501854

NASA Contractor Report 193016

Shuttle Landing Facility Cloud Cover Study: Climatological Analysis and Two-Tenths Cloud Cover Rule Evaluation

Prepared By: Applied Meteorology Unit

Prepared For: Kennedy Space Center under Contract No. C-NAS10-11844

NASA National Aeronautics and Space Administration

Office of Management

Scientific and Technical Information Program

1993

(NASA-CR-193016)SHUTTLE LANDINGN93-31033FACILITY CLOUD COVER STUDY:CLIMATOLOGICAL ANALYSIS AND TWOUnclasTENTHS CLOUD COVER RULE EVALUATIONUnclas(Ensco)199 p

G3/16 0176819

Attributes and Acknowledgments:

NASA/KSC POC: Dr. Frank Merceret TM-LLP-2A

Applied Meteorology Unit (AMU)

Michael K. Atchison, Primary Author Robin Schumann Greg Taylor John Warburton Mark Wheeler Ann Yersavich

Attributes and Acknowledgments:	ii
Table of Contents	iii
List of Figures	vi
List of Tables	viii
Executive Summary	ix
1.0 Introduction	1
2.0 Data Preparation	2
2.1 Surface and Upper-Air Observation Database	2
2.2 Preparing Data for Analysis	4
3.0 Climatology of the Hourly Surface Observations	6
3.1 All Data	7
3.2 Monthly and Seasonal	7
3.3 Time Of Day	10
3.3.1 Nighttime (Hours 0100 to 1000 UTC)	10
3.3.2 Sunrise (Hours 1100 to 1200 UTC)	10
3.3.3 Morning (Hours 1300 to 1600 UTC)	11
3.3.4 Afternoon (Hours 1700 to 2100 UTC)	11
3.3.5 Evening (Hours 2200 to 0000 UTC)	12
3.4 Surface Wind Direction	12
4.0 Observed Weather Conditions (One and Two Hours) Subsequent to Initial Conditions	s13
4.1 All Data	14
4.2 Monthly and Seasonal	14
4.3 Time Of Day	15
4.4 Surface Winds	18
5.0 Persistence	21

Table of Contents

.

.

.

Table of Contents

а.

(Continued)

6.0)	Ho of	mogeneity Analysis of Observed Weather Conditions Subsequent to Initial Conditions 0.2 and 0.3 Cloud Cover
	6.1		Chi-Square Analysis based on all Weather Violations
	6.2	;	Homogeneity Analysis Based on Ceiling and Precipitation Weather Violations
7.0)	Da	ytime Data Climatology
	7.1		Climatology of Monthly Data (Daytime Data Climatology)
	7.2		Observed Weather Conditions (One and Two hours) Subsequent to Initial Conditions (Monthly - Daytime Data Climatology)
	7.2	2.1	Persistence
	7.2	2.2	Homogeneity Analysis of Initial Conditions of 0.2 and 0.3 Based on All Violations40
	7.2	2.3	Statistical Analysis of Initial Conditions of 0.2 and 0.3 Based on Ceiling and Precipitation Violations Only
8.0)	Cli	imatology of Surface Conditions Categorized by Upper-Air Data44
	8.1	•	Climatology of Upper-Air Wind Direction45
	8.2	2	Observed Weather Conditions (One and Two hours) Subsequent to Initial Conditions (850 mb and 700 mb)
	8.2	2.1	Persistence
	8.2	2.2	Homogeneity Analysis of Initial Conditions of 0.2 and 0.3 Cloud Cover50
9.0)	No	omograms
10	.0	Su	mmary and Conclusions
	10	.1	Summary53
	10	.2	Analysis of Landing Opportunities53
	10	.3	Evaluation of Two-tenths Cloud Cover Rule54
	10	.4	Suggestions for Future Work55
11	.0	Re	ferences
Ap	open	ndix	A: Initial Weather Conditions
Ap	open	ıdix	B: Observed Weather Conditions (One and Two Hours) Subsequent to Initial Weather Conditions for the Entire Database

Table of Contents

(Continued)

Appendix C: Observed Weather Conditions (One and Two Hours) Subsequent to Initial Weather Conditions for SeasonsC-1
Appendix D: Observed Weather Conditions (One and Two Hours) Subsequent to Initial Weather Conditions for Months
Appendix E: Observed Weather Conditions (One and Two Hours) Subsequent to Initial Weather Conditions for Individual Hours
Appendix F: Observed Weather Conditions (One and Two Hours) Subsequent to Initial Weather Conditions for Wind Sectors
Appendix G: Observed Weather Conditions (One and Two Hours) Subsequent to Initial Weather Conditions for Monthly Daytime Data
Appendix H: Weather Violations Vs. Initial Cloud Cover
Appendix I: Observed Weather Conditions (One and Two Hours) Subsequent to Initial Weather Conditions for 850/700 mb Wind SectorsI-1
Appendix J: Climatology of Weather Violations Month Vs. HourJ-1
Appendix K: Nomogram Tables (All Weather Violations)
Appendix L: Nomogram Tables (Ceiling and Precipitation Violations)L-1
Appendix M: Artificial Neural Networks

List of Figures

-

Figure 1.	Percent occurrence of weather violations by month
Figure 2.	Percent occurrence of weather violations and cloud cover for January8
Figure 3.	Percent occurrence of weather violations and cloud cover for August
Figure 4.	Percent occurrence of weather violations and cloud cover for the fall period9
Figure 5.	Percent occurrence of weather violations and cloud cover for the spring period9
Figure 6.	Percentage of hourly weather violations10
Figure 7.	Percent occurrence of weather violations and cloud cover for Hour 1111
Figure 8.	Percentage of weather violations by surface wind direction12
Figure 9a.	Percent occurrence of cloud and weather conditions at one hour after initial condition of 0.2 and 0.3 cloud cover
Figure 9b.	Percent occurrence of cloud and weather conditions at two hours after initial condition of 0.2 and 0.3 cloud cover
Figure 10a.	Percent occurrence of cloud and weather conditions at one hour after an initial condition of 0.2 and 0.3 cloud cover
Figure 10b.	Percent occurrence of cloud and weather conditions at two hours after an initial condition of 0.2 and 0.3 cloud cover
Figure 11.	Percent occurrence of cloud cover and weather conditions at two hours after an initial condition of 0.2 and 0.3 cloud cover for Hour 12
Figure 12.	Percent occurrence of cloud cover and weather conditions at two hours after an initial condition of 0.2 and 0.3 cloud cover for Hour 23
Figure 13a.	Percent occurrence of cloud cover and weather conditions at one hour after an initial condition of 0.2 and 0.3 cloud cover for Hour 00
Figure 13b.	Percent occurrence of cloud cover and weather conditions at two hours after an initial condition of 0.0 cloud cover for Hour 00
Figure 14a.	Percent occurrence of cloud cover and weather conditions at one hour after an initial condition of 0.2 and 0.3 cloud cover for Hour 15
Figure 14b.	Percent occurrence of cloud cover and weather conditions at two hours after an initial condition of 0.2 and 0.3 cloud cover for Hour 15
Figure 15a.	Percent occurrence of cloud cover and weather conditions at one hour after an initial condition of 0.2 and 0.3 cloud cover for southwest winds20
Figure 15b.	Percent occurrence of cloud cover and weather conditions at two hours after an initial condition of 0.2 and 0.3 cloud cover for southwest winds

List of Figures

(Continued)

Figure 16a.	Percent occurrence of cloud cover and weather conditions at one hour after an initial condition of 0.2 and 0.3 cloud cover for southeast winds
Figure 16b.	Percent occurrence of cloud cover and weather conditions at two hours after an initial condition of 0.2 and 0.3 cloud cover for southeast winds
Figure 17.	Climatology of weather conditions for June using complete data
Figure 18.	Climatology of weather conditions for June using daytime data37
Figure 19.	Percent occurrence of weather violations for 850 mb wind sectors46
Figure 20.	Percent occurrence of weather violations for 700 mb wind sectors
Figure 21.	Percent occurrence of weather conditions for 850 mb northwest wind sector47
Figure 22.	Percent occurrence of weather conditions for 850 mb southeast wind sector
Figure 23.	Percent occurrence of weather conditions for 850 mb southwest wind sector47
Figure 24.	Percent occurrence of cloud cover and weather conditions at two hours after an initial condition of 0.2 cloud cover for 850 mb Northwest wind sector

List of Tables

.

Table 1.	Key Weather Elements Available for Analysis2
Table 2.	Weather Condition Categories for Hourly Surface Observations
Table 3.	One Hour Persistence of Weather Conditions
Table 4.	Two Hour Persistence of Weather Conditions
Table 5.	Interpretation of One Hour Persistence Tables
Table 6.	Contingency Table For All Cases
Table 7.	Observed Weather Conditions One Hour Subsequent To Initial Conditions
Table 8.	Observed Weather Conditions Two Hours Subsequent To Initial Conditions
Table 9.	Observed Weather Conditions One Hour Subsequent To Initial Conditions (Based on Ceiling and Precipitation Violations Only)
Table 10.	Observed Weather Conditions Two Hours Subsequent To Initial Conditions (Based on Ceiling and Precipitation Violations Only)
Table 11.	Sunrise/Sunset for X68 on the 15th of each month
Table 12.	One Hour Persistence of Weather Conditions
Table 13.	Two Hour Persistence of Weather Conditions
Table 14.	Observed Weather Conditions One Hour Subsequent To Initial Conditions41
Table 15.	Observed Weather Conditions Two Hours Subsequent To Initial Conditions42
Table 16.	Percent Occurrences of 0.2 and 0.3 Cloud Cover42
Table 17.	Observed Weather Conditions One Hour Subsequent To Initial Conditions (Based on Ceiling and Precipitation Violations Only)
Table 18.	Observed Weather Conditions Two Hours Subsequent To Initial Conditions (Based on Ceiling and Precipitation Violations Only)
Table 19.	One Hour Persistence of Weather Conditions
Table 20.	Two Hour Persistence of Weather Conditions49
Table 21.	Observed Weather Conditions One Hour Subsequent To Initial Conditions51
Table 22.	Observed Weather Conditions Two Hours Subsequent To Initial Conditions51
Table 23.	STS Landing Opportunities54
Table 24.	Comparison of 0.2 and 0.3 Cloud Cover Rules (All hours)55

Executive Summary

The two-tenths cloud cover rule in effect for all End Of Mission (EOM) Space Transportation System (STS) landings at Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, cloud cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/nogo decision time (approximately 90 minutes before landing time)". This rule was designed to protect against a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after the de-orbit burn decision and before landing). In order to test the validity of this rule, the Applied Meteorology Unit (AMU) developed a database of cloud cover amounts and weather conditions at the Shuttle Landing Facility (X68) for a five-year (1986-1990) period. Once this database was completed a comprehensive statistical and climatological analysis was performed. The data analyzed included both a climatology of the surface observations and observed conditions one and two hours subsequent to given initial conditions. For both analyses the data were categorized by month, season, time of day, daytime hours only, and surface and upper-air wind direction. As a result of these analyses, the AMU developed nomograms to help Spaceflight Meteorology Group (SMG) and Cape Canaveral Forecast Facility (CCFF) forecast cloud cover for EOM and Return to Launch Site (RTLS) at KSC.

The climatological analysis indicates the best time to land the shuttle at KSC is during the summer (80%-85% opportunity) while the worst time is during the winter (65% opportunity). When the data are categorized by time of day, the analysis shows the highest frequency of landing opportunities occurs for the 0100-0600 UTC (80%-85% opportunity) and 1300-1600 UTC (75% opportunity) time periods. The worst time of the day to land a shuttle is near sunrise (1100-1300 UTC) and during the afternoon (1700-2100 UTC). For both time periods, the frequency of landing opportunities is approximately 60%-70%.

A major goal was to determine the validity of the 0.2 cloud cover rule for several stratifications of the data (e.g., seasons, months, time of day, wind direction). To address this question, the analyses focused on comparing the percent of observed weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover below 10,000 feet at X68. These comparisons were performed by using chi-square tests for homogeneity to determine if the percent of weather violations subsequent to the two different initial conditions are the same.

For the majority of these data categorizations there is a significant difference in the proportions of weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover.

In other words, for most categories there is no evidence the 0.2 critical cloud cover amount should be changed to 0.3. However, for the following categories:

- Month of May,
- Month of October,
- 700 mb northerly wind category,
- 1500 UTC category, and
- 1600 UTC category,

there is evidence the proportions of weather violations subsequent to 0.2 and 0.3 initial cloud cover may not be significantly different, thus, the 0.2 rule may be overly conservative for these five categories. Additional investigation is required to determine whether or not the proportions of weather violations for these five categories are significant, and therefore, whether or not the 0.2 cloud cover rule should be relaxed to 0.3 for any of the five categories. However, further analysis requires expansion of the two-tenths cloud cover data base.

If the critical cloud amount was changed from 0.2 to 0.3 for these categories, the number of landing opportunity hours would increase approximately 60-70 hours per year per category.

In order to take full advantage of landing opportunities, new short term local forecasting methods, which can better analyze the current conditions, their interactions, and how those interactions are likely to affect the short term (one to two hours) forecast, must be implemented. Artificial neural networks (ANN) have shown tremendous potential in the area of pattern recognition and data association and are particularly successful when the input data are highly correlated or when the system is highly non-linear.

A proof of concept artificial neural network should be developed which can predict whether or not there will be a constraint violation at the 90 minute forecast time using the data already compiled as a part of this study for training.

In summary, the recommendations from the 0.2 cloud cover rule evaluation are:

- Update the two tenths cloud cover database to include data beyond 1990.
- Re-examine the data for May, October, 1500 and 1600 UTC, and 700 mb northerly winds using the expanded database to determine whether the 0.2 cloud cover rule could be changed for these categories.
- Develop a proof of concept artificial neural network (ANN) to produce a probabilistic estimation of a constraint violation for the shuttle landing forecast. The final product would be used as a forecast tool or aid.

1.0 Introduction

The work described in this report was performed under the National Aeronautics and Space Administration (NASA) AMU Task 003. The purpose of this task is to develop databases, analyses, and techniques leading to the improvement of the 90 minute forecasts for Space Transportation System (STS) landing facilities in the continental United States and elsewhere. This subtask includes evaluation of the validity of the two tenths cloud cover rule and the development of forecast techniques to improve cloud cover forecasting at KSC within the framework of the rule. The rule, which is in effect for End Of Mission (EOM) STS landings at KSC, states the following:

"For scattered cloud layers below 10,000 feet, cloud cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go decision time (approximately 90 minutes before landing time) "(1).

The AMU's work under this subtask is:

- 1. Develop a database for study of weather conditions relating to marginal violations of this landing constraint,
- 2. Perform a climatological assessment of the two-tenths cloud cover rule,
- 3. Develop forecast techniques or rules of thumb to determine when the current conditions are or are not likely to result in an unacceptable condition at verification time, and
- 4. Validate the techniques and transition to operational use.

The work performed to date includes the development of a X68 database and a climatological assessment of the two-tenths cloud cover rule. In addition, nomograms have been developed for CCFF and SMG forecasters which will help them in making cloud cover forecasts for EOM and RTLS at KSC. Future work on this task will include transitioning nomograms to operational use and developing and validating new forecast techniques and transitioning these to operational use.

Although this study was aimed at the shuttle landing rule stated above, its results could be applied to other STS operations such as RTLS or aid in further understanding of cloud conditions at KSC for launch support. This study also has direct applications for other operations where a climatology database is needed for cloud trend forecasts. The work performed included developing a surface observation database for the X68 (Shuttle Landing Facility (SLF)) and performing a statistical analysis of this data with respect to the weather conditions associated with the two-tenths cloud cover rule at KSC. Data analyzed in this study consisted of surface observations from station X68 for the period 1986 through 1990. Section 2.0 describes the dBASE IV database used to organize the data and the procedures employed to prepare the data for analysis. Section 3.0

1

describes trends in the weather conditions in the hourly surface observations while Section 4.0 describes trends observed in weather conditions one and two hours subsequent to given initial conditions. Section 5.0 analyzes the persistence of observed weather conditions one and two hours subsequent to initial conditions. Section 6.0 presents the results of a statistical test of observed weather conditions subsequent to initial conditions of 0.2 and 0.3 cloud cover. Section 7.0 discusses the results of analyses performed after excluding the nighttime observations from the database while Section 8.0 describes analysis of categorizing the cloud cover data by upper-level wind direction. Section 9.0 presents nomograms which were developed for the Spaceflight Meteorological Group (SMG) and Cape Canaveral Forecast Facility (CCFF) forecasters. Section 10.0 summarizes the results of the two-tenths cloud cover study and discusses the plans for follow on work to this study.

2.0 Data Preparation

2.1 Surface and Upper-Air Observation Database

Data acquired for the two tenths cloud cover study at KSC included hourly surface observations (no special observations were included) at the X68 Shuttle Landing Facility (SLF) and upper-air observations from the CCAFS (Cape Canaveral Air Force Station-74794) rawinsonde site for the five year period, 1986 to 1990. The X68 surface data were obtained from Marshall Space Flight Center (MSFC). Upper-air observations were obtained from Computer Sciences Raytheon (CSR) Meteorology Section and from the USAF Environmental Technical Applications Center (ETAC). The database was developed using dBASE IV on one of the AMU's PCs. Table 1 lists the data pertinent to the study. In addition to the above data on electronic media, hard copies of surface observations from forms FM10a and 10b were also used for analysis purposes. These forms were obtained from various sources including 45th Weather Squadron, National Climatic Data Center (NCDC) at Asheville, N. C., and ENSCO, Inc.

Table 1. Key Weather Elements Available for Analysis											
Year	Visibility	Wind Speed									
Month	Present Weather	Temperature									
Day	Sea-level Pressure	Total Cloud Cover									
Time	Dew Point	Cloud Heights									
Ceiling Height	Wind Direction	Cloud Amounts									

The need for the form FM 10as and 10bs arises from the lack of precision in the cloud information contained within the MSFC X68 surface database. In this database, cloud amounts are listed as scattered (0.1 to 0.5), broken (0.6 to 0.9), or overcast (1.0). This precision is not sufficient for analysis of the 0.2 cloud cover rule. Fortunately, cloud cover amounts to the nearest tenth are contained within the form FM 10bs for every third hour. The procedure used to enhance the MSFC X68 data base with the additional information contained within the form FM 10bs is described in the following paragraph.

After the X68 surface observations were loaded into a dBASE IV database, observations which did not violate STS landing weather constraints but yet included clouds with bases below 10,000 feet were extracted. Approximately 22,000 out of 43,821 observations satisfied this criteria. The landing weather constraints used in this analysis were defined as follows:

- Ceilings (cloud cover greater than 0.5) below 10,000 feet at X68.
- Rain, drizzle, thunderstorms, showers, or thunder at X68.
- Sustained cross-winds equal to or greater than 10 knots at X68.
- Visibility less than 7 nautical miles at X68.

It is important to note only X68 observations were used to determine weather constraint violations.

For the selected observations, the form FM 10bs were used to estimate the cloud cover amounts below 10,000 feet. The cloud cover amounts for every three hours were entered into the data base as reported on the form FM 10bs. The cloud cover amounts for the off hours were based upon the form FM 10b data and entered into the database.

The cloud cover estimation for the off hours was somewhat subjective; however, the analyst attempted to follow the hour-to-hour trends in the data. For example, if the clouds were increasing or decreasing over a period of several hours, the analyst would insert values for cloud amounts in the off hours to reflect the upward or downward trend in the cloud amounts. This was not done in an automated fashion or by simple interpolation; each case was analyzed manually. Thus, this methodology could be a possible source of error in determining the cloud amounts below 10,000 feet which are used in this study. In addition to the cloud interpolation for the off hour data, there are two other possible sources or error which may occur in estimating the hourly cloud cover. First, ceilings could only be measured accurately to approximately 3700 feet above the surface because a laser ceilometer was not installed at X68 until 1991. This could lead to an error in determining whether clouds are above or below 10,000 feet. Secondly, another source of error could be in the

actual observed cloud amounts as determined by the weather observers. This error could be as high as +/- 1/10 depending upon how many layers of clouds were present.

2.2 Preparing Data for Analysis

After the X68 surface database was finalized, AMU personnel developed dBASE IV programs to analyze the five years of data. These programs were developed to ingest the surface database and produce analyses correlating initial weather conditions with actual observed X68 weather observations one and two hours after an initial weather condition.

The first set of observations analyzed were the hourly surface observations, which were in turn used as the initial conditions for studying the relationship between initial conditions and the weather conditions at one and two hours subsequent. These data were first examined as a whole and then categorized by each of the following:

- Individual month,
- Months grouped by season,
- Time of day (expressed in UTC),
- Surface and Upper-Air Wind direction, and
- Individual Month (Daytime Only).

The seasons were divided to reflect Florida's weather (i.e., Summer: June-August; Fall: September-December; Winter: January-March; and Spring: April and May). In addition, since precipitation events are a significant source of weather violations, wind direction sectors were divided to match the Ronald Holle (2) sectors for KSC's thunderstorm and lightning climatology. These wind sectors were defined as the following:

- North: 339°- 023°
- Northeast: 024°- 113°
- Southeast: 114°- 158°
- South: 159°- 203°
- Southwest: 204°- 293°
- Northwest: 294°- 338°

The hourly surface observation data were categorized by weather condition. Each observation was assigned to exactly one of the categories defined below in Table 2.

Appendix A contains figures illustrating the distribution of the weather condition categories in Table 2 for the different categorizations listed above.

The next step in the study was to analyze the observed conditions one and two hours subsequent (T+1 and T+2 hours) to a given initial weather condition. These data were analyzed for the same categorizations as for the initial weather conditions (i.e., all data, months, months (daytime only), seasons, hours, and both surface and upper-air wind direction). Figures relating the observed conditions at one and two hours from an initial condition for all hours-all months are found in Appendix B, for seasons in Appendix C, for months in Appendix D, for hours in Appendix E, for surface winds in Appendix F, for daytime hours only in Appendix G and for 850/700 mb wind sectors in Appendix I.

Additional analyses of the initial conditions at X68 included examining the persistence for all of the cloud cover groups (0.0 to 0.5 and WX) within each of the categories. This information is contained in Tables 3 and 4 in Section 5.0. Also, a chi-square statistical test was performed to see if there were any significant differences in the number of weather violations between 0.2 and 0.3 of cloud cover. This information is summarized in Sections 6.0, 7.2.2, 7.2.3, and 8.2.2.

Table 2. Weather	Table 2. Weather Condition Categories for Hourly Surface Observations									
Category	Definition									
Visibility Violation	Visibility less than 7 nautical miles.									
Ceiling Violation	Ceiling (greater than 0.5 cloud cover) under 10,000 feet.									
WX	Any other weather violation (i.e. cross-winds and precipitation) or a combination of one or more violations.									
0.0	Clear Skies with no weather violations.									
0.1	1/10 cloud cover with no weather violations.									
0.2	2/10 cloud cover with no weather violations.									
0.3	3/10 cloud cover with no weather violations.									
0.4	4/10 cloud cover with no weather violations.									
0.5	5/10 cloud cover with no weather violations.									

5

3.0 Climatology of the Hourly Surface Observations

This section describes the results of a brief climatological study of the weather conditions at X68 as defined by hourly surface observation data. The percent occurrence of weather conditions are compared within each of the following categorizations:

- Time of day,
- Individual months,
- Months grouped by season, and
- Surface wind direction.

Figures illustrating the percent occurrence of weather conditions in the hourly surface observation data for each of the above categorizations are contained in Appendix A. The hourly data, described in this section, are used as the initial conditions for the analyses presented in the next section.

The trends in the percent occurrence of weather conditions reflect the well known trends in the weather patterns typical of Florida's east coast. The actual values of the percent occurrence within each of the categories, however, provide a climatological indication of the probability that landing conditions will be acceptable for a given time of day, season, or wind flow pattern. Key points summarizing the major findings of the study are listed below, followed by a more detailed discussion relating the study's results to Florida's east coast weather patterns.

Key results from these analyses are:

- Fall and winter have a weather violation occurrence percentage ranging from 30% to 40%, the highest within the seasonal categorization.
- The summer months have a weather violation occurrence percentage ranging from 15% to 20%, the lowest within the seasonal categorization.
- The highest percentage of weather violations (30%) occur around sunrise from about 1100 to 1300 UTC. After sunrise, the percent occurrence of weather violations drops to 20% to 25% for several hours (1300 to 1600 UTC) and peaks again in the early afternoon (1700 to 2100 UTC) at 25% to 30%.
- Southeast and south surface wind sectors have the lowest percent occurrence of weather violations at 15%.
- North and northwest surface wind sectors have the greatest percent occurrence of weather violations at 25% 30%.

3.1 All Data

The total percent occurrence of weather violations for all of the data is near 25% with ceilings and "WX" each having a percent occurrence of approximately 10%. The visibility violation category has a percent occurrence of about 5%. Clear skies below 10,000 feet have a percent occurrence slightly higher than 25%. The cloud cover categories from 0.1 to 0.3 have a total percent occurrence of about 37%, and cloud cover categories 0.4 and 0.5 together have about 13%.

3.2 Monthly and Seasonal

This section describes seasonal characteristics of weather condition percent occurrence. The seasons have been divided to reflect local climatology with winter defined as January through March, spring: April through May, summer: June through August, and fall: September through December.

Figure 1 shows the percent occurrence of weather violations for each month. The highest percentage of weather violations occurs during the winter (30% to 40%) followed by the fall (approximately 30%). Figure 1 shows January has a weather violation percent occurrence of almost 38%, the highest of all the months. In fact, fall and winter together, the months from October through March, have a percent occurrence exceeding 15% for ceiling violations alone. These higher percentages during the cooler winter months are related to the cloud and precipitation events associated with synoptic-scale systems. The winter also has a slightly higher percent occurrence of visibility violations than does the summer. This is due primarily to the fog and stratus seen in the winter months.

During spring, the percent occurrence of weather violations drops significantly and is at its lowest point in the summer. The month of August has the lowest weather violation percent occurrence at around 12% (see Figure 1). This decrease during the warmer spring and summer months is related to the lack of synoptic scale storm systems, which produce periods of cloudy and wet weather that can persist for several days. Most of the weather violations in the summer are associated with the normal shower and thunderstorm activity (i.e., unstable atmosphere) which affect the area only a few hours at a time. It is important to note the percent occurrence of ceilings below 10,000 feet is less than 5% for all summer months.

7

For more of a detailed breakdown of initial weather conditions, refer to Appendix A which contains charts showing the distributions of both cloud cover (0.0 to 0.5) and the three weather

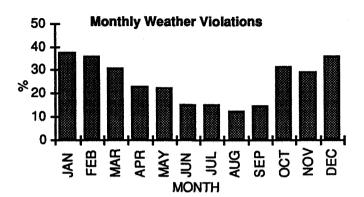
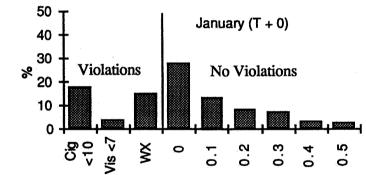
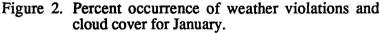
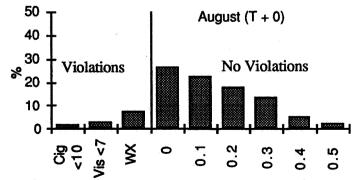
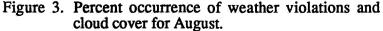






Figure 1. Percent occurrence of weather violations by month.

violation categories (i.e., ceiling below 10,000 feet, visibility less than 7 miles, and all other weather violations). As discussed above, the highest percentage occurrence of weather violations is during the winter and the lowest is during the summer. There are, however, some differences in the distributions of individual cloud amounts. For example, during January (see Figure 2) the 0.1 to 0.3 cloud cover $\frac{1}{2}$ categories all have occurrence percentages of 15% or less; while for August (see Figure 3), these same categories have occurrence percentages ranging from 15% to 25%. Even though there are more weather violations during the winter (especially ceilings), there is less percentage of clouds in the 0.1 to 0.3 cloud cover categories compared to the summer. The most likely explanation of this result is winter is characterized by alternating periods of cloudy and clear weather associated with synoptic-scale systems; while the summer is characterized by ever present clouds, especially during the daylight hours.

Other important characteristics noted include a significant change

from season to season in the occurrence percentage of no clouds (cloud cover category 0.0) below 10,000 feet. As shown in Figure 4, the lowest occurrence percentage of clear skies below 10,000 feet occurs during the months September through December (15% to 20%), with the highest percentage of clear skies occurring during the months April and May (30% to 40%) (see Figure 5). In fact, April has approximately a 45% occurrence of clear skies. This anomaly appears to be related to the transition from the winter weather regime to a summer weather regime. Generally by April, most of the stronger synoptic-scale systems do not reach Florida, and deep tropical moisture is not yet present. It is a time when high pressure dominates the weather. There is little cloud cover, and it is dry and breezy a high percentage of the time. During April, X68 averages less than 2 inches of rainfall (see Reference 3).

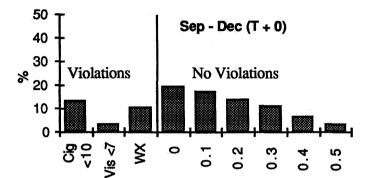


Figure 4. Percent occurrence of weather violations and cloud cover for the fall period.

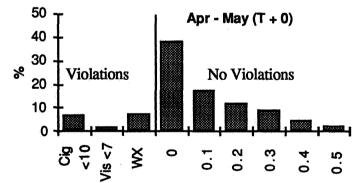


Figure 5. Percent occurrence of weather violations and cloud cover for the spring period.

central Florida area. The oceans are still quite warm in October; when cold continental air flows over these warm waters a moist unstable lower atmosphere develops creating considerable cloudiness.

Another important characteristic in the hourly data is evident in the monthly distributions of weather violations during the transition periods from summer to winter and from winter to summer. During the winter to summer transition (April and May), there is a steady decrease in weather violations. There is a correspondingly steady increase in weather violations during the summer to winter transition (September and October). Figure 1 shows September has weather violation occurrence percentage of 15%, while by October, the number has doubled to near 30%. Most of the increase can be attributed to ceilings below 10,000 feet. This significant change can be linked to clouds from easterly flow conditions. precipitation events from tropical storms, and stalled fronts in the

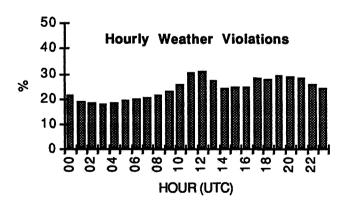
3.3 Time Of Day

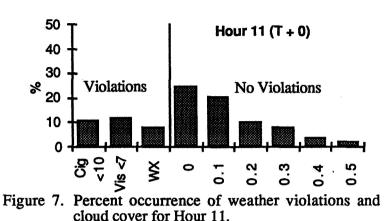
The weather violations and cloud cover distribution by hour for the entire database (1986-1990) are described in the following sections. Hours have been grouped together to represent nighttime (0100 to 1000 UTC), sunrise (1100 to 1200 UTC), morning before initial convective activity (1300 to 1600 UTC), afternoon when cloud cover is a maximum associated with showers and thunderstorms (1700 to 2100 UTC), and evening when convective activity decreases (2200 to 0000 UTC).

3.3.1 Nighttime (Hours 0100 to 1000 UTC)

Figure 6 shows the percent occurrence of weather violations is the lowest of the day during the hours 0100 to 0600 UTC, with most hours showing a percent occurrence of less than 20%. The breakdown of individual violations shows ceilings below 10,000 feet have a percent occurrence of about 10%, visibility violations 1% to 3%, and all other weather violations 5% to 7%. The distribution of cloud cover amounts (0.0 to 0.5 clouds below 10,000 feet) remains relatively constant during nighttime and the percent occurrence of clear skies below 10,000 feet is 40% to 45%. Percent occurrence of weather violations starts to increase at 0400 UTC. This is related to early morning development of fog and/or low clouds.

Care must be taken in interpreting nighttime results. The data may be biased towards lower cloud cover amounts because of the lack of visibility of the celestial dome. Also, ceilings could only be measured accurately up to approximately 3700 feet for the data study period of 1986-1990 because a laser ceilometer was not installed at X68 until 1991.




Figure 6. Percentage of hourly weather violations.

3.3.2 Sunrise (Hours 1100 to 1200 UTC)

During the period from 1100 through 1200 UTC, the weather violation percent occurrence is the highest of the day. The high percentage of weather violations near sunrise reflects occurrences of fog and low stratus. This is the time of the day when winds are the weakest

and the low-level radiation inversion is the strongest. Both of these factors contribute to the development of fog and stratus. The frequent occurrence of fog and stratus in the early morning

hours is reflected by the relatively higher percent occurrence of visibility violations during these hours (e.g., see Figure 7).

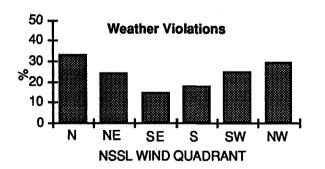
3.3.3 Morning (Hours 1300 to 1600 UTC)

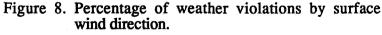
The decrease in percent occurrence of weather violations in the morning hours is related to solar warming of the lower troposphere. By 1400 to 1600 UTC, the total weather violation percent occurrence has dropped to less than 25%. Most of the decrease in percent occurrence

of weather violations is in the visibility violation category, where it is only 1% to 2%. Around sunrise, the percent occurrence of visibility violations is near 10%, but decreases to 1% to 2% by 1600 UTC. In addition, the percent occurrence of cloud cover amounts of 0.2 and 0.3 below 10,000 feet starts to increase. For example, before 1300 UTC, the 0.0 and 0.1 cloud cover categories have the highest occurrence percentage; by 1400 UTC, the cloud cover categories 0.0 to 0.3 all occur approximately the same percentage of time. This cloud cover increase is due to daytime heating combined with convergent areas resulting from the local sea breeze circulation.

3.3.4 Afternoon (Hours 1700 to 2100 UTC)

By 1700 UTC, the weather violation percent occurrence starts to increase again. This is associated with the development of showers and thunderstorms near the KSC area. Also, the WX violation category (all other weather violations including combinations of ceilings, precipitation, and visibilities) is at its highest between 1800 and 2000 UTC, reflecting the shower and thunderstorm events. By 1700 to 1800 UTC, the 0.2 and 0.3 cloud cover categories show the highest occurrence percentages (15% to 20% respectively), and the 0.0 category shows the lowest. In fact, at 1700 and 1800 UTC the 0.3 cloud cover category occurs about 20% of the time, the highest of any weather condition category. This increase in clouds reflects the developing cumulus field associated with daytime heating. There is also a slight rise noted in the occurrence of 0.4 and 0.5 cloud cover categories.


3.3.5 Evening (Hours 2200 to 0000 UTC)


During this period of time, a gradual decrease in weather violations is noted. In addition, the percent occurrence of the 0.0 and 0.1 cloud cover categories begins to increase. This is probably reflecting the overall reduction in the amount of clouds during the evening hours near sundown. By 0100 UTC, the 0.0 cloud cover category has increased to 35%.

3.4 Surface Wind Direction

In this section, the wind sectors have been defined to match the sectors used by Ronald Holle (2) in his analysis of total area divergence over the KSC/CCAFS area. The sectors have been defined as north (339° to 023°), northeast (024° to 113°), southeast (114° to 158°), south (159° to 203°), southwest (204° to 293°), and northwest (294° to 338°).

The southeast wind sector has the fewest weather violations; its weather violation occurrence percentage is less than 15% (see Figure 8). The north wind sector has the largest number of weather violations, with a percent occurrence of more than 30%, and the northwest, approximately 27%. The high weather violation occurrence percentages with this type of flow are associated with both advection of clouds from the ocean and stratus and fog from the mainland. Although northwest flow conditions have the second largest percent occurrence of weather violations, they also have the highest occurrence percentage of 0.0 cloud cover less than 10,000 feet. This is the result of northwest flow following frontal passages creating clear sky conditions.

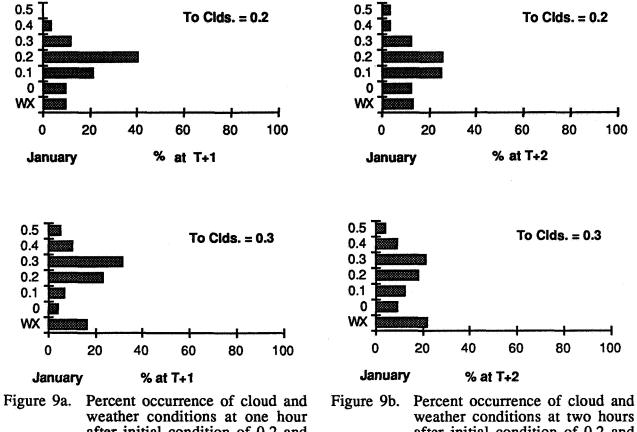
Ceilings are the most common weather violations with a north or northwest wind, while other weather violation categories (visibility, precipitation, and a combination thereof) are more common in the northeast and southwest wind sectors. This is expected since northeast flow is associated with showery weather moving in from the Atlantic, and southwest flow is associated with thunderstorms moving in from the mainland. Calm winds have the highest occurrence percentage (around 10%) of visibility less than 7 miles. Most of these low visibility conditions are caused by fog events. Calm winds also have the lowest percentage of clouds in the 0.2 to 0.5 range. This is due to the presence of high pressure dominating the weather with clear skies during most of the day except in the early morning hours when fog and low stratus is more likely to develop.

4.0 Observed Weather Conditions (One and Two Hours) Subsequent to Initial Conditions

This section discusses the relationship between cloud cover amounts at T and the frequency of a weather condition occurring one and two hours subsequently. Charts containing the percent occurrence of weather conditions given an initial cloud cover amount for all of the categories (combined data, seasons, individual months, time of day, and surface wind direction) are contained in Appendices B through F. In all figures, the initial cloud cover amounts are listed in the upper right-hand portion of each plot, weather conditions at T+1 and T+2 hours are given along the y-axis, and the occurrence percentages are given along the x-axis. The 0.0 to 0.5 on the y-axis represent cloud cover amounts with bases below 10,000 feet. The WX on the y-axis contains <u>all of the weather violations</u>.

Key results from these analyses are:

- For initial cloud cover amounts of 0.0 to 0.3, there is at least a 75% to 80% chance of not having a weather violation one and two hours later. (For an initial cloud cover of 0.2 it is generally greater than 80%.)
- For initial cloud cover amounts of 0.1 through 0.5, the winter has the largest percent occurrence of weather violations, and the summer has the least.
- For initial cloud cover amounts of 0.1 through 0.5, the largest percent occurrence of weather violations occur from 1000 to 1300 UTC and the least from 2000 to 2300 UTC.
- For initial cloud cover amounts of 0.1 through 0.5, the highest percent occurrences of weather violations occur with a southwest wind.
- Given initial conditions of cloud cover amounts from 0.0 to 0.3, persistence of the initial condition is the dominating characteristic of the T+1 and T+2 weather conditions.


4.1 All Data

Plots of the observed weather conditions (one and two hours) subsequent to initial conditions for all of the hours combined are shown in Appendix B. For initial cloud cover amounts of 0.0 to 0.3 the percent occurrence of no weather violations is greater than 80%. Percent occurrence of no weather violations cases decreases to 60% to 70% for cloud cover amounts of 0.4 and 0.5.

4.2 Monthly and Seasonal

A discussion of the results of seasonal and monthly categorization of the observed weather conditions one and two hours subsequent to initial conditions is contained in this section. As mentioned previously, the seasons were defined as winter: January through March, spring: April and May, summer: June through August, and fall: September through December. Charts of the results of the seasonal and monthly categorizations are contained in Appendices C and D, respectively.

Key results similar to those found for the hourly surface data as a whole (see Section 3.0) are found in the observed conditions one and two hours (T+1 and T+2 hours) subsequent to a given initial condition. For example, for nearly all initial cloud cover groupings (0.0 to 0.5) the highest percentages of weather violations occur during the winter with the least during the summer. This occurs for both T+1 hours and T+2 hours. This can easily be seen by a comparison of data for the initial cloud cover condition of 0.2 for January (Figures 9a and 9b) and August (Figures 10a and 10b). These figures show January has a percent occurrence of weather violations of 10% at T+1 hours and 18% at T+2 hours. However, during August at T+1 hours the percentage of weather violations is near 3% with T+2 hours being approximately 5% for 0.2 initial cloud cover. Similar patterns can also be seen in other winter and summer months. These trends in the data are consistent with the winter months having a higher frequency of ceiling violations persisting over a relatively long period of time. These events are associated with synoptic systems (i.e., low pressure areas, cold fronts, etc.). During the summer months most of the weather violations are associated with the showers and thunderstorms which span relatively short periods of time.

after initial condition of 0.2 and 0.3 cloud cover.

weather conditions at two hours after initial condition of 0.2 and 0.3 cloud cover.

Another important characteristic is evident in the percent occurrence of weather violations categorized by month. The data indicate for most months, except January and February, the total percent occurrence of no weather violations is greater than 80% for cloud cover amount groupings of 0.0 through 0.3.

4.3 **Time Of Day**

This section describes the results of analyses of the time of day categorization of the observed weather conditions one and two hours after a given initial condition. Charts for all of the hours are contained in Appendix E. As mentioned previously, care should be taken in drawing conclusions from the nighttime data due to the possible errors in determining cloud cover amounts during lowlight conditions.

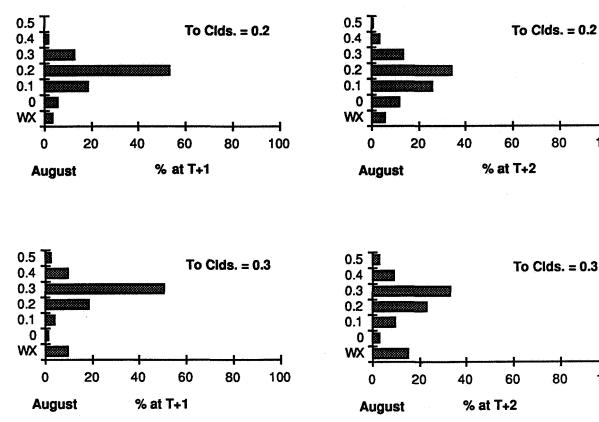
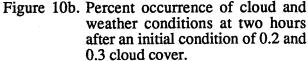



Figure 10a. Percent occurrence of cloud and weather conditions at one hour after an initial condition of 0.2 and 0.3 cloud cover.

100

100

Given an initial condition of 0.0 to 0.3 cloud cover, the data indicate the hours near sunrise have the highest percent occurrence of weather violations. The violations start to increase at 0700 UTC and reach a peak near 1200 UTC. For hours 0900 to 1400 UTC weather violations at T+2 hours for initial clouds of 0.2 are 10-20% (see Figure 11). This peak is associated with the fog and low stratus events which are most likely to occur near sunrise (near 1200 UTC).

