
U

"v

Real-Time Trajectory Optimization on Parallel Processors

(NASA Research Grant NAG-1-1009)

Final Report

July 10, 1993

Prepared by Mark L. Psiaki,

Principal Investigator

Comell University

Ithaca, N.Y. 14853-7501

https://ntrs.nasa.gov/search.jsp?R=19930022451 2020-03-17T05:07:47+00:00Z

Summary

A parallelalgorithmhasbeendevelopedfor rapidly solvingtrajectoryoptimizationproblems.

The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line

optimal guidance through repeated solution of a trajectory optimization problem. The algorithm

has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-

order-hold discretization of a continuous-time problem and solves the resulting nonlinear

programming problem using a custom-designed augmented Lagrangian nonlinear programming

algorithm. The algorithm achieves parallelism of function, derivative, and search direction

calculations through the principle of domain decomposition applied along the time axis. It has been

encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar

minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent

guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a

128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has

been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required

2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-

nodes instead of 1-node to solve a 64-stage Goddard problem.

1. Introduction

1.1 Review of Project Objective

This grant's goal has been to achieve nonlinear optimal feedback control through repeated,

on-line solution of trajectory optimization problems in real-time. Such control could be used for

aerospace vehicle guidance, such as National Aerospace Plane (NASP) ascent guidance. The

primary effort of this grant has been to develop a fast trajectory optimizer that can solve problems

which include inequality constraints. The optimizer should be able to update solutions about once

every 5 seconds. General parallel algorithms have been developed to try to meet this goal. They

have been developed and tested on INTEL iPSC/2 and iPSC/860 distributed-memory parallel

processors, but they are applicable to any highly-parallel distributed-memory machine (e.g. the

INTEL Touchstone system or Transputer-based systems).

1.2 Summary of 3 l/2-Year Grant Activities

The activities under this grant can be broken into 5 main categories:

1. Development of a parallel solver for dynamic quadratic programs (QPs).

2. Development of a robust serial nonlinear programming algorithm (NP).

3. Development of a specification and interface for trajectory optimization

problem encoding, including approximation of continuous-time phases by

discrete-time phases.

4. Integration of the parallel QP algorithm with the serial NP algorithm to

produce a parallel trajectory optimization algorithm.

5. Modelling, encoding, and testing of example trajectory optimization

problems.

The first year of the project was devoted primarily to developing a parallel dynamic quadratic

programming algorithm. The second year's effort was split between developing a refined parallel

QP algorithm and developing a robust serial NP algorithm. During these first two years Kihong

3

Park, the project's graduate research assistant, concentrated on the parallel QP work. Prof. Mark

Psiaki, the project's principal investigator, helped guide Park, and he developed the nonlinear

programming algorithm.

Park spent the final year and a half of the project working to parallelize the serial nonlinear

programming algorithm. This included integration of it with the parallel QP algorithm, which

calculates NP search directions, and with parallel function, gradient, and Jacobian software that

was developed by Psiaki.

Psiaki spent the last year and a half of the grant developing the specifications and software

that allow the submission of different problems to the main algorithm. He also spent time

modeling and encoding three test problems: a Goddard problem, a linear tangent steering

minimum-time problem, and a NASP minimum-fuel ascent guidance problem.

1.3 Outline of Report

The remainder of this report is divided into 6 Sections plus conclusions and 5 Appendices.

Section 2 summarizes the results of work that has been done to parallelize the computation of

trajectory optimization search directions based on first and second gradient information. Appendix

A contains two papers that give the details of this work. Section 3 summarizes the nonlinear

programming algorithm that has been developed to serve as the heart of the trajectory optimization

algorithm, and Appendix B contains a paper that describes the algorithm in more detail. Section 4

gives an overview of how the nonlinear programming algorithm has been augmented with parallel

derivative calculations and integrated with the parallel search direction algorithm to yield the final

parallel nonlinear trajectory optimization algorithm. Appendix C contains a paper that falls in some

of the algorithm details omitted in Section 4.

