Presented at
A Workshop on Fuzzy Control
Huntington Beach, CA
14 November 1990

Dr. Jack Aldridge, MDSSC- SSD (Houston)
Dr. Robert Lea NASA/JSC
Dr. Yashvant Jani Lincom Corp.
Dr. Jonathan Weiss MDSSC-SSD (Houston)

54-67 163078

k

INTENTIONALLY MANS

PURPOSES OF THIS TALK

- Briefly review control history how do ideas "fit together"
- Establish terminology of control theory and fuzzy logic to promote useful discussions
- Establish basic concepts in both areas for the same purpose

CONTROL SYSTEMS

- A means by which a variable quantity or a set of variable quantities is made to conform to a prescribed norm or to vary in a prescribed way
- May be operated by electrical means, mechanical means, hydraulic means, pneumatic means, or a combination

82

CONTROL THEORY WAS FORMULATED IN THREE PHASES

ISSUES IN THE DESIGN OF A CONTROL SYSTEM

MCDONNELL DOUGLAS

Stability and Transient Response

Response Time or Bandwidth

Observability

Controllability

Continuous or Sampled Data

Single or Multiple Control Loops

Optimizing or "Near-Optimal" Control

Fixed, Adaptive, or Learning Control

EXAMPLES: INVERTED PENDULUM

\$

STATE SPACE CONTROL FOR INVERTED PENDULUM

MCDONNELL DOUGLAS

Equations of Motion

(M+m) \ddot{z} + mlcos $\theta\dot{\theta}$ - ml $\dot{\theta}$ sin θ = f

$$m \log \theta \ddot{z} + m \ell^2 \ddot{\theta} - mg \ln \theta = 0$$

State

z v 0

State Space Description of Dynamical System

$$\dot{v} = \frac{m \ln 2 \sin \theta}{M + m \sin^2 \theta} - \frac{mg \cos \theta \sin \theta}{M + m \sin^2 \theta} + \frac{f}{M + m \sin^2 \theta}$$

$$\dot{\theta} = \omega$$

$$\dot{\psi} = \frac{g \sin\theta(M+m)}{\ell(M+m\sin^2\theta)} - \frac{m(\iota)^2 \sin\theta}{M+m\sin^2\theta} - \frac{f\cos\theta}{M+m\sin^2\theta}$$

σ

හී

LINEARIZED STATE SPACE

$$z = v$$

$$\dot{v} = \frac{f}{M} - \frac{mg\Theta}{M}$$

$$\dot{\theta} = \dot{\omega}$$

$$\dot{\omega} = \frac{(M+m)g\Theta}{M} - \frac{f}{M}\dot{\omega}$$

DYNAMICAL SYSTEM MODEL FOR INVERTED PENDULUM ON A CART

PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) CONTROLLER

MCDONNELL DOUGLAS

Proportional component reduces error Integral component reduces steady state offset Derivative component anticipates and reduces overshoots

ADVANTAGES OF USING CONVENTIONAL CONTROL

- Technology is well established
- Many control problems are well approximated by linear plants or can be handled with adaptive systems that perturb controller parameters
- Technology is mathematically based allowing general properties of controllers to be explored by a theoretical approach

MCDONNELL DOUGLAS

- Model building stage is elaborate, iterative, error-prone, and time consuming
- A performance index that can be used for optimization must be formulated
- Actuators may be nonlinear
- Complex equipment may be poorly described by systems of differential equations but may be best described from experimental data or heuristics (rules of thumb or experience).
- Heuristics may be part of the operating procedure and may be based on mental models other than the physical models

State Space Problems

FUZZY CONTROLLER OVERVIEW

NASA MISSION SUPPORT DIRECTORATE JSC

APPROACH (CONT.) FUZZY PROCESSING

RULE: IF (PHI EQ PB AND PHI DOT EQ Z0) THEN ACCELERATION IS NS MIN (μ_1, μ_2) IS APPLIED TO NS FUNCTION IN ACCELERATION

~ 1.489 ig

8

RULE BASE FOR FORCE ON INVERTED PENDULUM CART

MCI	ONNELL DOUG	LAS				
			Angle			Fuzzy Table Inv Pend
	NB	NS	ZO	PS	PB	
8	ZO	РВ	РВ	PB	PB	
e BS	NB	ZO	PS	PB	PB	
Angle Rate	NB	NS	ZO	PS	PB	
Ang	NB	NB	SN	Z Q	PB	
8	NB	NB	NB	NB	Z O	1

Example Rule: IF Angle is PS AND Angle Rate is NS THEN Force is ZO

NASA MISSION SUPPORT DIRECTORATE JSC APPROACH (CONT.) **FUZZY PROCESSING** MIN MAX NB NM NS ZO PS PM PB **INPUT µ**1 PHI - 180 180 NB NM NS ZO PS PM PB **INPUT** PHI DOT μ2 h 3 180 - 180 5 TWO RULES FIRE: 1. IF PHI IS PB AND PHI DOT IS PS THEN ACCEL IS NS 2. IF PHI IS PB AND PHI DOT IS PM THEN ACCEL IS NM MAX MIN NS **ZO** PS NM PM **ACCEL IS OUTPUT VIA CENTROID METHOD** - 5 - 2 - 3 SPACECRAFT SOFTWARE DIVISION " IVER EL

FUZZY RULE PROCESSING

MCDONNELL DOUGLAS

USE MAXIMUM FOR LOGICAL OR

IF ... THEN u is NS .3

IF ... THEN u is ZO .8

IF ... THEN u is PS .1

IF ... THEN u is PB .3

USE MINIMUM FOR LOGICAL AND

Rule: IF x1 is NS AND x2 is ZO THEN u is PS

Facts:

x1 is NS 0.2

x2 is ZO 0.8 => u is PS 0.2

Other options exist for combining logical connectives but these preserve all results from normal set theory except exclusion law:

A AND NOT $A = \emptyset$

95

DEFUZZIFICATION

MCDONNELL DOUGLAS

MAX Procedure

Indexed MAX or Centroid Procedure

Same as above except use only points > threshold value

Defuzzity

FUZZY CONTROLLER ADVANTAGES

- Can exploit heuristic knowledge of operation of controlled systems. This includes physical intuition.
- Can accomodate small changes in system or controller parameters. This are the aging effect and nonlinear effects such as flexibility of beams
- Experience has been that these techniques seem to handle nonlinearity well
- Tools have been developed to assist in studying and building fuzzy controllers in short times
- The development of fuzzy chips has provided computationally capable platforms on which to build the controller, independent of general purpose computers used for spacecraft control

REMAINING ISSUES FOR FUZZY CONTROL

- Issues such as stability, observability, and controllability raised in servomechanism and state space control are not yet in comparable state of development. This may limit initial applicability to noncritical applications
- Definition of membership functions is arbitrary and controller designer dependent.
- Procedures for selecting membership functions and defuzzifier options are not firmly established in the control community
- There are limited sources for fuzzy control chips