures 4 and 5 show that structural response deviates from the classical dimensional

analysis results. The deviation is caused by the layup and stacking sequence effects

on the plate rigidity parameters, Dij. In comparing the results of the two-dimen

sional problems with that of one-dimensional, Figures 4 and 5 show a narrower band in

the structural response. This occurs because the results of the one-dimensional

problems are affected only by the axial properties E x and DII , whereas, the results

of the two-dimensional problems are affected by all components of the in-plane me-

chanical properties. The overall effect of all four rigidity components (DII , DI2 ,

D22, D26 ) is less significant than that of a single component.
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SPECIALIZED SCALING TECHNIQUES IN COMPOSITES

The previous section discussed the difficulties in direct application of the

principle of similitude in composites. It was also pointed out that scale model can

be designed with the aid of structural mechanics. In this section, an analytical

procedure to design scale models is presented. The procedure is similar to the one

proposed in Reference 8 and is illustrated by the following example.

Consider an unstiffened composite cylinder of radius Rs, thickness ts, and

length Ls. The scaling parameters significant to buckling can be divided into three

categories:

i. Load Parameter

Pr = (Ncr)m/(Ncr)s (4)

where Ncr is the buckling load per unit length around the cylinder
circumference.

Subscripts m and s denote the scaled model and the full-scale structure,

respectively.

2. Geometric Parameters

Length Ratio Lr - Lm/L s (5)

Radius Ratio Rr - Rm/R s (6)

Thickness Ratio tr - tm/t s (7)

3. Property Parameters

Modulus Ratio Er - Em/E s (8)

Stiffness Ratio D r - Dm/D s (9)

where E and D are Young's modulus and bending rigidity, respectively.

The load parameter Pr is a predetermined design factor for the model. The

load requirement for the test model is usually higher than the actual structure. In

the case where the exact buckling load of the structure is to be simulated, Pr =

1.0.

The geometric and property parameters interact when buckling is considered.

For composite structures, the property parameters are usually not unique because of

the anisotropy of the materials. These parameters are also affected by the thick-

ness parameter because of the ply orientations. Therefore, it is not possible to

establish a simple scaling law for composite structures as discussed in the preced-

ing section.
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In the present analysis, the scaled model is designed using an iterative

procedure. The analysis method for symmetric buckling of isotropic cylinders is

first used to estimate the key scaling parameters. The buckling load of an isotrop-

ic cylinder with R >> t is given in Reference 9 as

Nc r _ 2 (EDt)h (i0)
R

Based on this expression, the key scaling parameters can be written as

Rr _ i__ (ErDrtr)h (ii)
Pr

tr - (RrPr)2

ErDr
(12)

Er (RrPr)2 (13)
trDr

Dr (RrPr)2 (14)

Ertr

For isotropic material

D - Et3 (15)

12(l-v 2)

Assuming that the test model is fabricated from the same material as the full-scale

structure, then the Poisson ratios vm = vs and the stiffness ratio becomes

3

D r = Ert r (16)

Equation I0 indicates that the length parameter is an arbitrary number if only

buckling load is to be simulated. The length of the cylinder controls the buckling

mode, but not the buckling load.

For composite cylinders, the scale parameters are first estimated using

Equations ii through 16. Then the following procedure is used:

I. Define the load requirement (Pr).

2. Select the radius and length ratio (Rr, Lr). Because length has no

significant effect on buckling load, assume Lr - R r.

3. Maintain approximately the same axial Young's modulus (Er = 1.0).
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4. Estimate tr from Equations 12 and 16:

2

t r = PrRr (17)

5. Based on the estimated tr, determine the practical thickness of the model,

t m. The practical thickness is determined based on the number of plies.

6. Determine the ply orientations. The ply orientations should be similar to

the full-scale structure in the initial estimate, because E r = 1.0.

7. Determine the laminate stacking sequence based on D r given in Equation 14.

The practical rules for laminate stacking should be taken into considera-

tion.

8. Conduct orthotropic (anisotropic) buckling analysis to confirm Pr.

9. Perform iterations until the required Pr is obtained.

The following example problem illustrates this procedure:

Consider a full-scale cylinder 45 inches in radius and 25 inches in length.

The cylinder is made of AS4/3501-6, 16-ply (±45/02/±45/90/0) s laminate with a thick-

ness of 0.0832 inch. A 1/5 subscale model with a load requirement of Pr = 1.5 will

be designed.