Section 5 presents three example trajectory optimization problems, the Goddard sounding

rocket problem, the minimum-time, acceleration-limited particle-in-a-plane problem, and a NASP

ascent guidance problem. Section 6 presents parallel computational results for these three

problems. Section 7 makes observations about the algorithm based upon computational

experience, and it suggests possible improvements. Section 8 presents the conclusions.

4

Appendix D presentsa specificationdocumentthatexplainshow to encodeof a trajectory

optimization problem so that it can be linked to the parallel trajectory optimization algorithm. The

code that models the planar minimum-time problem is included at the end of Appendix D as an

example of how to conform to the problem encoding specification.

Appendix E outlines the theory of a multi-dimensional spline technique that has been

developed as a by-product of this research. Multi-dimensional splines have been used on the

NASP problem, and the procedure on Appendix E presents a relatively simple technique to carry

out rapid, on-line multi-dimensional spline calculations that have continuous second partial

derivatives of the interpolated function.

2. Dynamic Quadratic Programming/Search Direction Calculation on a Parallel

Processor

This part of the effort concentrated on developing an efficient parallel solver for a problem of

the form:

T
T T T T

find: -_ = Ix0,Xl,X 2..... XN 1 (la)

N

1 T Tto minimize: J= {_,.kHkXk + gkXk} (lb)

subject to:

k=0

Ek Xk + ek + Fk+l Xk+l = 0 for k = 0 ... N-1 (lc)

Dk Xk + dk = 0 for k = 0 ... N (ld)

The solution vector at a given stage, Xk, is usually a combination of a state vector, Xk, and a

control vector, uk. The vector could also include slack variables if required by the NP algorithm

that uses the QP solver.

The constraints in eq. (lc) are dynamic constraints that link stages. Not that the form is

general enough to admit the standard linear difference equation model of a linear time-varying

discrete-time system. The nonhomogeneous term in eq. (lc), ek, is included to make the QP

algorithm compatible with NP trajectory optimization algorithms that do not satisfy the dynamics at

intermediate stages of the solution process.

The auxiliary constraints in eq. (ld) allow the modeling of state and control constraints that

apply point-wise in time, such as bounds on the throttle setting or on the dynamic pressure. Even

though the constraints in. eq. (ld) are equality constraints, they are useful for dealing with

inequality constraints if an active set strategy is employed. An active set strategy assumes that

some of the inequality constraints are active and others are inactive. The active inequalities are

enforced as equalities, and the inactive constraints are ignored. Of course, logic must be employed

to make changes to the active set assumptions as needed. In the present effort, this logic is part of

the overall NP algorithm, not part of the QP algorithm.

The QP algorithm that solves eqs. (la)-(ld) gets used by the nonlinear trajectory optimization

algorithm to determine a search direction in state and control time-history space. It is used by the

NP algorithm in a sequential quadratic programs sort of approach: the constraints are linearized

about the current solution estimate and the Lagrangian function (cost plus multipliers times

constraints) is approximated by a quadratic expansion about the current solution estimate. This

yields a quadratic program, which is solved for a search direction. The solution is modified by

moving along this search direction in state and control time history space. A merit function is used

to determine the step length. This process ensures global convergence in many cases and quadratic

convergence near the solution, where the quadratic program is a good approximation of the original

nonlinear program.

A nonlinear trajectory optimization algorithm can call for hundreds or thousands of QP

solutions during one solution for an optimal trajectory. Therefore, it is extremely important that the

QP be solved rapidly. In order to accomplish this, the domain decomposition approach has been

used to parallelize the QP solution procedure.

The basic idea of domain decomposition is to split the problem into smaller problems and

partially solve the smaller problems. The unsolved parts of the problem are then joined into

progressively bigger portions that admit more partial solution to be accomplished until the entire

problem is finally solved.