During most other daylight hours, the percent occurrence of weather violations for cloud cover groupings of 0.0 through 0.3 are less than 20% (for 0.2 it is generally less than 10%), with the smallest percent occurrence of weather violations evident in the late afternoon and evening around 2000 to 2300 UTC (see Figure 12 for T+2 hours at 2300 UTC). This is the result of the decreasing frequency of clouds and precipitation events during this time of the day.

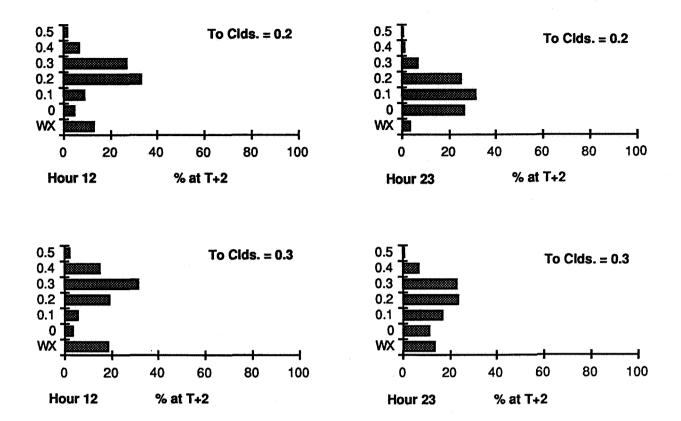
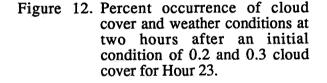



Figure 11. Percent occurrence of cloud cover and weather conditions at two hours after an initial condition of 0.2 and 0.3 cloud cover for Hour 12.

Another important characteristic of the hourly data is the strong tendency for initial conditions to persist. For example, given initially clear skies (below 10,000 feet) during the late afternoon and evening, there is at least an 80% chance of clear skies one and two hours later with some individual hours characterized by percentages exceeding 90% (see Hour 00 in Figure 13). The tendency for initial conditions to persist is also evident in the late morning in the 0.2 and 0.3 cloud cover categories because of the diurnal cumulus field. At 1500 UTC (see Figure 14), persistence of the 0.2 cloud cover group is almost 65% at T+1 hour and approximately 40% at T+2 hours. More detail on the persistence of initial cloud cover conditions is discussed in Section 5.0.

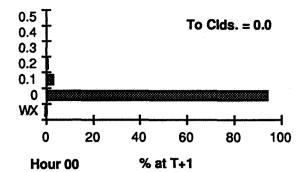


Figure 13a. Percent occurrence of cloud cover and weather conditions at one hour after an initial condition of 0.2 and 0.3 cloud cover for Hour 00.

Figure 13b. Percent occurrence of cloud cover and weather conditions at two hours after an initial condition of 0.0 cloud cover for Hour 00.

4.4 Surface Winds

This section describes the observed weather conditions one and two hours after given initial conditions categorized by surface wind flow direction. As discussed in Section 4.0, the wind sectors are based upon Ronald Holle's thunderstorm and lightning climatology report. The sectors have been defined as north (339° to 023°), northeast (024° to 113°), southeast (114° to 158°), south (159° to 203°), southwest (204° to 293°), and northwest (294° to 338°).

For given initial conditions of 0.0 through 0.3 cloud cover, the data indicate the percent occurrence of weather violations is largest for southwest flow and smallest for southeasterly winds. For southwest flow with an initial cloud cover of 0.2 (Figure 15), the T+1 hour weather violation percentage is 5%, and at T+2 hours it jumps to 13%. The reason for the southwest sector having the greatest percent occurrence of violations is related to the high frequency of showers and thunderstorms with this type of flow pattern, especially during the summer. In addition, an early morning southwest (203° to 293°) flow is also conducive to low stratus and fog development or advection from the St. Johns River Valley.

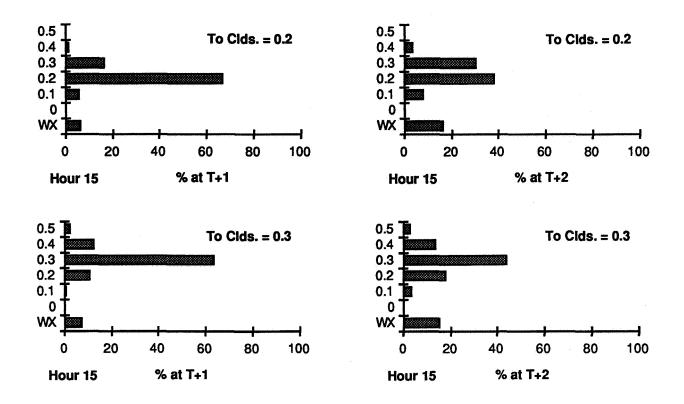


Figure 14a. Percent occurrence of cloud cover and weather conditions at one hour after an initial condition of 0.2 and 0.3 cloud cover for Hour 15.

Figure 14b. Percent occurrence of cloud cover and weather conditions at two hours after an initial condition of 0.2 and 0.3 cloud cover for Hour 15.

As mentioned above, the southeast wind sector has the smallest percent occurrence of weather violations with T+1 hours having only 2% and T+2 hours having about 5% (see Figure 16) for an initial cloud cover of 0.2. This is because southeast flow is usually not favorable for low cloud ceilings as compared to northerly or northeasterly flow (i.e. cooler air over a warm ocean), and because southeasterly flow is not favorable for thunderstorm development.

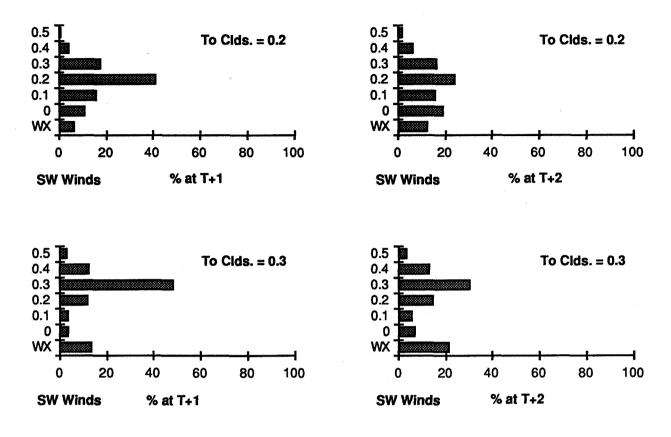
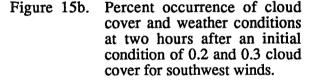



Figure 15a. Percent occurrence of cloud cover and weather conditions at one hour after an initial condition of 0.2 and 0.3 cloud cover for southwest winds.

For almost all wind categories, given an initial cloud cover of 0.0, 0.1, or 0.2, the data indicate 80% of the cases did not have a weather violation at T+1 and T+2 hours. Even for initial cloud cover amounts of 0.0 to 0.3, 75% of the cases did not have a weather violation at T+1 or T+2 hours. Within almost all categorizations, however, there is an increase in weather violations from 0.2 to 0.3 initial cloud cover conditions. Section 6.0 will examine whether the differences between the percent occurrence of weather violations at T+1 and T+2 hours for initial conditions of 0.2 and 0.3 cloud cover are statistically significant.

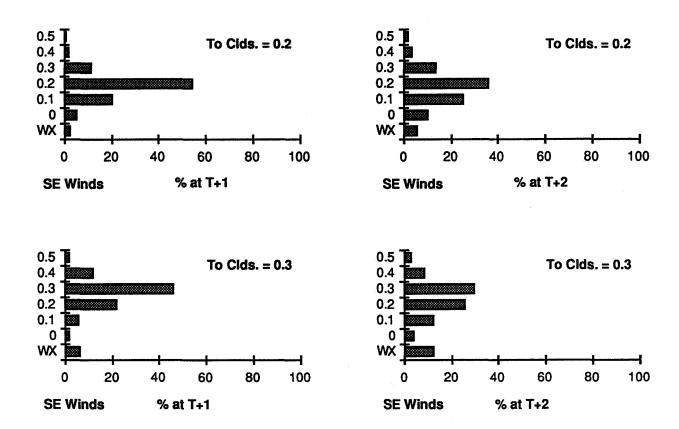
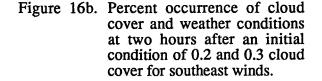



Figure 16a. Percent occurrence of cloud cover and weather conditions at one hour after an initial condition of 0.2 and 0.3 cloud cover for southeast winds.

5.0 Persistence

As discussed previously in this report, persistence of initial weather conditions one and two hours into the future is a dominant characteristic in most of the categorizations (i.e., months, seasons, time of day, and wind direction). This can be seen in the charts in the Appendices and is summarized in condensed form in Tables 3 and 4. These tables show the percentages of persistence of weather violations and cloud cover amounts of 0.0 to 0.5 below 10,000 feet at T+1 and T+2 hours. (Table 5 explains how to interpret the persistence information in Tables 3 and 4.)

There are several important characteristics in the persistence of weather conditions at X68 (see Tables 3 and 4). First, for nearly all categories, given a weather violation existing at time T, a violation was still in effect at T+1 and T+2 hours in more than 60% of the cases. The summer months, when the percentages drop to about 50% at T+2 hours, were the only exception to this relationship. This reduction is related to the very short duration of weather violations associated

	T	able 3.	O	One Hour Persistence of Weather Conditions										
Initial Weather Conditions														
		eather		0.0		0.1		0.2		0.3		0.4		0.5
	Vi	olation		loud		Cloud		loud		Cloud		Cloud	Cloud	
Catagory	%	Total	%	over Total	%	Cover Total	96	Cover Total	96	Cover Total	96	Cover Total	%	Cover Total
Category	70	Count	70	Count	70	Count	70	Count	70	Count	70	Count	70	Count
All	78	10517	81	11497	60	7653	50	5832	44	4610	35	2504	30	1210
Months														
January	86	1387	84	1033	57	491	41	312	32	266	22	133	29	98
February	84	1216	84	1058	51	388	39	269	36	205	31	170	22	78
March	81	1155	82	932	58	520	47	397	41	315	37	253	35	148
April	72	611 587	87 83	1645	59 62	592	44 54	301	39 45	239 415	31 39	133	32 26	79 94
May	66	_		1149		691		571			_	213		
June	65 69	544 550	74 79	746	63	837 721	51 54	658	51 49	518	36 38	226	38 35	71 66
July	69 60	453	79 77	1053	57	845	54	644		492	36	194 187	36	80
August September	66	453	<i>//</i> 71	992 585	61	845 733	54 54	665 779	51 47	498 585	<u> </u>	285	30	108
October	00 80	525 1166	71 77		60 61	646	54 45	-	47 37		41 36	285	25	108
November	83	1038	<i>7</i> 9	577 763	61		45 41	493 400	45	378	32	294	31	
December	84	1038	79 83	964	60	692 497	41 51			374 325	29	199	22	116 106
	04	1265	05	904	00	497	51	343	41	343	29	199	22	100
Winds Calm	73	228	75	495	60	341	45	137	39	77	29	38	30	23
NE	90	2145	79	1711	63	2271	52	2160	44	1645	34	915	28	408
SE	73	778	81	1212	60	1173	55	972	47	703	43	379	44	171
S	72	1103	80	1947	55	1010	48	880	45	724	33	332	25	146
SW	74	2012	82	3082	48	1040	41	730	49	689	33	325	25	175
NW	84	1323	83	1612	64	725	46	309	41	256	28	171	27	77
N	82	1438	82	1438	65	1095	48	644	40	516	35	344	29	210
Hour (UTC) 0	75	386	94	452	53	475	50	224	45	134	36	91	31	64
1	80	345	89	645	52	341	41	219	32	152	26	87	43	37
2	80	331	86	741	58	303	37	202	29	133	37	79	43	37
3	79	325	-86	776	56	334	50	166	32	99	28	85	22	41
4	84	329	86	786	51	292	49	200	31	109	31	71	31	39
5	79	347	87	814	42	271	35	201	28	96	19	59	29	38
6	83	361	88	835	53	253	48	169	36	95	32	71	21	42
7	82	372	86	837	50	242	43	167	31	98	23	71	15	39
8	86	394	83	833	60	234	34	166	23	110	22	60	28	29
9	84	423	76	794	49	288	46	130	43	77	27	67	25	48
10	90	466	58	689	61	275	40	184	40	100	16	70	26	42
11	78	557	59	445	68	372	41	186	34	151	16	74	20	41
12	72	564	76	351	53	479	54	184	49	141	29	75	38	32
13	69	492	67	385	45	362	40	273	49	203	33	73	16	38
14	74	438	63	335	66	290	41	315	42	296	33	115	24	37
15	75	443	68	250	54	357	67	227	64	289	48	165	28	95
16	81	450	70	195	58	276	50	314	58	336	42	184	26	73
17	74	513	78	149	75	231	58	319	52	379	50	171	39	64
18	76	504	84	137	71	272	71	289	58	339	40	209	25	76
19	74	537	93	132	75	244	57	345	41	337	36	164	26	67
20	75	523	82	157	78	280	50	364	38	298	33	148	32	56
21	76	510	95	179	71	427	70	313	61	209	35	119	41	69
22	78	471	89	261	73	375	58	337	39	235	36	90	33	57
23	75	437	90	319	63	380	36	338	31	195	37	106	40	50

	Ta	able 4.	Т	wo Ho	ur I	Persist	ence	of We	ath	er Con	diti	ons		
Initial Weather Conditions														
		eather		0.0		0.1		0.2		0.3		0.4		0.5
	Vi	olation		loud		loud		loud		loud		loud	Cloud	
0	(1)	70-4-1		Cover	_	Cover		Cover	_	Cover	96	over	<i>%</i>	Cover Total
Category	%	Total Count	%	Total Count	%	Total Count	%	Total Count	%	Total Count	70	Total Count	70	Count
All	68	10517	70	11497	43	7652	33	5832	29	4610	22	2504	17	1210
Months														
January	78	1387	75	1033	38	491	26	312	22	266	14	133	15	98
February	75	1216	75	1058	35	388	29	269	19	205	18	170	10	78
March	72	1155	71	932	42	520	33	397	25	315	20	253	18	148
April	59	611	80	1645	45	592	26	301	24	239	16	133	16	79
May	54	587	74	1149	44	691	39	571	30	415	28	213	19	94
June	48	544	61	746	46	837	33	658	34	518	21	226	17	71
July	53	550	67	1053	41	721	38	644	31	492	19	194	18	66
August	42	453	63	992	42	845	35	665	34	498	21	187	18	80
September	56	525	56	585	43	733	36	779	32	585	26	285	19	108
October	72	1166	67	577	45	646	30	493	24	378	26	294	16	166
November	74	1038	66	763	45	692	29	400	30	374	26	217	22	116
December	75	1285	73	964	47	496	35	343	29	325	18	199	10	106
Winds														
Calm	56	228	62	495	41	341	31	137	25	77	13	38	17	23
NE	80	2145	69	1711	46	2271	36	2160	30	1645	23	915	17	408
SE	61	778	71	1212	44	1173	37	972	30	703	26	379	24	171
S	61	1103	70	1947	36	1010	34	880	28	724	19	332	14	146
SW	62	2012	72	3082	33	1040	25	730	31	689	18	325	11	175
NW	72	1323	73	1612	48	725	32	309	32	256	21	171	10	77
Ν	70	1438	70	1438	48	1092	31	644	22	516	21	344	17	210
Hour (UTC) 0	66	386	91	452	35	475	28	224	23	134	11	91	20	64
1	70	345	81	645	39	341	23	219	16	152	15	87	30	37
2	68	331	81	741	43	303	36	202	20	133	20	79	19	37
3	71	325	78	776	37	334	37	166	18	99	16	85	7	41
4	74	329	82	786	33	292	21	200	15	109	14	71	15	39
5	70	347	81	814	34	271	29	201	18	96	19	59	13	38
6	73	361	81	835	36	253	29	169	18	95	18	71	12	42
7	77	372	76	837	45	242	24	167	9	98	11	71	13	39
8	76	394	68	833	43	234	31	166	24	110	15	60	14	29
9	81	423	47	794	43	288	25	130	23	77	16	67	13	48
10	77	466	41	689	53	275	21	184	19	100	11	70	12	42
11	60	557	55	445	41	372	37	186	33	151	20	74	15	41
12	56	564	56	351	31	479	34	184	32	141	24	75	6	32
13	61	492	43	385	36	362	21	273	28	203	18	73	21	38
14	66	438	46	335	42	290	40	315	39	296	37	115	19	37
15	74	443	50	250	34	357	39	227	44	289	32	165	18	95
16	69	450	58	195	47	276	32	314	37	336	32	184	23	73
17	68	513	70	149	61	231	50	319	42	379	32	171	19	64
18	68	504	85	137	57	272	49	289	30	339	24	209	12	76
19	64	537	81	132	60	244	35	345	22	337	15	164	12	67
20	63	523	85	152	58	280	43	364	36	298	24	148	16	56
20	64	510	87	179	56	427	48	313	34	209	18	119	16	69
22	63	471	85	261	51	374	22	337	17	235	19	90	18	57
23	60	4/1	92	319	37	374	26	338	24	195	19	106	26	50
ద	00	43/	92	519	31	580	_20	338	24	193	19	100	20	50

Table 5. Interpretation of One Hour Persistence Tables														
Initial Weather Conditions														
	Weather			0.0			0.2 Cloud		0.3 Cloud		0.4 Cloud		0.5	
	Violation		Cloud										Cloud	
			Cover		(Cover	C	Cover	Ċ	Cover	Ċ	Cover	Cover	
Category	%	Total	%	Total	%	Total	%	Total	96	Total	%	Total	%	Total
		Count		Count		Count		Count		Count		Count		Count
A11	78	10517	81	11497	60	7653	50	5832	44	4610	35	2504	30	1210
Months														
January	86	1387	84	1033	57	491	41	312	32	266	22	133	29	98
This table expl	ains l	now to in	terpre	t persiste	nce ta	ables (Tal	bles 3	and 4).	The f	irst row l	ists tł	ne initial v	weath	er
conditions (i.e.	., all v	veather v	iolati	ons group	ed to	gether an	d 0.0	to 0.5 in	itial c	loud cove	er). I	he first c	olum	n lists
various catego	rizatio	ons of the	data	(i.e., moi	nths).	Under e	ach i	nitial wea	ther c	ondition	there	are two o	olun	ins
which list the p	persis	tence per	centa	ge and th	e tota	l count (i	.e., to	tal numb	er of	observati	ons fo	or each in	itial	
condition cate	condition category). For example, with a weather violation as an initial weather condition during the month of													
January, 86 %	of the	e time yo	ı wot	ild have a	weat	ther viola	tion a	it one hou	ır sub	sequent.	In ad	ldition, fo	r an i	nitial
weather condit	ion o	f 0.2 clou	d cov	er (no we	eather	violation	ns) 41	% of the	e time	there wa	s 0.2	cloud cov	ver oł	oserved
at one hour sul	bsequ	ent.			á stantar					·	وي الم			

with summertime showers and thunderstorms. For most of the hourly data, T+1 persistence percentages are 70% or greater with most of the nighttime hours (0100 to 1000 UTC) exceeding 80%. Given a weather violation at time T, 70% to 80% of the cases from the northwest, north, and northeast wind sectors were characterized by a weather violations at T+1 and at T+2. These were the highest percentages from the wind sector categorization. This is not surprising since these flow patterns are associated with a large number of stratocumulus events which have an average life span of more than a day.

The one and two hour persistence percentages for clear skies (0.0 cloud cover below 10,000 feet) were found to be 60% to 70% within most categorizations of the data. The highest clear sky persistence percentages, 80% to 90%, are associated with the nighttime hours. The lowest clear sky percentages are associated with the early morning hours (40% to 50%) and with the summer months (June is near 60%) for T+2 hours. One important point regarding the 0.0 cloud cover group is the rapid change in the total number of clear sky observations between 2300 and 0100 UTC. The number of observations increases from 319 to 645. This increase may be due in large part to the inability to see low cloud cover amounts during low light conditions rather than due to a real decrease in cloud cover.

Another important characteristic of the persistence of weather conditions involves cloud cover amounts of 0.1 through 0.3 during the mid-day hours. For this period, the data indicate an increase in the persistence percentages with time. For example, for an initial cloud cover of 0.2 or 0.3 at 1400 UTC, the persistence percentage is near 42% at T+1 hours. This increases to greater than 60% for 1500 UTC. The percentages are somewhat lower for T+2 hours, but the trend is similar. These persistence percentages remain high through 1700 UTC and then decrease during the 1800 to 1900 UTC time frame. The increases at 1500 UTC are related to the initial development of the cumulus field. The clouds may persist for a couple of hours, but by 1800 to 1900 UTC they will either develop further into significant convective activity or diminish with the reduced afternoon heating. In either case, this would cause a decrease in the persistence percentages at that time.

6.0 Homogeneity Analysis of Observed Weather Conditions Subsequent to Initial Conditions of 0.2 and 0.3 Cloud Cover

This component of the investigation focuses on the comparison of the percent of observed weather violations subsequent (one and two hours later) to initial conditions of 0.2 and 0.3 cloud cover below 10,000 feet at X68. The sample statistics were computed in the following manner. For a given sample with initial conditions of 0.2 cloud cover, the number of weather violations and non-violations one and two hours subsequent to the initial observation were totaled. Then, a similar analysis was performed for initial conditions of 0.3 cloud cover and 2×2 contingency tables were constructed (see example in Table 6). These data were then used to perform chi-square tests for homogeneity in the samples. The results of these analyses are presented in Table 7 (T+1 hour - all weather violations), Table 8 (T+2 hours - all weather violations), Table 9 (T+1 Hour - ceiling and precipitation violations), and Table 10 (T+2 Hours - ceiling and precipitation violations).

The chi-square test for homogeneity was used to determine if the percent of weather violations subsequent to the two different initial conditions are the same. After the test statistic was computed (see Tables 7, 8, 9, and 10), it was compared to the 95% χ^2 value for one degree of freedom. If the test statistic exceeded the critical value, the null hypothesis was rejected indicating the proportions of weather violations for the two samples are different. If the test statistic was less than the critical value, the null hypothesis of weather violations for the two samples are different. If the test statistic was less than the critical value, the null hypothesis of weather violations for the two samples are different.

Table 6. Contingency Table For All Cases										
Initial Condition	Number of Weather Violations at T+1	Number of Non- Violations at T+1	Total							
0.2 Cloud Cover	322	5510	5832							
0.3 Cloud Cover	522	4088	4610							
Total	844	9598	10442							

The results of the homogeneity tests are important because they are indicative of the difference in the probabilities of a weather violation occurring at X68 subsequent to initial conditions of 0.2 and 0.3 cloud cover. If the homogeneity test indicates that the proportions of weather violations for the two samples are different, then the probability of a weather violation occurring at X68 subsequent to initial conditions of 0.2 cloud cover is different from the probability for initial conditions of 0.3 cloud cover. More importantly, if the homogeneity test indicates that the proportions of weather violations for the two samples are not different, then the probability of a weather violation occurring at X68 subsequent to initial conditions of 0.2 cloud cover is not different from the probability for initial conditions of 0.3 cloud cover. This result would suggest the 0.2 cloud cover might be overly conservative or inappropriate.

The following sections present the results of the homogeneity analysis. Test statistics are presented in Tables 7, 8, 9, and 10. Values exceeding the critical χ^2 test statistic are annotated with an asterisk. Results discussed in Section 6.1 are based on all weather violations while the results in Section 6.2 are based only on ceiling and precipitation weather violations.

Key results from these analyses are:

- There is a significant difference in the proportions of weather violations (all violations) one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover for the majority of the data categorizations.
- The differences in the proportions of weather violations (all violations) two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover are not significant for the months October through December and April.

- The differences in the proportions of weather violations (all violations) one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover are not significant for the month of May.
- The differences in the proportions of weather violations (all violations and ceiling and precipitation only) one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover are not significant during late morning (1500 and 1600 UTC).
- The differences in the proportions of weather violations (ceiling and precipitation only) one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover are significant for the month of May.
- The differences in the proportions of weather violations (ceiling and precipitation only) one hour subsequent to initial conditions of 0.2 and 0.3 cloud cover are significant for the month of October.
- The differences in the proportions of weather violations (ceiling and precipitation only) two hour subsequent to initial conditions of 0.2 and 0.3 cloud cover is not significant for the month of October.

6.1 Chi-Square Analysis based on all Weather Violations

For the majority of the data categorizations (i.e., all, monthly, wind direction, and hour) there is a significant difference in the proportions of weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. For example, large differences in percent of weather violations between the two initial conditions occur in the months of July through September. For this period, the percent weather violations one and two hours subsequent to initial conditions of 0.3 cloud cover is approximately a factor of two greater than the corresponding value for 0.2 cloud cover. Similar differences are noted for the one hour interval for the total sample and for all of the wind direction categories except north. The two hour interval data show similar results, but the differences generally are not as large. Differences are also large for the morning hours around sunrise (i.e., 1300 and 1400 UTC) and for part of the afternoon and early evening hours (i.e., 1800 to 2000 and 2300 to 0100 UTC).

The large differences in the summer months and the afternoon hours are related to the rapidly developing cumulus field along the sea breeze front and other boundaries on days with midafternoon thunderstorm activity. The difference during the early evening hours may be related to early evening thunderstorms associated with the west coast sea breeze. However, further investigation would be required to fully understand the causes of this difference. The large differences noted in most all of the wind categories are probably not related to any one type of meteorological phenomenon but, are rather just a reflection of the large difference in the total sample.

Observed	Weather Con	Tab ditions One H	le 7. our Subsequer	nt To Initial C	onditions
Category	Initial Co 0.2 Clou			onditions d Cover	Chi Square Test Statistic
	Sample Size	Percent Weather Violations	Sample Size	Percent Weather Violations	Critical value = 3.841 at $\alpha = 0.05$
Total Sample	5832	5.52	4610	11.32	116.66*
Months January February March April May June July August September October November December Expanded Months May (4/24 to 6/7) October (9/24 to 11/7))	312 269 397 301 571 658 644 665 779 493 400 343 780 761	$ \begin{array}{r} 10.26 \\ 7.06 \\ 5.79 \\ 5.98 \\ 6.30 \\ 5.32 \\ 4.19 \\ 4.06 \\ 3.85 \\ 8.11 \\ 4.50 \\ 5.54 \\ 5.64 \\ 6.57 \\ \end{array} $	266 205 315 239 415 518 492 498 585 378 374 325 587 587 575	16.92 15.61 11.75 12.55 8.43 10.42 12.60 10.24 9.57 12.43 9.63 12.31 7.67 11.65	5.52* 8.85* 8.06* 7.11* 1.63 10.80* 27.31* 17.39* 18.51* 4.44* 7.82* 9.49* 2.26 10.59*
Winds Calm Northeast Southwest Southeast South Northwest North	137 2160 730 972 880 309 644	5.84 5.83 7.12 3.19 5.45 4.53 6.68	77 1645 689 703 724 256 516	10.39 11.37 14.37 7.11 12.29 12.11 11.24	1.48 37.89* 19.57* 13.64* 23.78* 10.97* 7.50*

* Indicates the proportions of weather violations for the two samples are statistically different.

Observed	Weather Con	Tab (Conti ditions One H		nt To Initial C	onditions
Category	Initial Co 0.2 Clou		Initial Co 0.3 Clou	onditions d Cover	Chi Square Test Statistic
	Sample Size	Percent Weather Violations	Sample Size	Percent Weather Violations	Critical value = 3.841 at $\alpha = 0.05$
Hours (UTC) 0000	224	4.02	134	10.45	5.77*
0100	219	4.11	152	15.13	13.83*
0200	202	2.48	133	9.77	8.40*
0300	166	6.63	99	7.07	0.02
0400	200	4.00	109	11.01	5.73*
0500	201	7.46	· 96	13.54	2.81
0600	169	4.73	95	9.47	2.27
0700	167	7.19	98	9.18	0.34
0800	166	6.02	110	12.73	3.74
0900	130	6.15	77	12.99	2.84
1000	184	8.70	100	11.00	0.40
1100	186	5.91	151	13.91	6.20*
1200	184	8.15	141	15.60	4.39*
1300 1400	273 315	5.13	203 296	14.78	12.92* 14.01*
1500	227	5.71 7.05	296 289	14.86 7.96	0.15
1600	314	7.05 9.87	336	10.42	0.15
1700	319	5.96	379	10.42	0.03 4.73*
1800	289	6.57	339	10.55	7.09*
1900	345	4.93	337	12.98	13.03*
2000	364	3.85	298	11.07	12.98*
2100	313	4.79	209	8.61	3.09
2200	337	4.45	235	7.66	2.62
2300	338	2.07	195	8.21	11.27*

* Indicates the proportions of weather violations for the two samples are statistically different.

.

Observed	Weather Cond	Tab litions Two He	le 8. ours Subseque	nt To Initial C	Conditions
Category	Initial Co 0.2 Clou		Initial Co 0.3 Clou	onditions d Cover	Chi Square Test Statistic
	Sample Size	Percent Weather Violations	Sample Size	Percent Weather Violations	Critical value = 3.841 at $\alpha = 0.05$
Total Sample	5832	9.59	4610	16.01	97.67*
Months January February March April May June July August September October November December Expanded Months May (4/24 to 6/7) October (9/24 to 11/7)	312 269 397 301 571 658 644 665 779 493 400 343 780 780 761	13.78 15.99 11.08 11.30 8.93 9.88 7.30 6.47 6.03 13.39 10.25 11.95 8.59 11.16	266 205 315 239 415 518 492 498 585 378 374 325 587 587 575	22.56 29.27 17.46 15.90 12.77 15.25 17.68 15.86 12.82 13.76 14.44 16.62 11.75 13.74	$7.55* \\ 12.07* \\ 5.97* \\ 2.44 \\ 3.75 \\ 7.79* \\ 28.91* \\ 26.78* \\ 18.90* \\ 0.02 \\ 3.15 \\ 2.97 \\ 3.74 \\ 1.94$
Winds Calm Northeast Southwest Southeast South Northwest North	137 2160 730 972 880 309 644	7.63 8.56 13.15 6.38 11.14 9.06 11.49	77 1645 689 703 724 256 516	14.29 13.43 21.92 12.94 18.92 18.36 15.50	2.72 23.23* 18.94* 21.19* 19.26* 10.51* 4.01*

* Indicates the proportions of weather violations for the two samples are statistically different.

Observed V	Veather Condi	Table (Contin tions Two Hou		t To Initial Co	onditions
Category	Initial Co 0.2 Clou		Initial Co 0.3 Clou	onditions d Cover	Chi Square Test Statistic
	Sample Size	Percent Weather Violations	Sample Size	Percent Weather Violations	Critical value = 3.841 at $\alpha = 0.05$
Hours (UTC)	224	5 2 6	124	15 (7	10 66*
0000 0100	224 219	5.36 5.94	134 152	15.67 16.45	10.66* 10.78*
0200	202	9.41	132	11.28	0.31
0300	166	10.24	99	9.09	0.09
0400	200	14.00	109	14.68	0.03
0500	201	9.45	96	15.63	2.44
0600	169	8.88	95	16.84	3.72
0700	167	11.98	98	12.24	0.00
0800	166	13.25	110	19.09	1.71
0900	130	13.85	77	23.37	3.06
1000	184	20.11	100	26.00	1.30
1100	186	8.60	151	19.86	8.97*
1200	184	13.59	141	19.15	1.84
1300	273	9.16	203	20.19	11.88*
1400	315	10.16	296	19.59	10.82*
1500	227	16.74	289	15.57	0.13
1600	314	12.74	336	14.88	0.62
1700	319	10.97	379	16.62	4.58*
1800	289	10.38	339	17.11	5.86*
1900	345	6.38	337	16.02	16.02*
2000 2100	364	4.95	298 200	14.77	18.61*
2100	313 337	7.03	209	12.44	4.40*
2200 2300	337 338	6.53 4.14	235 195	8.51 14.35	0.80 17.78*

* Indicates the proportions of weather violations for the two samples are statistically different.

Although most of the differences in the percent weather violations are statistically significant, there are some notable exceptions which require discussion and evaluation. First, the differences in the proportions of weather violations two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover are not significant for the months October through December. Indeed, the proportions of weather violations for the two hour interval for the month of October are nearly identical. The differences are also not significant for the two hour interval in April and May and for the one hour interval in May. These data indicate a significant difference in the short-term evolution of meteorological conditions in the Cape vicinity in the transition seasons (i.e., spring and fall) as compared to the summer and winter time periods.

By analyzing the chi-square results in Tables 7 and 8, there are a few results which remain unexplained. For example, during October to December, the question arises why the differences in the proportion of weather violations one hour subsequent to initial conditions are significant while the differences at two hours are not significant. Although the answer could be related to a seasonal effect (i.e., summer to winter), it could also be related to some other meteorological phenomenon or perhaps a statistical sampling problem related to having fewer samples during the winter. Further investigation of the expanded two-tenths cloud cover database will be required to resolve this issue.

To further test the significance of the months of May and October, additional analyses were performed for each of these months by extending the analysis time one week surrounding each month (i.e., 24 April to 7 June and 24 September to 7 November). This was done to see how sensitive the analysis was for these specific time periods. The results using these time periods were very similar to actual months themselves. For May (one week either side), the results indicate the differences in weather violations for both one and two hours to initial conditions of 0.2 and 0.3 cloud cover were not significant. For October, the differences were not significant for the two hour interval.

The results also indicate the differences in the proportions of weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover are not significant for most of the nighttime hours (0200 to 1000 UTC). However, since the accuracy of estimated cloud cover amounts during the nighttime hours is questionable, these results may not be realistic and should be viewed with skepticism. Finally, the differences in the proportions of weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover are not significant during late morning (1500 to 1600 UTC). This is the time of day following morning fog/stratus conditions yet prior to the development of significant convective activity.

6.2 Homogeneity Analysis Based on Ceiling and Precipitation Weather Violations

Since the 0.2 cloud cover rule was written to guard against the development of cloud ceilings below 10,000 feet after de-orbit burn decisions, the homogeneity test was used to analyze the data based on the condition that weather violations only included ceiling and precipitation violations. This includes any time when a ceiling or precipitation weather violation is occurring at X68. It essentially eliminates visibility and cross-wind violations. Tables 9 and 10 show the chi-square results for May, October, and 1500 and 1600 UTC using only the ceiling and precipitation violations (ceiling and precipitation only) at 0.2 and 0.3 initial cloud cover for both the 1500 and 1600 UTC categories. However, during May and October, the differences between weather violations at one and two hours subsequent to initial conditions for 0.2 and 0.3 initial cloud cover (all hours and expanded data sets) are now significant. The only exception to this finding was for October (all hours) when the chi-square analysis did not show a significant difference between the weather violations for 0.2 and 0.3 initial cloud cover for T+2 hours.

Observed			le 9. our Subsequer cipitation Viol:		onditions
Category	Initial Co 0.2 Clou	onditions d Cover		onditions d Cover	Chi Square Test Statistic
	Sample Size	Percent Weather Violations	Sample Size	Percent Weather Violations	Critical value = 3.841 at $\alpha = 0.05$
Category May October 1500 UTC 1600 UTC	552 476 217 301	3.08 4.83 2.76 5.98	406 366 281 326	6.40 9.56 5.34 7.67	6.03* 7.22* 2.01 0.70
Expanded Months May (4/24 to 6/7) October (9/24 to 11/7)	757 743	2.77 4.30	574 560	5.57 9.29	6.70* 13.12*

Observed			e 10. ours Subseque cipitation Viola		Conditions
Category	Initial Co 0.2 Clou	onditions ad Cover		onditions d Cover	Chi Square Test Statistic
	Sample Size	Percent Weather Violations	Sample Size	Percent Weather Violations	Critical value = 3.841 at $\alpha = 0.05$
Category May October 1500 UTC 1600 UTC	551 470 215 304	5.63 9.15 12.09 9.87	401 369 278 327	9.73 11.65 12.23 12.53	5.73* 1.41 0.002 1.12
Expanded Months May (4/24 to 6/7) October (9/24 to 11/7)	755 735	5.56 8.03	569 562	8.96 11.74	5.74* 5.05*

7.0 Daytime Data Climatology

During analysis of the hourly data a question arose concerning the validity of the nighttime cloud observations. It is possible the data may be biased towards lower cloud cover amounts due to the lack of visibility of the celestial dome. In addition, cloud ceilings could only be measured accurately up to 3700 feet because a laser ceilometer was not installed at X68 until 1991. On the basis of this information, it is possible the nighttime observations may be masking important relationships in the data or, conversely, may be responsible for false indications of significant relationships. In order to test the effects of the nighttime observations, the monthly data were reanalyzed eliminating the nighttime hours. The daylight hours were determined from X68 sunrise/sunset tables. For this analysis the sunrise/sunset times for the 15th of the month was used to represent the sunrise/sunset for all days of that particular month (see Table 11).

Table 11. Su	nrise/Sunset for X	K68 on the 15th	of each month
Month	Sunrise (UTC)	Sunset (UTC)	Hours Used for Daylight Only Analysis (UTC)
January	1217	2247	12-23
February	1202	2312	12-23
March	1132	2331	12-23
April	1057	2349	11-24
May	1031	0007	11-24
June	1024	0023	10-24
July	1034	0023	11-24
August	1052	0002	11-24
September	1108	2327	11-23
October	1124	2253	11-23
November	1146	2229	12-22
December	1208	2228	12-22

Key results from these analyses are:

- Climatology of the daytime data is similar to the complete (24 hour) data.
 - •• Highest occurrence of weather violations is in the winter and lowest is in the summer.

- •• Daytime data has a less frequent occurrence of clear skies (0.0 cloud cover below 10,000 feet) than the complete data.
- •• Daytime data has a higher percentage of clouds in the 0.1 to 0.3 clouds categories than the complete data.
- Observed weather conditions one and two hours subsequent to initial conditions for both the complete and daytime data have similar trends.
 - •• For initial cloud cover amounts of 0.0 to 0.3, there is at least a 75% to 80% chance of not having a weather violation one and two hours later (daytime data climatology).
 - •• The differences in the proportions of the weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover are not significant for the months of May and October (daytime data climatology).
 - •• For most all initial conditions, the frequency of weather violations one and two hours subsequent is slightly greater for the daytime data as compared to the complete data.
 - Persistence dominates weather conditions at both one and two hours for initial cloud amounts of 0.0 to 0.3 (daytime data climatology).
- Key results for daytime data using only ceiling and precipitation weather violations are:
 - •• The differences in the proportions of the weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover are not significant for the month of May (all hours and expanded data).
 - •• The differences in the proportions of the weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover are significant for expanded October data.
 - •• The differences in the proportions of the weather violations one hour subsequent to initial conditions of 0.2 and 0.3 cloud cover are significant for October (all hours).
 - •• The differences in the proportions of the weather violations two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover are not significant for the month of October (all hours).

7.1 Climatology of Monthly Data (Daytime Data Climatology)

This section will briefly describe the monthly climatology of daytime only weather conditions. Figures illustrating the percent occurrence of weather and cloud cover amounts are contained in Appendix A. Many of the same types of trends present in the complete data climatology are also present in the daytime data climatology. For example, the winter continues to have the highest percent occurrence of weather violations with the summer the least. January daytime data has a weather violation percent occurrence of approximately 40% compared to 38% for the complete data climatology. In addition, the summer months of July and August continue to have the least percent occurrence of weather violations at 15-20% compared to 10-15% for the complete data climatology. These slight increases in weather violations during the daytime are probably the result of ceilings and precipitation events.

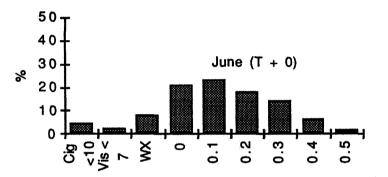
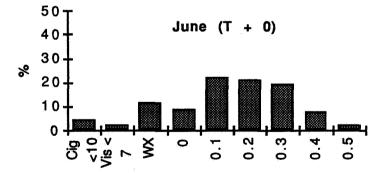



Figure 17. Climatology of weather conditions for June using complete data.

10,000 feet) and the increase in percent occurrence in 0.1-0.3 cloud cover categories as compared to the complete data. This is expected since heating during the daylight hours causes more clouds to develop. This occurs during all months but it is more evident during the summer. For example, during June (Figure 17) the percent occurrence of clear skies (0.0 cloud cover) for the complete

climatology

is

data

Another

characteristic present in the

climatology of the daytime

data is the decrease in the

percent occurrence of clear

skies (0.0 cloud cover below

important

Figure 18. Climatology of weather conditions for June using daytime data.

approximately 20% but for the daytime data climatology the percentage decreases to less than 10% (Figure 18). The increase in cloud cover for the daytime data can be seen in both the 0.2 and 0.3 categories. For the complete data climatology the percent occurrence of 0.3 cloud cover is 15% whereas the percent occurrence of 0.3 cloud cover for the daytime data climatology is 20%.

7.2 Observed Weather Conditions (One and Two hours) Subsequent to Initial Conditions (Monthly - Daytime Data Climatology)

This section discusses the relationship between cloud initial cover amounts and the frequency of a weather condition occurring one and two hours subsequent for the daytime data. Charts containing the percent occurrences of weather conditions given an initial cloud cover amount for the daytime data are contained in Appendix G. In addition, bar charts which display the percent occurrence of weather violations for initial cloud cover amounts of 0.0 to 0.5 are contained in Appendix H.

Trends present in the complete data climatology, for observed conditions one and two hours (T+1 and T+2 hours) subsequent to a given initial condition are also present in the daytime data climatology. For example, for all the cloud cover groupings (0.0 to 0.5) the highest percentages of weather violations occur during the winter and the least occur during the summer. This is because the winter months have a higher frequency of ceiling violations associated with synoptic systems while the summer weather violations are associated with shorter duration showers and thunderstorms. In addition, overall weather violation percentages show similar trends between the two climatologies; however, the daytime data weather violation percentages are slightly higher than the complete data percentages. Also, for all months except January, the total percent occurrence of no weather violation conditions is greater than 80% for cloud cover categories of 0.0 through 0.3.

7.2.1 Persistence

As in the complete data climatology, persistence of weather conditions is a dominating characteristic (see Tables 12 and 13) of the daytime data climatology (see Table 5 for an explanation of the data presented in the persistence tables). The frequency of persistence at one and two hours after a given initial condition is generally about the same for both climatologies. The only exception to this trend is for the initial condition of clear skies (0.0) during the summer. As shown in Table 3, the persistence frequency one hour subsequent to initial conditions of clear skies during August for the complete data climatology is 77%. However, for the daytime data climatology (Table 12) this percentage is only 58%. This lower frequency can probably be attributed to rapidly developing cumulus fields during the heating of the day.