For the full-scale cylinder buckling,

(Ncr)s - 669.66 ib/in

The required buckling load for the subscale model is

(Ncr)m - 1005 Ib/in

The dimension requirement gives

R m = 9.0 in

L m - 5.0 in

From Equation 17 the initial estimate of the model thickness is

tr - (PrRr) h - 0.548

or

tm - (0.548)(0.0832) - 0.0456 in

For the material considered, a 9-ply laminate is required, which has the nominal

thickness of 0.0468 inch.

For E r = 1.0, the percentage distribution of 0 °, 45 ° , and 90 ° plies for the

9-ply laminate is either (33.3/55.6.11.1) or (44.4/44.5/11.1). A (±45/02/90/02/_45) T

was chosen in this example. A 9-inch radius cylinder with this laminate resulted in
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a buckling load of 939.6 ib/in or Pr - 1.4 which is below the load requirement of

1.5. Hence, further iteration on the scale parameters is required. Two approaches

to vary the subscale model were considered in order to meet the load requirement.

First, if the dimensional requirement (R r - 0.2) can be changed, then the load

requirement can be met by reducing the radius to 8.4 inches. With this radius, the

buckling load increases to I011 Ib/in or Pr - 1.510 > 1.50. Second, by changing the

laminate stacking sequence to (45/0/-45/0/90/0-45/0/45)T with all other parameters

fixed, the buckling load increases to 1051 ib/in or Pr - 1.569.

The final values for the subscale model (for illustration purposes only)
are

R m - 8.4 in

L m - 4.7 in

t m = 0.0468 in 9-ply (±45/02/90/02/_45)T

The scaling parameters are

D r = 0.15 (0.164)

E r - i. Ii (i.0)

tr = 0.5625 (0.548)

Pr = 1.505 (1.50)

R r - 0.187 (0.2)

L r - 0.188 (0.2)

Numbers in parentheses denote initial estimates.

To further scale down the structure, a cylindrical panel instead of a

subscale cylinder can be considered. This requires determining the panel width (or

central angle 8), with all other parameters unchanged. Parametric study indicates

that for simply supported cylindrical panels, the panel buckling load (NPcr) is

higher than that of a complete cylinder (NCcr). However, the panel buckling load

approaches the buckling load of a complete cylinder as the panel width increases.

Beyond a minimum panel width, NPcr is within 5 percent of NCcr as shown in Figure 6.

The minimum width depends on the radius of the cylinder and can be determined ana-

lytically. For the example cylinder discussed earlier, the minimum panel width is

4.75 inches (or central angle 8 - 32.4°).

Figure 6 shows the effect of panel width on buckling load. From this

figure, it can be seen that the buckling load of the full-scale cylinder can be

experimentally determined by testing a curved panel with a minimum width of 4.75

inches. It may be noted, that although the buckling load of a complete cylinder can

be simulated by a portion of a subscale cylinder (panel), the buckling mode is
difficult to simulate.
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THE BUILDING BLOCK APPROACH

As discussed earlier, another category of scale-up laws pertains to using

structural analysis methods with a structural model to identify and predict the

response and failure mode of full-scale built-up structures. These scale-up effects

are investigated through a building block approach. In the following paragraphs,

this approach is first illustrated by an example. The analytical development proce-

dure is then discussed.

An example illustrating this category of scale-up laws is that of post-

impact compression strength of coupons and built-up 3-spar panels representative of

an upper wing skin. Scale-up effects test data and the accompanying analysis for

this case were developed in Reference 2. The scale-up effects observed from test

data in this example are shown in Figure 7. This figure compares the post-impact

compression strength of the 5-inch wide coupon to that of built-up panels of similar

layup and thickness subjected to the same level of impact energy. The shift in

strength data from coupons to 3-spar panels is indicative of the scale-up effect.

The accompanying structural mechanics scale-up analysis in Reference 2 was

based on an extensive set of data for static strength of impact-damaged built-up

composites. It was observed, in the reference, that failure of damaged coupons was

single-stage, with damage propagating from the impact site to the edges at the fail-

ure load. For a built-up structure, the overall post-impact strength was signifi-

cantly influenced by the structural configuration. It was observed that failure in

most of the 3-spar panels was in two stages. At initial failure, the damage propa-

gated to the spar fastener lines. The initial failure load (strain) corresponded to

the final failure load of coupon specimens. The damage propagation was arrested by

the spars, with final failure taking place at a higher applied load.

A semi-empirical analysis method was developed in Reference 2 to predict the

scale-up effects on post-impact damage strength. The model for the coupon failure is

based on an elastic stiffness reduction technique. The structural configuration

scale-up effects on residual strength are incorporated in the stiffness reduction to

predict the two-stage failure.

