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PROBABILISTIC STRUCTURAL ANALYSIS ALGORITHM DEVELOPMENT

FOR COMPUTATIONAL EFFICIENCY

Y.oT.Wu
Southwest Research Institute

San Antonio, Texas 78228

The PSAM (ProbabilisticStructuralAnalysis Methods) program, funded by NASA Lewis

Research Center,isdeveloping a probabilisticsmmtural riskassessment capabilityforthe SSME

components. PSAM iscurrentlyintheseventhyearofa two-phase,ten-yearcontract.An advanced

probabilisticstructuralanalysissoftware system, NESSUS (Numerical Evaluation of Stochastic

Structures Under Stress), is being developed as pan of the PSAM effort to accurately simulate

stochastic structures operating under severe random loading conditions.

A centralpartof the NESSUS system is a finiteclement analysis(lEA) module. FEA is
generally known to be computer intensive. Thus, the conventional Monte Carlo method, which

requires a large number of simulations (i.e., a larBc number of deterministic computer runs), is too

time-consuming to be practical for probabilisdc FEA analysis. One of the major challenges in
developing the NESSUS system is the development of the probabilisdc algoridum that provide

both efficiency and accuracy. The main probability algoridum developed and implemented in the

NESSUS system are efficient, but approximate in nature. In the last six ye,a_, the algorithms have

improved very significantly.

In probabilisticFEA analysis,a good index formeasuring thecomputational efficiencyisthe

number ofdeterrninisticsolutionsrequiredfortheuser-selectedperformance function.To minimize

thisnumber, denoted as M, the firstapproach taken by PSAM was togeneratea response surface

over a "wide" range (say,+ 3 standarddeviationsfor each random variable).Once the response

surfaceisgenerated,a fastprobabilityintegration(FPI)algorithm[Ref.I]can be used. In practice,

when the number of random variablesisnot small,M might be too large,and the PEA parttends

to dominate the totalcomputational time. Moreover, the response surfaceapproach does not

generallyprovidesufficientaccuracy unlessan expensive iterativeprocedure isappliedtoupdate

theresponse surfaceatfocusedregions [Ref.2].

To improve theefficiency,theconcept ofFPI was applieddirectlytoguidethelEA todevelop

a good approximate performance function.The basicconcept istouse the initialinformationfrom

the conventional mean value firstorder (MVFO) solutions to identify regions that are

probabilisticallymore likclyforthegivenperformance functionvalues,thenmove theFEA tothese

regions.MVFO requires(n+ 1)deterministicsolutions,where n isthenumber ofrandom variables,

and providesapproximate mean and standarddeviationforthe performance function.However,

inprobabilisticstructuralanalysis,itismore desirableand oftennecessarytohave knowledge in

the whole distributionfunction(CDF). The advanced mean value (AMV) method was developed

toprovidetheguidance forthelEA "move," and forefficientlygeneratingperformance CDF based

on the MVFO solution[Refs.3,4]. The AMV method has been found to bc quiteeffectivefora

wide varietyof engineeringproblems. Furtherproceduresrequiringmore M were alsodeveloped

toimprove theaccuracy oftheAMV method. Insummary, M = n + 7 isbelievedtobc theminimum

numbcr requiredtoobtainreasonably accurateprobabilisticoutputthatincludesthe performance

CDF, and the probabilisticsensitivityfactorsforthe inputrandom variables.
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In addition to the AMV-based methodology development, the probability algorithms have also

been improved for problems with closed-form performance functions. The original FPI algorithm

[Ref. 1] has proved to provide a good approximate solution. However, the drawback is that it tends

to run into numerical problems when the input random variables are highly non-normal or have

very large coefficient of variations. To solve the problem and to further improve the accuracy, the

FPI algorithm has been enhanced recently by combining the linearization concept developed in the
original FPI with the fast convolution method [RcL 5]. The fast convolution theorem provides an

exact CDF solution if the performance function can be expressed by a sum of random variables.

The combined analysis procedure includes three steps: (1) establish a linear or quadratic performance

function based on the AMV-based procedure, (2) transform the quadratic function into a linear

function (if the function is quadratic), (3) apply the convolution theorem to compute the performance

CDF. In the last step, a procedure based on the discrete, fast Fourier transform (FFT) technique

has been developed to speed up the convolution calculations. In summary, the current NESSUS

probabilistic analysis procedure combines the AM'v-based method with the fast convolution
method. The AMV-based procedure generates linear or quadratic performance functions, and the

fast convolution method takes the polynomial performance functions and generates probability
solutions.