The domains that are split to solve eqs. (la)-(ld) are time domains. The problem is split into

a number of groups of stages. Each group is a set of contiguous stages. Any such set of stages

can be partially optimized independently of any other such set if one assumes that the state vector

on the boundary of any two such sets must be held fixed during the partial optimization process.

After these partial optimizations, the remaining unsolved parts of contiguous sets of stages are

aggregated into a smaller number of larger sets of contiguous stages. This frees some state vectors

that had been on set boundaries, allowing them to be optimized in the next partial optimization

cycle.

The final parallel QP algorithm achieves good speed-up when run on a parallel processor. It

can solve an N-stage dynamic QP problem on p (<N) processors in wall clock time that scales as

(N/p) + Log2(p). Two versions of the algorithm and their computational timing results are

described in detail in the two papers that have been included as Appendix A of this report. The

second paper in the Appendix A describes the algorithm that actually has been used as part of the

overall nonlinear programming algorithm.

3. Nonlinear Programming Algorithm

Once approximated in a discrete-time form, most trajectory optimization problems can be

stated in a general nonlinear programming form:

find: x (2a)

to minimize: J(x) (2b)

subject to: ce(x) = 0 (2c)

ei(x) < 0 (2d)

where x is a large vector that includes the entire discrete-time state and control time histories, the

J(x) cost function is a summation over stage-wise costs, ee(X) is a large vector of equality

constraint functions that includes, among other things, the dynamic difference equations, and the

ci(x) inequality constraints may include state and control auxiliary constraints at each stage. If N

is the number of discrete-time time steps (or stages), then the dimensions of the vectors x, Ce(X),

and ci(x) include a factor of N.

While an efficient trajectory optimization algorithm must take advantage of special problem

structure that is not apparent in eqs. (2a)-(2d), a good algorithm must also employ generic

nonlinear programming techniques that apply to problems of this general form. Therefore, an

effort has been made to develop a good algorithm for solving such problems.

The basic NP algorithm that is the heart of the a real-time trajectory optimizer must have

several important characteristics. First, it must be robustly convergent. In other words, it must be

very likely to converge to a feasible local minimum even from a poor first guess. Second, it must

have fast local convergence: it must rapidly determine the solution when it is near the solution.

Third, it must have good global convergence speed. It must progress rapidly from being "far

away" from the solution to being "near" the solution. The above requirements constitute a "tall

order" for any general NP algorithm.

The algorithm developed under this grant is a sequential quadratic programs-type

implementation of the augmented Lagrangian nonlinear programming algorithm. It uses a shifted

penalty function that is capable of achieving exact satisfaction of equality and inequality constraints

without requiring infinite penalty weights. Several features have been added to the algorithm in

hopes of speeding convergence. One is the use of constraint curvature directly in the quadratic

sub-problem. Another is the use of a special constrained form of the QP subproblem that allows

the use of large penalty weights, which speed local convergence. The box trust region technique

has been incorporated into the algorithm in order to guaranteed convergence to a local minimum of

the augmented Lagrangian function, which translates into global convergence to a problem solution

as long as the algorithm does not converge to an infeasible point near a non-zero local minimum of

the norm of the constraint violations.

The algorithm was first encoded and tested in MATLAB as a serial algorithm. In the paper

that has been included as Appendix B of this report, the NP algorithm is described, and it is

8

comparedwith NPSOLon several test problems. It performs well on the test problems, and it has

more robust convergence than NPSOL version 4.

Another, slightly different version of this algorithm has been developed which is not

described in Appendix B. The modified version has three principal differences from the algorithm

described in appendix B. All of these have to do with how the algorithm's "inner" loop solves a

quadratically-constrained quadratic program. First, the alternate algorithm uses curved line

searches on every search step. Second, it does an inexact one-variable minimization of the

augmented Lagrangian function during a parabolic line search using a golden section search with a

secant-method-type acceleration of terminal convergence. Third, it uses a different curvature

correction than that described in eqs. (lla)-(llc) of the Appendix B. Instead of finding the
• * • 1

correction that mammazes _-_51T_l as in eq. (1 la), it finds the correction that minimizes 1 _T_l.gSl

where _t_ is computed as in eq. (9) of Appendix B using the multipliers from eq. (12) of Appendix

B. This _l_ gets modified by adding positive numbers to its diagonal if it would otherwise yield an

indefinite projected Hessian during the solution of the modified version of Appendix B's eqs.