	T	able 12	2. 0	ne Hor	ır P	Persiste	nce	of We	ath	er Con	ditio	ons		
	<u></u>	••••••••••••••••••••••••••••••••••••••			Initia	d Weathe	r Cor	nditions						
T+1 hour Daytime		ather lation		0.0 Cloud Cover		0.1 Cloud Cover		0.2 Cloud Cover		0.3 Cloud Cover		0.4 Cloud Cover		0.5 Cloud Cover
Category	%	Total Count	%	Total Count	%	Total Count	%	Total Count	%	Total Count	%	Total Count	%	Total Count
January	82	754	87	313	66	306	45	187	33	161	28	78	33	61
February	80	630	84	337	58	255	53	175	38	146	38	106	21	43
March	78	610	78	265	65	299	55	238	47	223	40	147	40	78
April	70	432	85	689	63	461	42	191	43	168	35	103	36	56
May	63	413	80	381	65	453	56	387	50	310	43	164	24	62
June	64	418	63	205	66	493	52	467	55	433	39	179	35	55
July	69	405	65	239	59	434	57	491	51	411	36	135	40	55
August	60	349	58	207	62	500	58	498	54	421	36	136	34	59
September	66	330	65	96	61	318	55	470	51	453	46	207	36	76
October	79	724	72	116	66	341	52	304	43	254	40	184	22	92
November	79	521	77	151	69	304	52	225	50	246	38	139	30	64
December	80	576	82	266	72	303	61	213	44	187	36	110	20	50

	Т	able 1.	3. T	wo Ho	ur I	Persist	ence	of We	ath	er Con	diti	ons		
		· · · · · ·		. <u> </u>	Initia	d Weathe	a Cor	nditions		**************************************				
T+2 hours Daytime		ather lation		0.0 Cloud Cover		0.1 Cloud Cover		0.2 Cloud Cover		0.3 Cloud Cover		0.4 Cloud Cover		0.5 Cloud Cover
Category	%	Total Count	%	Total Count	%	Total Count	%	Total Count	%	Total Count	%	Total Count	%	Total Count
January	72	754	81	313	45	306	30	187	23	161	15	78	15	61
February	72	630	76	337	40	255	32	175	17	146	23	106	9	43
March	68	610	68	265	45	299	37	238	29	223	24	147	21	78
April	57	432	78	689	48	461	23	191	24	168	18	103	21	56
May	51	413	70	381	45	453	41	387	34	310	30	164	18	62
June	47	418	42	205	46	493	34	467	37	433	24	179	16	55
July	53	405	44	239	39	434	42	491	34	411	18	135	22	55
August	42	349	37	207	40	500	38	498	36	421	20	136	15	59
September	54	330	50	96	38	318	39	470	36	453	32	207	22	76
October	70	724	63	116	49	341	35	304	30	254	27	184	14	92
November	70	521	64	151	55	304	36	225	36	246	32	139	22	64
December	69	576	74	266	58	302	38	213	32	187	22	110	8	50

7.2.2 Homogeneity Analysis of Initial Conditions of 0.2 and 0.3 Based on All Violations

This section of the report focuses on comparing the percent observed weather violations subsequent (one and two hours later) to initial conditions of 0.2 and 0.3 cloud cover for the daytime data. The sample statistics were computed for the daytime data as were the statistics for the complete data described in Section 6.0. The results of these analyses are summarized in Table 14 (T+1 hour) and Table 15 (T+2 hours).

The results of the chi-square tests for the daytime data are similar to the results for the complete data. Again for most all months, there was a significant difference in the proportions of weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. The only exceptions to this result were for the months of May and October at T+1 and T+2 hours, for January at T+1 hour and April at T+2 hours. The differences were not statistically significant for these cases.

To further test the significance of the months of May and October, additional analyses were performed for each of these months by extending the analysis time one week surrounding each month (i.e., 24 April to 7 June and 24 September to 7 November). This was done to see how sensitive the analysis was to these specific time periods. For May (one week either side), the results indicate the differences in weather violations for both one and two hours to initial conditions of 0.2 and 0.3 cloud cover were not significant. For October, the differences were not significant for only the two hour interval.

Since the differences in the percent weather violations (i.e., all weather violations) for both the complete and daytime data for May were determined not to be statistically significant, the results instill a higher degree of confidence that during this month the 0.2 cloud cover rule is probably overly conservative. Thus, there is some justification for changing the critical cloud cover amount in the cloud cover rule from 0.2 to 0.3 for the month of May. If this modification to the cloud cover rule was instituted, there would be a substantial increase in the number of hourly landing opportunities during May. For May, changing the critical cloud coverage amount from 0.2 to 0.3 would increase the hourly landing opportunities by 14% or approximately 2 hours per day (see Table 16).

Observed	Weather Con	Table	e 14. our Subsequer	nt To Initial C	onditions
Category	Initial Co 0.2 Clou		Initial Co 0.3 Clou	onditions d Cover	Chi Square Test Statistic
Months	Sample Size	Percent Weather Violations	Sample Size	Percent Weather Violations	Critical value = 3.841 at $\alpha = 0.05$
January	187	10.16	161	14.91	1.80
February	175	3.43	146	14.38	12.40*
March	238	5.46	223	10.76	4.38*
April	191	5.24	168	13.10	6.80*
May	387	8.01	310	8.38	0.03
June	467	5.57	433	11.55	10.39*
July	491	4.07	411	13.63	26.46*
August	498	4.82	421	10.45	10.56*
September	470	4.26	453	9.05	8.59*
October	304	9.35	254	13.00	2.88
November	225	4.00	246	9.76	5.98*
December	213	3.76	187	11.76	9.21*
Expanded Months	510	7.00	150	7.04	0.24
May (4/24 to 6/7)	513	7.02	459	7.84	0.24
October (9/24 to 11/7)	466	6.44	403	11.91	7.92*

* Indicates the proportions of weather violations for the two samples are statistically different.

Observed	Weather Cond	Table	e 15. ours Subseque	nt To Initial C	Conditions
Category	Initial Co 0.2 Clou		Initial Co 0.3 Clou	onditions d Cover	Chi Square Test Statistic
Months	Sample Size	Percent Weather Violations	Sample Size	Percent Weather Violations	Critical value = 3.841 at $\alpha = 0.05$
January	187	11.76	161	22.36	6.99*
February	175	6.86	146	19.18	11.08*
March	238	8.82	223	15.25	4.52*
April	191	11.52	168	14.88	0.89
May	387	9.04	310	11.61	1.24
June	467	10.49	433	16.86	7.77*
July	491	8.35	411	18.98	22.07*
August	498	7.43	421	16.86	19.58*
September	470	5.96	453	12.80	12.80*
October	304	11.84	254	14.17	0.67
November	225	7.56	246	14.63	5.90*
December	213	7.98	187	16.04	6.24*
Expanded Months May (4/24 to	513	8.97	459	10.89	1.01
6/7) October (9/24 to 11/7)	466	9.66	403	13.90	3.78

* Indicates the proportions of weather violations for the two samples are statistically different.

			Table 16.			
	Percent (Occurren	ces of 0.2 an	d 0.3 Clo	oud Cover	
	0.2	2	0.3	3	1	
Month	0.2 Count	2%	0.3 Count	3 %	Total Cts	Total %

* Statistics based on Daylight hours possible for May.

7.2.3 Statistical Analysis of Initial Conditions of 0.2 and 0.3 Based on Ceiling and Precipitation Violations Only

Since the 0.2 cloud cover rule was written to guard against the development of cloud ceilings below 10,000 feet after de-orbit burn decisions, the homogeneity test was used to analyze the data based on the condition that weather violations only included ceiling and precipitation violations.. This includes any time when a ceiling or precipitation weather violation is occurring at X68. It essentially eliminates visibility and cross-wind violations. Tables 17 and 18 show the chi-square results for May and October. The results of the statistical analysis have shown there is no significant difference between weather violations subsequent to 0.2 and 0.3 initial cloud cover for May daytime data. However, the results for October indicate that there are significant differences between to 0.2 and 0.3 initial cloud cover. The only exception to this finding was for October (all hours) when the chi-square analysis did not show a significant difference between the weather violations for 0.2 and 0.3 initial cloud cover for T+2 hours.

Table 17. Observed Weather Conditions One Hour Subsequent To Initial Conditions (Based on Ceiling and Precipitation Violations Only)										
Category	Initial Co 0.2 Clou	onditions d Cover	Initial Co 0.3 Clou	Chi Square Test Statistic						
	Sample Size	Percent Weather Violations	Sample Size	Percent Weather Violations	Critical value = 3.841 at $\alpha = 0.05$					
Category May October	368 296	3.26 4.73	302 242	5.96 9.09	2.83 4.06*					
Expanded Months May (4/24 to 6/7) October (9/24 to 11/7)	491 453	2.85 3.75	446 389	5.16 8.74	3.27 9.15*					

Table 18. Observed Weather Conditions Two Hours Subsequent To Initial Conditions (Based on Ceiling and Precipitation Violations Only)										
Category	Initial Co 0.2 Clou	Chi Square Test Statistic								
	Sample Size	Percent Weather Violations	Sample Size	Percent Weather Violations	Critical value = 3.841 at $\alpha = 0.05$					
Category May October	371 291	5.12 7.90	298 246	8.05 11.38	2.36 1.88					
Expanded Months May (4/24 to 6/7) October (9/24 to 11/7)	494 451	5.46 6.65	442 391	7.47 11.25	1.56 5.53*					

8.0 Climatology of Surface Conditions Categorized by Upper-Air Data

This section will summarize the results of analyses based on categorizing the data (all hours of the day and night) by upper-air wind direction sector. The wind sectors have been defined to match the sectors used by Ronald Holle (2) in his analysis of total area divergence over the KSC/CCAFS area. The sectors have been defined as north (339° to 023°), northeast (024° to 113°), southeast (114° to 158°), south (159° to 203°), southwest (204° to 293°), and northwest (294° to 338°). It was decided to use these sectors since Holle's research indicated a significant correlation between wind flow at these levels and the occurrence of thunderstorms during the warm season (May through September) at KSC. In addition, for simplicity, it was decided to apply these sectors to other times of the year as well.

The data used for this categorization was the early morning rawinsonde release from the Cape Canaveral Air Force Station (CCAFS) for the period 1986-90. To simplify the analysis process, this data was assumed to be representative of wind flow characteristics over the 24-hour period centered at 1200 UTC. It must be noted that this analysis procedure does introduce some error since the winds can change significantly over a 12-hour period especially during rapidly changing synoptic conditions. The analyses discussed in the following sections are based on categorizing the weather conditions at X68 by 850 mb and 700 mb wind direction.

Key results from these analyses are:

- Climatology based on 850 mb and 700 mb (approximately 5,000 and 10,000 feet respectively) wind direction categorizations.
 - •• South and southwest wind sectors for both 700 mb and 850 mb have highest percent occurrence of weather violations (25% to 30%).
 - •• Clear skies (0.0 cloud cover) have highest frequency of occurrence for north and northwest wind sectors, and the lowest frequency of occurrence for northeast and southeast winds.
 - •• Northeast, southeast, and southerly wind sectors have the highest percent occurrences of 0.1 to 0.3 cloud cover.
- Observed Weather Conditions (One and Two hours) Subsequent to Initial Conditions.
 - •• For initial cloud cover amounts of 0.1 through 0.5, the highest percent occurrences of weather violations occur with a southwest wind.
 - •• Given initial conditions of cloud cover amounts from 0.0 to 0.3, persistence of the initial condition is the dominating characteristic of the subsequent weather conditions.
 - •• No significant difference between the percent occurrence of weather violations given 0.2 and 0.3 initial cloud cover for the 700 mb north wind sector.

8.1 Climatology of Upper-Air Wind Direction

This section will discuss the climatology of the hourly surface observation data categorized by 850 mb and 700 mb wind direction according to wind sectors used by Ronald Holle. Figures illustrating the percent occurrence of weather conditions for this data are contained in Appendix A.

As shown in Figures 19 and 20, the south and southwest wind sectors for both 850 mb and 700 mb have the largest frequency of weather violation occurrence (approximately 25% to 30%). These wind regimes are generally associated with cloud and precipitation events which advect over X68 from the mainland. Also, most of these weather violations are probably associated with summertime showers and thunderstorms, but some are related to wintertime frontal systems moving west to east across the state. There is also a minor peak in percent occurrence of weather violations (22%) for the northeast wind sector for 850 mb. This peak is probably reflecting the stratus and stratocumulus cloud events which advect in from the ocean during the cooler months of the year, especially during the fall and early winter. The lowest percent occurrence of weather violations occur with a northerly or southeasterly wind direction (15% to 20%).

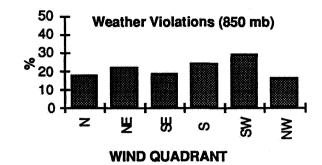


Figure 19. Percent occurrence of weather violations for 850 mb wind sectors.

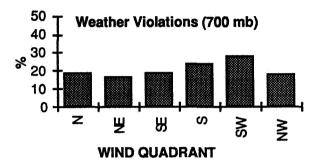


Figure 20. Percent occurrence of weather violations for 700 mb wind sectors.

Another important feature evident in the climatology of weather conditions for the northwest wind sector at 850 mb (see Figure 21) is the high percent occurrence of clear skies (0.0 cloud cover less than 10,000 ft.). Similar results were found for the north wind sector at 850 mb and the north and northwest wind sector at 700 mb. These results are not surprising since a shift to a north or northwest flow often indicates a frontal system has passed bringing drier air to the KSC region. This would substantially reduce the chances of precipitation and ceiling violations at X68. The results also indicate the northeast, southeast (see Figure 22), and south wind sectors have lower percent occurrences of clear skies (0.0 cloud cover less than 10,000 ft.) than the southwest wind sector (see Figure 23). In addition, the highest percent occurrence of clouds in the 0.1-0.3 categories occur with northeast, southeast, and southerly winds. These results are probably related to low-level moisture being available for cloud formation with onshore wind components.

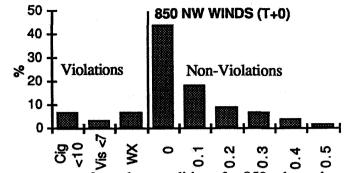


Figure 21. Percent occurrence of weather conditions for 850 mb northwest wind sector.

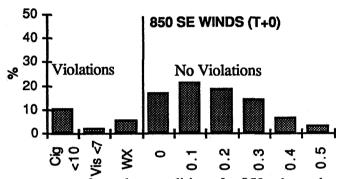


Figure 22. Percent occurrence of weather conditions for 850 mb southeast wind sector.

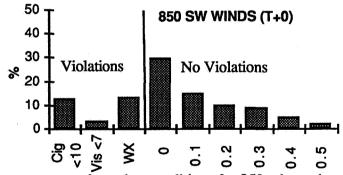


Figure 23. Percent occurrence of weather conditions for 850 mb southwest wind sector.

8.2 Observed Weather Conditions (One and Two hours) Subsequent to Initial Conditions (850 mb and 700 mb)

This section discusses the relationship between initial cloud cover amounts and the probability of a weather violation occurring one and two hours subsequent for the surface observation data base categorized by 850 mb and 700 mb wind direction. Charts containing the percent occurrences of weather conditions given an initial cloud cover amount are contained in Appendix I.

The data indicate the southwest wind sector has the highest percent occurrence of weather violations for initial cloud cover amounts of 0.1 to 0.5. In addition, for initial cloud cover amounts of 0.0 to 0.3, the frequency of occurrence of a no weather violation condition for T+1 and T+2 hours is at least 80% for all wind sectors. The frequency of no weather violation conditions decreases to 60% and 70% for cloud cover amounts of 0.4 and 0.5.

8.2.1 Persistence

As discussed in preceding sections, persistence of initial weather conditions one and two hours into the future is a dominant feature for upper-level wind data categorizations. This is easily seen from the charts in Appendix I and in condensed form in Tables 19 and 20 (see Table 5 for an explanation of the data presented in the persistence tables).

There are several important characteristics in the persistence of weather conditions at X68 (Tables 19 and 20). First, for all of the upper-level wind direction categorizations, the percent occurrence of a weather violation persisting for one or two hours is at least 65%. The percent occurrence of a weather violation persisting is highest with a southwesterly wind and slightly lower with onshore wind sectors (i.e., northeast, southeast). In addition, for clear skies (0.0 cloud cover below 10,000 ft.) the highest occurrence of persistence (75%-85%) is with offshore wind components (i.e., northeast, southeast). For cloud categories of 0.1 to 0.3, percent occurrence of persistence are very similar for most wind direction categorizations. However, percent occurrence of persistence for offshore (westerly flow) wind components are slightly lower (5%-8%) than onshore (easterly flow) wind components.

Although the data from most of the wind sectors indicate the predominant characteristic is persistence, there is a least one exception to this trend. For example, for the 850 mb northwest wind sector (Figure 24) with an initial cloud cover of 0.2, the most frequent weather condition at T+2 hours is 0.1 cloud cover and not 0.2 cloud cover. This same pattern exists for initial cloud cover amounts of 0.3 and 0.4 for 850 mb northwest flow. These results appear to be related to improving weather conditions with 850 mb northwest flow.

	Table 19. One Hour Persistence of Weather Conditions													
					Initia	d Weathe	r Cor	nditions			- indi	<u>adin i de la de</u>	·	
700 mb & 850 mb	Weather Violation		0.0 0.1 Cloud Cloud Cover Cover		0.2 Cloud Cover					0.4 Cloud Cover	ud Cloud			
Category	%	Total Count	%	Total Count	%	Total Count	%	Total Count	%	Total Count	%	Total Count	%	Total Count
700 NE	73	962	77	1137	61	1210	53	1061	48	828	36	416	20	146
700 SE	76	481	75	453	64	521	53	452	49	369	44	193	31	75
700 S	77	965	75	726	61	749	51	680	45	513	34	249	34	126
700 SW	80	5527	81	5500	57	3055	47	2175	43	1825	35	1039	29	510
700 NW	79	925	85	1859	64	974	49	572	40	361	31	208	30	117
700 N	71	569	82	841	59	550	46	399	44	329	29	193	35	119
850 NE	76	2042	78	1870	61	1771	53	1552	45	1164	33	635	34	326
850 SE	76	951	73	861	61	1090	52	958	47	745	36	351	32	180
850 S	74	1211	73	934	59	918	52	839	45	604	41	328	28	134
850 SW	80	4470	82	4593	55	2255	44	1531	42	1392	32	763	31	379
850 NW	77	637	88	1678	62	694	44	344	42	263	37	150	27	74
850 N	79	447	86	934	65	506	50	272	43	177	36	119	22	41

	Table 20. Two Hour Persistence of Weather Conditions													
	Initial Weather Conditions													
700 mb & 850 mb		ather lation		0.0 Cloud Cover		0.1 Cloud Cover		0.2 Cloud Cover		0.3 Cloud Cover		0.4 Cloud Cover		0.5 Cloud Cover
Category	%	Total Count	%	Total Count	%	Total Count	%	Total Count	%	Total Count	%	Total Count	%	Total Count
700 NE	63	962	65	1137	45	1210	37	1061	36	828	24	416	12	146
700 SE	66	481	60	453	48	521	36	452	31	369	28	193	16	75
700 S	66	965	62	726	43	749	33	680	29	513	23	249	17	126
700 SW	70	5527	71	5500	39	3054	32	2175	27	1825	21	1039	13	510
700 NW	67	925	77	1859	50	974	31	572	23	361	21	208	22	117
700 N	60	569	72	841	44	550	32	399	24	329	19	193	28	119
850 NE	68	2042	66	1870	44	1771	38	1552	32	1164	23	635	22	326
850 SE	64	951	59	861	45	1090	37	958	30	745	25	351	20	180
850 S	63	1211	61	934	43	918	34	839	30	604	27	328	16	134
850 SW	70	4470	71	4593	38	2254	28	1531	27	1392	19	763	15	379
850 NW	65	637	81	1678	47	694	26	344	21	263	18	150	9	74
850 N	68	447	77	934	49	506	35	272	28	177	19	119	15	41

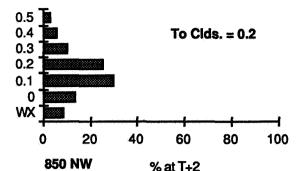


Figure 24. Percent occurrence of cloud cover and weather conditions at two hours after an initial condition of 0.2 cloud cover for 850 mb Northwest wind sector.

8.2.2 Homogeneity Analysis of Initial Conditions of 0.2 and 0.3 Cloud Cover

This section of the report focuses on comparing the percent observed weather violations subsequent (one and two hours later) to initial conditions of 0.2 and 0.3 for each of the 850 mb and 700 mb wind categories. The sample statistics for these categorizations were computed as were the statistics for the complete

data described in Section 6.0. The results of these analyses are summarized in Table 21 (T+1 hour) and Table 22 (T+2 hours).

Most of the differences in the percent weather violations are statistically significant for all of the 850 mb and 700 mb wind sectors. However, there are a few instances where the differences are not statistically significant. The differences in the frequency of occurrence of weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover are not significant for north winds at 700 mb. In addition, for T+2 hours the differences for southeast wind at 700 mb and north and northwest wind at 850 mb are not significant. Also, the change in percent occurrence of weather violations of 0.2 and 0.3 cloud cover (Tables 21 and 22), are just about the same (approximately 5%).

Based on these results, there is some statistical evidence which suggests the 0.2 rule may be overly conservative for 700 mb northerly flow. However, due to the potential errors involved in applying the 1200 UTC CCAFS daily sounding to a 24-hour period, further analysis needs to be performed using higher temporal resolution frequent wind data. It is suggested that data from the wind profiler could be used for such a study.

Table 21. Observed Weather Conditions One Hour Subsequent To Initial Conditions										
Category	Initial Co 0.2 Clou	onditions d Cover	Initial Co 0.3 Clou	Chi Square Test Statistic						
Wind Direction Sectors	Sample Size	Percent Weather Violations	Sample Size	Percent Weather Violations	Critical value = 3.841 at $\alpha = 0.05$					
700 NE	1061	4.35	828	7.97	11.02*					
700 SE	452	3.32	369	6.50	4.56*					
700 S	680	4.85	513	13.06	25.65*					
700 SW	2175	6.94	1825	13.64	49.52*					
700 NW	572	4.55	361	8.31	5.56*					
700 N	399	6.01	329	9.42	3.00					
850 NE	1552	5.41	1164	9.02	13.38*					
850 SE	958	3.34	745	8.05	18.22*					
850 S	839	6.20	604	14.40	27.17*					
850 SW	1531	7.38	1392	14.01	33.98*					
850 NW	344	4.94	263	9.13	4.14*					
850 N	272	2.94	177	7.91	5.68*					

Table 22. Observed Weather Conditions Two Hours Subsequent To Initial Conditions										
Category		onditions d Cover	Initial Co 0.3 Clou	Chi Square Test Statistic						
Wind Direction Sector	Sample Size	Percent Weather Violations	Sample Size	Percent Weather Violations	Critical value = 3.841 at $\alpha = 0.05$					
700 NE	1061	6.31	828	9.78	7.75*					
700 SE	452	6.19	369	8.13	1.16					
700 S	680	10.29	513	18.32	15.90*					
700 SW	2175	12.18	1825	20.27	48.63*					
700 NW	572	7.52	361	11.91	5.11*					
700 N	399	9.27	329	12.76	2.27					
850 NE	1552	8.76	1164	11.08	4.06*					
850 SE	958	5.22	745	13.42	35.11*					
850 S	839	10.61	604	11.36	31.64*					
850 SW	1531	13.46	1392	19.98	22.41*					
850 NW	344	9.30	263	14.07	3.36					
850 N	272	4.78	177	8.47	2.50					

* Indicates the proportions of weather violations for the two samples are statistically different.

۰.

9.0 Nomograms

To assist SMG and CCFF forecasters, nomograms have been developed for use by forecasters in making cloud cover forecasts for EOM and RTLS at KSC. Also, a climatology of weather violations by month vs. groups of hours was developed for SMG and CCFF forecasters as well as STS managers. This tool provides guidance on the best time to land the shuttle from a climatological standpoint.

Appendix J presents charts which contain climatological information for percent occurrence of weather violations by month and hour. Several important features, which have been noted in other sections of this report, can be seen in these charts. These are:

- Fall and winter months have the highest percent occurrence of weather violations (30%-40%) while the summer months have the lowest percent occurrence (10-15%).
- Peak in percent occurrence of weather violations occurs near sunrise (1100-1300 UTC).
- The percent occurrence of weather violations is a local minimum in late morning (1400-1600 UTC).
- The percent occurrence of weather violations increases during late afternoon hours (1800-2200 UTC).
- Early nighttime hours (0100-0600 UTC) have the lowest percent occurrence of weather violations of the day.

The nomograms have been developed from analysis of the observed weather conditions one and two hours subsequent to initial conditions to enhance the forecaster's understanding of cloud cover trends. Appendix K contains the nomograms for the percent occurrence of all weather violations for a given initial cloud cover by month and groups of hours. Appendix L contains the nomograms for the percent occurrence of ceiling and precipitation weather violations only for a given initial cloud cover by month and groups of hours. The nomograms also give the total number of occurrences for each data categorization (month by 6-hour group). This provides the user with an indication of the frequency of the phenomenon. As an example (see Appendix K), for the 0900-1400 UTC period during October with an initial condition of 0.2 cloud cover, the percent occurrence of weather violations is 12% for T+1 hour but increases to 21% for T+2 hours. For both of these categories there were 111 cases of initial cloud cover of 0.2. The nomograms for initial cloud cover of 0.0 to 0.5 will be made available to both SMG and CCFF forecasters via Meteorological Interactive Display System (MIDDS) and hard copy.

52

10.0 Summary and Conclusions

This section will briefly summarize the results of the analysis of the two-tenths cloud cover data base. In addition, future work areas including a brief description of how artificial neural network (ANN) technology could be applied to the short-term EOM forecast problem at the Shuttle Landing Facility will be presented.

10.1 Summary

The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings at KSC states: "for scattered cloud layers below 10,000 feet, cloud cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go decision time (approximately 90 minutes before landing time)". This rule was designed to protect against a ceiling (below 10,00 feet) developing unexpectedly within the next 90 minutes (i.e., after the de-orbit burn decision and before landing). In order to test the validity of this rule, the AMU developed a database of cloud cover amounts and weather conditions at the Shuttle Landing Facility (X68) for a five-year (1986-1990) period. Once this database was completed a comprehensive statistical and climatological analysis was performed on the data. The data analysis included both a climatology of the surface observations and observed conditions one and two hours subsequent to given initial conditions. For both analyses the data were categorized by month, season, time of day, daytime hours only, and surface and upper-air wind direction. A summary of these results are presented in Sections 10.2 and 10.3. In addition, as a result of these analyses, the AMU developed nomograms to help SMG and CCFF forecast cloud cover for EOM and RTLS at KSC.

10.2 Analysis of Landing Opportunities

Based upon the climatological analysis of the hourly data, several recommendations can be made regarding the best and worst times to land the shuttle at KSC. These times, along with their corresponding percent occurrence of no STS landing weather violations, are listed in Table 23. The climatological data indicate the best time of the year to land the shuttle at KSC is during the summer (80%-85% opportunity) while the worst time is during the winter (65% opportunity). When the data are categorized by time of day, the analysis has shown the highest frequency of landing opportunities occurs for the 0100-0600 UTC (80%-85% opportunity) and 1300-1600 UTC (75% opportunity) time periods. In fact, the frequency of landing opportunities exceeded 90% for many of the spring and summer months for the 0100-0600 UTC period. The worst time of the day to land a shuttle is near sunrise (1100-1300 UTC) and during the afternoon (1700-2100 UTC). For both of these time periods, the frequency of landing opportunities is approximately 60 to 70%. It is important to note that near sunrise for the months of December to February the frequency of

landing opportunities is only 50%. These low percentages are generally associated with fog and stratus which occur more frequently during the winter in the early morning hours. The decrease in landing opportunities during the afternoon are associated with the development of cloudiness and convective type precipitation events especially in the warmer months of the year.

By categorizing the data by surface wind direction, analysis of the data indicates the highest frequency of landing opportunities occur with a southeasterly or southerly wind flow (85% opportunity) while the lowest are associated with a northwesterly or northerly wind component (65%-70% opportunity). For upper-level wind direction (850 mb and 700 mb), most wind sectors have frequency of landing opportunities of 80%. However, for both 850 mb and 700 mb, the wind sector with the lowest landing opportunity (approximately 70%) is southwest.

Table 23. STS Landing Opportunities							
Category	%	Category	%				
May-August	80-85	December - February	65				
1400-1600 UTC	75	1100-1300 UTC	60-70				
0100-0600 UTC	80-85	1700-2100 UTC	70				
S & SE Surface winds	85	N & NW Surface winds	65-70				
· · · · · · · · · · · · · · · · · · ·		SW 850 mb & 700 mb winds	70				

10.3 Evaluation of Two-tenths Cloud Cover Rule

One of the major goals of this study was to determine the validity of the 0.2 cloud cover rule for all stratifications of the data (i.e., seasons, months, time of day, wind direction, etc.). To address this question, analyses in this report (Section 6.0, 7.2.2, 7.2.3, and 8.2.2) focused on comparing the percent of observed weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover below 10,000 feet at X68. These comparisons were performed by using chi-square tests for homogeneity to determine if the percent of weather violations subsequent to the two different initial conditions are the same.

Statistical tests were performed between 0.2 and 0.3 initial cloud cover for all data categorizations (i.e., seasons, months, time of day, daytime only, surface and upper-air wind direction). For the majority of these data categorizations there is a significant difference in the proportions of weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3

cloud cover. However, for a few categories the statistical analysis has shown some evidence that the 0.2 critical cloud amount might be changed to 0.3 These categories included the entire months of May and October, and hours 1500 and 1600 UTC, (all months), and 700 mb northerly winds (all hours, all months). However, before these recommendations can be made further investigation will be required once the two tenths cloud cover data base is updated.

If the rule change was made, the question then arises, "How many more landing opportunities will occur for KSC landings?". To answer this question, a comparison of landing opportunities (i.e., no weather constraint violations) using both a 0.2 and 0.3 cloud cover rule is shown in Table 24. The current 0.2 rule assumes landing opportunities for initial cloud cover of 0.0 to 0.2 while a 0.3 rule would mean landing opportunities for initial cloud cover of 0.0 to 0.2 while a 0.3 rule would mean landing opportunities for initial cloud cover of 0.0 to 0.3. Changing to a 0.3 cloud cover rule for each of these categories will increase the number of landing opportunity hours by approximately 60-70 hours per year per category (Table 24). The largest increase in hourly opportunities occurs during May with about 80 hours per year. Even though the number of hours are not large, they could result in additional landings at the SLF.

Ta	Table 24. Comparison of 0.2 and 0.3 Cloud Cover Rules (All hours)									
	0.2 Ru	e (0.0-0.2)	0.3 Ru	le (0.0-0.3)						
Category	Good Landing Hours	Percent of Total Hours	Good Landing Hours	Percent of Total Hours	Hour Change (5-year period)	Total Hours (5-year period)				
May	2411	65	2826	75	415	3720				
October	1716	46	2094	56	378	3720				
700 mb North	1790	60	2119	71	329	3000				
1500 UTC	834	46	1123	62	289	1826				
1600 UTC	785	43	1121	61	336	. 1828				

10.4 Suggestions for Future Work

Based upon the analysis of the two-tenths cloud cover database, we recommend three specific areas for future work. These are:

• Develop a proof of concept artificial neural network (ANN) to produce a probabilistic estimation of a constraint violation for the shuttle landing forecast. The final product could be used as a forecast tool or aid.

- Update the two tenths cloud cover database to include data beyond 1990.
- Re-examine the data to determine whether the 0.2 cloud cover rule could be relaxed for the following categories.
 - May,
 - October,
 - 1500 UTC
 - 1600 UTC, and
 - 700 mb northerly wind.

Each of these future work areas is discussed below.

This study has associated the probability of landing constraints with varying amounts of cloud cover (below 10,000 feet) for different types of the day, year, and for various surface and upper-air flow regimes. In order to take full advantage of the potential landing opportunities which are delineated in this report, new short term local forecasting methods, which can better analyze the current conditions, their interactions, and how those interactions are likely to affect the short term (one to two hours) forecast, must be implemented. Artificial neural networks have shown tremendous potential in the area of pattern recognition and data association and have already been applied to thunderstorm forecasting by the National Severe Storms Forecast Center. They have been particularly successful compared to other statistical techniques when the input data are highly correlated or contain significant amounts of missing values, or when the system is highly non-linear.

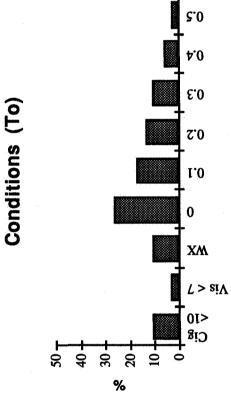
Artificial neural networks can easily be applied to predicting constraint violations for the EOM mission landing. As a result of this study, there are more than sufficient amounts of training and testing data already available in the AMU for developing a neural network for predicting constraint violations. The input data, consisting of current weather conditions, time of day and year, flow conditions, etc., are highly correlated. An artificial neural network would be able to analyze the interactions between the input data and predict whether or not a constraint violation would occur. Additional information on the basics of ANN and how they have been applied to various types of problems can be found in Appendix M.

A single neural network for predicting the probability of landing constraint violations could use single point forecasting information from station X68 as inputs and the type(s) of violations (if any) existing at the forecast valid time as outputs. The X68 data for training and testing the neural network is already available as a result of this study. The input data would consist of past and current surface weather conditions reported by X68 as well as past and current rawinsonde data. Including both past and current surface weather conditions in the input buffer allows the artificial neural network to take into account temporal relations between input data and the probability of violations. After initial prototype development, the neural network could be enhanced by including additional input data sources such as surface observations from surrounding stations and forecast grid data. This would allow the ANN to take into account both temporal and spatial relations.

A proof of concept artificial neural network should be developed which can predict whether or not there will be a constraint violation at the 90 minute forecast time using current weather conditions as input. The output of the neural network could aid the forecasters in their decision making as are outputs from other numerical models.

In order to enhance the two-tenths cloud cover database, we recommend that it be continually updated with current data. This would include incorporating X68 surface observations from NCDC as well as CCAFS rawinsonde data. In addition, cloud amounts below 10,000 feet at X68 would be extracted from Forms 10a and 10b and input into the database.

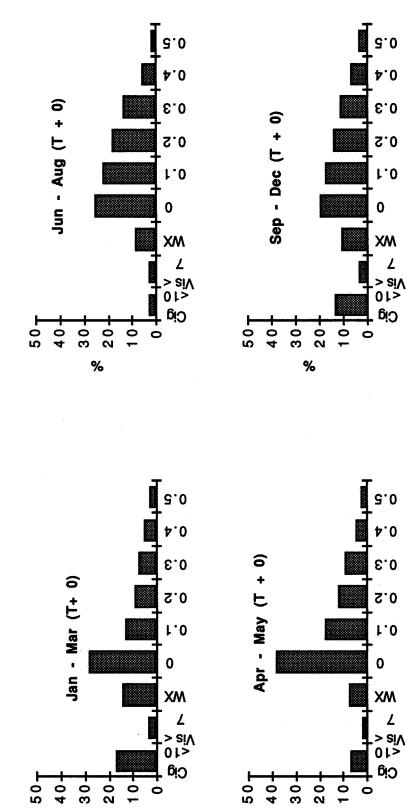
Finally, as noted in Section 10.3, there was some evidence that the 0.2 critical cloud amount might be changed to 0.3 for several categories. However, additional investigation would be required to determine if these recommendation should be made. Thus, once the two-tenths database has been updated, we recommend the data for May, October, 1500 UTC, 1600 UTC, and 700 mb northerly winds be analyzed to address whether the 0.2 cloud cover rule could be changed for these categories.


11.0 References

- (1) Johnson Space Center Flight Rules, paragraph 4-64, I.D., page 4-58.
- (2) Holle, Ronald L., A. I. Watson, R. E. Lopez, K. W. Howard, R. Ortiz, L. Li, Meteorological Studies To Improve Short-Range Forecasting Of Lightning / Thunderstorms Within The Kennedy Space Center Area, Final Report, March 1992, National Severe Storms Laboratory, NOAA, Boulder, Colorado.
- (3) Weather -Meteorological Handbook, Eastern Space and Missile Center Pamphlet 105-1, Department of the Air Force Eastern Space and Missile Center, 20 January 1989.
- (4) McCann, Donald W., A Neural Network Short-Term Forecast of Significant Thunderstorms, September 1992, Weather and Forecasting, 7, 525-534.
- (5) Bounds, David G. and Bruce G. Mathew, 1990: A Comparison of Neural Network and Other Pattern Recognition Approaches to the Diagnosis of Low Back Disorders. *Neural Networks*, 3(5), 583-591.
- (6) Silverman, Ronald H. and Andrew S. Noetzel, 1990: Image Processing and Pattern Recognition in Ultrasonograms by Backpropagation. *Neural Networks*, **3**(5), 593-603.
- Rayburn, Daniel B. et al, 1991: Identification of Mediator Specific Cardiovascular Waveforms Using a Back Propagation Neural Network. *Neural Networks*, 4(4), 525-530.
- (8) _____,1992: Technology: Neural Networks Track Footsie Worth Watching. Financial Times, November 6, p. 20.

APPENDIX A

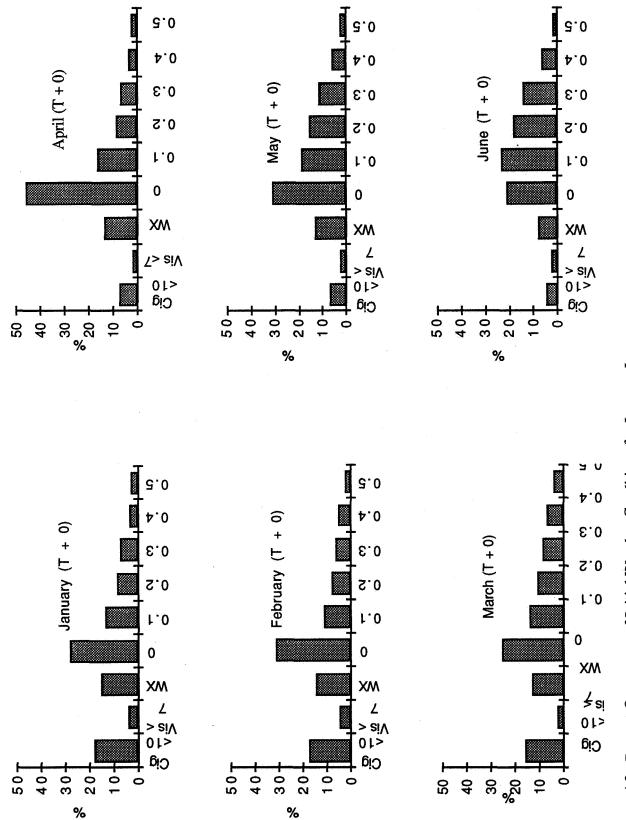
INITIAL WEATHER CONDITIONS (To)

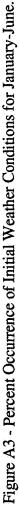

This Appendix contains figures that show the initial weather conditions for various categories of data (i.e., month, season, hours, wind quadrant). For Figures A1-A10 the weather conditions are on the x-axis while percentage of occurrence are on the y-axis. The 0.0, 0.1, ... 0.5 columns represent the amount of clouds (tenths) below 10,000 feet with no other weather violations, while Vis < 7 shows the percentage when only the visibility is less than 7 nautical miles. In most cases, Vis < 7 contains mostly fog occurrences with a few haze reports. The Cig < 10 column contains the cases when there is a ceiling less than 10,000 feet (i.e., \geq 0.6). The remainder of the weather violations are contained in the column "WX" (i.e., precipitation, cross-wind, or a combination of one or more violations).

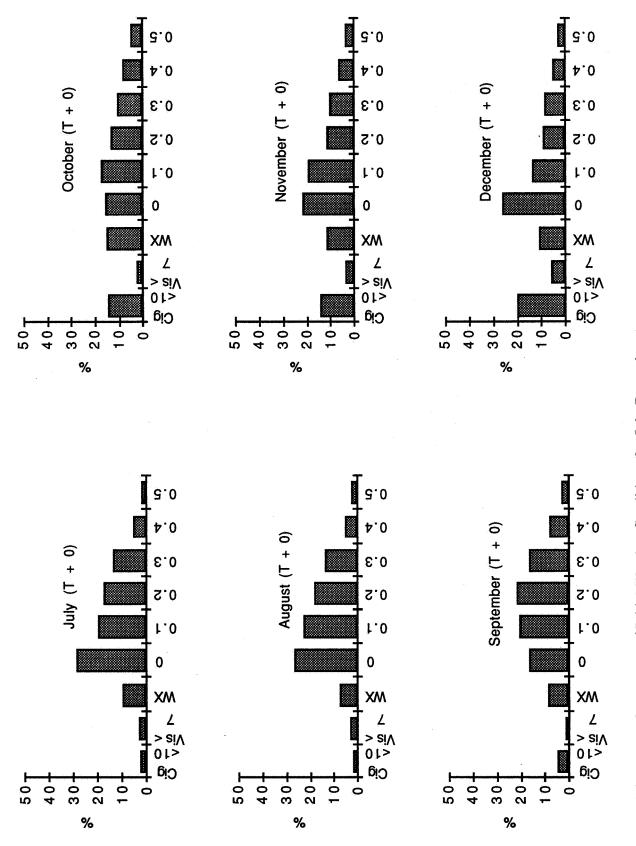
All Hours 1986-90 Initial

Figure A1 - All Hours View of Percent Occurrence of Initial Weather conditions .