The PSAM program is moving into the area of system risk assessment. The methodology

currently under development includes system reliability analysis that deals with multiple failure

modes and multiple components. Here, the challenge is to accurately and efficiently evaluate

probabilities associated with joint and conditional events. An efficient adaptive imlamance

sampling method is being implemented in the NESSUS system. The method was originally

developed for probabilistic rotordynamics analysis under a project funded by the NASA Marshall

Space Flight Center [Ref. 6]. It is anticipated that other system reliability analysis tools will be

developed and implemented in the NESSUS system based on a fault-tree type analysis framework.
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Establish CDF Using Fast
Probability Integration Algorithm

• Define Limit-State

• Approximate Performance Function f .

At One or More Probability Significant Regions I ,Joint Probability Density

• Compute Probability Based on Approximate Functions

I
IL

u 1

ADVANCED MEAN VALUE (AMV) METHOD

• Conventional Mean Value First-Order (MVFO) method

First-order Taylor's series expansion at mean values:

z =o. +E a_,(- Z,)

Valid for small standard deviations.

• Advanced Mean Value (AMV) First Order Method

Features:

Z" = Z_+ tt (Zj)

- it(Z,) introduced to minimize truncation error.

- Iteration procedure available to find H(Z,).

- Can be used to detect non-monotonic functions.
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AMV- Based Iteration Procedure
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AMV EXAMPLE: RANDOM VIBRATION

Monotonic Performance Function
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AMV EXAMPLE: RANDOM VIBRATION
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Fast Convolution Procedure

1. Dependent Non-normal RVs to Independent Std. Normal RVs.

2. Find Most Probable Point and Construct Second-order Approx.

3. Eliminate Product Terms by Orthogonal Transformation.

4. Transform to Linear Polynomial.

5. Apply Convolution Theorem.

Fast Convolution

• SUM OF INDEPENDENT RANDOM VARIABLES

Z =X, +X2+ .. +X, + ... +X.

• CHARACTERISTIC FUNCTION

d_((o)= f._f(x )e "'d_:

• USE FAST FOURIER TRANSFORM TO COMPUTE q>(m)

• USE INVERSE FTI" TO COMPUTE PDF OF Z

* FOR NON-LINEAR Z, USE MPP, QUADRATIC APPROXIMATION AND
LINEARIZATION
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Linearization

n -_1 n I1-1 •g,(._=a.+,_.,._,(,,,-.;_+, b,(.,-,,;)'+,x.,,_..,co(.,-=,)(=,-,,h

• QUADRATIC APPROXIMATION AND LINEARIZATION

R

g (X) ---ao + _. a,x_ + b,x7 1 _. a 2,"' c'=a'-L ,T,

g(v) =co+ r, t,j',
d=l [Y, = X, + a, = IX, +A,.] 2

• LOG-TRANSFORMATION

R

g(X) -- ao + T_a, Inx, + b,(Inx,) 2
i-I
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Fast Convolution Example

Z=R-S
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Fast Convolution Validation Problem

Random variable S has bi-modal pdf:

Limit state function:

Strength:

Stress:

Probability of failure:

a b

19 20

99 100

Is_'s)

g=R-S=0

R~Lognormal~(20., 5.)

S~Bi-modal~(l_l, iJ2, (/1, (/2) = (10, 2, 40, 2)

Exact Previous Method

6.331E-2 8.29E-2

2.307E-2 Numerical Problem

Improved Method
6.285E-2

2.347E-2

SYSTEM RELIABILITY ANALYSIS METHODOLOGY

'op Event I

COMPUTE:

P[(gl < O) U (g2 < O)

U ((g3< O)n(g4< o))]
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ADAPTIVE IMPORTANCE SAMPLING METHOD FOR

SYSTEM RELIABILITY ANALYSIS

METHODOLOGY

Sampling space _.
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ADAPTIVE IMPORTANCE SAMPLING METHOD FOR

SYSTEM RELIABILITY ANALYSIS

ROTORDYNAMICS EXAMPLE

4'

=. (_ >0)_(_,>0) _N_ _o

,- " _¢qlll I"

a 0

-t"
o

-t-

-4 , i 1 , , i

-4 -3 -i: -i I 1 3

ML

PrObability of InltBblilly Slmplln¢l PoInt110_' _., • 0 lind )_ > U II1 lb4 U-ctpmCl

(SO00Mona Carlohmpiem)

ILO

4.0 •

:1.0,

1.0'

:_ o,o

-i,O'

-8.0

-S.0-

-4.0"

-ILO

,e

o ;_>o .._/
x _,>o ..7

-ILO -4.0
i ' i i •

-3.0 -l,O -I.O O.O t.O 2,0 :3.0 4.0 ILII

_Va

CutltllutaPllllll_ Iml_PrluIt}ce Ihlmpl#/_ POImlp

Ior_, >Ulna _ >U_ U_e u'.Sp_O

130


