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ROCKETDYNE PSAM - IN HOUSE ENHANCEMENT/APPLICATION
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Rocketdyne has embarked on the development of the Probabtltsttc Design
Analysis (PDA) Process for Rocket engines. This will enable engineers a
quantttive assessment of calculated reliability during the design process.
The PDA will help choose better designs, make them more robust and help decide
on critical tests to help demonstrate key reliability issues to aid in
improving the confidence of the engine capabilities. Rocketdyne's involvement
with the Composite Loads Spectra (CLS) and Probabtltsttc Structural Analysis
Methodology (PSAM) contracts started this effort and are key elements in our
on-going developments. Internal development efforts and hardware applications
complement and extend the CLS and PSAM efforts. The completion of the CLS
option work and the follow-on PSAM developments will also be integral parts of
this methodology. A brief summary of these internal efforts to date follows.

METHODS/CODE DEVELOPMENTS

The CLS loads work has spawned method developments or extensions in thermal
analysts and fluid dynamics. The CLS thermal loads approach addresses loadtng
from a scaltng of deterministic responses based on specific temperature
variations of crlttcal points or temperature profiles tn the hardware for the
key independent load variables. A more general methodology has been developed
at Rocketdyne to allow a full scale probablltsttc thermal analysis by
essentially substituting the SINDA thermal code for the NESSUS FEM module
along with its own modeling input techniques. This adds a general solution to
the thermal problem for separate thermal assessments or as another tool for
developing thermal models for CLS and NESSUS. (Figure 1).

The CLS acoustics loads work is ltmited to defining a generic systems modeling
approach and developing specific modes for the components in the CLS study.
The development of other source inputs and modeling elements like pumps,
combustors and valves are needed to make such an overall systems model
viable. In house work is addressing these needs as they arise for specific

hardware problems as well as maturing the CLS developed acoustics
source-propagations code.

Resistance models for Rocketdyne specific applications have been developed to

allow reliability assessment for specific hardware and applications. These

include models for strength, fatigue and fracture mechanics. Production

oriented codes for preliminary design use have been developed to allow both

sensitivity assessment and reliability calculations and also furnish a simple

presentation of these results. (Figure 2)

PDA APPLICATIONS

The CLS, PSAM and in house developed methodologies are being used and tested

against specific hardware and related tasks as they evolve. Examples of PDA

applications include its use as: a evalution tool to develop a criteria for

flaw acceptance by dye penertrant for specific hardware (Figure 3); analysis

of the accumulated fatigue damage for a turbopump bearing carrier; a turbopump
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stator vane study to relate geometrlc tolerance variations to vane natural

frequencies, englne duct analysls to determine acoustic transfer functions and
fluctuation loads on elbows (Flgure 4), and the development of a single flight

reliability methodology basis using a reliability requirement.

Support to 3PL's certlflcation/rellabillty analysis of specific hardware

components has also been accomplished on eight engine parts. This effort has

also added to Rocketdyne's analysis capabilities for probablllstlc damage
assessment. A critical need to effectively use PDA is to calibrate this

methodology against deterministic factor of safety approaches. Work in this

area is an on-golng effort at Rocketdyne (Figure 5).

RELIABILITY BASED DESIGN ANALYSIS

An overall approach on how to design for reliability is evolving at

Rocketdyne. New engine programs such as ALS and NASP are planning on require
quantltlve reliability assessment of the engine during the design process. An

initial design methodology has been developed and proposed for use on the ALS

engine (Figure 6). An example of a combustion chamber liner was completed to

demonstrate the use of this methodology. This effort included an FMEA,

reliability allocation to specific hardware elements including the liner, the

use of CLS to develop the loads and PSAM to evaluate the structural response

and an In-house damage assessment code (Figure 7, 8, 9). The effort used the

approximate modeling approach rather than a detail finite element assessment
so that the work could focus on the overall methodology aspects.

CHALLENGES

The main challenges are to move this technology from a research tool to a
production tool and to further developments in the overall methodology.
Calibration of PDA against deterministic methodologies is required to gain
confidence in how to properly use and understand its application to hardware,
Training analysts In its use and getting acceptance of PDA from program
management and customers are further key efforts in integrating the technology
to production hardware. Joint efforts between engineering, reliability,
quality and manufacturing organizations are required to implement these
techniques tn new or on-going programs,
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Thermal Response Using Finite Element Model

I // PSIN Input: /

Fo mu,=eproO,em..oOe,.. Cs / I I• Random variables _ SINDA Data / _ PSIN

. Critical results ] / Random Variables / I /
• Performance function] / Perturbations /

STAMP Runs

SINDA Geometry: /
Baseline & Perturbed /

t
EvaS SINDA Input:

ingle Paramater Run / /

uates All Perts /

Special Output File

÷

l Probabilistic
Post

Processor

-/
._/Probabilistic /

Results /

91d-32-60
Or7

Figure I. Sinda/Probabilistic Assessment Implementation.
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SIMULATION DESIGN
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Figure 3. Flaw Acceptance by Dye - Penetrant Inspection.

NOISE PROPAGATION & ACOUSTIC MODES ANALYSIS
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Application to Main Combustion Chamber Liner
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Figure 7. Typical Main Combustion

Chamber Geometry.
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Probabilistic Analysis of the MCC Liner

Primitive Variables
• Characteristic exhaust

velocity (C*)
• Inlet nozzle area of the

LOX turbine

• Fuel pump efficiency

Local Variables
• Curvature enhancement

• Hot spots
• Thermal conductivity
• Hot-gas wall thickness
• Channel width & depth

Local Variables

• Hot-gas wall thickness
• Channel width
• Land width

• Material properties

Figure 8.

Engine Model
= Numerical abstraction
• Influence coefficients
• Statistics of primitive

variables

1
MCC Liner Thermal Model
• Closed form

• Scaling
• FE/FD

1
Liner Structural Model
• Channel Bending Stress
• Land Tensile Stress
• Low-Cycle Fatigue
• Ratcheting

Probabilistic Analysis of the MCC

Variables That Affect the MCC

• Inlet coolant temperature
• Chamber pressure
• Coolant flow rate
• Heat load

Correlated Temperatures &
Pressures on the Hot-Gas Wall

Liner.
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Figure 9. Ratcheting Failure Mode Response.
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