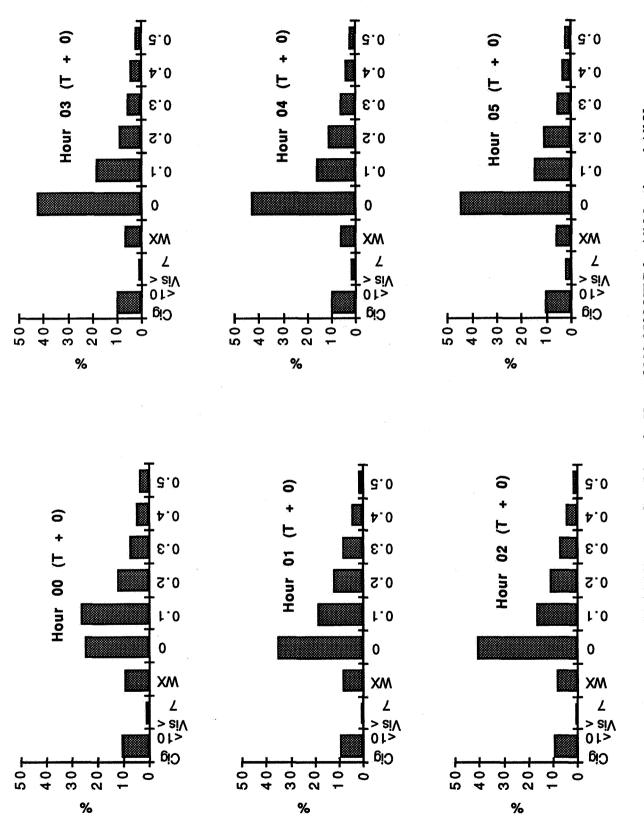
A-1




%


%

A-2



A-3

١

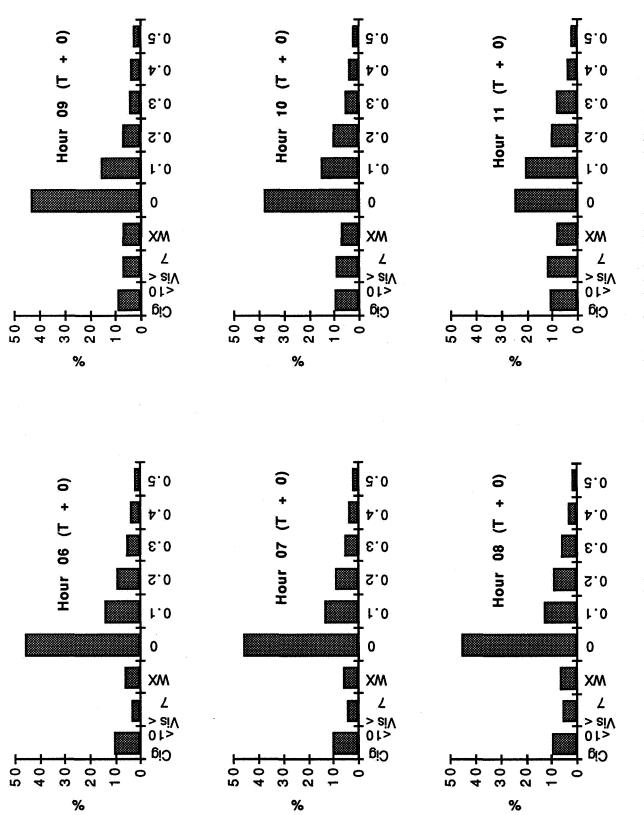
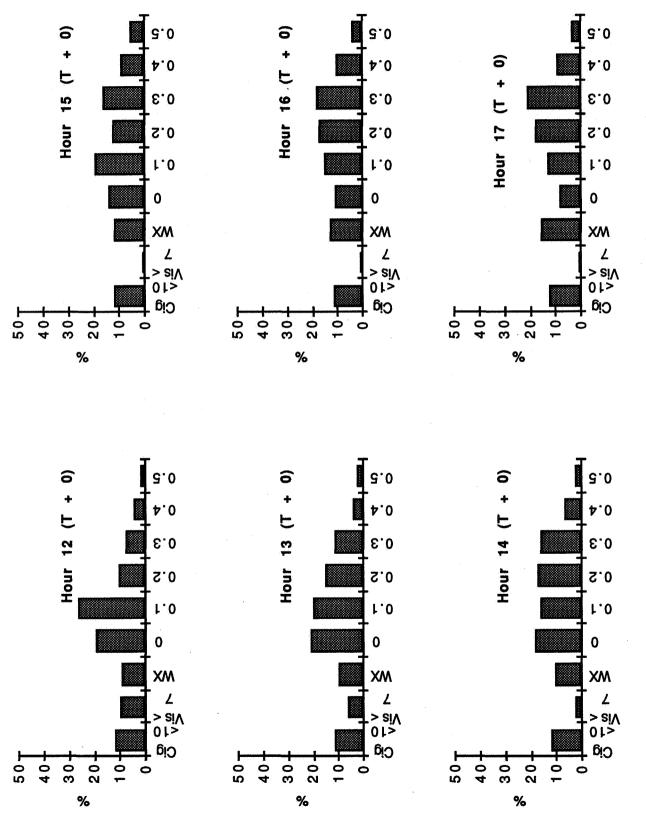



Figure A6- Percent Occurrence of Initial Weather Conditions for Hours 0600-1100 UTC for All Months and All Years.

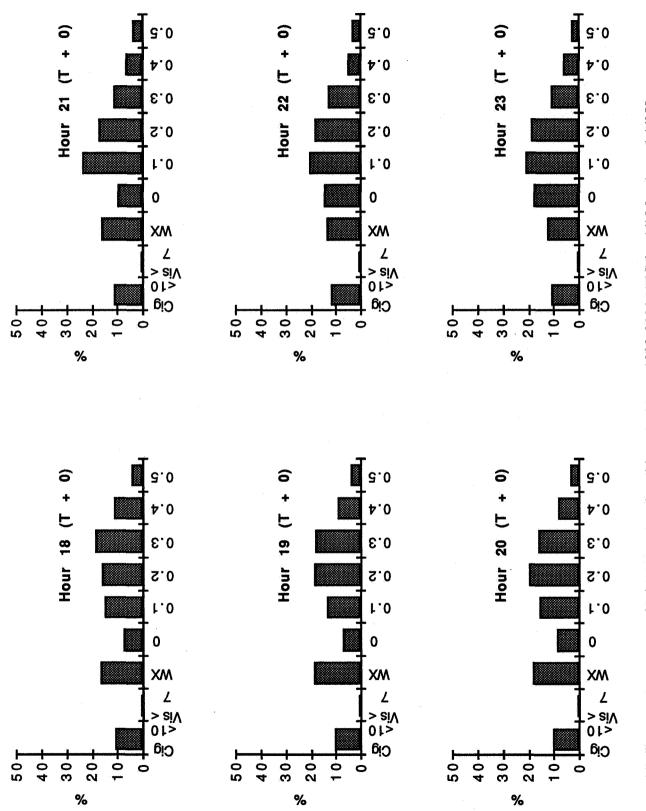
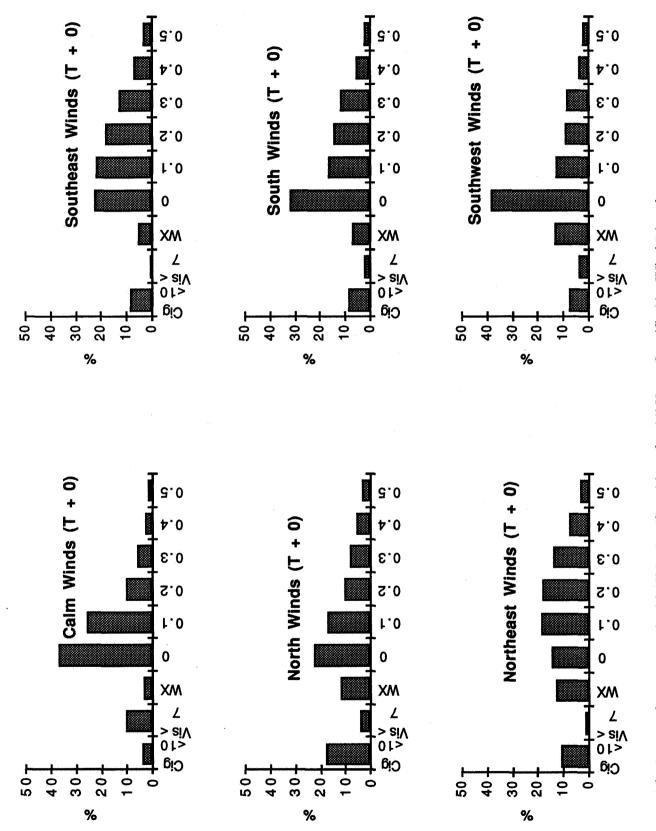
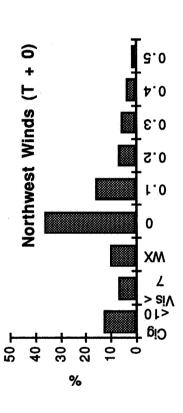
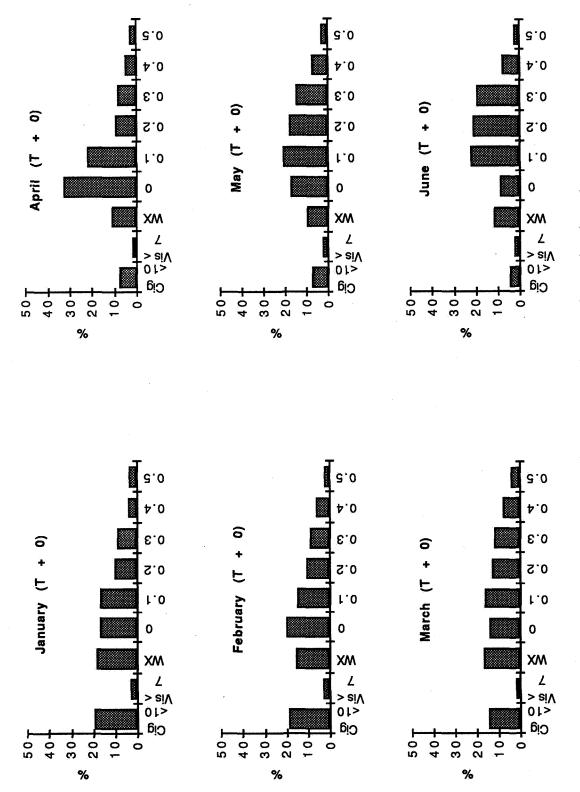
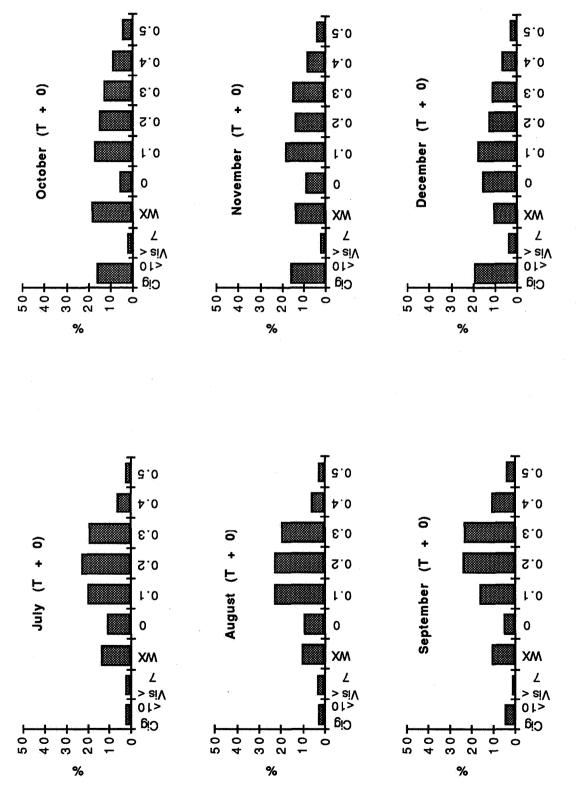
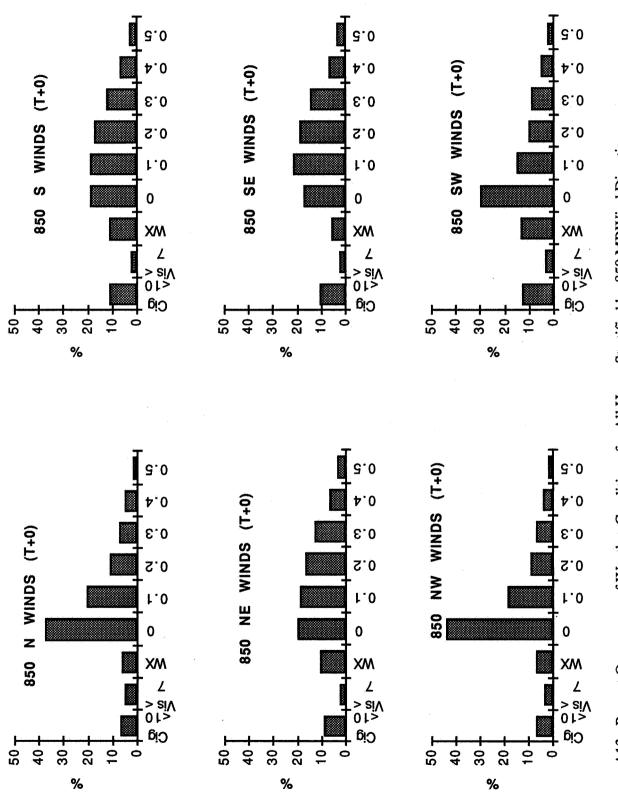
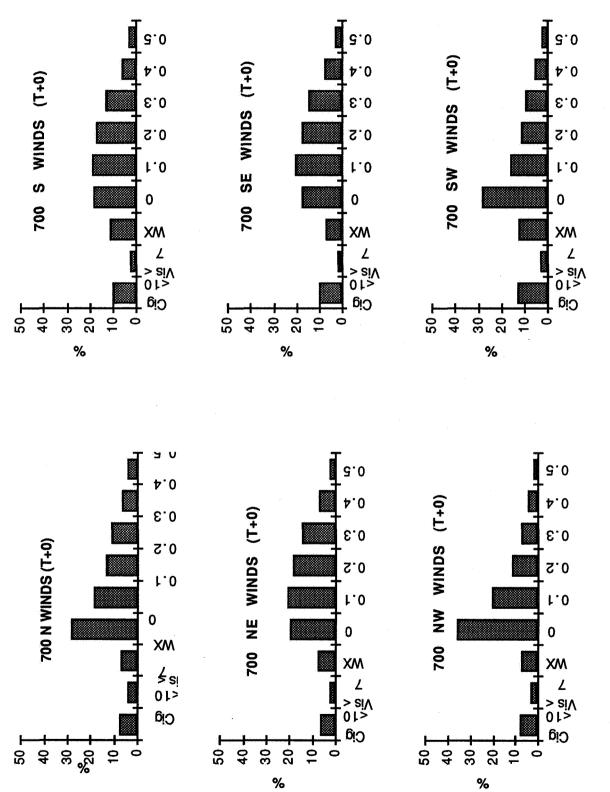



Figure A8 -Percent Occurrence of Initial Weather Conditions for Hours 1800-2300 UTC for All Months and All Years.

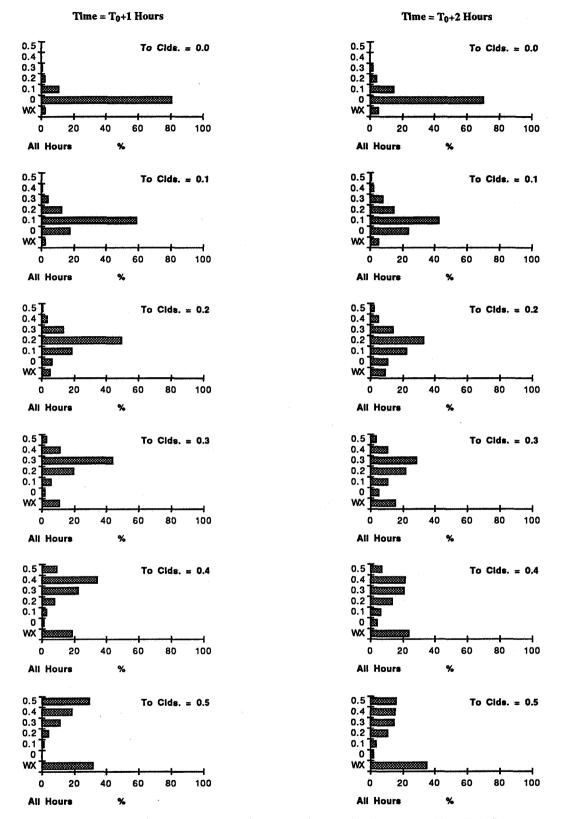

Figure A10 - Percent Occurrence of Initial Weather Conditions for All Hours Stratified by Wind Direction.

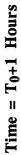


APPENDIX B

OBSERVED WEATHER CONDITIONS (ONE AND TWO HOURS) SUBSEQUENT TO INITIAL WEATHER CONDITIONS FOR THE ENTIRE DATA BASE

This Appendix presents figures describing observed weather conditions one and two hours from an initial condition. For Figure B1 the weather conditions are on the y-axis while percentage of occurrence are on the x-axis. The 0.0, 0.1, ... 0.5 columns represent the amount of clouds (tenths) below 10,000 feet with <u>no other weather violations</u>. All weather violations (Ceiling <10,000 feet, Visibility < 7 nautical miles, cross-wind > 10 knots, precipitation, or a <u>combination of one or more</u> violations) are contained in the column "WX".




Figure B1 - All Hours View of Percent Occurrence of Weather Conditions at One and Two Hours After a Given Cloud Coverage.

APPENDIX C

OBSERVED WEATHER CONDITIONS (ONE AND TWO HOURS) SUBSEQUENT TO INITIAL WEATHER CONDITIONS

FOR SEASONS

This Appendix presents figures describing the observed weather conditions one and two hours from an initial condition for seasons. The seasons have been defined as: January-March (Winter), April-May (Spring), June-August (Summer) and September-December (Fall). For Figures C1-C8 the weather conditions are on the y-axis while percentage of occurrence are on the x-axis. The 0.0, 0.1, ... 0.5 columns represent the amount of clouds (tenths) below 10,000 feet with <u>no other weather violations</u>. All weather violations (Ceiling <10,000 feet, Visibility < 7 nautical miles, cross-wind > 10 knots, precipitation, or a <u>combination of one or more</u> violations) are contained in the column "WX".

Time = T_{0+2} Hours

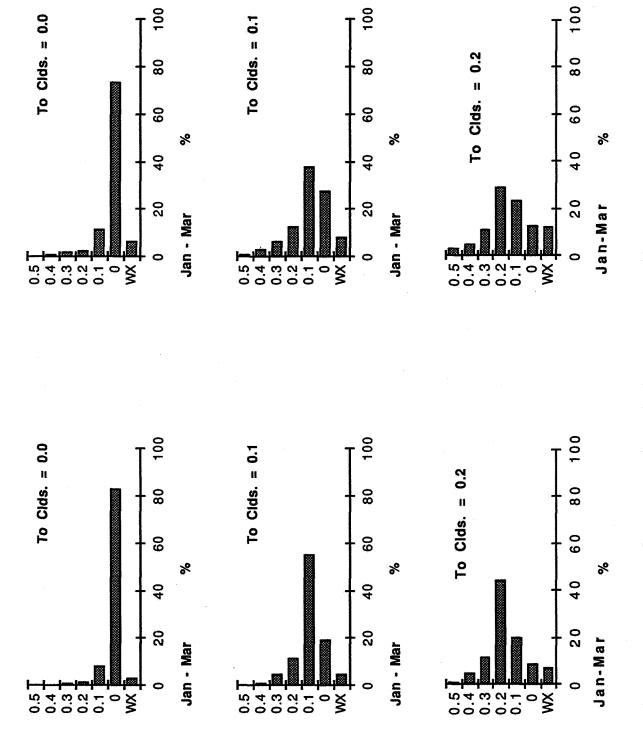


Figure C1 - Percent Occurrence of Weather Conditions for Jan-Mar at One and Two Hours After a Given Cloud Coverage.

C-1

Time = T_{0+2} Hours

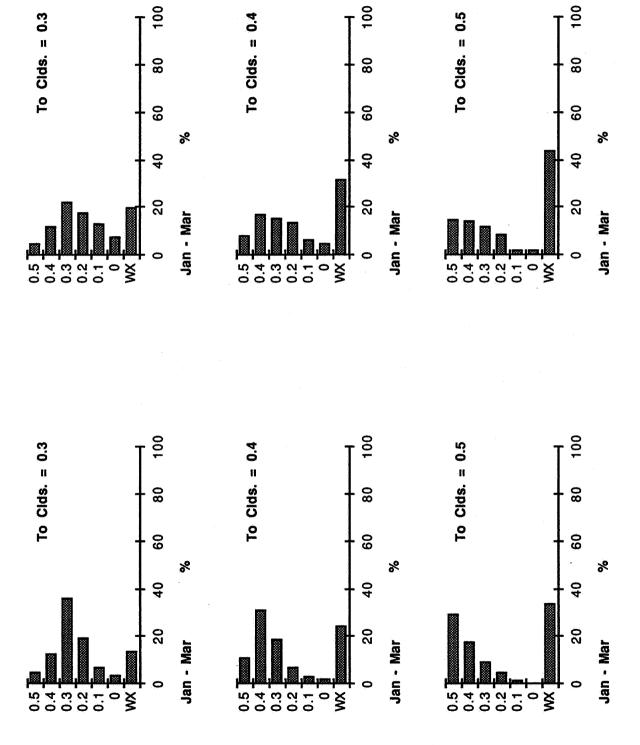
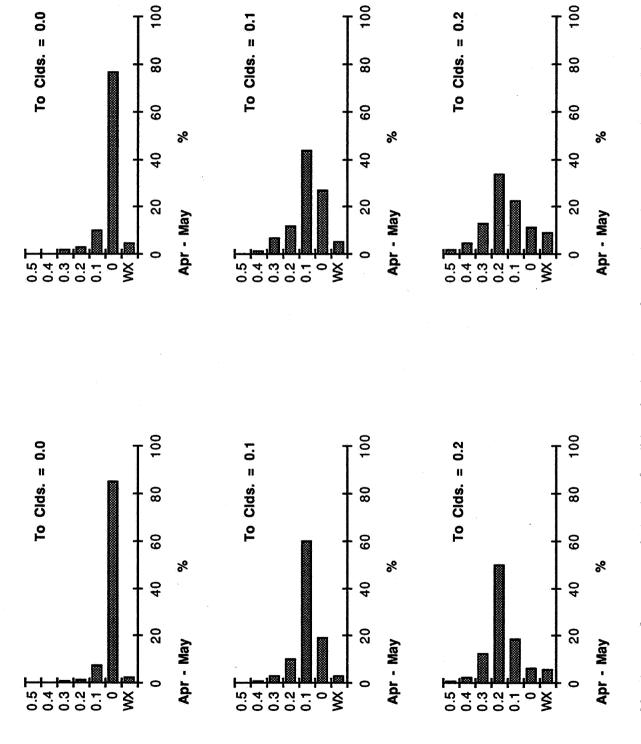



Figure C2 - Percent Occurrence of Weather Conditions for Jan-Mar at One and Two Hours After a Given Cloud Coverage.

C-2

Time = T_{0+2} Hours

င်း

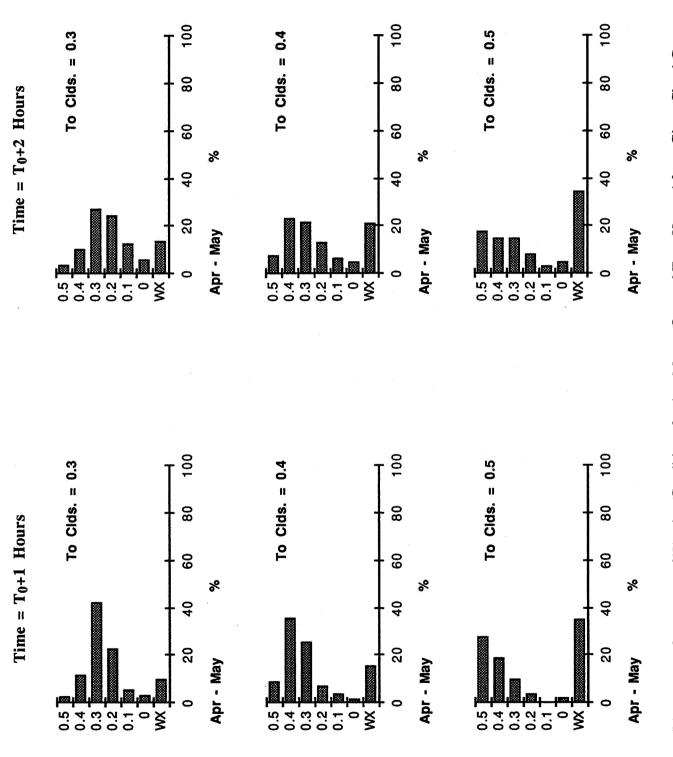
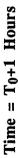
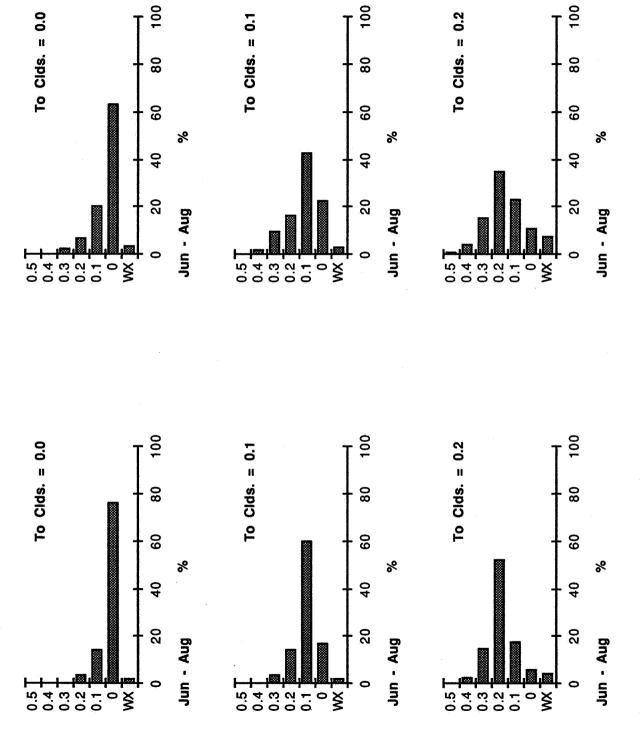
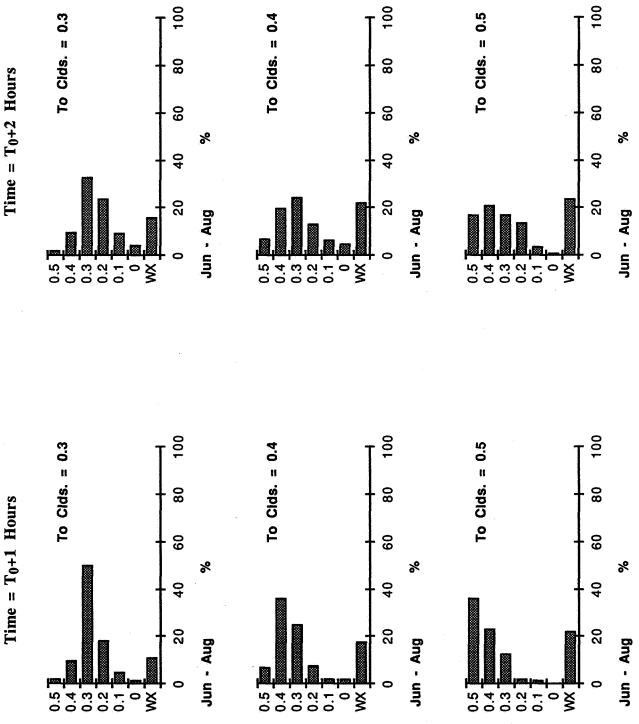
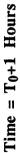
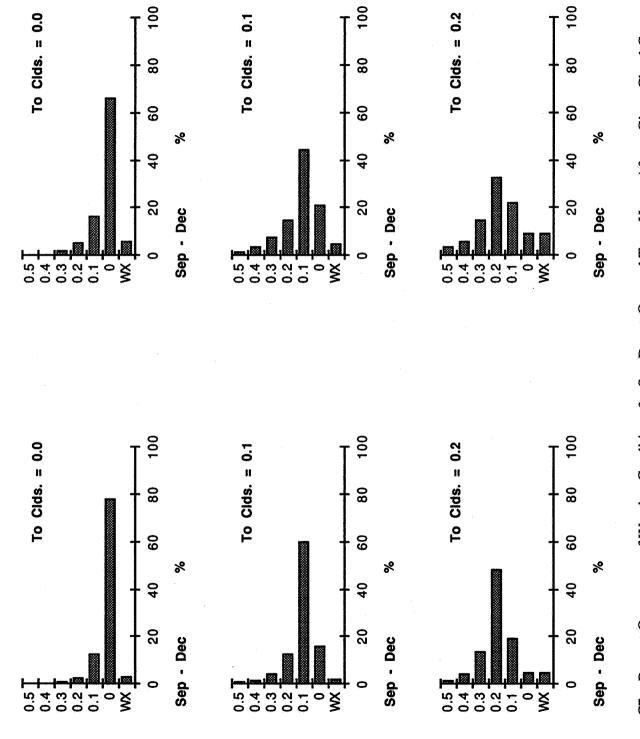




Figure C4 - Percent Occurrence of Weather Conditions for Apr-May at One and Two Hours After a Given Cloud Coverage.

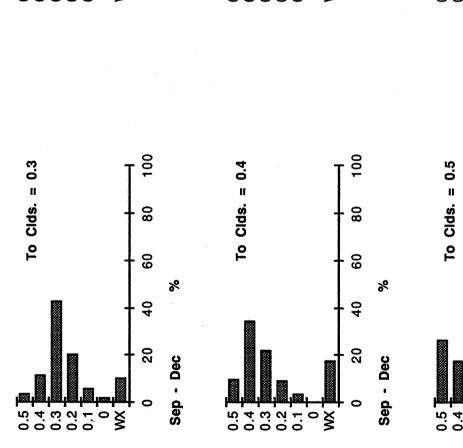

C-4

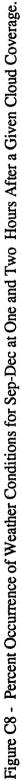



C-S

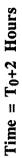


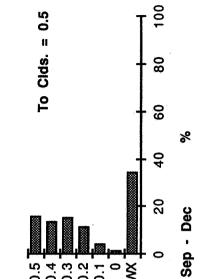
C-6

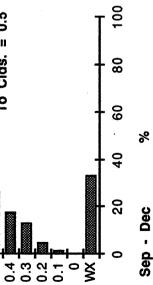




C-7


Time = T_{0+2} Hours





100 100 To Clds. = 0.3To Clds. = 0.480 80 60 09 % % 40 40 20 20 Sep - Dec Sep - Dec Ċ 0.5 0.3 0.2 0.2 0.5 . 0.3 0 Š 0.4 Š 0

0.5 Š 0

APPENDIX D

OBSERVED WEATHER CONDITIONS (ONE AND TWO HOURS) SUBSEQUENT TO INITIAL WEATHER CONDITIONS FOR MONTHS

This Appendix contains figures describing observed conditions one and two hours from initial weather conditions for individual months. For Figures D1-D12 the weather conditions are on the y-axis while percentage of occurrence are on the x-axis. The 0.0, 0.1, ... 0.5 columns represent the amount of clouds (tenths) below 10,000 feet with <u>no other</u> weather violations. All weather violations (Ceiling <10,000 feet, Visibility < 7 nautical miles, cross-wind > 10 knots, precipitation, or a <u>combination of one or more</u> violations) are contained in the column "WX".

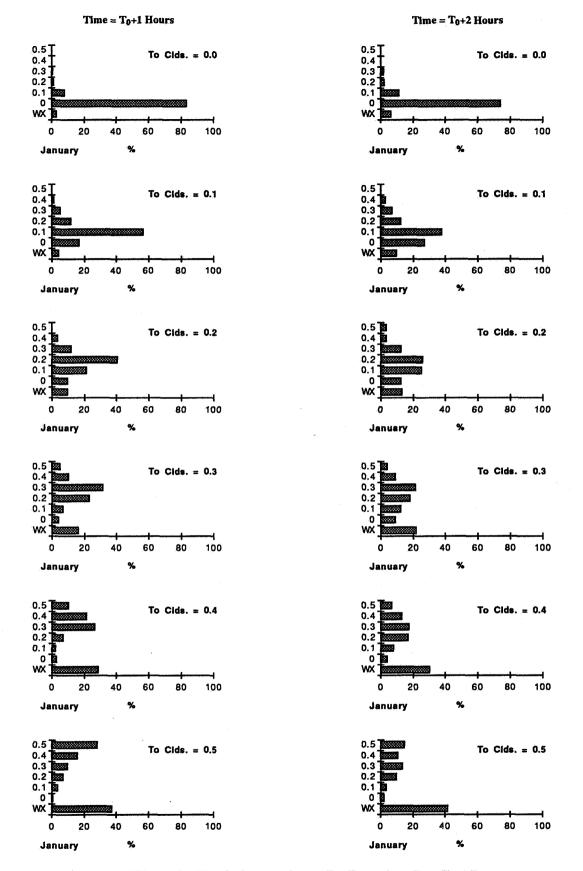
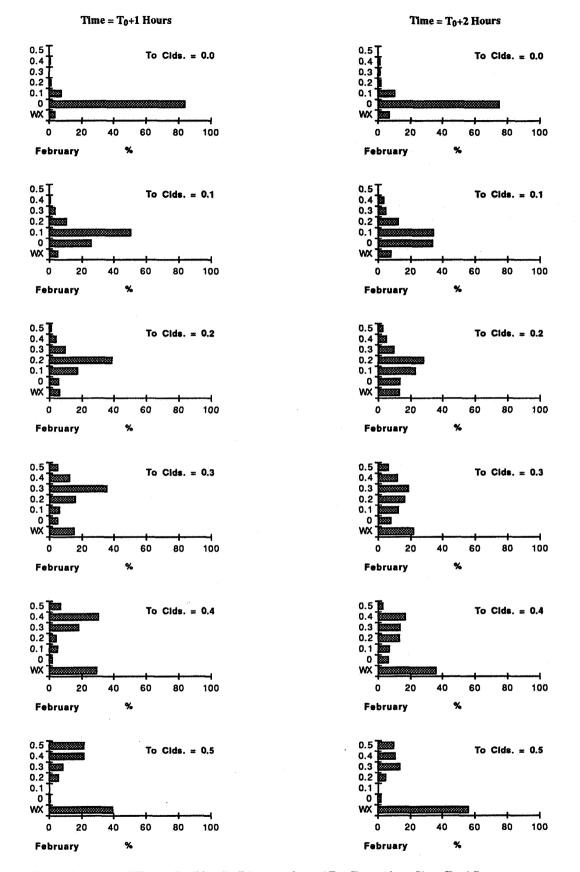
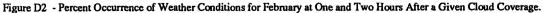




Figure D1 - Percent Occurrence of Weather Conditions for January at One and Two Hours After a Given Cloud Coverage.

C-2

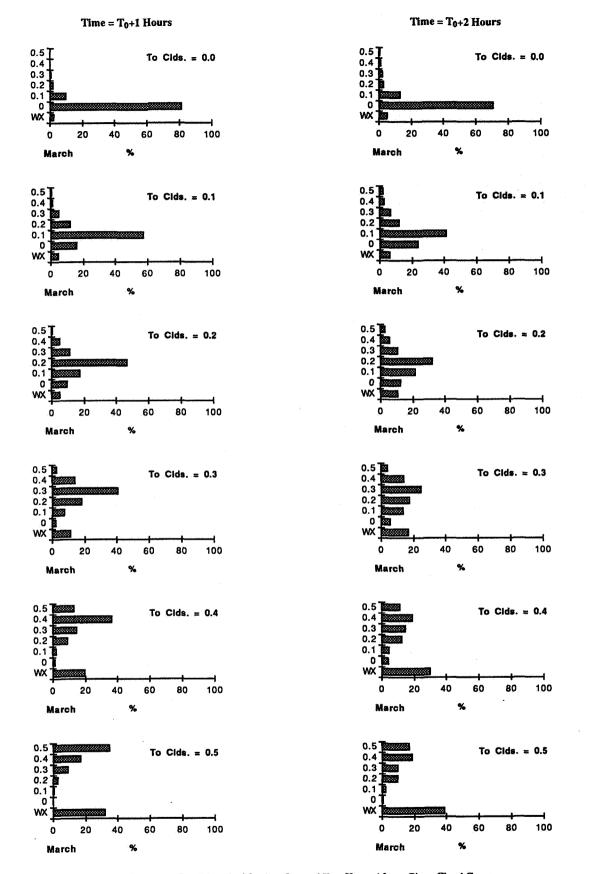


Figure D3 - Percent Occurrence of Weather Conditions for March at One and Two Hours After a Given Cloud Coverage.

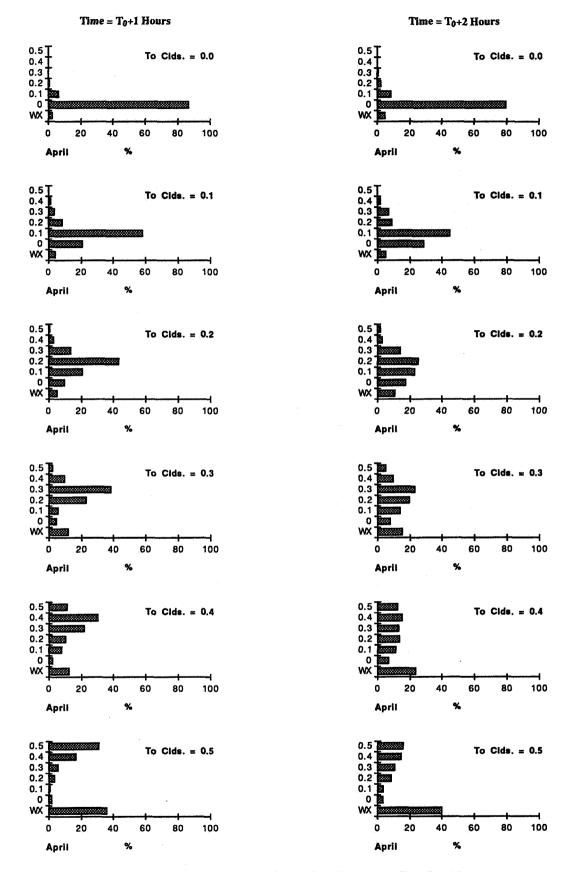


Figure D4 - Percent Occurrence of Weather Conditions for April at One and Two Hours After a Given Cloud Coverage.

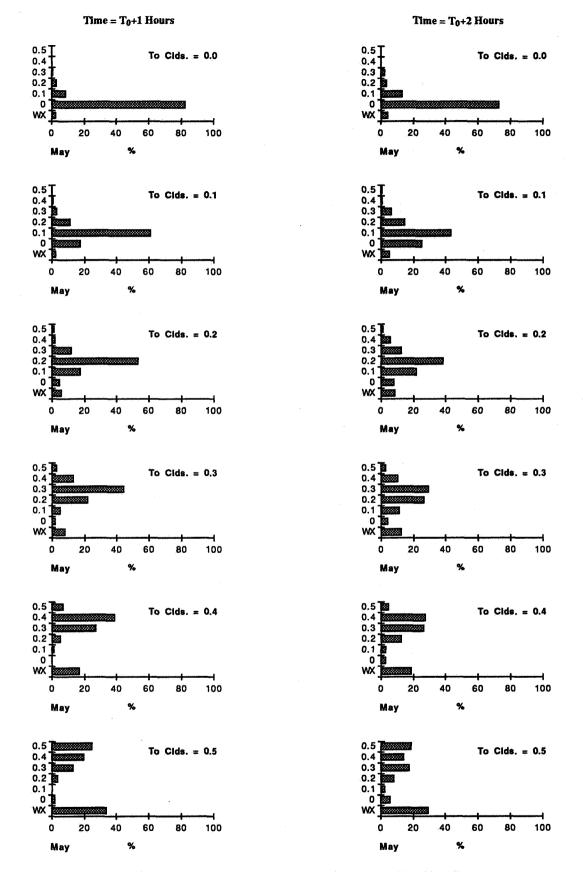


Figure D5 - Percent Occurrence of Weather Conditions for May at One and Two Hours After a Given Cloud Coverage.

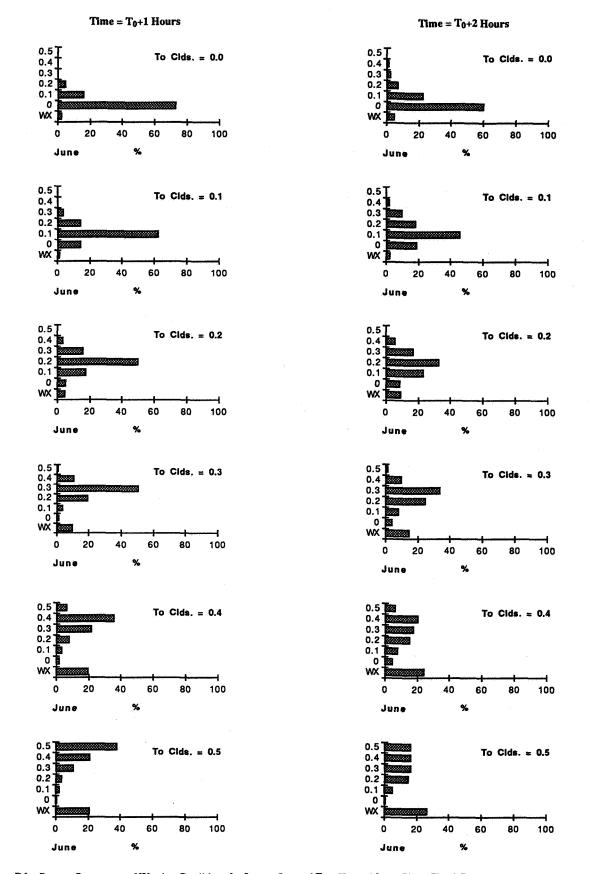


Figure D6 - Percent Occurrence of Weather Conditions for June at One and Two Hours After a Given Cloud Coverage.

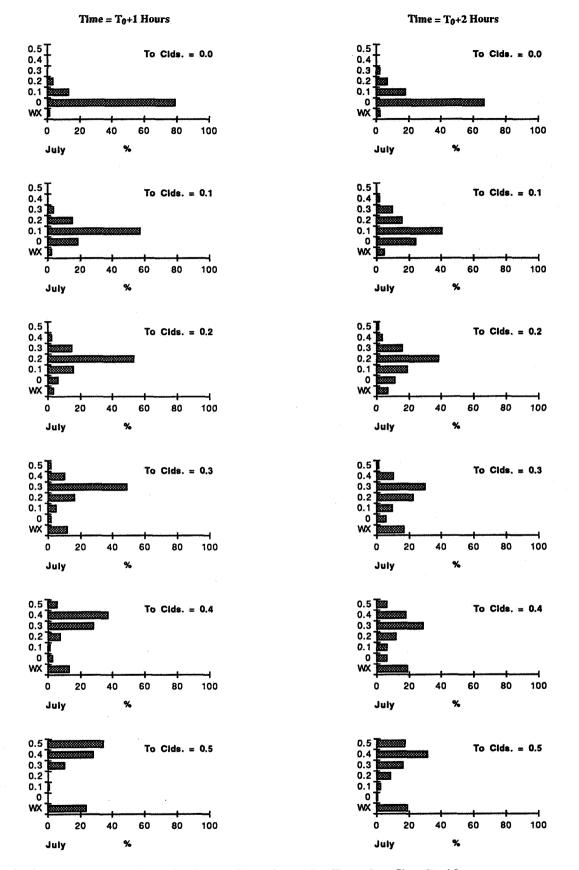


Figure D7 - Percent Occurrence of Weather Conditions for July at One and Two Hours After a Given Cloud Coverage.

