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ROCKETDYNE PSAM - IN HOUSE ENHANCEMENT/APPLICATION

JF. Newell, K.R. Rajagopal, and K. O'Hara N
Rockwell international Corp. L
Rocketdyne Division / S f o

Canoga Park, California 91303

Rocketdyne has embarked on the development of the Probabilistic Design
Analysis (PDA) Process for Rocket engines. This will enable engineers a
quantitive assessment of calculated reliability during the design process.
The PDA will help choose better designs, make them more robust and help decide
on critical tests to help demonstrate key reliability issues to aid in
improving the confidence of the engine capabilities. Rocketdyne's involvement
with the Composite Loads Spectra (CLS) and Probabilistic Structural Analysis
Methodology (PSAM) contracts started this effort and are key elements fn our
on-going developments. Internal development efforts and hardware applications
complement and extend the CLS and PSAM efforts. The completion of the CLS
option work and the follow-on PSAM developments will also be integral parts of
this methodology. A brief summary of these internal efforts to date follows.

METHODS/CODE DEVELOPMENTS

The CLS Tloads work has spawned method developments or extensions in thermal
analysis and fluid dynamics. The CLS thermal loads approach addresses loading
from a scaling of deterministic responses based on specific temperature
variations of critical points or temperature profiles in the hardware for the
key independent load variables. A more general methodology has been developed
at Rocketdyne to allow a full scale probabilistic thermal analysis by
essentially substituting the SINDA thermal code for the NESSUS FEM module
along with its own modeling input techniques. This adds a general solution to
the thermal problem for separate thermal assessments or as another tool for
developing thermal models for CLS and NESSUS. (Figure 1).

The CLS acoustics loads work is limited to defining a generic systems modeling
approach and developing specific modes for the components in the CLS study.
The development of other source inputs and modeling elements 1ike pumps,
combustors and valves are needed to make such an overall systems model
viable. In house work is addressing these needs as they arise for specific
hardware problems as well as maturing the CLS developed acoustics
source-propagations code.

Resistance models for Rocketdyne specific applications have been developed to
allow reliability assessment for specific hardware and applications. These
include models for strength, fatigue and fracture mechanics. Production
oriented codes for preliminary design use have been developed to allow both
sensitivity assessment and reliability calculations and also furnish a simple
presentation of these results. (Figure 2)

PDA APPLICATIONS

The CLS, PSAM and in house developed methodologies are being used and tested
against specific hardware and related tasks as they evolve. Examples of PDA
applications include its use as: a evalution tool to develop a criteria for
flaw acceptance by dye penertrant for specific hardware (Figure 3); analysis
of the accumulated fatigue damage for a turbopump bearing carrier; a turbopump
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stator vane study to relate geometric tolerance variations to vane natural
frequencies, engine duct analysis to determine acoustic transfer functions and
fluctuation loads on elbows (Figure 4), and the development of a single flight
reliability methodology basis using a reliability requirement.

Support to JPL's certification/reliability analysis of specific hardware
components has also been accomplished on eight engine parts. This effort has
also added to Rocketdyne's analysis capabilities for probabilistic damage
assessment. A critical need to effectively use PDA is to calibrate this
methodology against deterministic factor of safety approaches. Work in this
area is an on-going effort at Rocketdyne (Figure 5).

RELIABILITY BASED DESIGN ANALYSIS

An overall approach on how to design for reliability 1is evolving at
Rocketdyne. New engine programs such as ALS and NASP are planning on require
quantitive reliability assessment of the engine during the design process. An
initial design methodology has been developed and proposed for use on the ALS
engine (Figure 6). An example of a combustion chamber liner was completed to
demonstrate the use of this methodology. This effort included an FMEA,
reliability allocation to specific hardware elements including the liner, the
use of CLS to develop the loads and PSAM to evaluate the structural response
and an in-house damage assessment code (Figure 7, 8, 9). The effort used the
approximate modeling approach rather than a detail finite element assessment
so that the work could focus on the overall methodology aspects.

CHALLENGES

The main challenges are to move this technology from a research tool to a
production tool and to further developments in the overall methodology.
Calibration of PDA against deterministic methodologies is required to gain
confidence in how to properly use and understand -its application to hardware.
Training analysts in its use and getting acceptance of PDA from program
management and customers are further key efforts in integrating the technology
to production hardware. Joint efforts between engineering, reliability,
quality and manufacturing organizations are required to implement these
techniques in new or on-going programs.
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Thermal Response Using Finite Element Model
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SIMULATION DESIGN
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DESIGN METHODOLOGY
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Application to Main Combustion Chamber Liner
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Probabilistic Analysis of the MCC Liner
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Probabilistic Analysis of MCC Liner
(Ratcheting Failure Rate at a Hot Spot)
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Figure 9. Ratcheting Failure Mode Response.

104