(11 a)-(1 lc).

This modified algorithm also has been tried on the test problems described in Appendix B. It

yielded significantly more rapid convergence on most of the problems by reducing the total number

of line searches required to solve the several QPs that arise during a given NP run.

4. Parallel Nonlinear Trajectory Optimization Algorithm

4.1 Algorithm Overview

The parallel nonlinear trajectory optimization algorithm is a special version of the nonlinear

programming algorithm that is described in Section 3 and Appendix B. The special version

exploits parallelism and the special dynamic programming problem structure in order to speed up

the algorithm when solving trajectory optimization problems.

9

The algorithmhasbeenencodedto solvecontinuous-timeproblemsof the form

fred:

to minimize:

subject to:

u(t) and x(t) for tO < t < tf (3a)

tf

J = _ L[x(t),u(t),t] dt + V[x(tf)] (3b)
to

x(to) given (3c)

=_x(t),u(t),t] (3d)

ae[X(t),u(t),t] = 0 (3e)

ai[x(t),u(t),t] < 0 (3f)

aef[X(tf)] = 0 (3g)

aif[x(tf)] < 0 (3h)

which it first approximates as a discrete-time problem through a zero-order-hold approximation of

the control time history. The algorithm also has the option of directly solving discrete-time

problems of the form

fred: x = Uo, x 1, u 1, x u s-l, x (4a)

N-1

to minimize: J = _ Lk(Xk,U k) + V[XN] (4b)
k=0

subject to: Xo given (4c)

Xk+ 1 = fk(Xk,Uk) for k = 0 ... N-1 (4d)

aek(Xk,tlk) = 0 for k = 0 ... N-1 (4e)

aik(Xk,Uk) _< 0 for k = 0 ... N-1 (4f)

aeN(XN) = 0 (4g)

aiN(XN) _ 0 (4h)

The algorithm also can solve mixed discrete-time/continuous-time problems in which any given

phase is either totally discrete-time or totally continuous time. Discrete-time phases are allowed to

begin and end with different numbers of state vector elements. Through clever problem modeling

10

tricks, this featureallows for optimization of initial conditions. Other modeling tricks allow the

code to solve free-end-time problems.

The specialization of Section 3's basic NP algorithm takes two main forms. First, the NP

algorithm's linear algebra is performed using the parallel dynamic quadratic programming

algorithm that is the subject of Section 2 and Appendix A. Second, the cost and constraint

functions (including the dynamics model), the cost gradients, the constraint Jacobians, and the cost

and constraint Hessians are evaluated in parallel.

Parallel evaluation of problem functions and their derivatives is possible because the problem

can be split in a stage-wise manner. The cost, the differential equations, and their derivatives at

time step 2 and at time step 56 can be evaluated simultaneously because they do not affect each

other at intermediate solution estimates. One feature of the basic NP algorithm that contributes to

this separability is its permission of constraint violations at intermediate solutions. In particular,

the dynamics need not be exactly satisfied until the final solution is reached, which is why stage-2

functions and derivatives are independent of stage-56 functions and derivatives.

Of course, functions and their derivatives at different stages are related at the final solution.

This relationship is achieved by the NP algorithm during its search for the problem solution. The

algorithm's mechanism for achieving the necessary relationships is its search direction computation

via solution of a dynamic QP. The dynamic QP solver transmits function and derivative

information between stages.

The algorithm has been fully encoded and tested using a 32-node INTEL iPSC/860 message-

passing parallel processor. The results of this testing are described below in Section 6. The

algorithm itself is described in more detail in the paper contained in Appendix C.