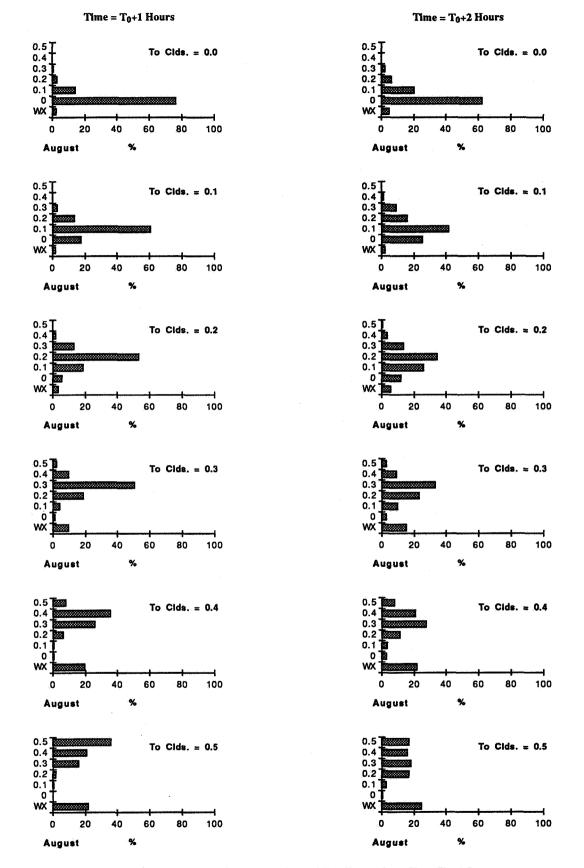


Figure D8 - Percent Occurrence of Weather Conditions for August at One and Two Hours After a Given Cloud Coverage.

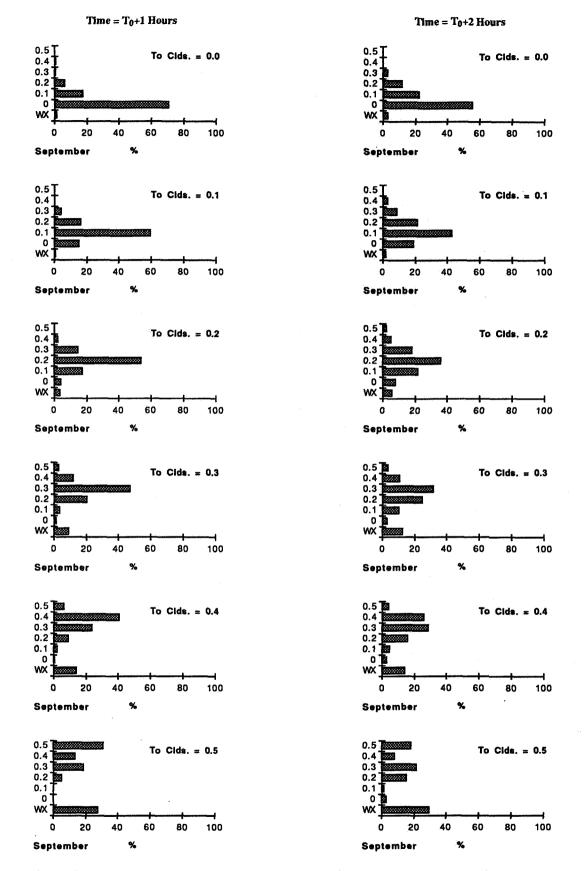


Figure D9 - Percent Occurrence of Weather Conditions for September at One and Two Hours After a Given Cloud Coverage.

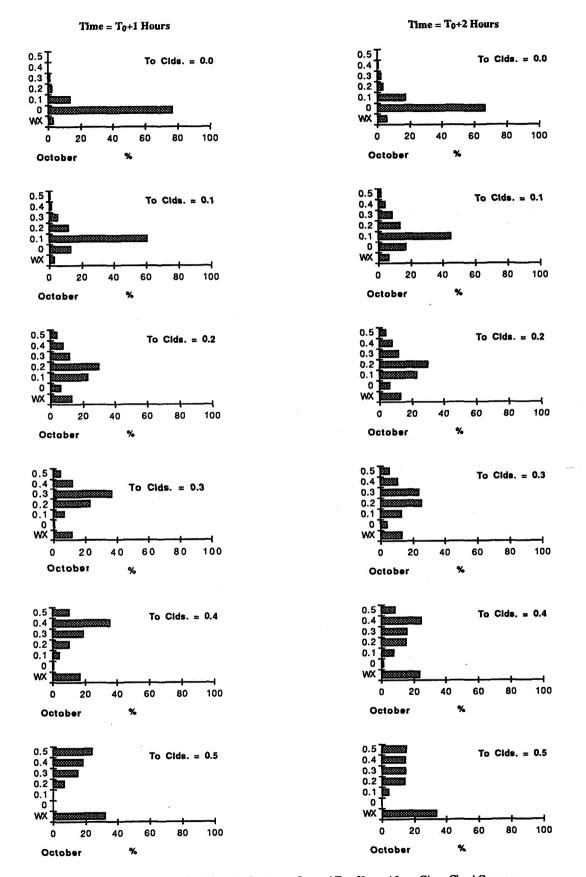


Figure D10 - Percent Occurrence of Weather Conditions for October at One and Two Hours After a Given Cloud Coverage.

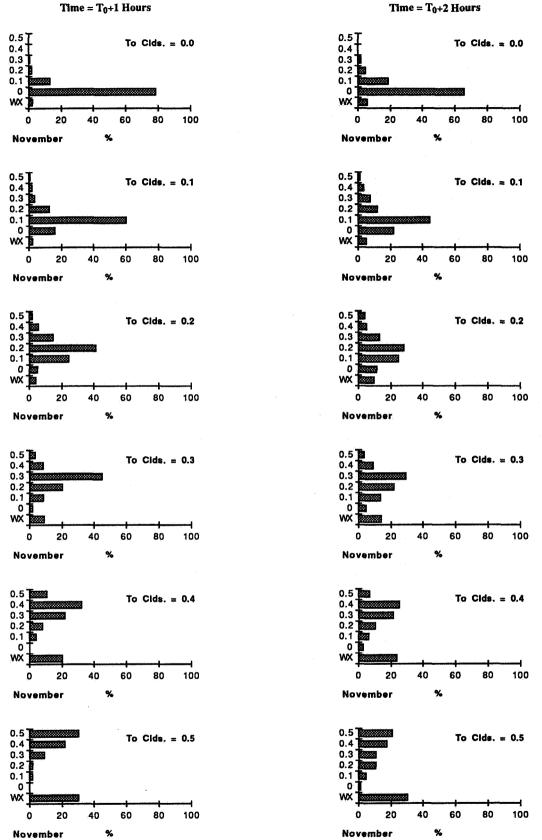


Figure D11 - Percent Occurrence of Weather Conditions for November at One and Two Hours After a Given Cloud Coverage.

Time = T_0+2 Hours

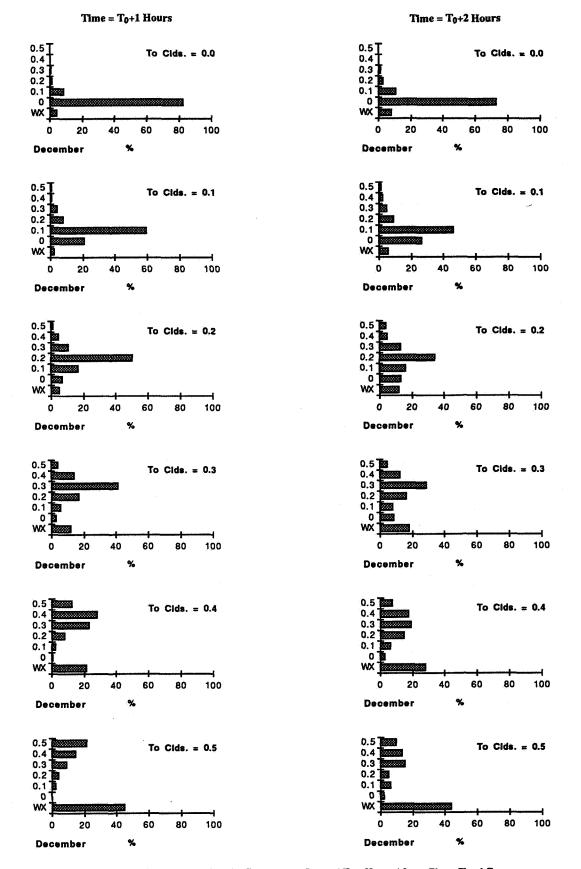


Figure D12 - Percent Occurrence of Weather Conditions for December at One and Two Hours After a Given Cloud Coverage.

APPENDIX E

OBSERVED WEATHER CONDITIONS (ONE AND TWO HOURS) SUBSEQUENT TO INITIAL WEATHER CONDITIONS FOR INDIVIDUAL HOURS (UTC)

This Appendix contains figures describing observed weather conditions one and two hours from an initial weather condition for hourly (UTC) data. For Figures E1-E24 the weather conditions are on the y-axis while percentage of occurrence are on the x-axis. The 0.0, 0.1, ... 0.5 columns represent the amount of clouds (tenths) below 10,000 feet with no other weather violations. All weather violations (Ceiling <10,000 feet, Visibility < 7 nautical miles, cross-wind > 10 knots, precipitation, or a <u>combination of one or more</u> violations) are contained in the column "WX".

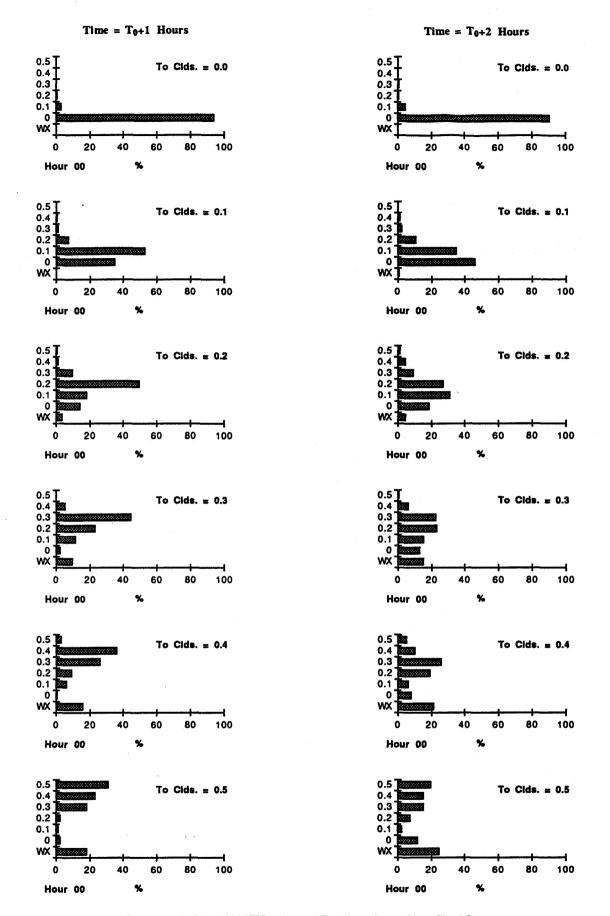


Figure E1 - Percent of Weather Conditions for Hour 0000 UTC at One and Two Hours from a Given Cloud Coverage.

E-1

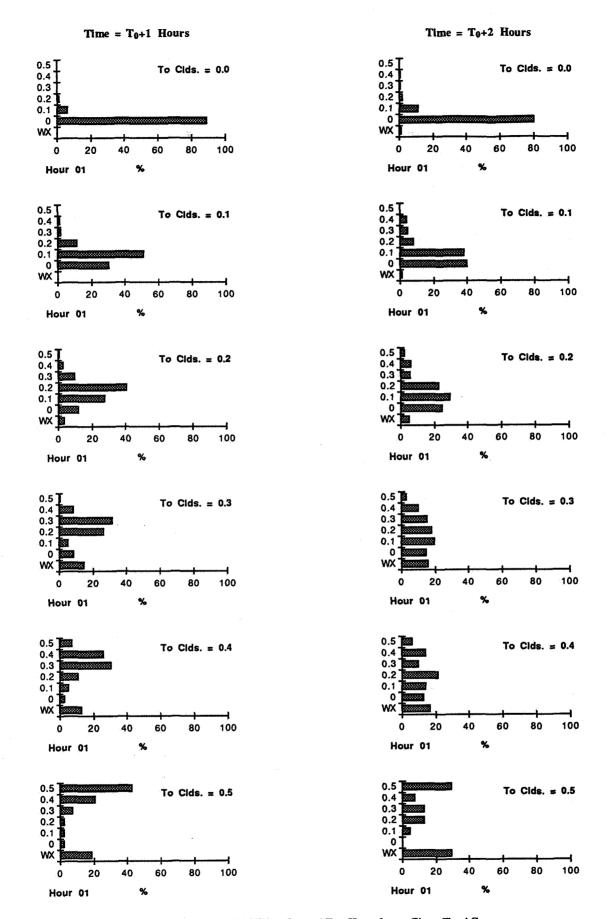


Figure E2 - Percent of Weather Conditions for Hour 0100 UTC at One and Two Hours from a Given Cloud Coverage.

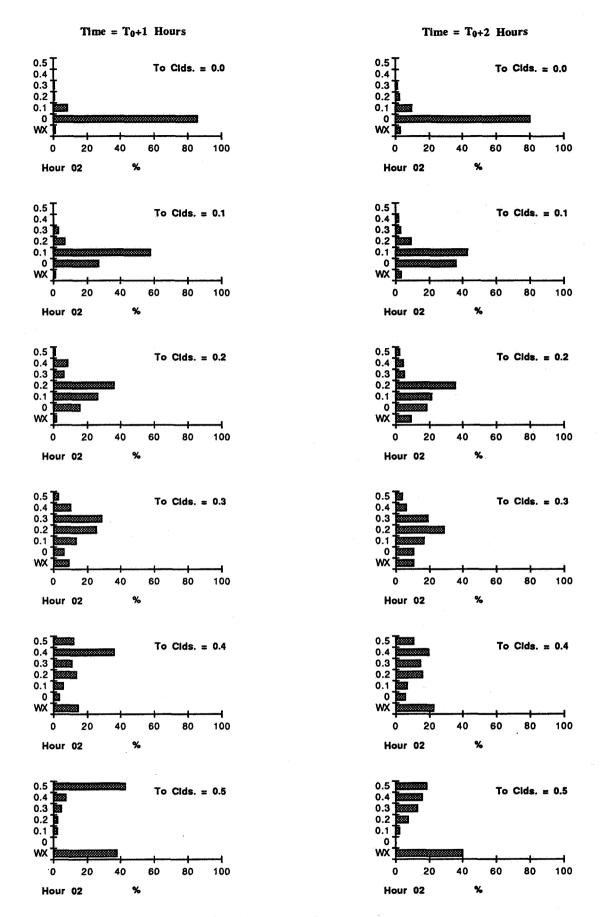


Figure E3 - Percent of Weather Violations for Hour 0200 UTC at One and Two Hours from a Given Cloud Coverage.

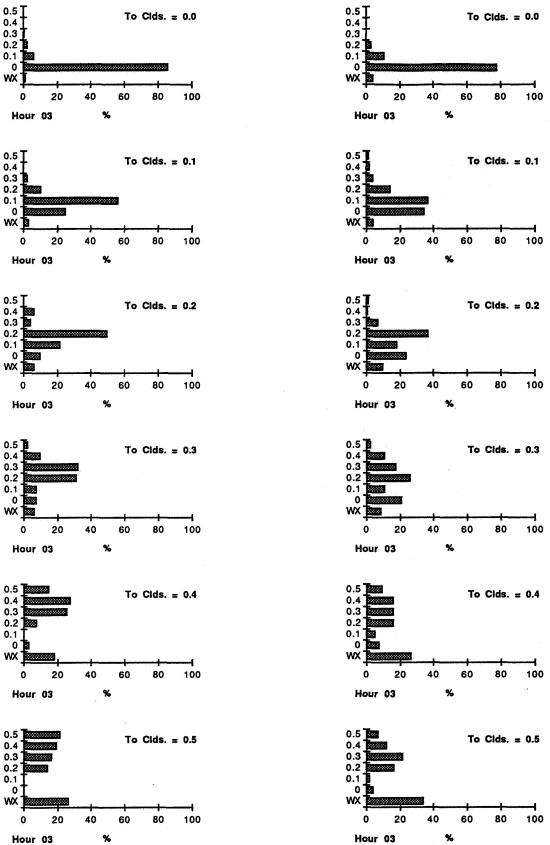


Figure E4 - Percent of Weather Violations for Hour 0300 UTC at One and Two Hours from a Given Cloud Coverage.

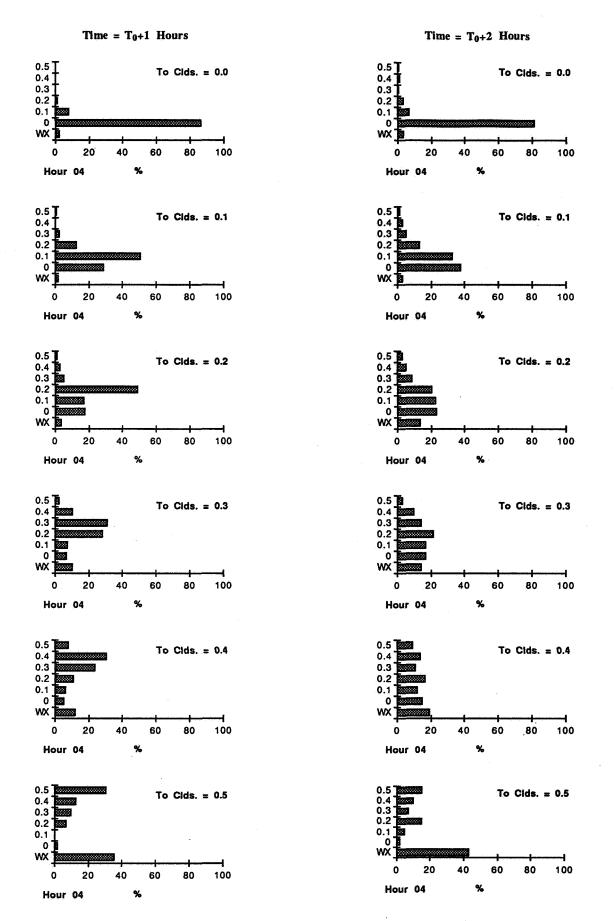


Figure E5 - Percent of Weather Conditions for Hour 0400 UTC at One and Two Hours from a Given Cloud Coverage.

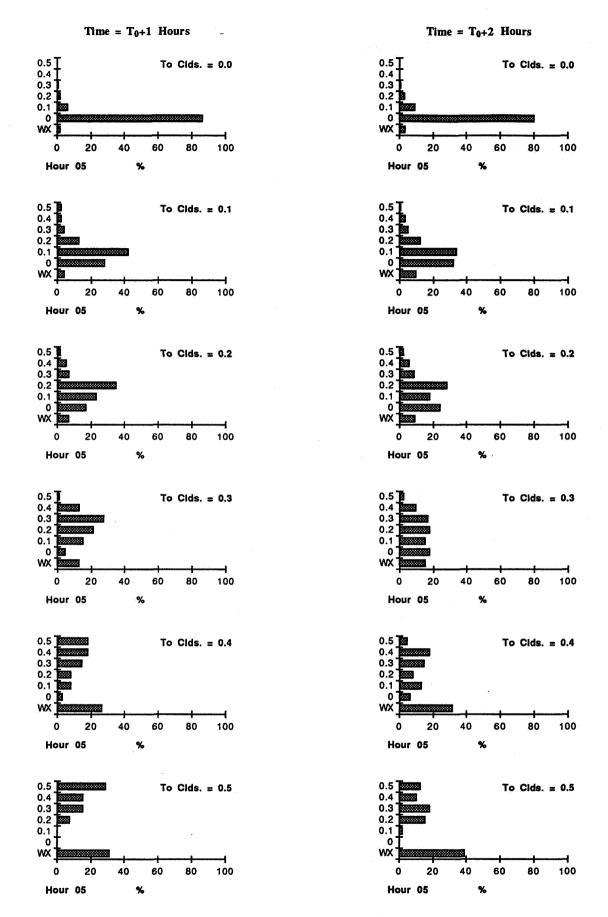


Figure E6 - Percent of Weather Conditions for Hour 0500 UTC at One and Two Hours from a Given Cloud Coverage.

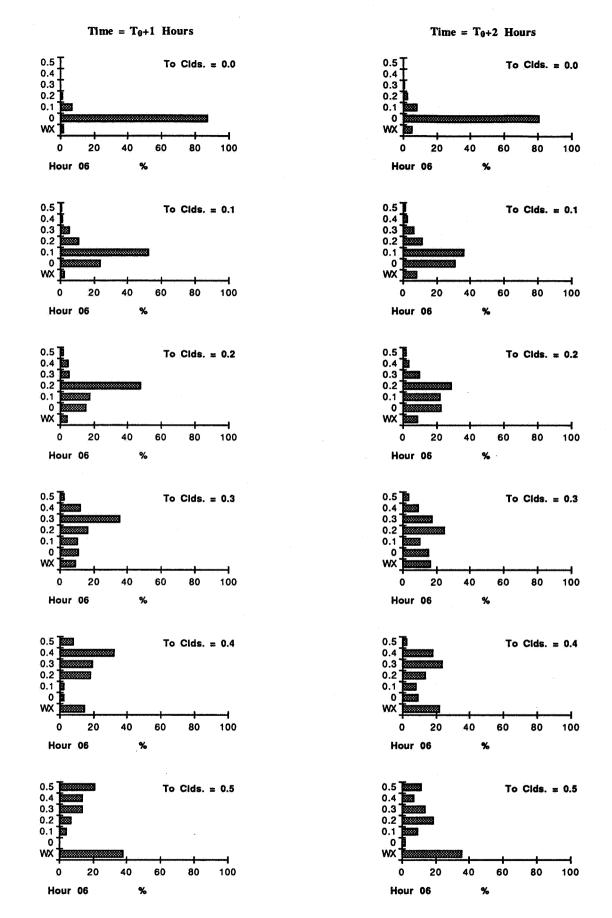


Figure E7 - Percent of Weather Conditions for Hour 0600 UTC at One and Two Hours from a Given Cloud Coverage.

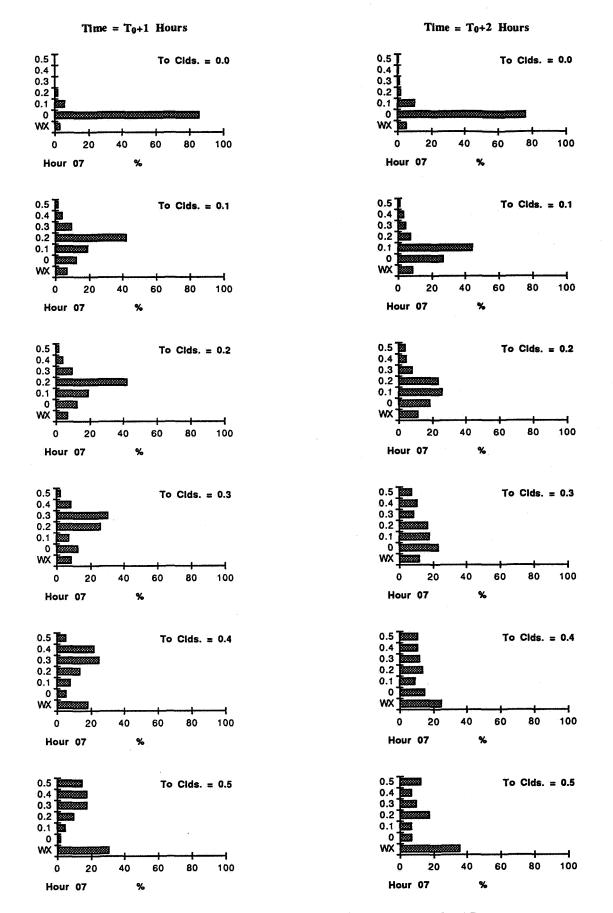
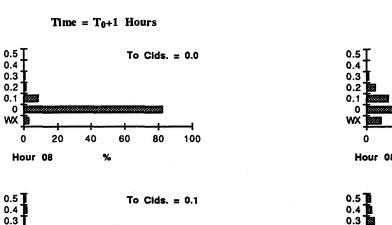



Figure E8 - Percent of Weather Conditions for Hour 0700 UTC at One and Two Hours from a Given Cloud Coverage.

E-8

0.2

0.1

0

0

Hour 08

0.5 0.4 0.3 0.2

200

20

20

20

20

40

40

40

40

40

%

%

%

%

60

60

60

60

60

80

80

80

80

80

100

20

WX.

0.1

0

wx 🔯

0.5

0.4

0.3

0.2

0.1

0

wx1

0.5

0.3

0.1

٥

WX T

0.5

0.4

0.3

0.2

0.1

WX

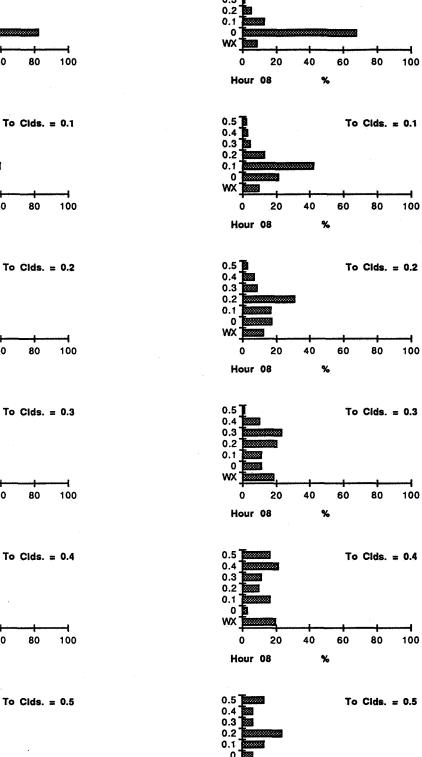
0

0

0

Hour 08

0.4


0.2

0

Hour 08

0

Hour 08

WX

Q

20

40

60

80

100

Time = T_0+2 Hours

To Clds. = 0.0

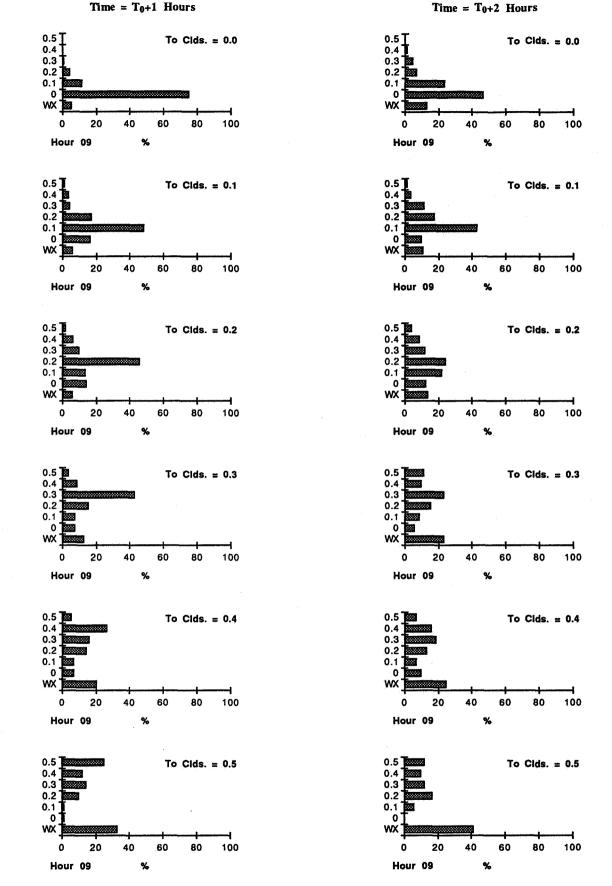


Figure E10 - Percent of Weather Conditions for Hour 1000 UTC at One and Two Hours from a Given Cloud Coverage.

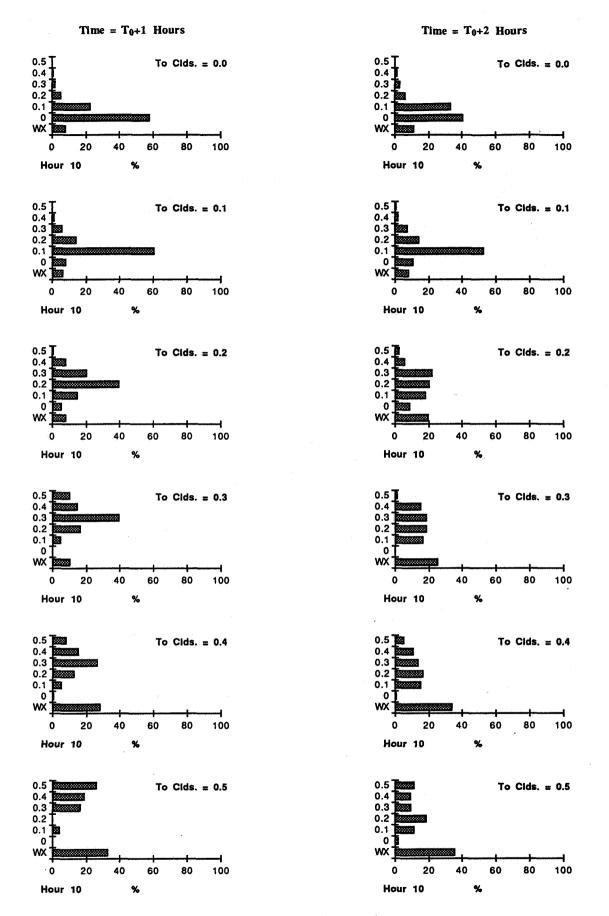


Figure E11 - Percent of Weather Conditions for Hour 1000 UTC at One and Two Hours from a Given Cloud Coverage.

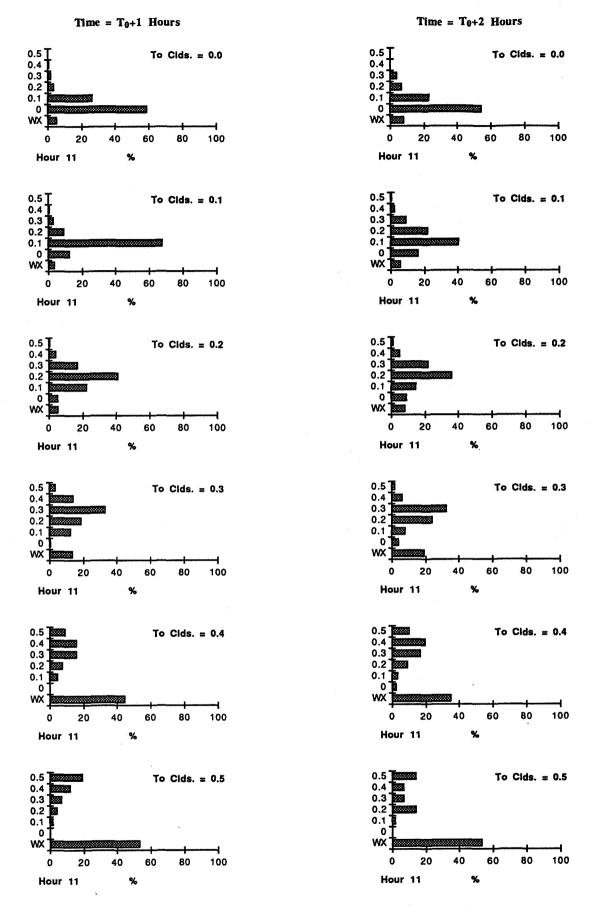


Figure E12 - Percent of Weather Condition for Hour 1100 UTC at One and Two Hours from a Given Cloud Coverage.

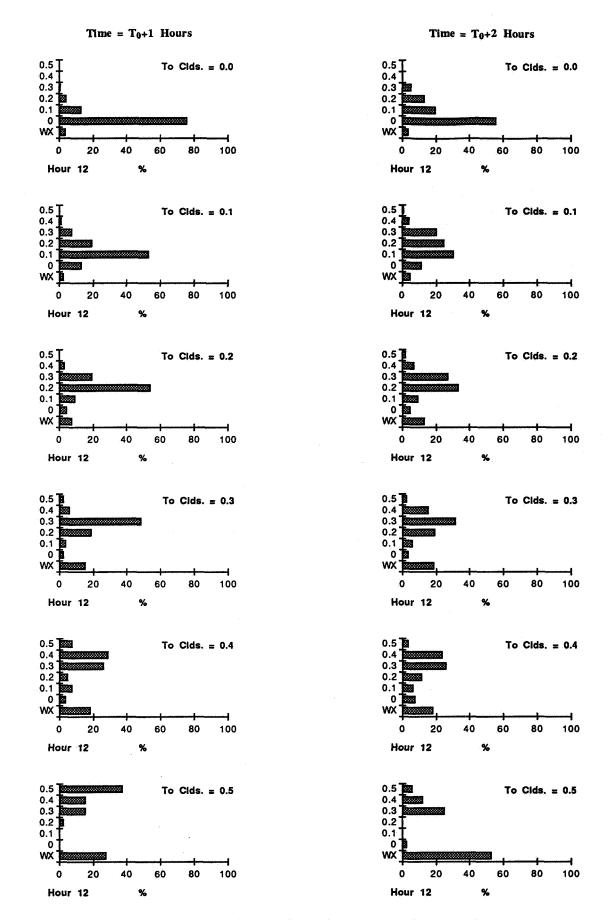


Figure E13 - Percent of Weather Violations for Hour 1200 UTC at One and Two Hours from a Given Cloud Coverage.

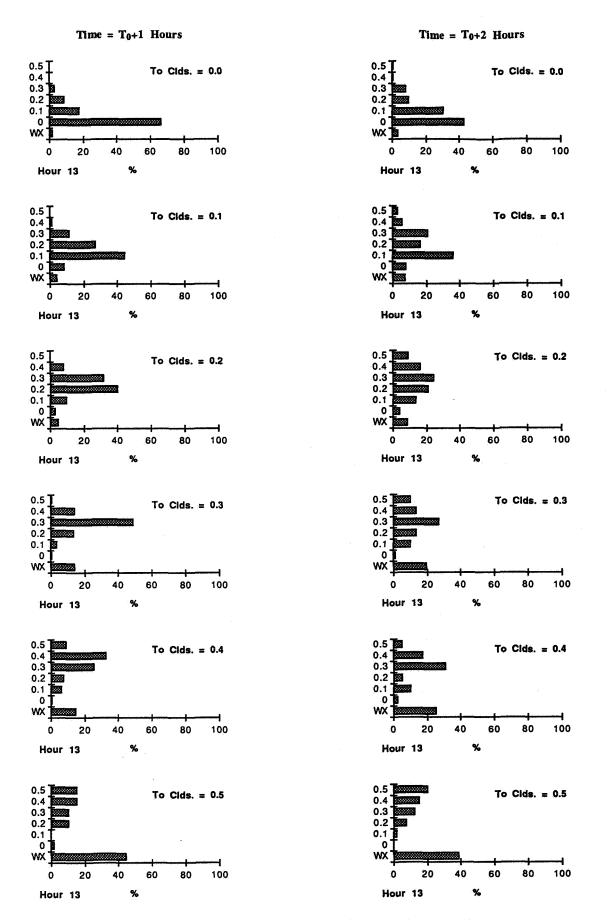


Figure E14 - Percent of Weather Conditions for Hour 1300 UTC at One and Two Hours from a Given Cloud Coverage.

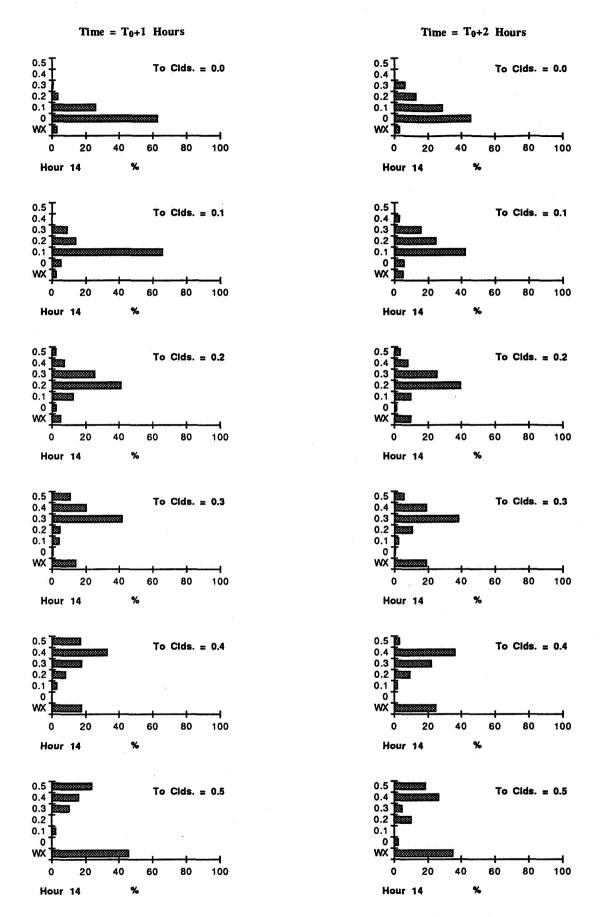


Figure E15 - Percent of Weather Violations for Hour 1400 UTC at One and Two Hours from a Given Cloud Coverage.

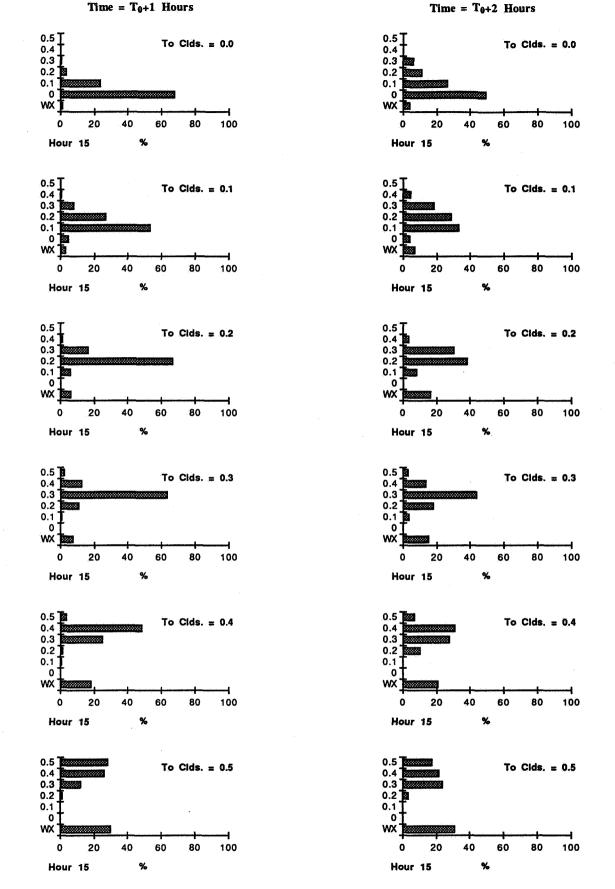


Figure E16 - Percent of Weather Conditions for Hour 1500 UTC at One and Two Hours from a Given Cloud Coverage.

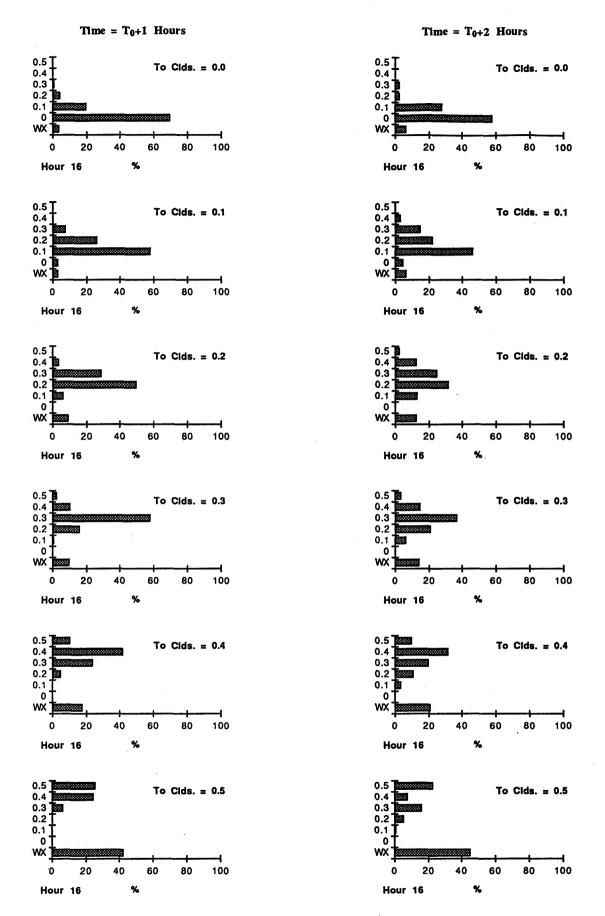


Figure E17 - Percent of Weather Conditions for Hour 1600 UTC at One and Two Hours from a Given Cloud Coverage.