A comparison of observed and predicted post-impact failure strains is shown

in Figure 8. The figure shows that the predicted initial and final failure strains

agree well with test data. This structural mechanics scale-up law to predict residu-

al compression strength after impact was exercised on a large test data base for

built-up structures, including a full-scale wing box. Figure 9 shows the test analy-

sis correlation for a wide range of structural geometries and materials.

The above example illustrates the feasibility of and the methodology for the

development of structural mechanics scale-up laws for composite structures.

The building block approach used here is similar to the experimental

approach proposed in Reference I and summarized in Figure i0. This figure shows that

design development testing is characterized by five levels of complexity, with the

fifth level assigned to the full-scale component.

The wing skin coupon specimens represent the first complexity level in the

building-block approach and simulate simple tension and compression failure modes.

Six specimen types were tested in Reference i. These were either open or filled hole
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specimens tested under tension (lower wing skin) or compression (upper wing skin)

with laminates representing different locations on an actual fighter wing structure.

At this level of complexity, the analysis task is to correctly predict the failure

stress/strain and failure load from the available lamina properties. The required

analytical tools are open and filled hole analyses and an appropriate failure crite-

rion. Scaling law development at this level of complexity involves correlating

observed and predicted failure stress, strain, and loads. Analysis and correlation

for the wing skin coupon specimens will be carried out during the next reporting
period.

The second complexity level in the test program of Reference i contains

three specimen types. Each of these specimens has two potential failure modes. An

upper skin/rear spar mechanical joint (WE-2) was designed to check the influence of

load transfer on compression strength. Potential failure modes for this specimen are

laminate failure and bearing failure at a fastener hole. Loaded hole analysis will

be conducted on this specimen. Both bearing and net-section failure criteria will be

required for failure prediction. The scaling law development here will involve the

use of open and filled hole test data to predict (or correlate) the specimen failure
load and failure mode.

Another specimen type at the second level of complexity is an intermediate

spar/lower skin cocured joint (WEC-I). This specimen is designed to check spar web

strength in the presence of a fuel drain hole and the cocured bonded joint strength

under combined shear, fuel pressure and chordwise loading. Potential failure modes

are web failure at the fuel drain hole and bondline failure in the cocured joint.

The applicability of the open hole analysis will be re-examined for this problem. In

addition, stress analysis of the bondline will be conducted.

A third specimen, the front spar/skin joint (WE-I) shown in Figure i0, is

representative of the graphite/epoxy front spar-to-skin joint. The specimen was

subjected to corner bending and shear induced by fuel pressure. The potential fail-

ure modes for this specimen are joint failure (fastener pull-through and adhesive

failure) and interlaminar tension failure at the corner. Joint analysis and corner

radius analysis will be conducted and failure criteria will be established for this

specimen type. Coupon test data are not applicable for this specimen type because

the potential failure modes are both out-of-plane in nature.

The third complexity level in the test program of Reference i is represent-

ed by an intermediate spar/pylon rib load transfer joint (WEC3), and is designed to

check load transfer from the discontinuous spar into the rib and back to the spar.

This specimen combines the potential failure modes of the wing coupons and WEC-I,

i.e., upper and lower skin failures at a rib attachment fastener hole, spar web fail-

ure and intermediate spar/lower skin failure in the cocured joint. The fourth and

final level of complexity in the torsion box design development testing is represent-

ed by the wing subcomponent (WS-I) which is a three bay box beam, and root rib/aft

trunnion subcomponent which represents the highly loaded root rib/aft trunnion area.

All of the failure modes of the wing coupons, WE-2, WE-l, and WEC-3 are represented

in the WS-I specimen. In addition, an upper skin access hole provides a further

potential failure mode. The fifth level of complexity is the wing component, which

is fully representative of the actual wing structure.

Comprehensive structural analysis will be conducted at the subcomponent

level and the component level for both the wing and fuselage structures. The analy-

sis results will then be correlated with test data to establish scaling laws.
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SUMMARY

Analytical techniques for scale-up effects have been reviewed. The

advantages and limitations of applying the principles of similitude to composite

structures have been summarized and illustrated by simple examples. An analytical

procedure was formulated to design scale models of an axially compressed composite

cylinder. A building-block approach was outlined where each structural detail is

analyzed independently and the probable failure sequence of a selected component is

predicted, taking into account load redistribution subsequent to first element fail-

ure. Details of this building-block approach are under development.
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Figure 2. Possible 22-Ply Laminates in Example Buckling Problem.
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Figure 7. Scale-Up Effects on Post-Impact Compression Strength.
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Figure 10. Building Block Approach for the Wing Structure in the Composite Wing/Fuselage Program (Reference I).
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