4.2 Problem Encoding

The algorithm has been encoded to solve problems that are modeled via two FORTRAN 77

subroutines, each of which has a pre-specified argument list and functionality. One subroutine

models the problem's cost function and dynamics equations. The other subroutine models any

auxiliary constraints such as bounds on state or control variables. The algorithm needs the names

11

of theseuser-def'medsubroutinesalongwith user-defineddatathatgetsinputto themaintrajectory

optimizationalgorithmvia severalarrayandscalararguments.

Thenecessaryinput dataandsubroutinesaredescribedin aspecificationdocumentthathas

beenincludedasthefirst part of Appendix D. This document makes it possible for people to use

the parallel trajectory optimization algorithm even though they are not intimately familiar with its

inner workings. Also included in Appendix D is the code that has been used to model the

minimum-time to the origin problem, which is described below in Section 5.2.

As proof of the usefulness of the problem modeling specification, Prof. Psiaki was able to do

all of the problem modeling and problem encoding for the examples described below in Section 5,

despite the fact that he never saw any of the parallel trajectory optimization code. He was able to

encode the problems simply by adhering to the specification in Appendix D.

5. Modeling of Three Example Trajectory Optimization Problems

5.1 Goddard Problem (Maximizing the Final Altitude of a Sounding Rocket)

The following problem maximizes the terminal altitude of a sounding rocket in flight over a

spherical, non-rotating Earth [1]:

find: tf and T(t) for 0 < t < tf (5a)

to minimize: J = - h(tf) (5b)

subject to ia = v (5c)

_, T - D(v,h) 1
= m - h--_- (5d)

T (5e)/n -- - 0-5•

h(0) = 1, v(0) = 0, m(0) = 1 (5f)

0 < T(t) < 3.5 (5g)

m(tf) = 0.6 (5h)

where h is the distance of the rocket from the center of the Earth measured in Earth radii, v is the

velocity in Earth radii per Herg (2_ Hergs is the period of a circular orbit at the Earth's surface), m

12

is therocketmassnondimensionalized by its initial mass, T is the rocket thrust nondimensionalized

by the rocket's initial weight at the Earth's surface, D(v,h) is the velocity- and altitude-dependent

aerodynamic drag, and 0.5 is the exhaust velocity of the burned rocket fuel. Note that the two

inequalities in (5g) put minimum and maximum limits on the control, T. The drag function

assumes a constant, zero-lift drag coefficient and an exponential atmospheric density

D(v,h) = 6,200 e 500(1-h) v Ivl CD (6)

where CD = 0.05.

In order to model this free-end-time problem in a fixed-end-time format, the problem has

been split into two phases, an extra state variable has been added, and an artificial problem time has

been introduced whose fixed terminal value is 1. Call the artificial problem time x. Then actual

time is t = tf x.

Given an N+l-stage discrete-time approximation of the problem, stages 0 to N with stage N

being the terminal stage, the problem has been re-modeled in the form

f'md: T(x) for 0 < x < 1 and u2 for 0 < x < (l/N) (7a)

to minimize: J = - h(1) (7b)

dh [u2 v for 0 < x < (l/N)

subject to _'x = _x4 v for (l/N) < x < 1
(7c)

T - D(v,h) 1

U2[_'] for 0_<X < (l/N)
dv m
m = (7d)

d'_ x4 [T D(v,h)m h-2"] for (l/N) < x <1_ _

for 0< x < (l/N)

for (l/N) < x <

for 0 < x < (l/N)

(l/N) <'_ < 1

h(0) = 1, v(0) = 0, m(0) = 1

0 _ T(x) < 3.5

(7e)

(7f)

(7g)

(7h)

13

m(1) = 0.6 (7i)

One can understand the relationship between this formulation and the original formulation by

noting that x4(x) = tf for (l/N) _<'_ _<1. Due to the zero-order-hold approximation of the control

time history and the N+l-stage approximation, the algorithm assumes that u2(x) is constant over

the interval 0 < x < (l/N). Therefore, u2(x) also equals tf on this interval. Thus, all of the

differential equations are re-scaled by tf, which correctly accounts for the modified independent

variable, x.