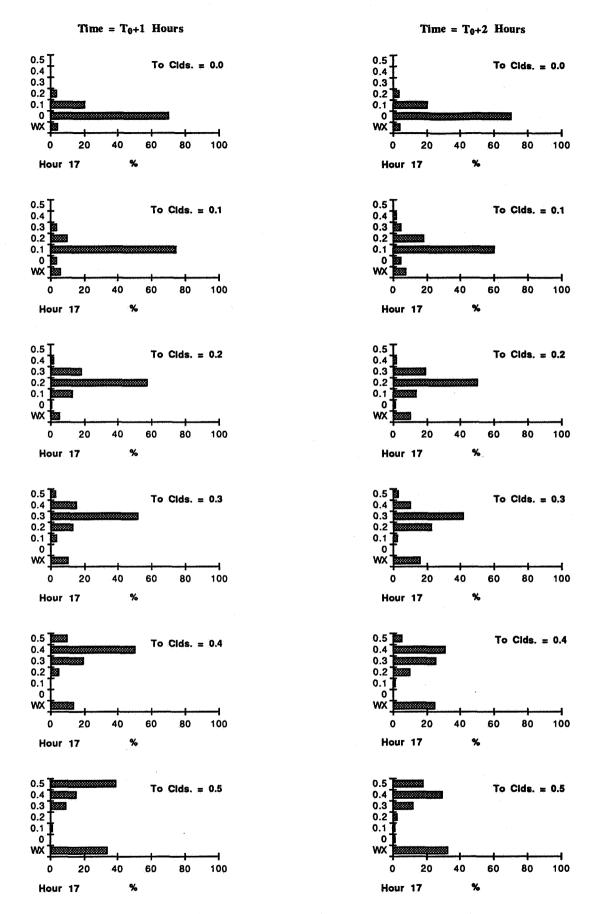


Figure E18 - Percent of Weather Conditions for Hour 1700 UTC at One and Two Hours from a Given Cloud Coverage.

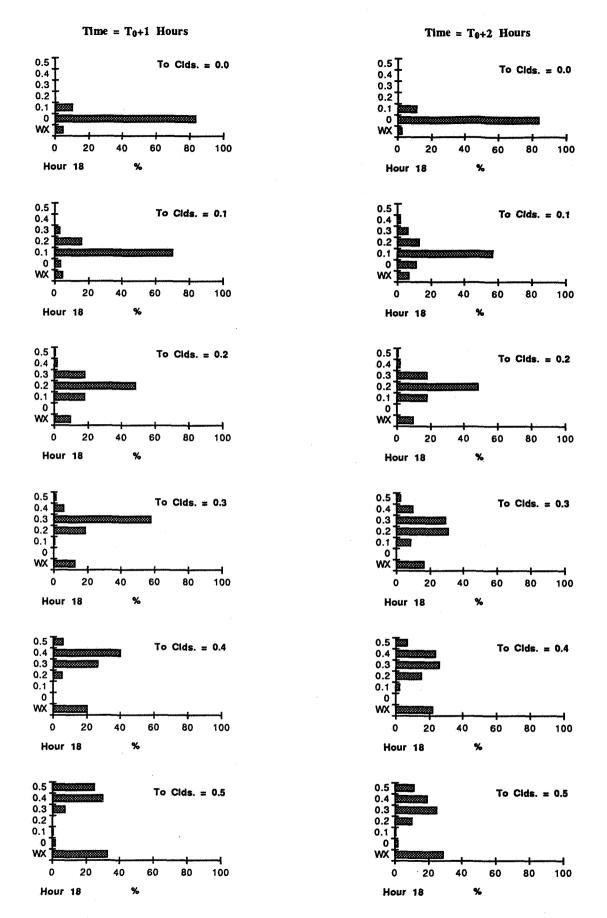


Figure E19 - Percent of Weather Conditions for Hour 1800 UTC at One and Two Hours from a Given Cloud Coverage.

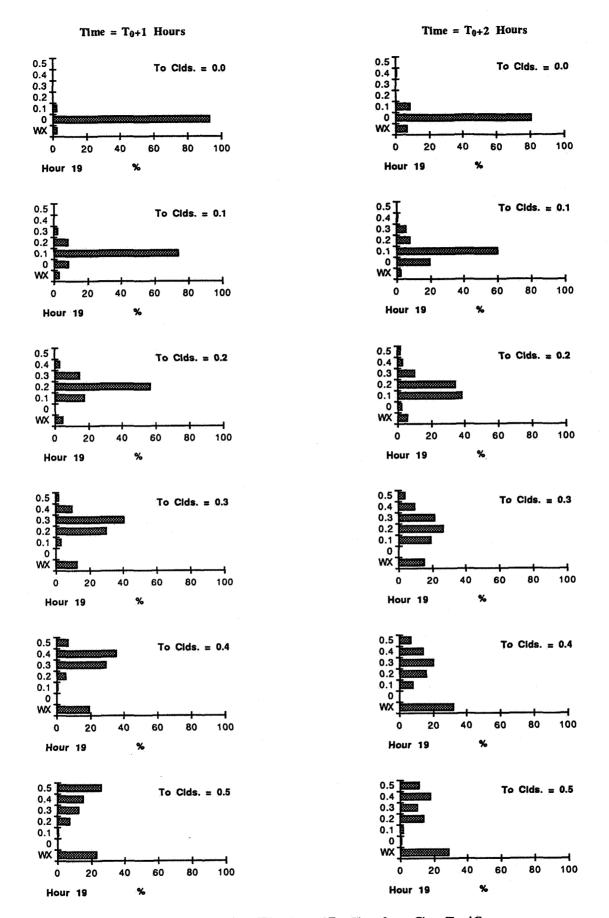


Figure E20 - Percent of Weather Conditions for Hour 1900 UTC at One and Two Hours from a Given Cloud Coverage.

Figure E21 - Percent of Weather Conditions for Hour 2000 UTC at One and Two Hours from a Given Cloud Coverage.

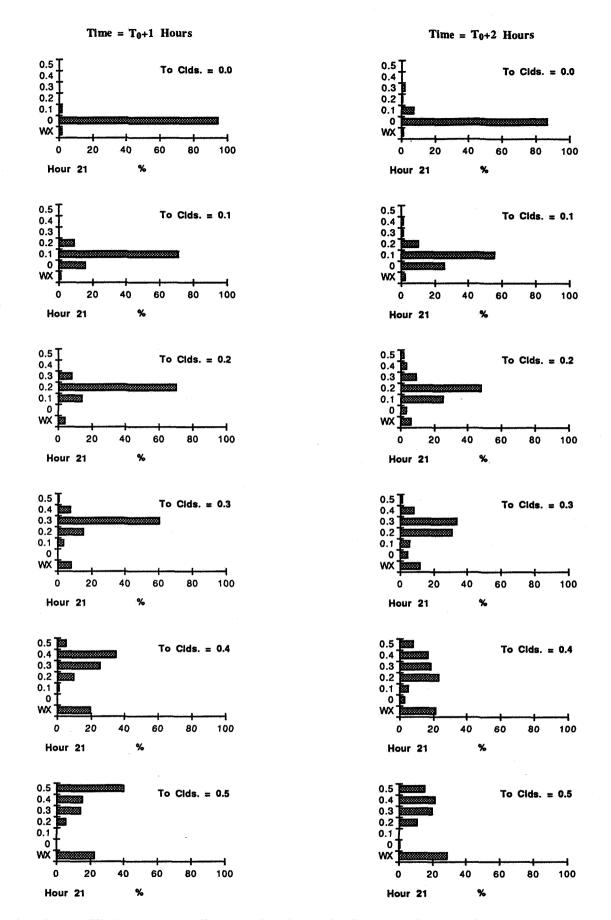


Figure E22 - Percent of Weather Conditions for Hour 2100 UTC at One and Two Hours from a Given Cloud Coverage.

E-22

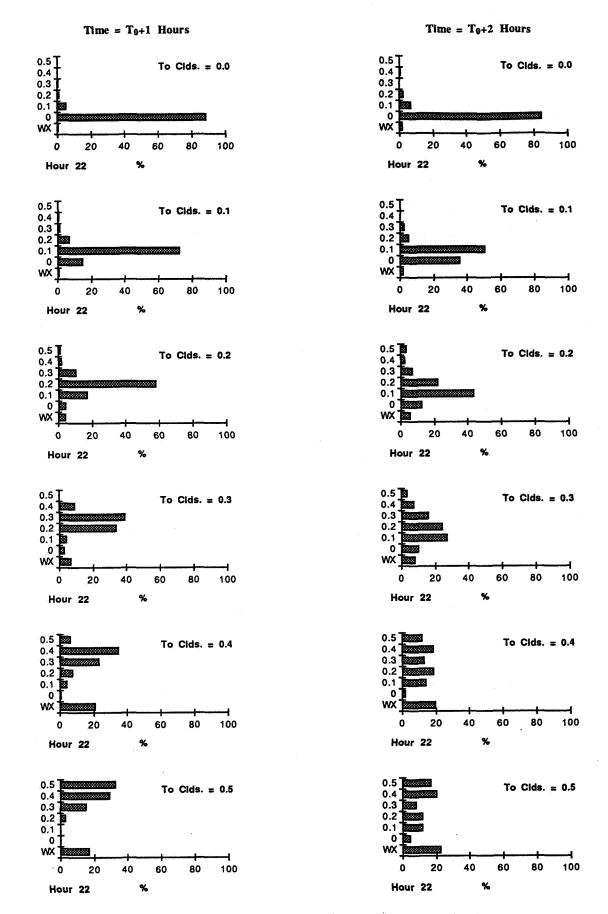


Figure E23 - Percent of Weather Conditions for Hour 2200 UTC at One and Two Hours from a Given Cloud Coverage.

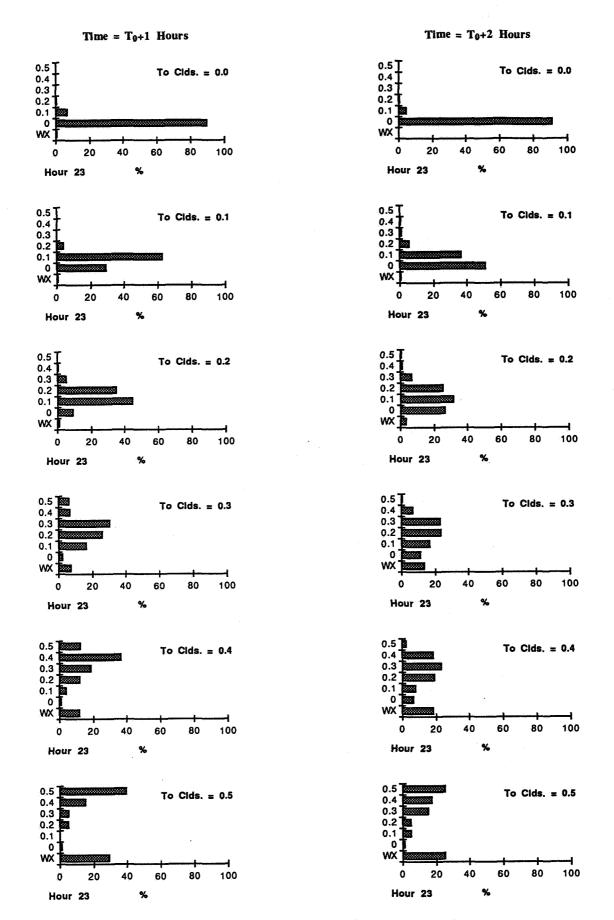
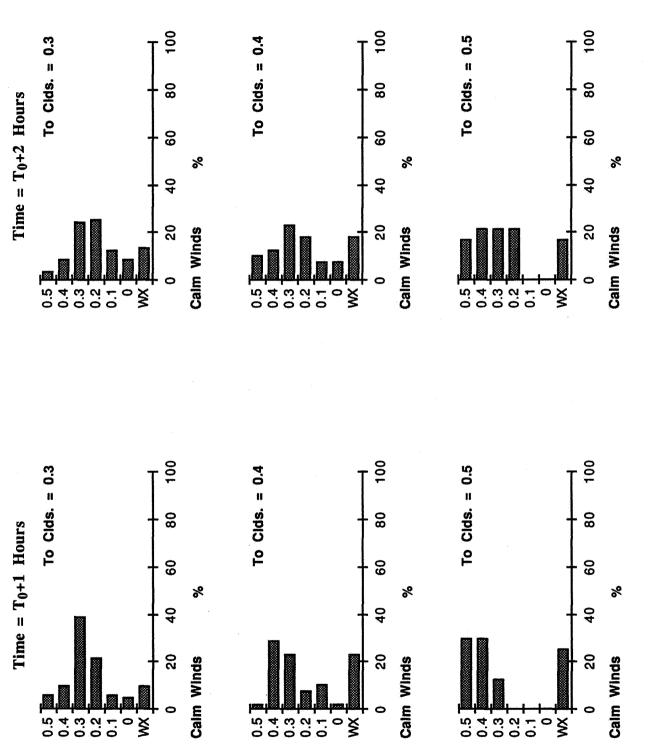
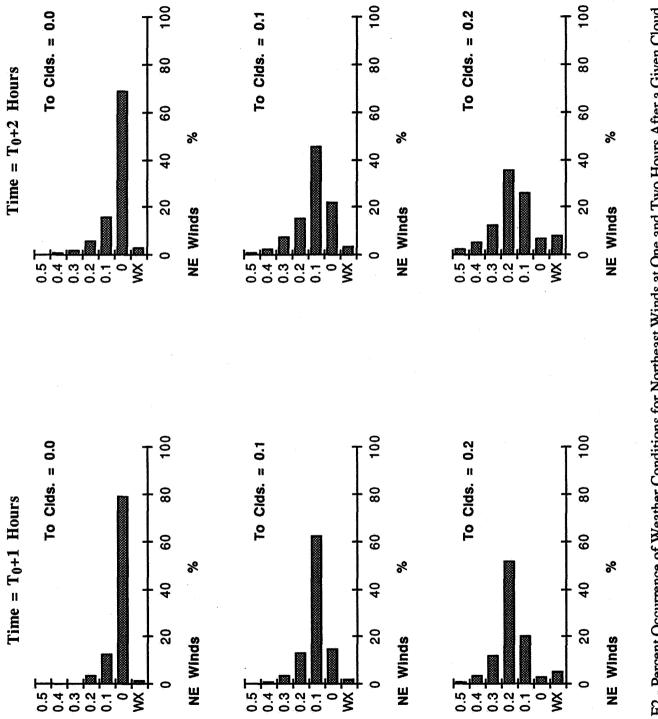
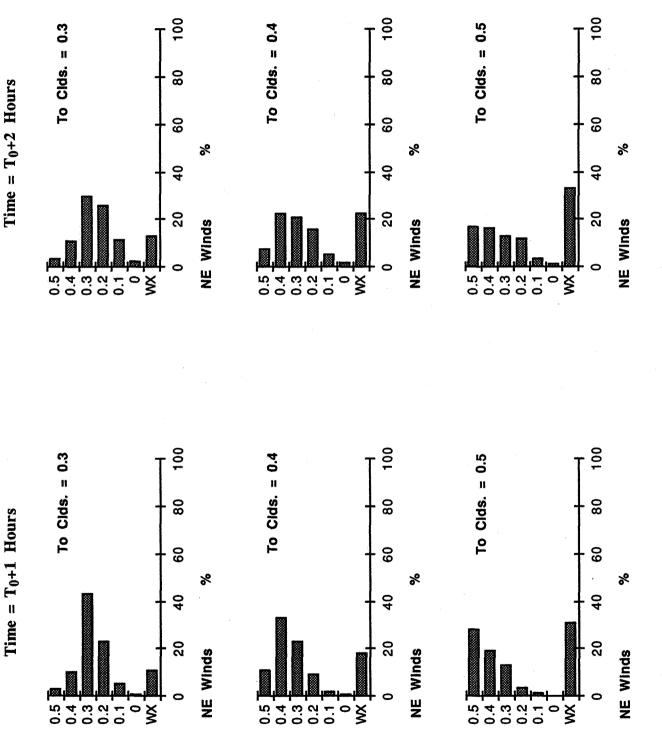


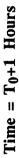

Figure E24 - Percent of Weather Conditions for Hour 2300 UTC at One and Two Hours from a Given Cloud Coverage.

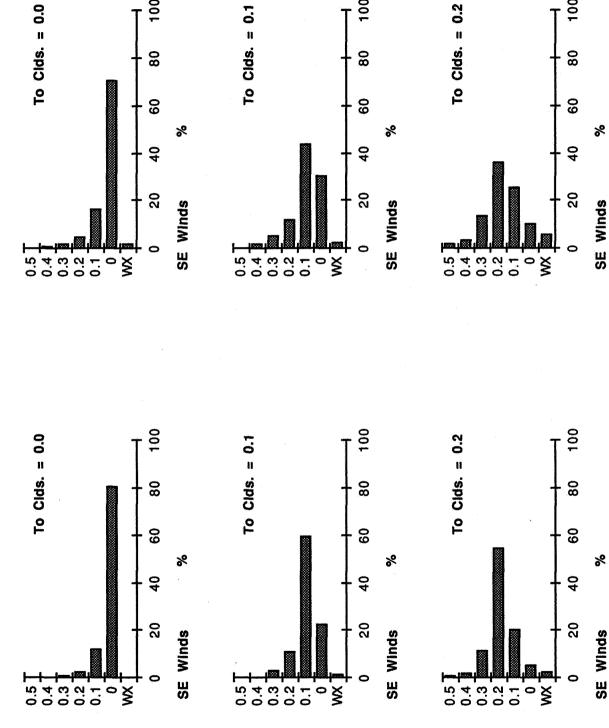

APPENDIX F

OBSERVED WEATHER CONDITIONS (ONE AND TWO HOURS) SUBSEQUENT TO INITIAL WEATHER CONDITIONS FOR WIND SECTORS

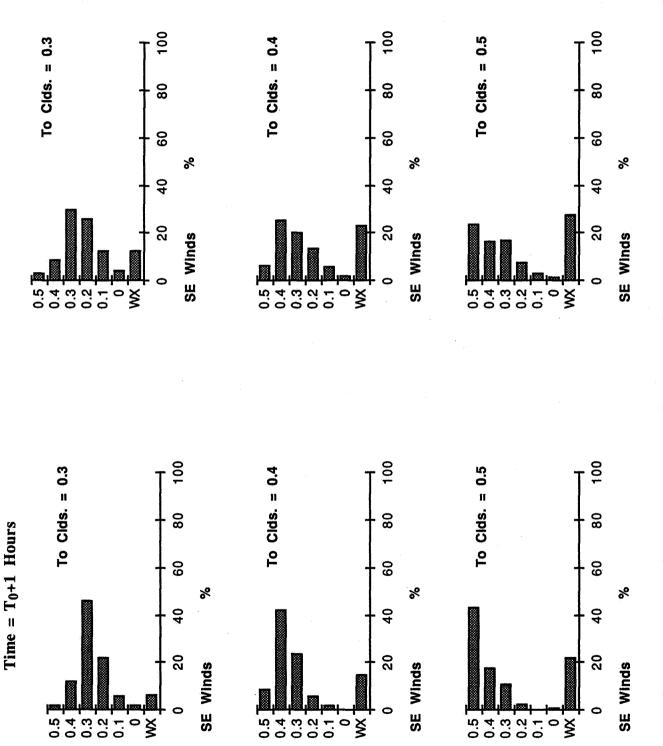
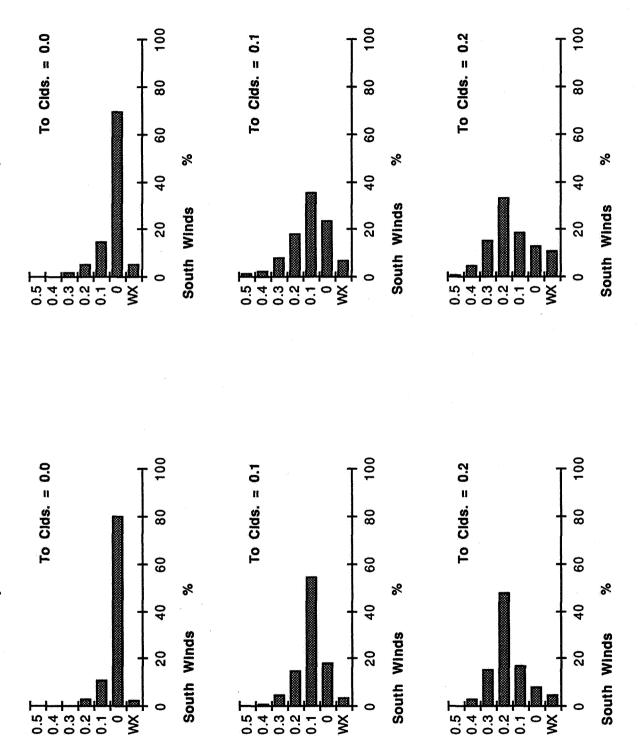

This Appendix contains figures describing the observed weather conditions one and two hours from an initial weather condition for various groupings of wind direction. These wind sectors have been defined as North ($339^{\circ}-023^{\circ}$), Northeast ($024^{\circ}-113^{\circ}$), Southeast ($114^{\circ}-158^{\circ}$), South ($159^{\circ}-203^{\circ}$), Southwest ($204^{\circ}-293^{\circ}$), and Northwest ($294^{\circ}-338^{\circ}$). For Figures F1-F7 the weather conditions are on the y-axis while percentage of occurrence are on the x-axis. The 0.0, 0.1, ... 0.5 columns represent the amount of clouds (tenths) below 10,000 feet with <u>no other weather violations</u>. All weather violations (Ceiling <10,000 feet, Visibility < 7 nautical miles, cross-wind > 10 knots, precipitation, or a <u>combination of one or more</u> violations) are contained in the column "WX".

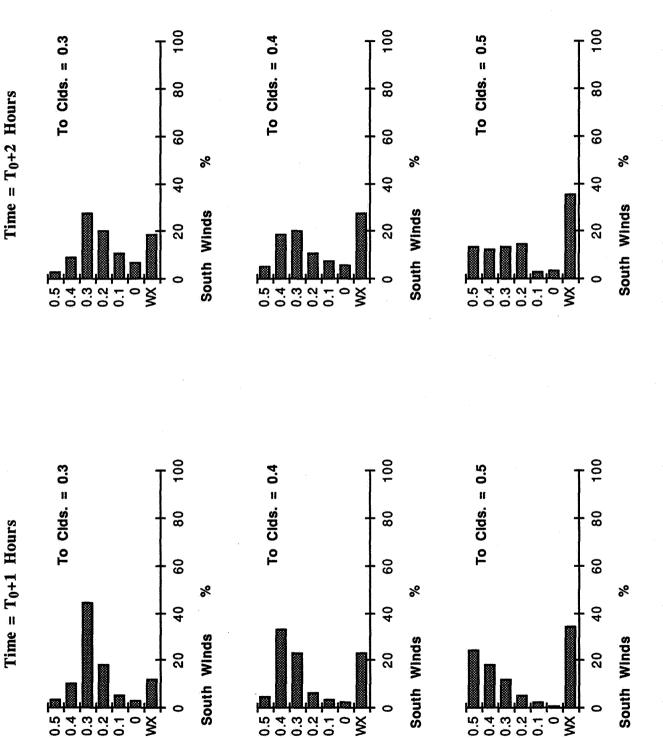


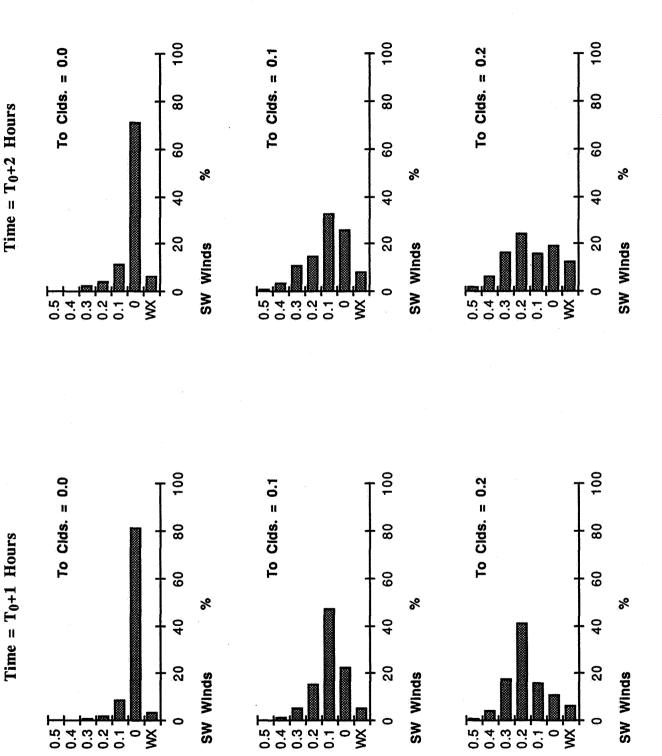




F-5



Figure F3 (continued)- Percent Occurrence of Weather Conditions for Southeast Winds at One and Two Hours After a Given Cloud Coverage.



Time = T_{0+2} Hours

Time = T_{0+1} Hours

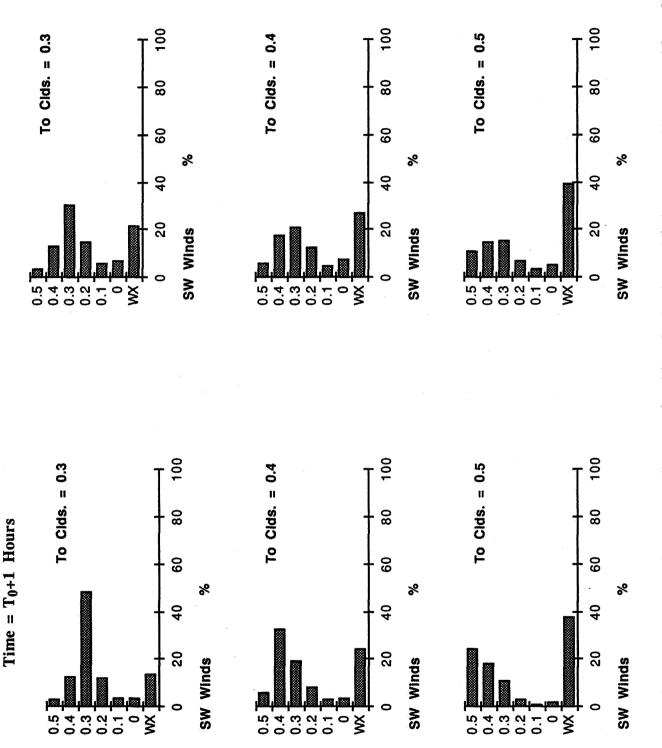


Figure F5 (continued)- Percent Occurrence of Weather Conditions for Southwest Winds at One and Two Hours After a Given Cloud Coverage.

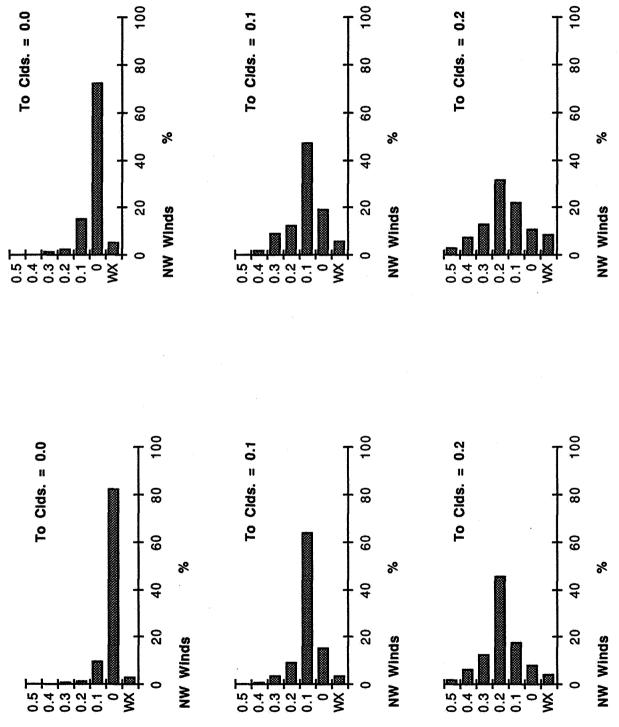
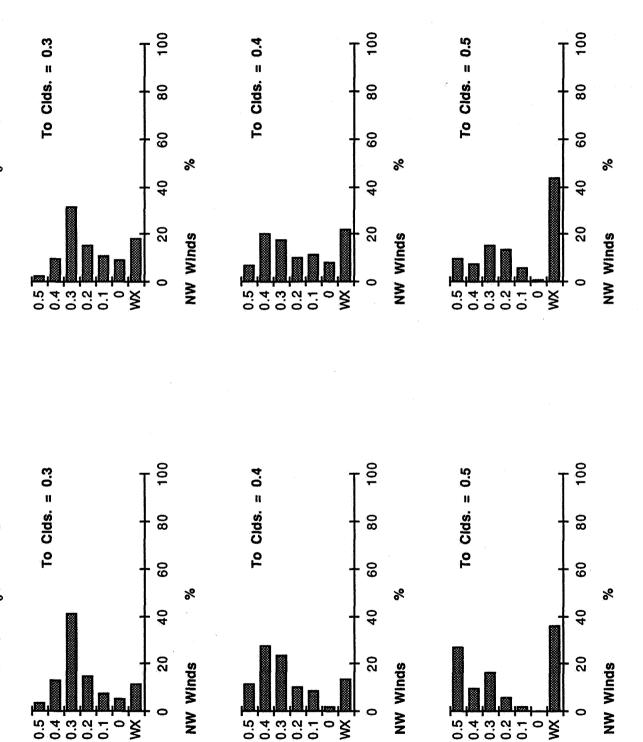



Figure F6 - Percent Occurrence of Weather Conditions for Northwest Winds at One and Two Hours After a Given Cloud Coverage.

F-12

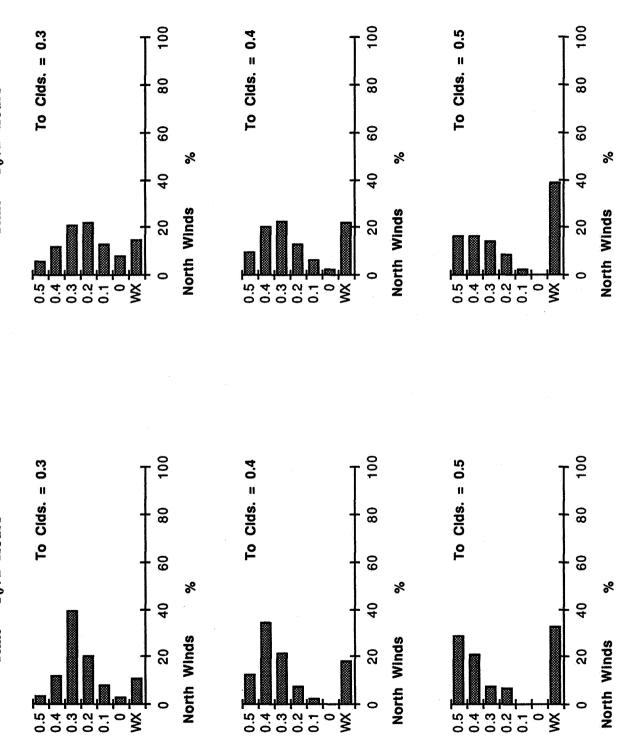
Time = T_{0+2} Hours

Time = T_{0+1} Hours

%

North Winds

%


North Winds

F-13

Time = T_{0+2} Hours

Time = T_{0+1} Hours

1

F-14

Time = T_{0+2} Hours

Time = T_{0+1} Hours

APPENDIX G

OBSERVED WEATHER CONDITIONS (ONE AND TWO HOURS) SUBSEQUENT TO INITIAL WEATHER CONDITIONS FOR MONTHLY DAYTIME ONLY

This Appendix contains figures describing the observed weather conditions one and two hours from initial weather conditions for monthly daytime data (nighttime removed). For Figures G1-G12 the weather conditions are on the y-axis while percentage of occurrence are on the x-axis. The 0.0, 0.1, ... 0.5 columns represent the amount of clouds (tenths) below 10,000 feet with <u>no other weather violations</u>. All weather violations (Ceiling <10,000 feet, Visibility < 7 nautical miles, cross-wind > 10 knots, precipitation, or a <u>combination of one or more</u> violations) are contained in the column "WX".

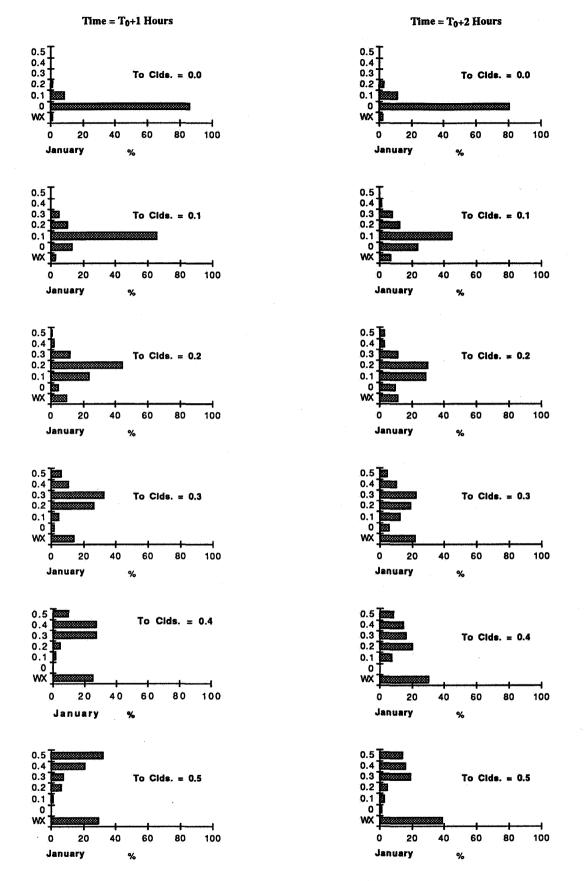


Figure G1 - Percent Occurrence of Weather Conditions for January at One and Two Hours After a Given Cloud Coverage.

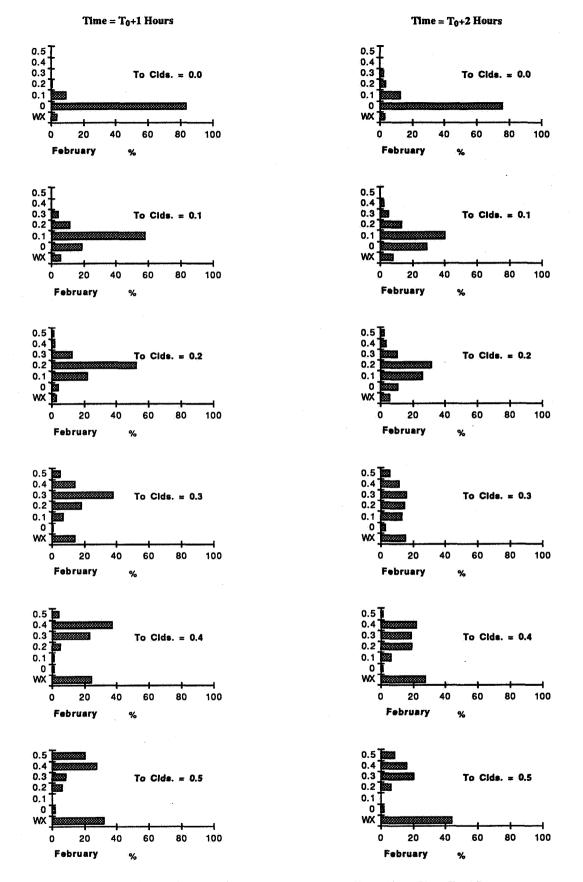


Figure G2 - Percent Occurrence of Weather Conditions for February at One and Two Hours After a Given Cloud Coverage.

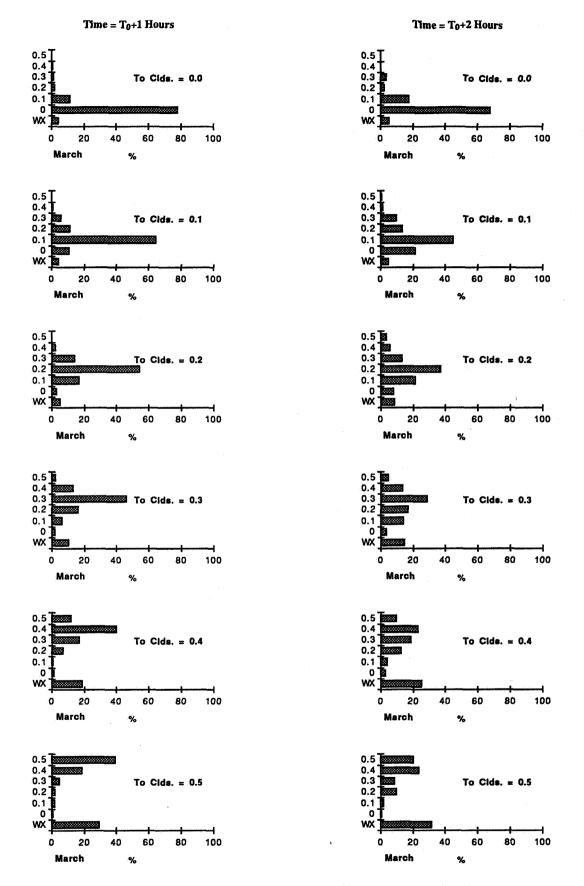


Figure G3 - Percent Occurrence of Weather Conditions for March at One and Two Hours After a Given Cloud Coverage.

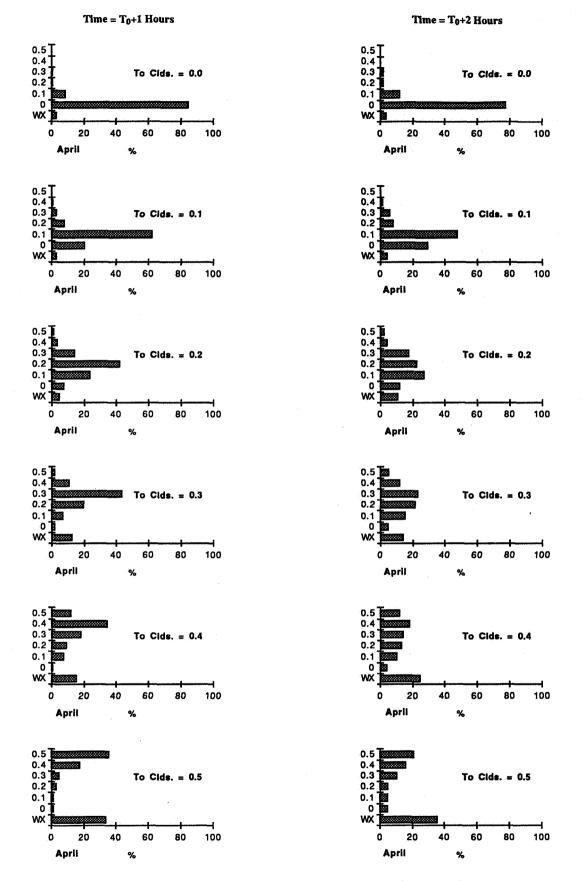


Figure G4 - Percent Occurrence of Weather Conditions for April at One and Two Hours After a Given Cloud Coverage.

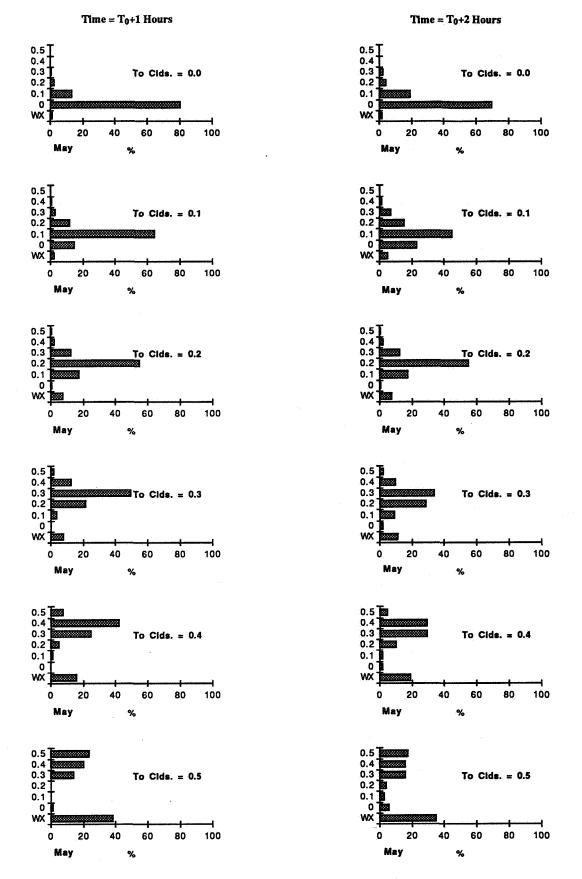


Figure G5 - Percent Occurrence of Weather Conditions for May at One and Two Hours After a Given Cloud Coverage.

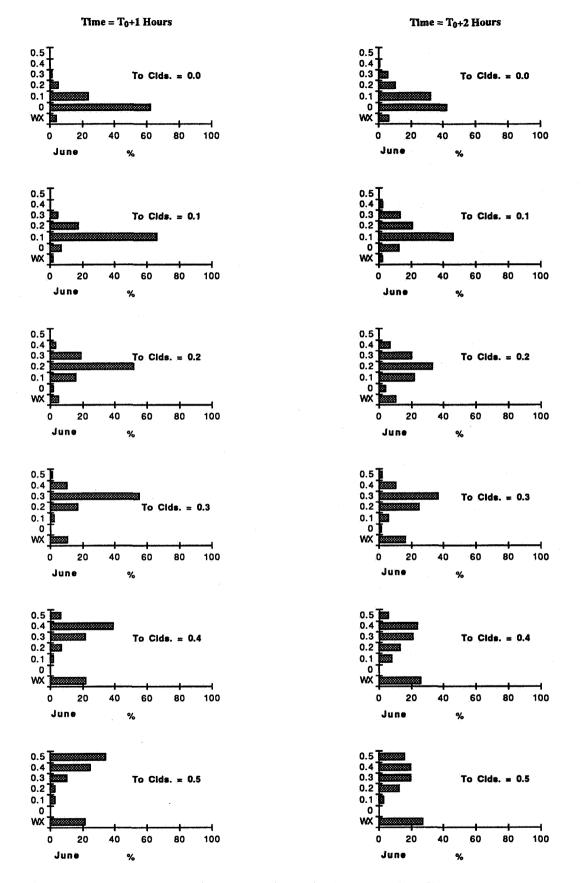


Figure G6 - Percent Occurrence of Weather Conditions for June at One and Two Hours After a Given Cloud Coverage.

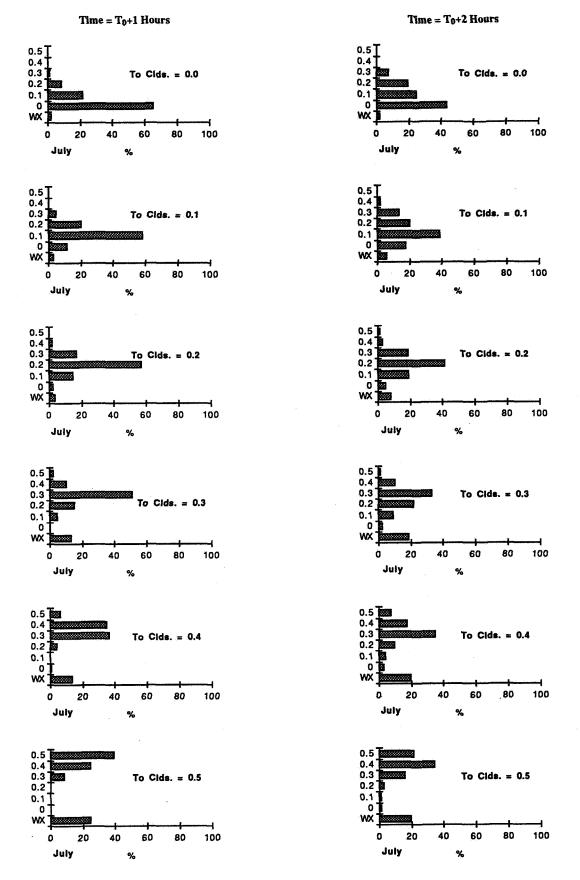


Figure G7 - Percent Occurrence of Weather Conditions for July at One and Two Hours After a Given Cloud Coverage.



Figure G8 - Percent Occurrence of Weather Conditions for August at One and Two Hours After a Given Cloud Coverage.

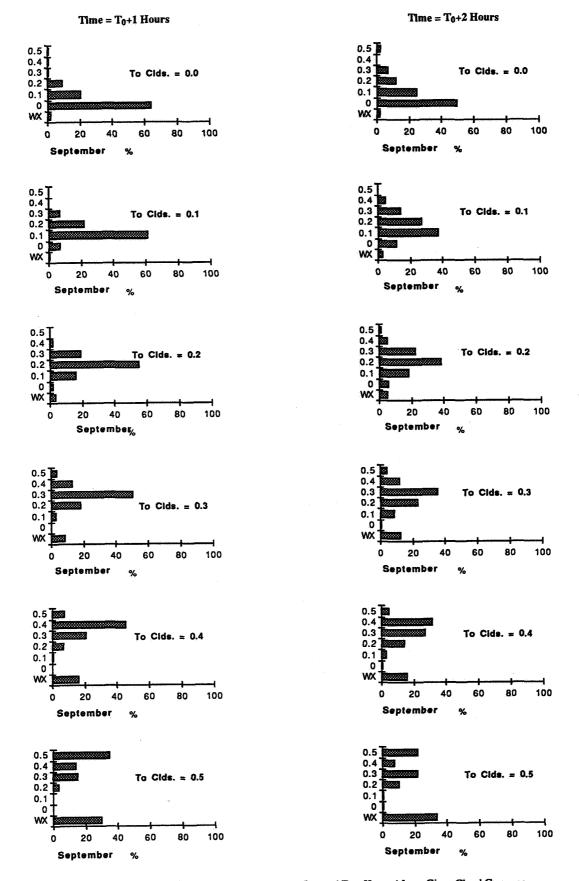


Figure G9 - Percent Occurrence of Weather Conditions for September at One and Two Hours After a Given Cloud Coverage.

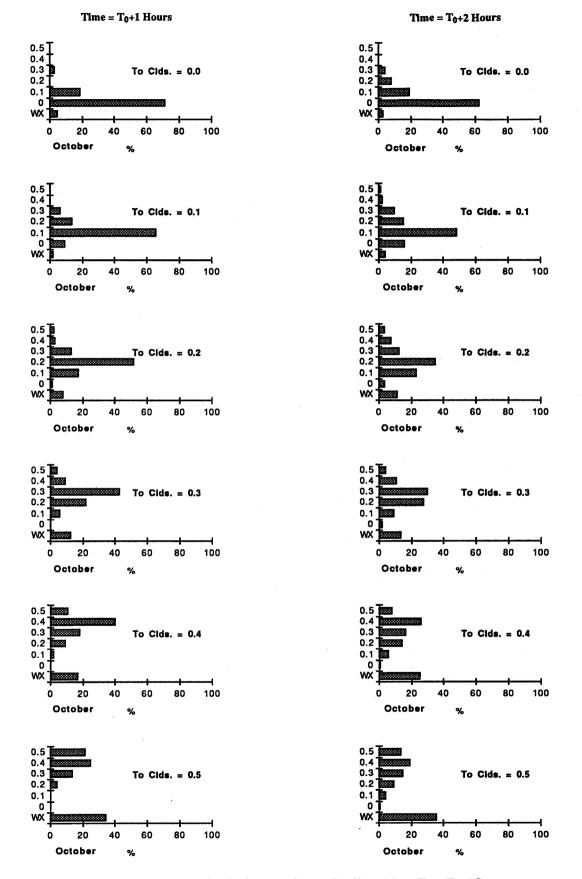


Figure G10 - Percent Occurrence of Weather Conditions for October at One and Two Hours After a Given Cloud Coverage.

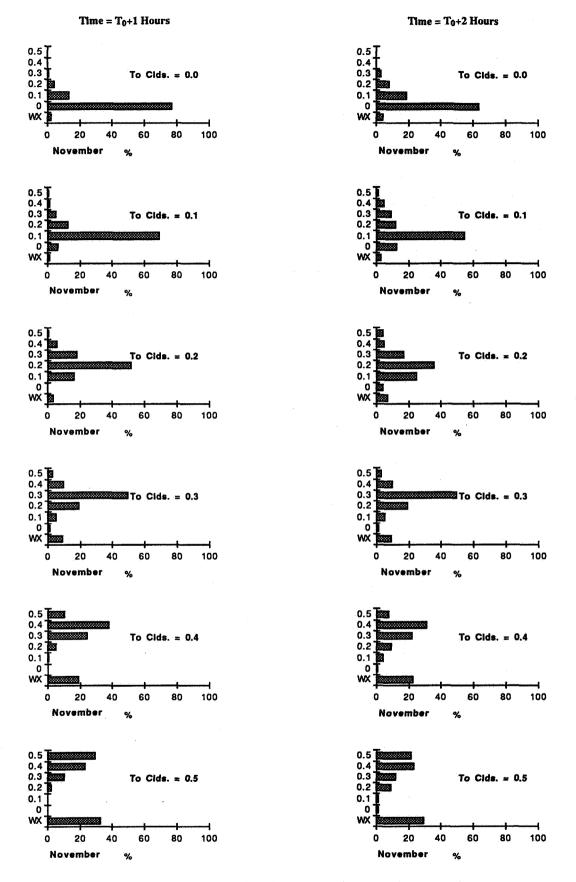


Figure G11 - Percent Occurrence of Weather Conditions for November at One and Two Hours After a Given Cloud Coverage.

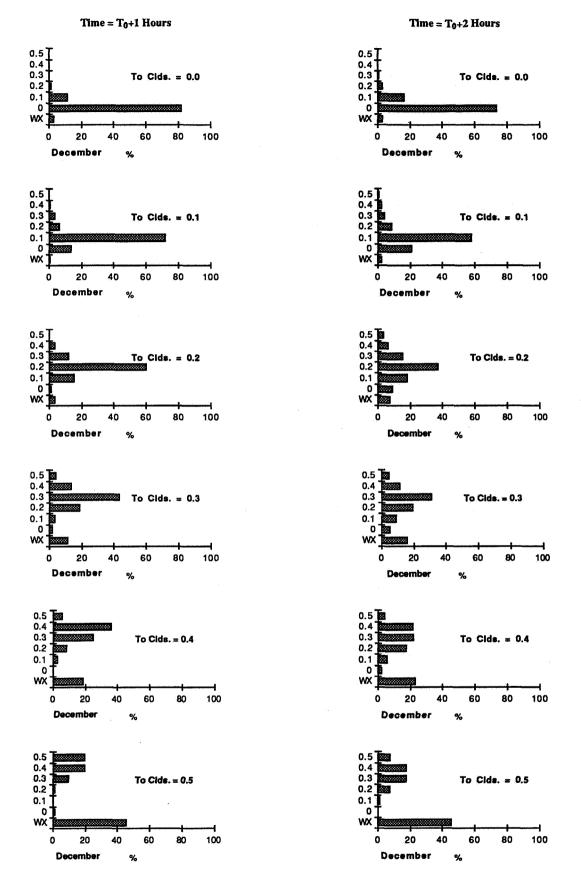


Figure G12 - Percent Occurrence of Weather Conditions for December at One and Two Hours After a Given Cloud Coverage.

APPENDIX H

Weather Violations Vs. Initial Cloud Cover

This Appendix contains charts which display the percent occurrence of weather violations for initial cloud cover of 0.0-0.5 by individual month. The data plotted represents the Daytime only data (nighttime removed).

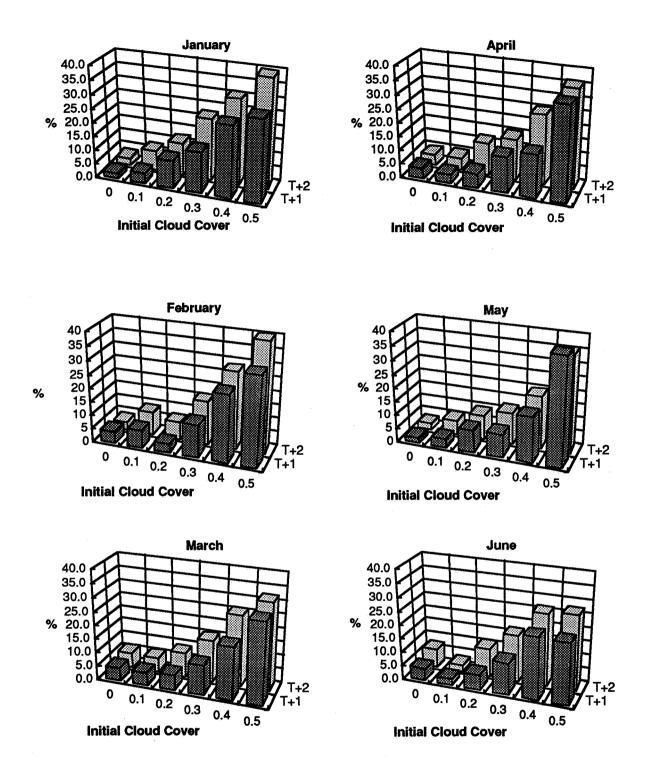
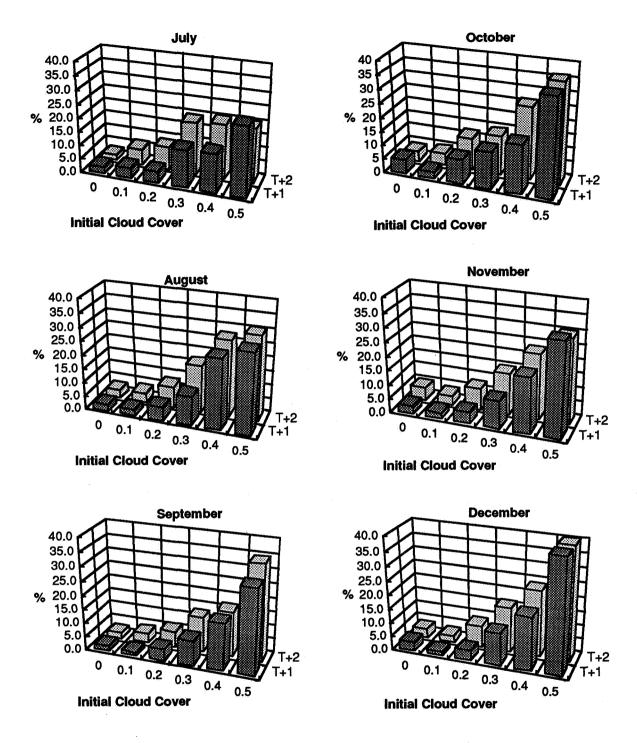
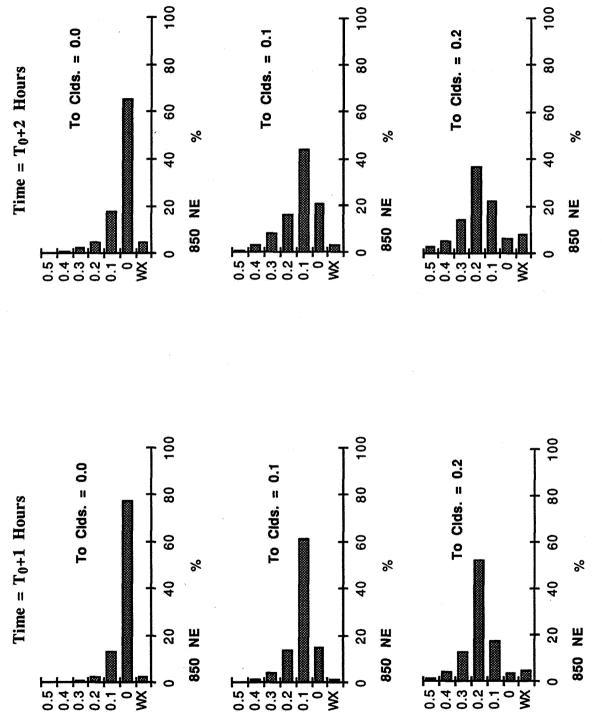
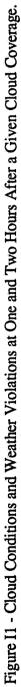


Figure H1. Percent Occurrence of Weather Violations for January to June For T+1 and T+2 Hours.


Figure H2. Percent Occurrence of Weather Violations for July to December For T+1 and T+2 Hours.

APPENDIX I

OBSERVED WEATHER CONDITIONS ONE AND TWO HOURS SUBSEQUENT TO INITIAL WEATHER CONDITIONS FOR 850/700 mb WIND SECTORS

This Appendix contains figures describing the observed weather conditions one and two hours from an initial weather conditions for various groupings of 850/700 mb wind direction. These wind sectors have been defined as North ($339^{\circ}-023^{\circ}$), Northeast ($024^{\circ}-113^{\circ}$), Southeast ($114^{\circ}-158^{\circ}$), South ($159^{\circ}-203^{\circ}$), Southwest ($204^{\circ}-293^{\circ}$), and Northwest ($294^{\circ}-338^{\circ}$). For Figures I1-I12 the weather conditions are on the y-axis while percentage of occurrence are on the x-axis. The 0.0, 0.1, ... 0.5 columns represent the amount of clouds (tenths) below 10,000 feet with <u>no other weather violations</u>. All weather violations (Ceiling <10,000 feet, Visibility < 7 nautical miles, cross-wind > 10 knots, precipitation, or a combination of one or more violations) are contained in the column "WX".

[-]

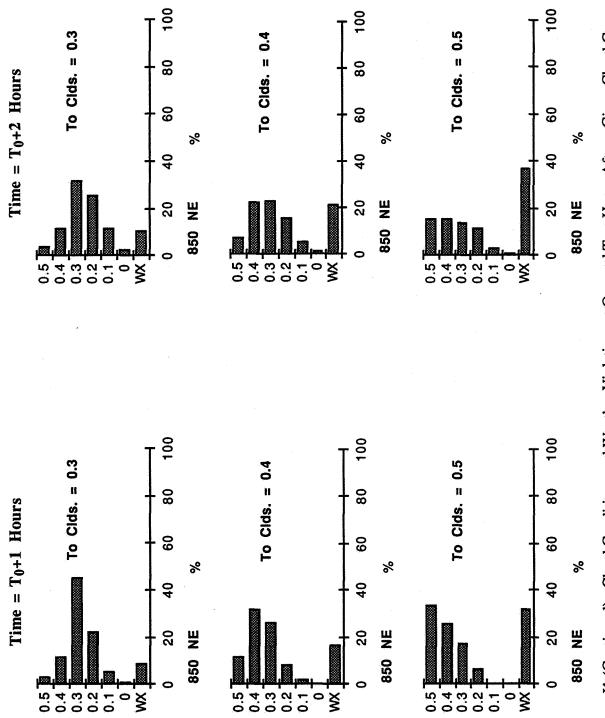
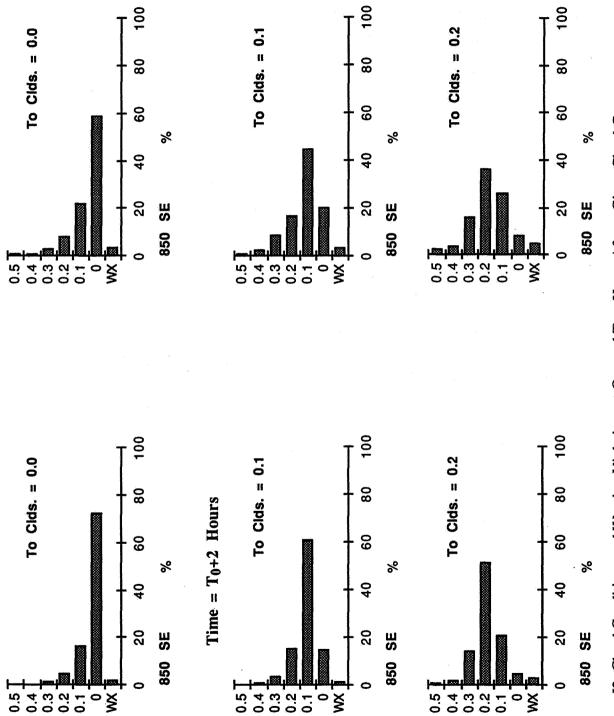
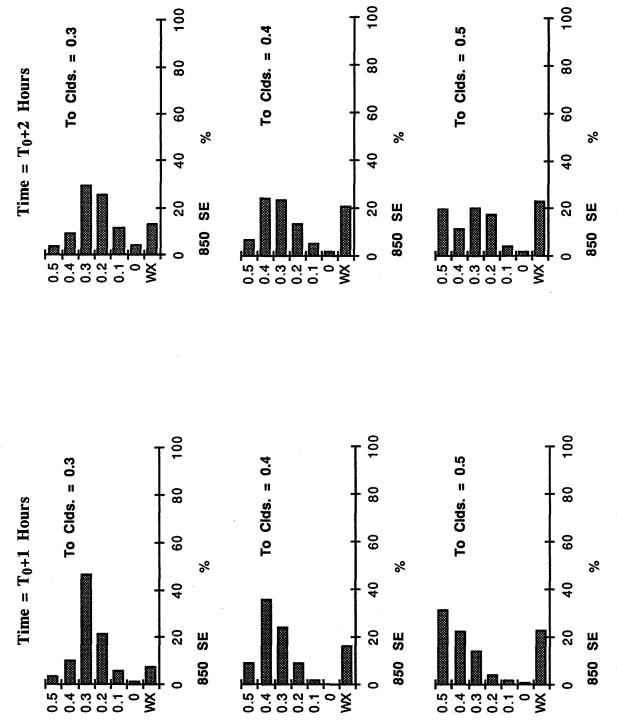
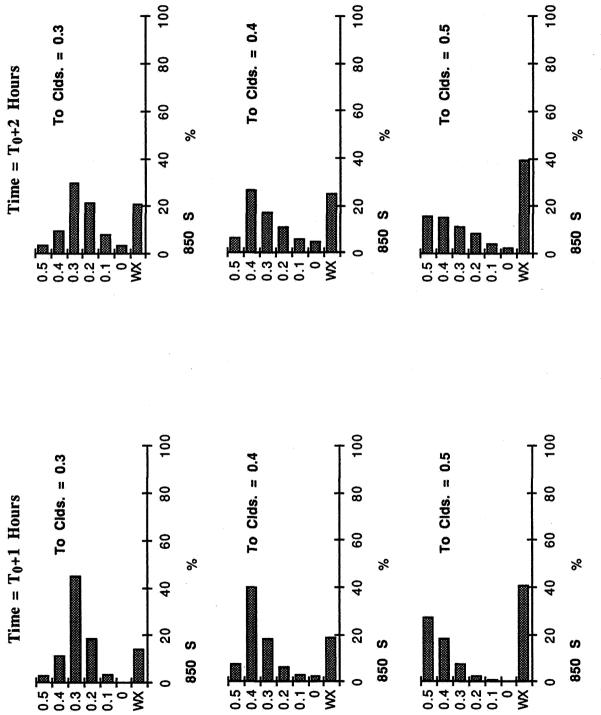
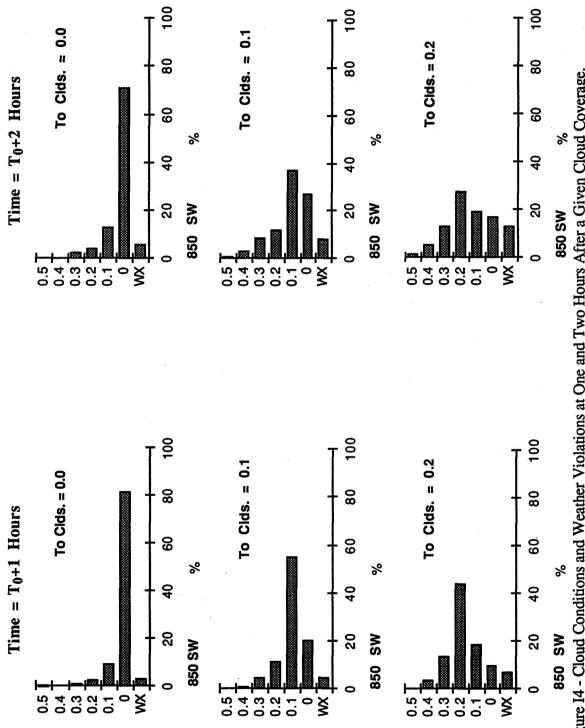
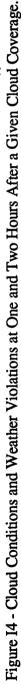




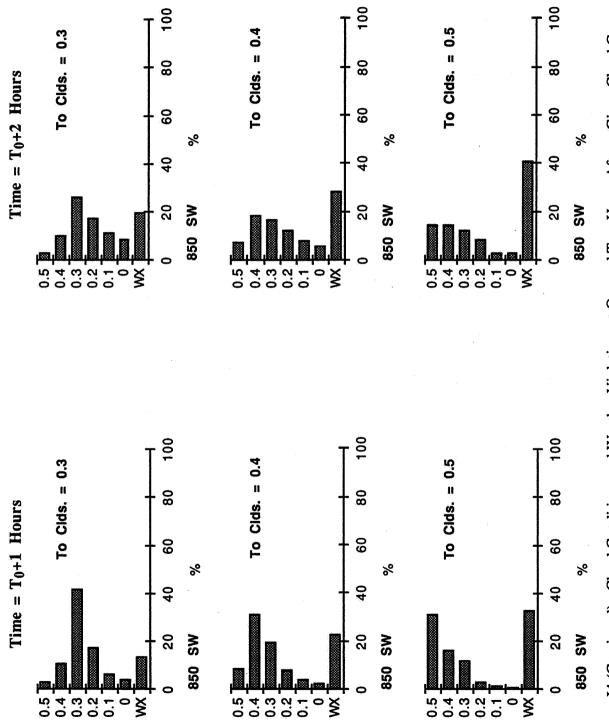
Figure 11 (Continued) - Cloud Conditions and Weather Violations at One and Two Hours After a Given Cloud Coverage .

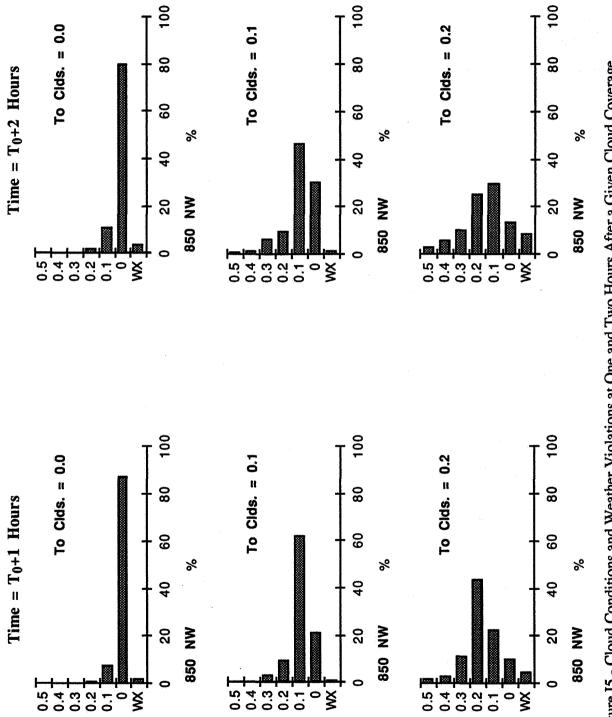
Time = T_{0+1} Hours

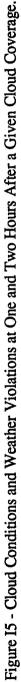




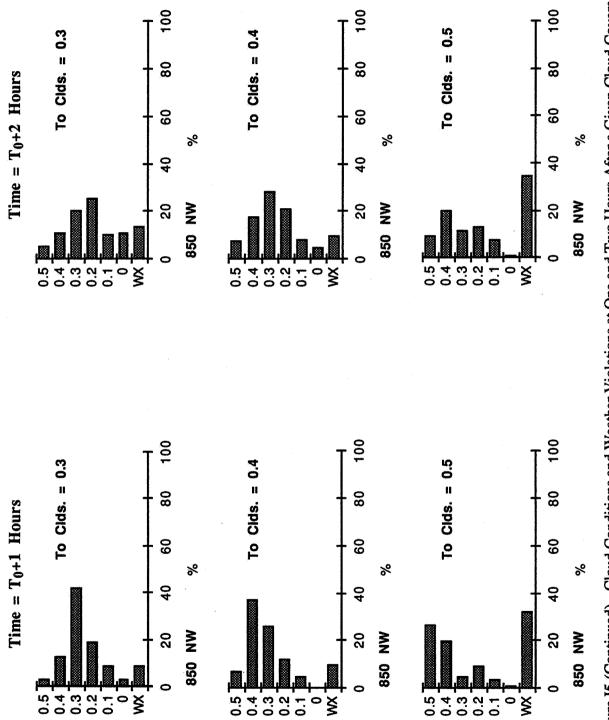


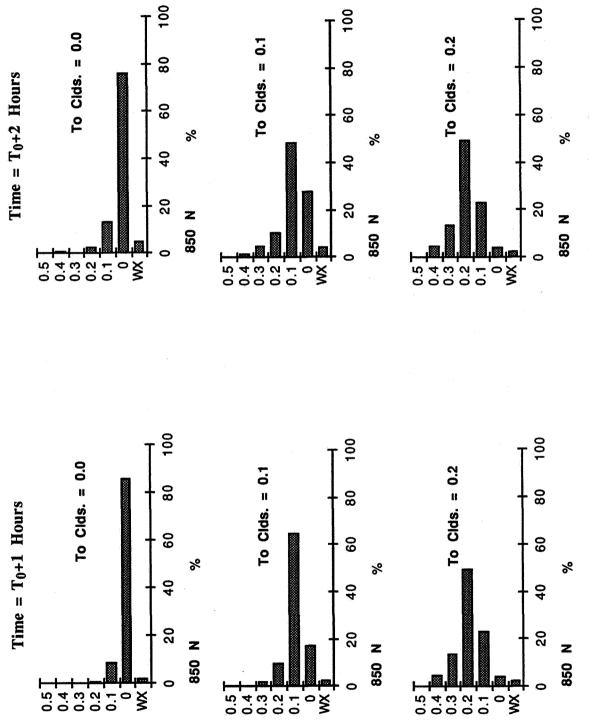


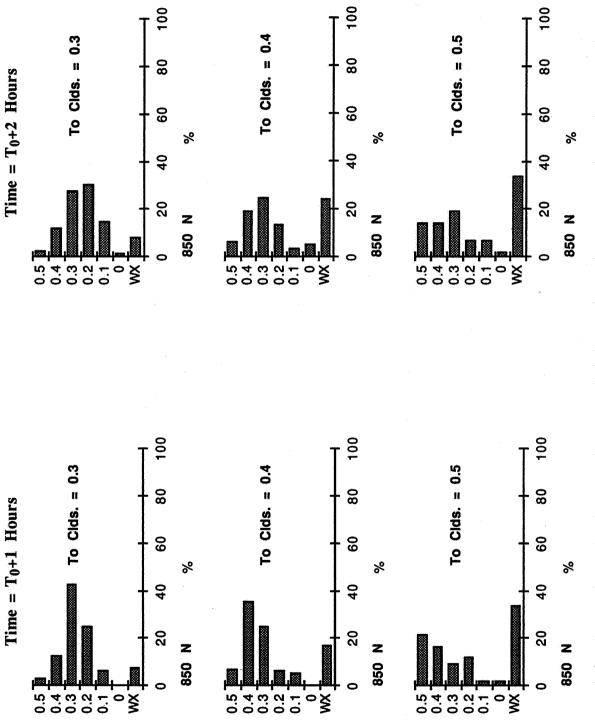


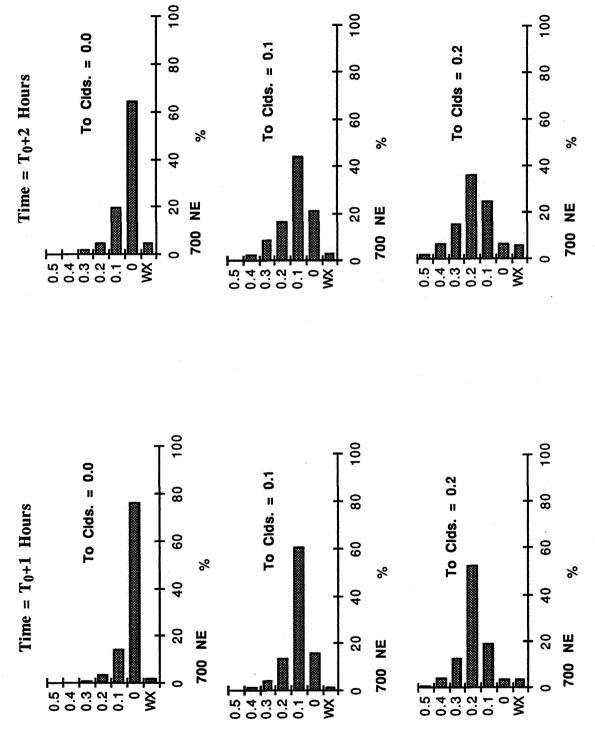


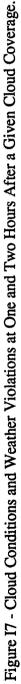
1-7

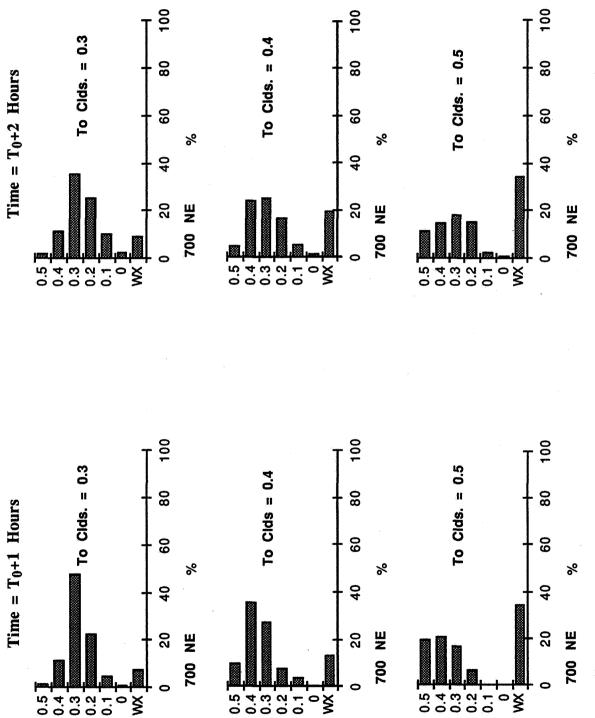


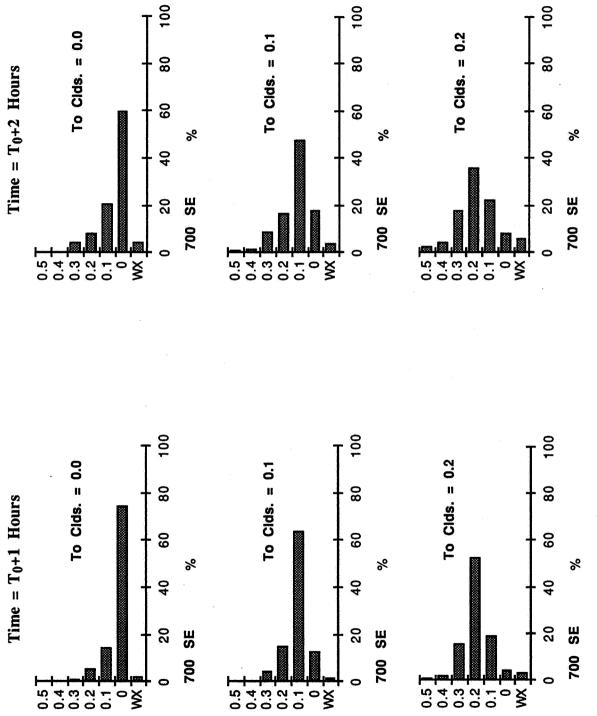


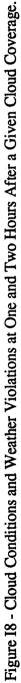

6-I

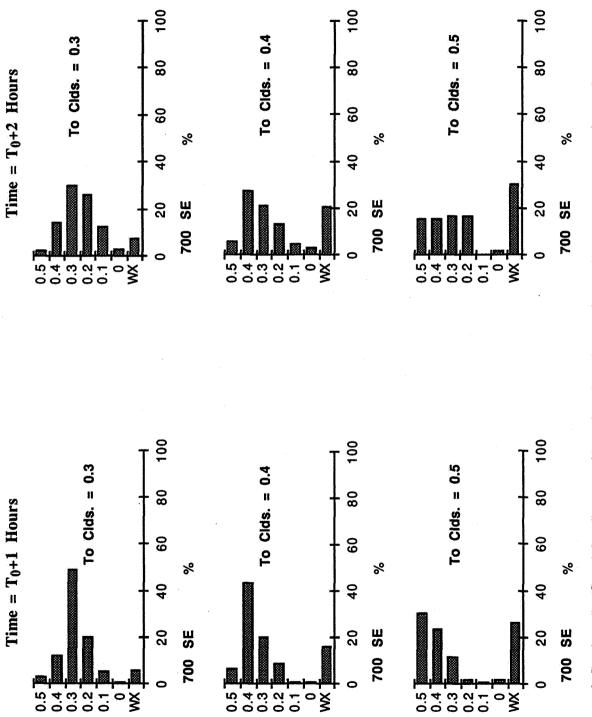


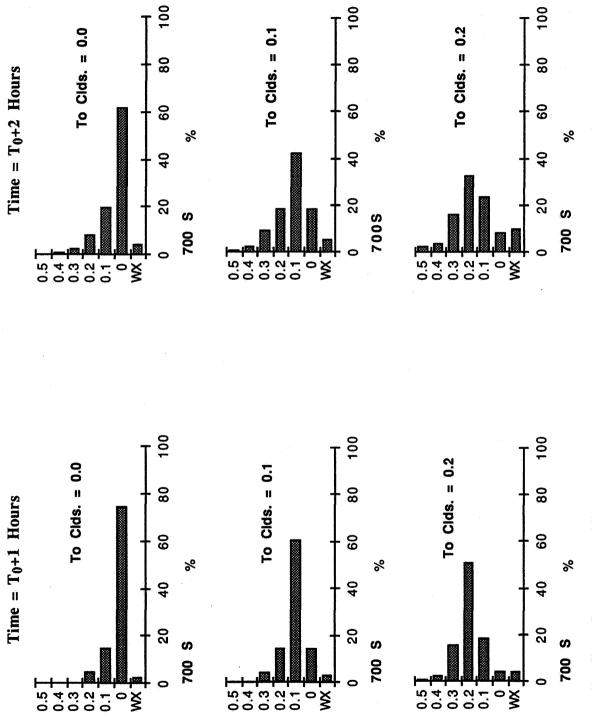


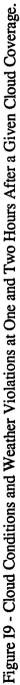


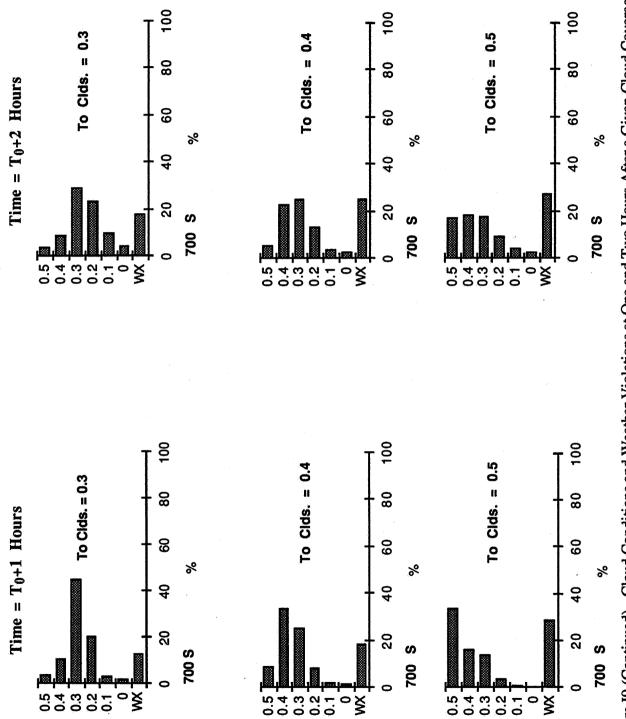


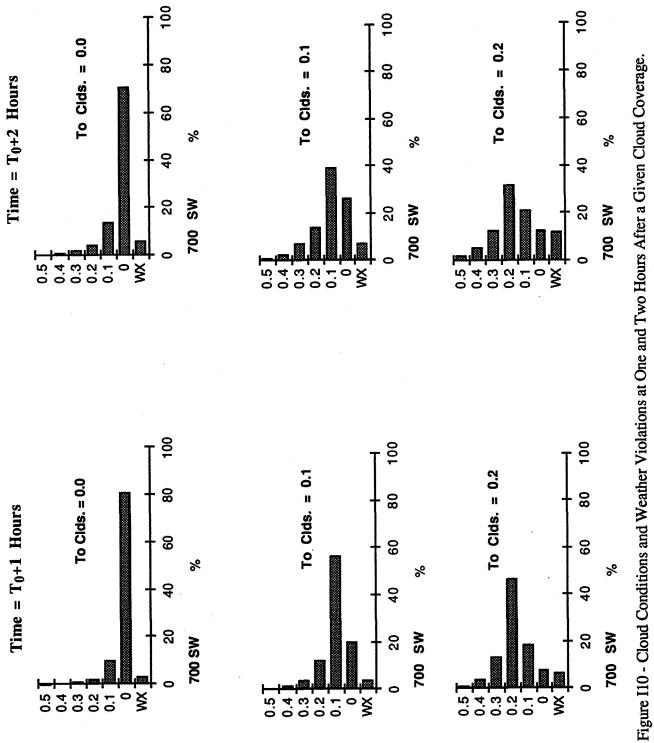


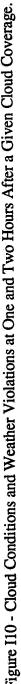


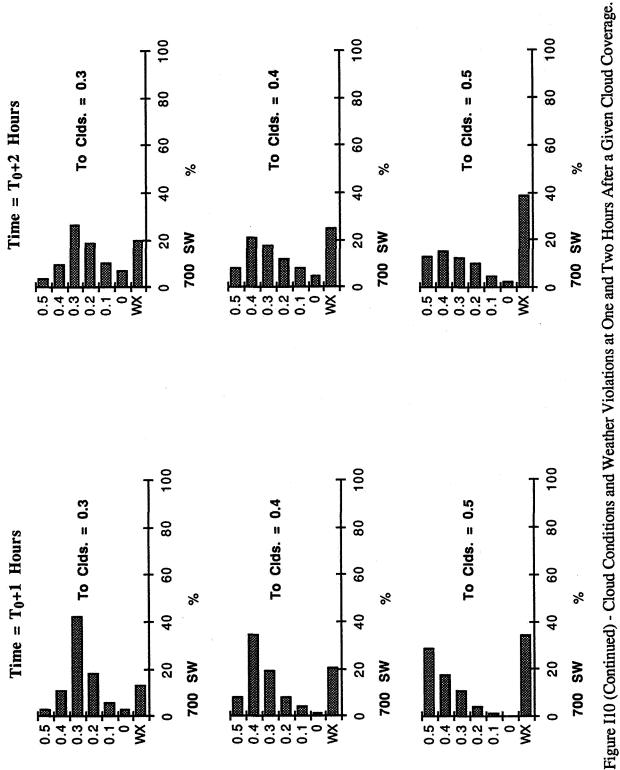


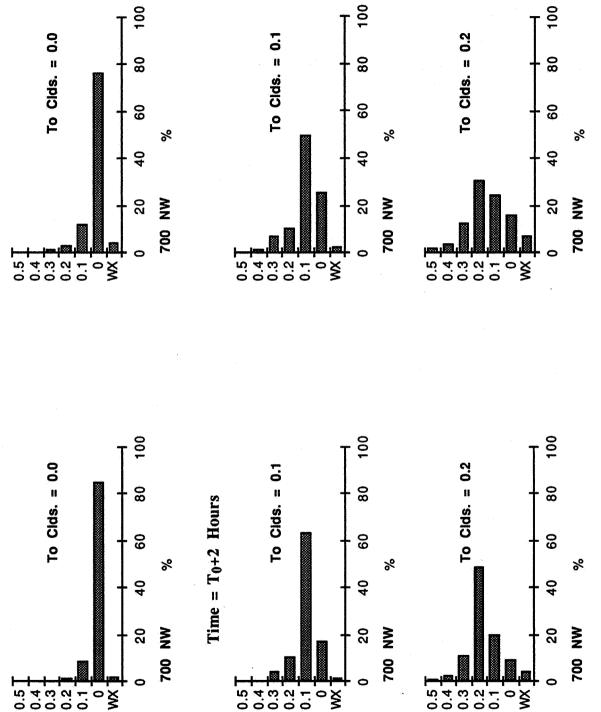


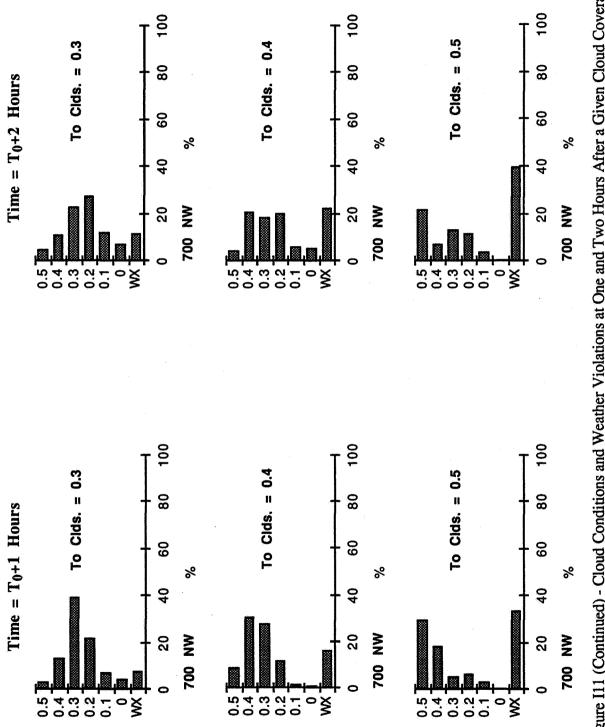


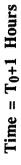


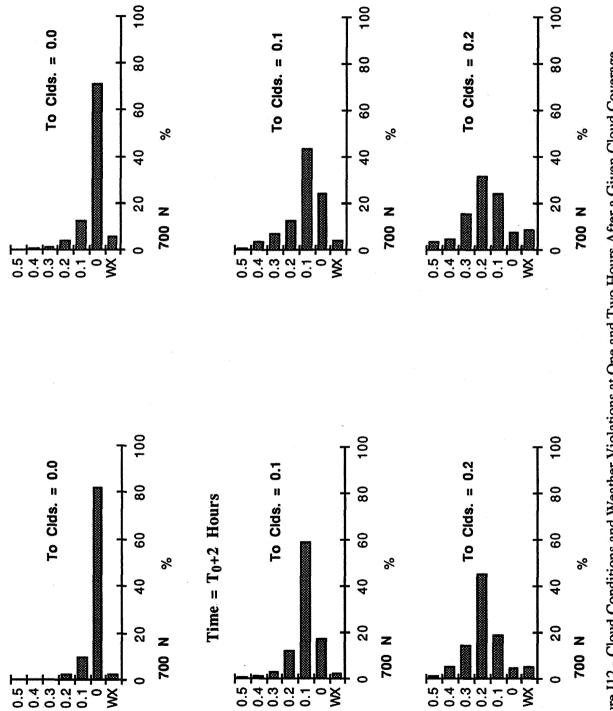


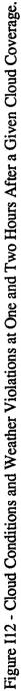


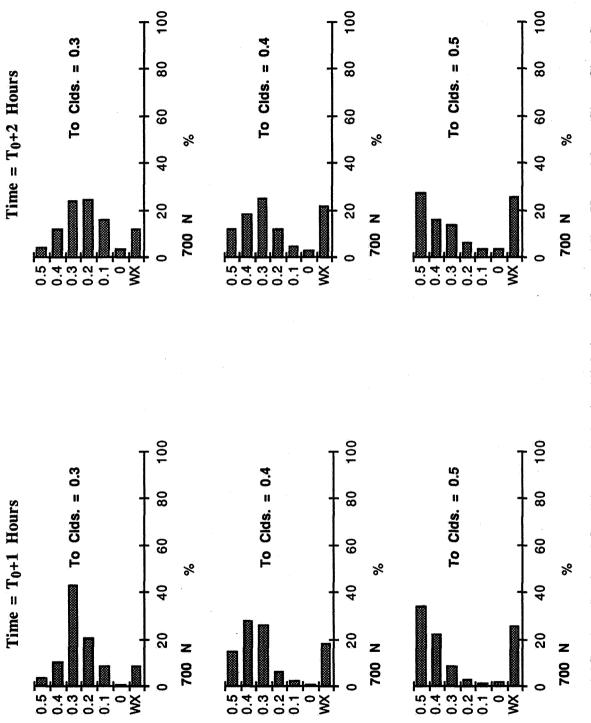

-











APPENDIX J

CLIMATOLOGY OF WEATHER VIOLATIONS

MONTH VS. HOUR

This Appendix contains figures that show the climatology of weather violations by month and hour. Weather violations percentages are plotted along the y-axis while the hours are along the x-axis.

JUL-AUG

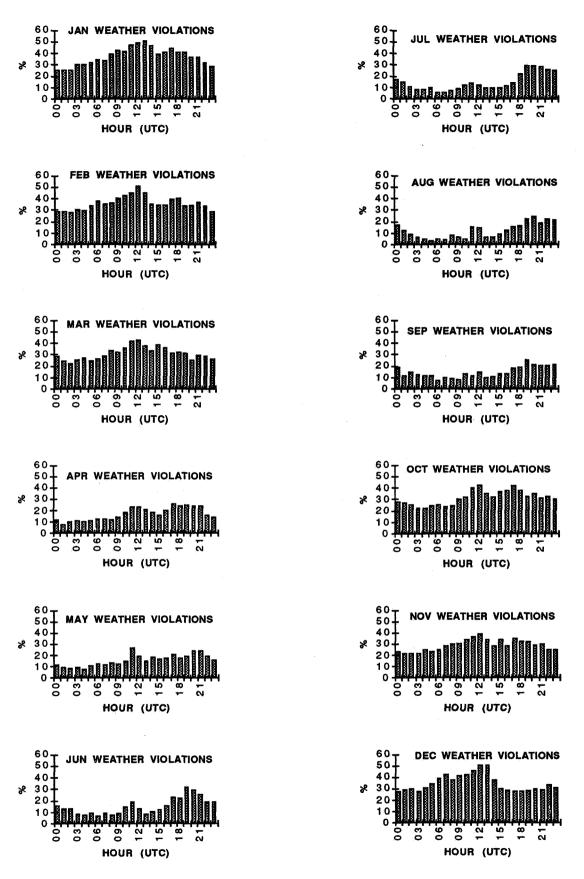


Figure J1 - Climatology of Weather Violations Categorized by Month and Hour of Day.

APPENDIX K

NOMOGRAM TABLES

(All Weather Violations)

This Appendix contains nomograms which relate the percent occurrence of weather violations (All STS weather Violations) for a given initial cloud cover by month and groups of hours. The nomogram tables can be used by SMG and CCFF forecasters as a tool in making cloud cover forecasts for EOM and RTLS at KSC. The nomograms also give the total number of counts for each data categorization (month by 6-hour group). This gives the user a feel as to how many cases each weather violation percentage is based upon. As an example, for initial cloud cover of 0.2 for the 0900-1400 UTC period during October, the weather violation is 12% for T+1 hour but increases to 21% for T+2 hours. For both of these categories there were 111 cases of initial cloud cover of 0.2. The nomograms for initial cloud cover of 0.0 to 0.5 will be made available to both SMG and CCFF forecasters via MIDDS.

	TABLE K-1. WI	EATHER	VIOLA	FIONS F	OR T=0.	0 Initial (Cloud Co	ver	
TIME (UTC)		0900-	1400	1500-	2000	2100-	0200	0300-	0800
HOURS FRO	OM To	T+1	T+2	T+1	T+2	T+1	T+2	T+1	T+2
(Month)	To Count	220	220	147	147	284	284	382	382
January	% Violation	5	9	3	4	1	2	4	10
	To Count	276	276	152	152	262	262	368	368
February	% Violation	6	11	4	3	2	3	5	10
	To Count	228	228	115	115	232	232	357	357
March	% Violation	6	10	4	8	2	2	2	5
	To Count	425	425	215	215	416	416	589	589
April	% Violation	6	8	4	6	1	1	2	5
	To Count	279	279	96	96	264	264	510	510
May	% Violation	7	11	3	3	0	0	2	4
	To Count	221	221	10	10	125	125	390	390
June	% Violation	5	9	0	0	2	3	3	4
	To Count	334	334	13	13	161	161	545	545
July	% Violation	2	4	8	15	1	2	1	3
	To Count	317	317	11	11	143	143	521	521
August	% Violation	6	10	0	0	1	2	2	3
	To Count	157	157	12	12	131	131	285	285
September	% Violation	4	6	0	0	1	1	1	3
	To Count	126	126	36	36	139	139	276	276
October	% Violation	7	9	8	6	1	1	3	8
	To Count	208	208	69	69	171	171	315	315
November	% Violation	5	8	1	4	0	1	3	8
	To Count	208	208	144	144	269	269	343	343
December	% Violation	9	13	3	4	1	4	6	11

· · · · · · · · · · · · · · · · · · ·	TABLE K-2 WE	ATHER	VIOLAT	TIONS F	OR T=0.	l Initial C	Cloud Cov	ver	
TIME (UTC)		0900-	1400	1500-	2000	2100-	0200	0300-	0800
HOURS FRO	OM To	T+1	T+2	T+1	T+2	T+1	T+2	T+1	T+2
(Month)	To Count	107	107	149	149	146	146	89	89
January	% Violation	10	19	3	9	1	3	6	11
	To Count	93	93	102	102	136	136	57	57
February	% Violation	6	11	9	12	3	3	7	12
	To Count	125	125	135	135	163	163	97	97
March	% Violation	10	14	4	4	1	2	7	11
	To Count	130	130	218	218	172	172	72	72
April	% Violation	3	7	6	6	2	2	8	10
	To Count	184	184	186	186	198	198	123	123
May	% Violation	5	9	3	5	1	2	5	8
	To Count	263	263	113	113	245	245	216	216
June	% Violation	3	6	4	0	0	2	1	3
	To Count	233	233	134	134	208	208	146	146
July	% Violation	2	3	7	13	2	1	3	7
	To Count	246	246	132	132	280	280	187	187
August	% Violation	3	4	2	4	3	3	1	2
	To Count	238	238	76	76	198	198	221	221
September	% Violation	3	4	1	5	0	1	1	2
	To Count	178	178	111	111	193	193	164	164
October	% Violation	6	11	3	4	0	2	7	10
	To Count	156	156	141	141	216	216	179	179
November	% Violation	3	6	3	4	0	1	6	12
	To Count	113	113	163	163	146	146	75	75
December	% Violation	5	5	2	4	1	5	7	16

	TABLE K-3. WE	EATHER	VIOLAT	TIONS F	OR T=0.2	2 Initial C	loud Cov	ver	
TIME (UTC)		0900-	1400	1500-	2000	2100-	0200	0300-0	0800
HOURS FRO	OM To	T+1	T+2	T+1	T+2	T+1	T+2	T+1	T+2
(Month)	To Count	66	66	93	93	95	95	58	58
January	% Violation	12	18	13	17	2	5	14	17
	To Count	38	38	97	97	83	83	51	51
February	% Violation	11	32	6	7	4	5	12	25
	To Count	89	89	120	120	107	107	81	81
March	% Violation	13	22	5	8	4	7	1	10
	To Count	68	68	89	89	77	77	67	67
April	% Violation	10	21	6	11	4	6	4	7
	To Count	114	114	187	187	158	158	112	112
May	% Violation	10	14	7	9	4	6	4	8
	To Count	163	163	184	184	179	179	132	132
June	% Violation	5	10	8	13	5	7	3	9
	To Count	134	134	240	240	182	182	88	88
July	% Violation	4	4	3	11	4	6	7	5
	To Count	139	139	252	252	189	189	85	85
August	% Violation	1	4	6	10	4	5	4	5
	To Count	192	192	213	213	201	201	173	173
September	% Violation	3	6	6	6	2	4	4	8
	To Count	111	111	128	128	153	153	101	101
October	% Violation	12	21	10	12	5	9	7	15
	To Count	83	83	127	127	124	124	66	66
November	% Violation	6	12	5	8	0	6	11	20
	To Count	75	75	128	128	86	86	55	55
December	% Violation	3	11	4	9	6	9	13	25

к-з (- З

	TABLE K-4. WE	ATHER	VIOLAT	TIONS FO	OR T=0.3	3 Initial C	Cloud Cov		
TIME (UTC)		0900-	1400	1500-	2000	2100-	0200	0300-0	0800
HOURS FRO	OM To	T+1	T+2	T+1	T+2	T+1	T+2	T+1	T+2
(Month)	To Count	56	56	91	91	72	72	47	47
January	% Violation	27	38	15	23	10	15	13	15
	To Count	27	27	91	91	56	56	31	31
February	% Violation	30	41	14	20	14	14	10	29
	To Count	59	59	132	132	79	79	45	45
March	% Violation	20	25	8	13	13	16	11	22
	To Count	57	57	92	92	47	47	43	43
April	% Violation	14	26	15	15	9	9	9	12
	To Count	105	105	147	147	118	118	45	45
May	% Violation	11	16	8	11	8	14	4	9
	To Count	93	93	258	258	117	117	50	50
June	% Violation	14	19	12	17	8	12	2	6
	To Count	92	92	251	251	115	115	34	34
July	% Violation	11	18	16	22	10	11	3	9
	To Count	102	102	260	260	93	93	43	43
August	% Violation	11	19	9	16	12	13	12	14
	To Count	141	141	254	254	118	118	72	72
September	% Violation	6	6	9	15	13	16	13	11
	To Count	81	81	141	141	80	80	76	76
October	% Violation	20	22	9	9	11	13	13	14
	To Count	92	92	141	141	89	89	52	52
November	% Violation	17	27	6	11	7	10	10	10
	To Count	63	63	119	119	74	74	69	69
December	% Violation	13	24	13	18	4	8	19	26

	TABLE K-5. WE	ATHER	VIOLAT	TIONS F	OR T=0.4	4 Initial C	loud Cov		
TIME (UTC)		0900-	1400	1500-	2000	2100-	0200	0300-0	0800
HOURS FRO	OM To	T+1	T+2	T+1	T+2	T+1	T+2	T+1	T+2
(Month)	To Count	27	27	41	41	36	36	29	29
January	% Violation	33	48	24	24	28	33	21	21
	To Count	32	32	72	72	32	32	34	34
February	% Violation	34	31	25	32	25	31	41	56
	To Count	45	45	80	80	68	68	60	60
March	% Violation	27	38	18	20	16	31	23	37
	To Count	29	29	57	57	32	32	15	15
April	% Violation	28	38	9	19	13	22	0	20
	To Count	59	59	99	99	35	35	20	20
May	% Violation	20	20	18	22	11	9	15	20
	To Count	34	34	112	112	53	53	27	27
June	% Violation	21	21	25	30	13	19	15	19
	To Count	24	24	79	79	53	53	38	38
July	% Violation	8	17	14	22	15	23	13	13
	To Count	30	30	88	88	40	40	29	29
August	% Violation	23	7	23	33	18	20	14	10
	To Count	55	55	129	129	64	64	37	37
September	% Violation	15	16	17	16	19	16	.0	3
	To Count	66	66	115	115	61	61	52	52
October	% Violation	24	36	17	25	15	13	12	19
	To Count	40	40	91	91	49	49	37	37
November	% Violation	25	25	20	27	14	12	27	30
	To Count	33	33	78	78	49	49	39	39
December	% Violation	33	30	18	27	16	20	28	41

	TABLE K-6. WE	EATHER	VIOLAT	TIONS FO	OR T=0.5	5 Initial C	loud Cov	/er	
TIME (UTC)		0900-	1400	1500-2	2000	2100-0	0200	0300-0	800
HOURS FRO	OM To	T+1	T+2	T+1	T+2	T+1	T+2	T+1	T+2
(Month)	To Count	24	24	33	33	27	27	14	14
January	% Violation	29	46	42	45	19	26	43	57
	To Count	16	16	25	25	18	18	19	19
February	% Violation	69	63	32	44	28	50	37	74
	To Count	37	37	47	47	31	31	33	33
March	% Violation	41	46	23	26	32	42	36	48
	To Count	14	14	26	26	29	29	10	10
April	% Violation	36	43	46	46	28	31	40	50
	To Count	22	22	35	35	19	19	18	18
May	% Violation	41	27	34	37	32	21	28	28
	To Count	14	14	20	20	24	24	13	13
June	% Violation	21	21	30	40	13	17	23	31
	To Count	9	9	31	31	19	19	7	7
July	% Violation	44	33	29	26	11	5	14	14
	To Count	8	8	32	32	27	27	13	13
August	% Violation	25	50	41	44	11	7	0	0
	To Count	13	13	51	51	26	26	18	18
September	% Violation	38	23	29	37	19	31	28	11
	To Count	39	39	54	54	34	34	39	39
October	% Violation	44	49	28	30	32	32	28	28
	To Count	18	18	44	44	32	32	22	22
November	% Violation	33	33	39	30	16	28	36	36
	To Count	24	24	32	32	28	28	22	22
December	% Violation	46	58	50	41	39	39	45	41

APPENDIX L

NOMOGRAM TABLES

(Ceiling and Precipitation Violations)

This Appendix contains nomograms which relate the percent occurrence of weather violations (ceiling and precipitation violations only) for a given initial cloud cover by month and groups of hours. The nomogram tables can be used by SMG and CCFF forecasters as a tool in making cloud cover forecasts for EOM and RTLS at KSC. The nomograms also give the total number of counts for each data categorization (month by 6-hour group). This gives the user a feel as to how many cases each weather violation percentage is based upon. As an example, for initial cloud cover of 0.2 for the 0900-1400 UTC period during October, the weather violation is 6% for T+1 hour but increases to 12% for T+2 hours. For both of these categories there were approximatley 100 cases of initial cloud cover of 0.2. The nomograms for initial cloud cover of 0.0 to 0.5 will be made available to both SMG and CCFF forecasters via MIDDS.

	TABLE L-1. WE	ATHER	VIOLAT	TIONS F	OR T=0.0) Initial C	Cloud Cov	ver	
TIME (UTC)		0900-	1400	1500-	2000	2100-	0200	0300-	0800
HOURS FRO	OM To	T+1	T+2	T+1	T+2	T+1	T+2	T+1	T+2
(Month)	To Count	212	213	142	141	282	279	370	358
January	% Violation	1	6	0	0	0	1	1	4
	To Count	263	257	147	148	260	258	354	343
February	% Violation	2	4	1	1	1	2	1	3
	To Count	218	213	112	108	229	227	354	347
March	% Violation	2	4	2	2	0	0	1	2
	To Count	406	398	206	203	413	413	580	574
April	% Violation	2	2	0	0	0	1	1	3
	To Count	261	254	93	93	264	264	501	493
May	% Violation	1	2	0	0	0	0	0	1
	To Count	214	212	10	10	124	125	385	380
June	% Violation	2	5	0	0	1	3	1	1
	To Count	326	323	13	13	161	161	540	533
July	% Violation	0	1	8	15	1	2	0	1
	To Count	301	292	11	11	142	141	514	510
August	% Violation	1	2	0	0	1	1	0	1
	To Count	153	152	12	12	131	131	283	279
September	% Violation	1	3	0	0	1	1	0	1
	To Count	118	116	33	34	138	139	269	259
October	% Violation	1	1	0	0	0	1	0	2
	To Count	199	193	69	69	171	170	306	297
November	% Violation	1	1	1	4	0	0	0	2
	To Count	196	191	143	142	269	264	323	310
December	% Violation	3	6	2	3	1	2	0	2

	TABLE L-2. WE	ATHER	VIOLAT	IONS FO	OR T=0.1	l Initial C	loud Cov	ver	5
TIME (UTC)		0900-	1400	1500-	2000	2100-	0200	0300-0	0800
HOURS FRO	M To	T+1	T+2	T+1	T+2	T+1	T+2	T+1	T+2
(Month)	To Count	103	102	144	141	145	145	88	87
January	% Violation	7	15	0	4	1	3	5	9
	To Count	91	89	97	98	132	133	55	56
February	% Violation	4	7	4	8	0	1	4	11
	To Count	120	118	132	135	163	163	93	92
March	% Violation	7	8	2	4	1	2	3	7
	To Count	126	124	207	208	171	172	72	71
April	% Violation	0	2	1	2	1	2	8	8
	To Count	177	175	182	179	197	197	117	117
May	% Violation	2	5	1	2	0	1	0	3
	To Count	257	256	112	113	245	244	214	210
June	% Violation	1	3	3	0	0	1	0	0
	To Count	230	231	130	129	207	208	144	141
July	% Violation	1	2	4	10	1	1	2	4
	To Count	244	245	132	132	278	277	185	184
August	% Violation	2	3	2	4	2	2	0	1
	To Count	235	234	76	75	198	198	220	218
September	% Violation	1	2	1	4	0	1	0	0
	To Count	173	172	110	108	193	193	158	155
October	% Violation	3	8	2	1	0	2	3	5
	To Count	154	155	138	137	215	215	171	165
November	% Violation	1	6	1	1	0	1	1	4
	To Count	110	109	161	160	145	143	72	70
December	% Violation	3	2	1	2	1	3	3	10

	TABLE L-3. WI	EATHER	VIOLA	FIONS F	OR T=0.	2 Initial (Cloud Co	ver	
TIME (UTC)	0900-	1400	1500-	2000	2100-	0200	0300-	0800
HOURS FR	OM To		T+2	T+1	T+2	T+1	T+2	T+1	T+2
(Month)	To Count	65	63	85	85	94	92	58	58
January	% Violation	11	14	5	9	1	2	14	17
	To Count	36	34	95	96	83	82	48	47
February	% Violation	6	24	4	6	4	4	6	19
	To Count	86	85	114	113	105	106	81	80
March	% Violation	10	19	0	2	2	6	1	9
	To Count	65	63	85	83	77	77	67	67
April	% Violation	6	14	1	5	4	6	4	7
	To Count	107	107	177	177	156	158	112	109
May	% Violation	4	8	2	4	3	6	4	6
	To Count	161	159	181	181	177	176	131	127
June	% Violation	4	8	6	12	4	6	2	6
	To Count	133	132	239	238	181	181	88	87
July	% Violation	3	3	3	10	4	6	7	3
	To Count	139	139	249	249	188	188	85	85
August	% Violation	1	4	5	8	4	5	4	5
	To Count	192	191	206	209	200	200	172	171
September	% Violation	3	5	2	4	2	4	3	7
	To Count	104	100	121	122	152	152	99	96
October	% Violation	6	12	5	7	4	8	5	10
	To Count	81	80	123	123	124	121	64	63
November	% Violation	4	9	2	5	0	4	8	16
	To Count	75	75	126	124	85	84	55	54
December	% Violation	3	11	2	6	5	7	13	24

	TABLE L-4. WE	ATHER	VIOLAT	IONS FO	OR T=0.3	3 Initial C	loud Cov	ver	
TIME (UTC)		0900-	1400	1500-2	2000	2100-0	0200	0300-0	0800
HOURS FRO	OM To	T+1	T+2	T+1	T+2	T+1	T+2	T+1	T+2
(Month)	To Count	54	51	87	90	70	71	47	47
January	% Violation	24	31	11	22	7	14	13	15
	To Count	27	27	88	88	53	53	31	31
February	% Violation	30	41	11	17	9	9	10	29
	To Count	55	52	130	128	75	76	44	43
March	% Violation	15	15	. 6	10	8	13	9	19
	To Count	56	53	85	86	46	47	43	43
April	% Violation	13	21	8	9	7	9	9	12
	To Count	103	101	141	140	117	115	45	45
May	% Violation	10	13	4	6	7	11	4	9
	To Count	87	88	251	252	116	116	50	50
June	% Violation	8	15	10	15	7	11	2	6
9. 	To Count	91	89	245	245	114	115	34	34
July	% Violation	10	16	14	20	9	11	3	9
	To Count	100	100	256	253	93	92	43	42
August	% Violation	9	17	8	14	12	12	12	12
	To Count	140	140	248	247	115	116	72	72
September	% Violation	6	6	7	13	10	15	13	11
	To Count	76	75	135	138	79	80	76	76
October	% Violation	14	16	4	7	10	13	13	14
	To Count	87	84	140	141	88	88	51	51
November	% Violation	13	20	6	11	6	9	8	8
	To Count	62	62	115	118	74	74	68	67
December	% Violation	11	23	10	17	4	8	18	24

	TABLE L-5. WE	ATHER	VIOLAT	IONS FO)R T=0.4	Initial C	loud Cov		
TIME (UTC)		0900-1	1400	1500-2	2000	2100-0	0200	0300-0	
HOURS FRO	M To	T+1	T+2	T+1	T+2	T+1	T+2	T+1	T+2
(Month)	To Count	26	26	39	40	36	36	29	29
January	% Violation	31	46	21	23	28	33	21	21
	To Count	31	31	66	68	32	32	33	32
February	% Violation	32	29	18	28	25	31	39	53
	To Count	43	41	77	78	68	65	60	60
March	% Violation	23	32	14	18	16	28	23	37
	To Count	27	29	55	54	30	30	15	15
April	% Violation	22	38	5	15	7	17	0	20
	To Count	59	58	94	93	35	35	20	20
May	% Violation	20	19	14	17	11	9	15	20
	To Count	34	30	108	107	52	52	27	27
June	% Violation	21	10	22	27	12	17	15	19
	To Count	24	24	76	74	53	53	37	38
July	% Violation	8	17	11	16	15	23	11	13
	To Count	30	30	86	86	40	40	29	29
August	% Violation	23	7	21	31	18	20	14	10
	To Count	55	54	123	125	64	62	37	37
September	% Violation	15	15	13	14	19	13	0	3
	To Count	66	62	107	109	58	60	52	51
October	% Violation	24	32	11	21	10	12	12	18
	To Count	38	39	90	89	49	49	37	37
November	% Violation	21	23	19	26	14	12	27	30
	To Count	31	31	78	78	49	49	38	36
December	% Violation	29	26	18	27	16	20	26	36

	TABLE L-6. WE	ATHER	VIOLAT	IONS FO	OR T=0.5	5 Initial C	loud Cov	/er	
TIME (UTC)		0900-	1400	1500-	2000	2100-	0200	0300-0	0800
HOURS FRO	OM To	T+1	T+2	T+1	T+2	T+1	T+2	T+1	T+2
(Month)	To Count	23	23	32	32	27	27	14	14
January	% Violation	26	43	41	44	19	26	43	57
	To Count	16	15	23	23	18	17	19	18
February	% Violation	69	60	26	39	28	47	37	72
	To Count	37	35	46	47	31	31	32	32
March	% Violation	41	43	22	26	32	42	34	47
· · · · · · · · · · · · · · · · · · ·	To Count	13	13	24	23	29	29	10	10
April	% Violation	31	38	42	39	28	31	40	50
	To Count	21	21	33	31	19	19	18	17
May	% Violation	38	24	30	29	32	21	28	24
	To Count	13	13	20	20	24	24	13	13
June	% Violation	15	15	30	40	13	17	23	31
	To Count	9	8	29	30	19	19	7	7
July	% Violation	44	25	24	23	11	5	14	14
	To Count	8	8	31	31	27	27	13	13
August	% Violation	25	50	39	42	11	7	0	0
	To Count	13	13	51	50	26	26	18	18
September	% Violation	38	23	29	36	19	31	28	11
	To Count	37	36	50	49	34	34	39	39
October	% Violation	41	44	22	22	32	32	28	28
	To Count	18	18	44	43	32	32	22	22
November	% Violation	33	33	39	28	16	28	36	36
	To Count	24	23	31	29	28	28	22	21
December	% Violation	46	57	48	34	39	39	45	38

APPENDIX M

Artificial Neural Networks

This Appendix contains information on the basics of artificial neural networks (ANN). In addition, a brief discussion of how they have been applied to various types of problems (i.e., meteorological, business and medical) is also presented. The potential for applying ANN technology to meteorological problems has not yet been exploited. A prototype artificial neural network has, however, been successfully applied to shortterm thunderstorm forecasting by the National Severe Storms Forecast Center (NSSFC) (4). The NSSFC uses a pattern recognition neural network to assist the forecasters in predicting the probability of severe thunderstorm activity for a given region. The artificial neural network uses gridded surface-based lifted index (LI) and moisture divergence values as inputs. The output is a single neuron stating whether or not a WST (Convective Sigmet) should be issued for the three to seven hour outlook period for the region centered on the grid. This artificial neural network provides the forecasters with a tool which may be used to highlight areas where favorable conditions for severe thunderstorms exist.

The NSSFC artificial neural network takes advantage of the natural grid provided by the neural network model. All input units represent the same data at different points in space. This model is most often used by researchers for character or image recognition and other areas of pattern recognition where temporal changes are not important. Artificial neural networks can also be designed to learn both spatial and temporal factors affecting the likelihood of a given event. The artificial neural network model looks similar to the model used in pattern recognition; however, the direct correlation between the artificial neural network and the physical world is obscured.

A proof of concept ANN could be developed to produce a probabilistic estimation of a constraint violation for the shuttle landing forecast. The shuttle landing forecast is an excellent test bed for ANN technology's application to meteorology in general. It involves assimilating large amounts of data and analyzing interactions between them - key elements of any ANN application. (The shuttle landing facility data for training and testing the neural network is already available as a result of this study.) For example, in both the financial and medical arenas, artificial neural networks have been successfully applied to predict phenomena based on the previous and current values of selected parameters. In the medical field, artificial neural networks have been used to classify various maladies based upon symptoms either reported or measured. Artificial neural networks have been used successfully to diagnose lower back disorders (5), eye tumors (6), and the type of toxins or allergens triggering cardiovascular responses in sheep (7).

Though in these instances, ANN's are used to classify rather than to predict phenomena, many of the same principles apply. The inputs to the net consist of known or suspected parameters and the outputs are generally the likelihood of a given hypothesis being true or false. In the above cases, the artificial neural networks performed as well as or better than experienced clinicians.

One of the most active areas of artificial neural network application is in the business community. A neural network has been implemented which tracks London's FT-SE 100 share index. Its users claim it has a typical accuracy above 80 percent which is better than the 50% average success rate for traditional forecast systems (8). NeuralWare, one of the leading vendors of ANN software, offers short courses specifically for applying artificial neural networks to business interests including marketing strategies and stock market prediction.

Though forecasting weather and forecasting the financial markets are two entirely different problems, the statistical processes for analyzing the effects of different parameters for both problems is nearly the same. Likewise, the artificial neural network model for predicting the behavior of the stock market is very similar to the network for forecasting the weather . In both cases, much is known regarding the effects of a single parameter. What is not as well known and what neural networks effectively "learn" is the relationships between the different parameters and how their interaction affects either the financial markets or the weather.

There are many different artificial neural network models to encompass the many areas of application (i.e., pattern recognition, data association, data categorization, constraint satisfaction, and process control). Backward error propagation networks are easy to implement and have been applied to solve many different types of problems; they are, therefore, one of the more commonly used neural network models. A simple backward error propagation network is illustrated in Figure L1.

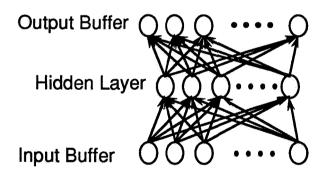


Figure M1. Backward Error Propagation Neural Network Architecture.

Back-propagation neural networks consist of an input layer, an output layer, and one or more hidden layers. Each of the layers is made up of continuous valued units often referred to as "neurons" or "nodes". Each neuron is connected to other neurons in adjacent layers with a given connection strength. The stronger the connection strength, the more influence the two units have on each other's values. The network learns by example. First, the network is presented with a set of inputs which flow through the connection strengths to the hidden layer(s) and then through the next set of connection strengths to the output layer. The values of the output layer units are then compared to the values of the desired output units. The error is then back-propagated through all the connection strengths in the network. This process is iterated until the difference between the output generated by the network and the desired output is below a given threshold.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-018	38
Public reporting burden for this collection of information is estimated to everage 1 hour per response, including the time for reviewing instructions, searching existing data	
asthering and maintaining the data needed, and completing and maintaing the collection of information. Send comments reporting this burden estimate or any other espect of this	collection
Public reporting burden for this collection of Information is estimated to everage 1 hour per response, including the time for reviewing inductions, searching existing data of bring and nanitating the data readed, and completing and reviewing the collection of information. Send completing and the time for reviewing induction and the search of the se	Highway,
May 1993 Contractor Report	
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS	
Shuttle Landing Facility Cloud Cover Study: Climatological Analysis	
and Two Tenths Cloud Cover Rule Evaluation	
6. AUTHOR(S) C-NAS10-11844	F
Michael K. Atchison, Robin Schumann, Greg Taylor, John	
Warburton, Mark Wheeler, Ann Yersavich	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZAT	TON
ENSCO, Inc., 445 Pineda Court, Melbourne, FL 32940 93-001	
ENSCO, Inc., 445 Pineda Court, Melbourne, FL 32940 93-001 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORII	NG
AGENCY REPORT NUMB	
NASA, John F. Kennedy Space Center, Code TM-LLP-2, NASA CR-193016	
Kennedy Space Center, FL 32899	
11. SUPPLEMENTARY NOTES	
12A. DISTRIBUTION/AVAILABILITY STATEMENT 12B. DISTRIBUTION CODE	
L linelaceitiad - Linumitad	4
Unclassified - Unlimited	
13. ABSTRACT (Maximum 200 Words)	
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a	
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, o	cloud
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec	cloud cision
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec time (approximately 90 minutes before landing time)". This rule was designed to protect ag	<i>cloud</i> cision gainst
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after	<i>cloud</i> cision gainst er the
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec time (approximately 90 minutes before landing time)". This rule was designed to protect ag	<i>cloud</i> cision gainst er the
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after	<i>cloud</i> <i>cision</i> gainst er the loped
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., afte de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lar	cloud cision gainst er the loped nding
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., afte de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lar Facility for a five-year (1986-1990) period. The data indicate the best time to land the shutt	cloud cision gainst er the loped nding ttle at
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go ded time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., afte de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lar Facility for a five-year (1986-1990) period. The data indicate the best time to land the shutt KSC is during the summer while the worst time is during the winter. The analysis also show	cloud cision gainst er the loped nding ttle at vs the
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go ded time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., afte de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lar Facility for a five-year (1986-1990) period. The data indicate the best time to land the shut KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600	cloud cision gainst er the loped nding ttle at vs the UTC
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go ded time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lar Facility for a five-year (1986-1990) period. The data indicate the best time to land the shutt KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during	cloud cision gainst er the loped nding ttle at vs the UTC g the
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go ded time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lar Facility for a five-year (1986-1990) period. The data indicate the best time to land the shutt KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations	cloud cision gainst er the loped nding ttle at vs the UTC g the s has
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go ded time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lar Facility for a five-year (1986-1990) period. The data indicate the best time to land the shutt KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations shown that there is a significant difference in the proportions of weather violations one and	cloud cision gainst er the loped nding ttle at vs the UTC g the s has d two
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go ded time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., afted de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lar Facility for a five-year (1986-1990) period. The data indicate the best time to land the shutt KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations shown that there is a significant difference in the proportions of weather violations one and hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct	cloud cision gainst er the loped nding ttle at vs the UTC g the s has d two ober,
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., afted de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lar Facility for a five-year (1986-1990) period. The data indicate the best time to land the shutt KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations shown that there is a significant difference in the proportions of weather violations one and hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct 700 mb northerly wind category, 1500 UTC category and 1600 UTC category there is s	cloud cision gainst er the loped nding ttle at vs the UTC g the s has d two tober, some
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., afted de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Law Facility for a five-year (1986-1990) period. The data indicate the best time to land the shut KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations shown that there is a significant difference in the proportions of weather violations one and hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct 700 mb northerly wind category, 1500 UTC category and 1600 UTC category there is s evidence that the 0.2 cloud cover rule may be overly conservative. This possibility req	cloud cision gainst er the loped nding ttle at vs the UTC g the s has d two ober, some juires
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go ded time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Law Facility for a five-year (1986-1990) period. The data indicate the best time to land the shut KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations shown that there is a significant difference in the proportions of weather violations one and hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct 700 mb northerly wind category, 1500 UTC category and 1600 UTC category there is a evidence that the 0.2 cloud cover rule may be overly conservative. This possibility req further investigation. As a result of these analyses, the AMU developed nomograms to hel	cloud cision gainst er the loped nding ttle at vs the UTC g the s has d two ober, some puires p the
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Law Facility for a five-year (1986-1990) period. The data indicate the best time to land the shutt KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations shown that there is a significant difference in the proportions of weather violations one and hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct 700 mb northerly wind category, 1500 UTC category and 1600 UTC category there is a evidence that the 0.2 cloud cover rule may be overly conservative. This possibility req further investigation. As a result of these analyses, the AMU developed nomograms to hel Spaceflight Meteorological Group (SMG) and the Cape Canaveral Forecast Facility (C	cloud cision gainst ar the loped nding ttle at vs the UTC g the s has d two ober, some puires p the CFF)
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go ded time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., afte de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lar Facility for a five-year (1986-1990) period. The data indicate the best time to land the shut KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations shown that there is a significant difference in the proportions of weather violations one and hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct 700 mb northerly wind category, 1500 UTC category and 1600 UTC category there is s evidence that the 0.2 cloud cover rule may be overly conservative. This possibility req further investigation. As a result of these analyses, the AMU developed nomograms to hel Spaceflight Meteorological Group (SMG) and the Cape Canaveral Forecast Facility (C forecast cloud cover for EOM and Return to Launch Site (RTLS) at KSC. Future work	cloud cision gainst ar the loped nding ttle at vs the UTC g the s has d two ober, some puires lp the CFF) k will
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Law Facility for a five-year (1986-1990) period. The data indicate the best time to land the shutt KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations shown that there is a significant difference in the proportions of weather violations one and hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct 700 mb northerly wind category, 1500 UTC category and 1600 UTC category there is a evidence that the 0.2 cloud cover rule may be overly conservative. This possibility req further investigation. As a result of these analyses, the AMU developed nomograms to hel Spaceflight Meteorological Group (SMG) and the Cape Canaveral Forecast Facility (C	cloud cision gainst ar the loped nding ttle at vs the UTC g the s has d two ober, some puires lp the CFF) k will
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go ded time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lan Facility for a five-year (1986-1990) period. The data indicate the best time to land the shut KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations shown that there is a significant difference in the proportions of weather violations one and hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct 700 mb northerly wind category, 1500 UTC category and 1600 UTC category there is s evidence that the 0.2 cloud cover rule may be overly conservative. This possibility req further investigation. As a result of these analyses, the AMU developed nomograms to hel Spaceflight Meteorological Group (SMG) and the Cape Canaveral Forecast Facility (C forecast cloud cover for EOM and Return to Launch Site (RTLS) at KSC. Future word include updating the two tenths database, further analysis of the data for se	cloud cision gainst er the loped nding ttle at vs the UTC g the s has d two ober, some puires p the CFF) k will veral
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., afte de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lar Facility for a five-year (1986-1990) period. The data indicate the best time to land the shut KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations shown that there is a significant difference in the proportions of weather violations one and hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct 700 mb northerly wind category, 1500 UTC category and 1600 UTC category there is s evidence that the 0.2 cloud cover rule may be overly conservative. This possibility req further investigation. As a result of these analyses, the AMU developed nomograms to hel Spaceflight Meteorological Group (SMG) and the Cape Canaveral Forecast Facility (C forecast cloud cover for EOM and Return to Launch Site (RTLS) at KSC. Future word include updating the two tenths database, further analysis of the data for se categorizations, and developing a proof of concept artificial neural network to provide for quidance of weather constraint violations for shuttle landings.	cloud cision gainst er the loped nding ttle at vs the UTC g the s has d two ober, some puires p the CFF) k will veral
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, or cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lat Facility for a five-year (1986-1990) period. The data indicate the best time to land the shut KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations shown that there is a significant difference in the proportions of weather violations one and hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct 700 mb northerly wind category, 1500 UTC category and 1600 UTC category there is s evidence that the 0.2 cloud cover rule may be overly conservative. This possibility req further investigation. As a result of these analyses, the AMU developed nomograms to hell Spaceflight Meteorological Group (SMG) and the Cape Canaveral Forecast Facility (C forecast cloud cover for EOM and Return to Launch Site (RTLS) at KSC. Future worl include updating the two tenths database, further analysis of the data for se categorizations, and developing a proof of concept artificial neural network to provide for guidance of weather constraint violations for shuttle landings. 14. SUBJECT TEMMS	cloud cision gainst er the loped nding ttle at <i>is</i> the UTC g the s has d two ober, some luires lop the CFF) k will veral ecast
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lat Facility for a five-year (1986-1990) period. The data indicate the best time to land the shut KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations shown that there is a significant difference in the proportions of weather violations one and hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct 700 mb northerly wind category, 1500 UTC category and 1600 UTC category there is s evidence that the 0.2 cloud cover rule may be overly conservative. This possibility req further investigation. As a result of these analyses, the AMU developed nomograms to hel Spaceflight Meteorological Group (SMG) and the Cape Canaveral Forecast Facility (C forecast cloud cover for EOM and Return to Launch Site (RTLS) at KSC. Future worf include updating the two tenths database, further analysis of the data for se categorizations, and developing a proof of concept artificial neural network to provide for guidance of weather constraint violations for shuttle landings. 14. SUBJECT TEHMS	cloud cision gainst er the loped nding ttle at <i>is</i> the UTC g the s has d two ober, some luires lop the CFF) k will veral ecast
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, or cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go dec time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lat Facility for a five-year (1986-1990) period. The data indicate the best time to land the shut KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations shown that there is a significant difference in the proportions of weather violations one and hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct 700 mb northerly wind category, 1500 UTC category and 1600 UTC category there is s evidence that the 0.2 cloud cover rule may be overly conservative. This possibility req further investigation. As a result of these analyses, the AMU developed nomograms to hell Spaceflight Meteorological Group (SMG) and the Cape Canaveral Forecast Facility (C forecast cloud cover for EOM and Return to Launch Site (RTLS) at KSC. Future worl include updating the two tenths database, further analysis of the data for se categorizations, and developing a proof of concept artificial neural network to provide for guidance of weather constraint violations for shuttle landings. 14. SUBECT TEMMS	cloud cision gainst er the loped nding ttle at <i>is</i> the UTC g the s has d two ober, some luires lop the CFF) k will veral ecast
13. ABSTRACT (Maximum 200 Words) The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings a Kennedy Space Center (KSC) states: "for scattered cloud layers below 10,000 feet, of cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go ded time (approximately 90 minutes before landing time)". This rule was designed to protect ag a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., afte de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) devel and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Lat Facility for a five-year (1986-1990) period. The data indicate the best time to land the shut KSC is during the summer while the worst time is during the winter. The analysis also show highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 time periods. The worst time of the day to land a shuttle is near sunrise and during afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations shown that there is a significant difference in the proportions of weather violations one and hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct 700 mb northerly wind category, 1500 UTC category and 1600 UTC category there is s evidence that the 0.2 cloud cover rule may be overly conservative. This possibility req further investigation. As a result of these analyses, the AMU developed nomograms to hel Spaceflight Meteorological Group (SMG) and the Cape Canaveral Forecast Facility (C forecast cloud cover for EOM and Return to Launch Site (RTLS) at KSC. Future worl include updating the two tenths database, further analysis of the data for se categorizations, and developing a proof of concept artificial neural network to provide for guidance of weather constraint violations for shuttle landings. 15. NUMBEH OF PAGES 1986 Cloud Cover Climatology, KSC STS Landings, Two-Tenths C	cloud cision gainst er the loped nding ttle at vs the UTC g the s has d two ober, some puires lp the CFF) k will veral ecast

ŧ