Once in this problem form, it is straight-forward to encode the problem in accordance with

the specification in Appendix D. This has been done, and computational results are presented in

Section 6.1 below. In all of the runs reported in Section 6.1, the first guess of the optimal

trajectory is approximately

tf = 0.2 = x4 = u2 (8a)

2 for 0 <_ t < 0.1T(t) = 0 for 0.1 <_ t _< 0.2 (8b)

1 + 0.5t 2 for 0 _< t < 0.1h(t) = 0.99 + 0.2t - 0.St 2 for 0.1 <_ t_< 0.2
(8c)

t for 0 < t < 0.1v(t) = 0.2 - t for 0.1 < t < 0.2 (8d)

1 - 4t for 0 --. t < 0.1m(t) = 0.6 for 0.1 < t < 0.2 (8e)

Which corresponds to a flat Earth, zero drag assumption and a control policy that keeps T at 2 until

all of the fuel is used up. Note that this first guess does not satisfy the dynamic constraints

because it neglects the drag term and models l/h2 as a constant.

14

5.2 Acceleration-Limited Minimum Time to the Origin

The following problem minimizes the time to bring a particle to rest at the origin in the plane

subject to a magnitude limit on its acceleration:

f'md: tf and u(t) for 0 < t < tf (9a)

to minimize: J = tf (9b)

100101E 01• 0001 0

subject to x = 0000 x + 0 u (9c)

0000 O1

x(O) (4 O) given (9d)

uT(t)u(t) <_1.0 (9e)

x(tf) = 0 (9f)

where the first two elements of the state vector x are positions, its third and fourth elements are

velocities, and the two components of u are accelerations.

The solution to this problem is the well-known bilinear tangent steering control law [2]:

[c°s 0(t) 1u(t) = (10)
I_sin 0(t)_l

where 0(t) satisfies an equation of the form

tan 0(t) = 131 + 132t (11)

133+ 134t

with unknown constants 131,132, 133, and 134. These constants are unique up to a common scale

factor, and they must be numerically determined simultaneously with tf by solving a set of

algebraic equations that enforce the terminal constraint, eq. (9f).

An easy way to generate known solutions to this problem is to pick [31,132, 133,134, and tf

and integrate backwards in time from x(tf) = 0 for tf seconds to generate x(0). This has been

done to generate an example problem for testing the trajectory optimization algorithm described in

this report. The resulting initial condition is

15

[--73.605383-]

= /-35"125486/
x(0) / 2"9490181 (12)

L 0.430989-J

Several modeling tricks have been used to get this problem into a form suitable for encoding

in accordance with the specification in Appendix D. It is desirable to have the acceleration time

history be piecewise linear rather than piecewise constant, which is what the zero-order-hold

assumption would yield. Therefore, it is necessary to augment the optimization state vector to

include the two accelerations and to create a new optimization control vector that consists of the

two rates of change of the two accelerations rather than the two accelerations themselves.

As in the Goddard problem of Section 5.1, the state vector is further augmented to allow for

the solution of this free-end-time problem with the fixed-end-time algorithm. The new state stores

the end time tf.

A further modeling trick is needed to allow optimization of the initial acceleration states in

addition to optimization of the rates of change of the accelerations. This is accomplished by

modeling the first stage as a discrete-time stage. It does not take up any actual time, but it

initializes the state vector for the remaining continuous-time steps. Thus, for an N+I stage

problem, the first stage, stage 0, is modeled by the following difference equation and constraints

(for k = 0):

--73.605383-

-35.125486

Xk+l = 2.949018 (13a)

0.430989

_ Uk -

Ukt 2 + Uk22 <_ 1 (13b)

0.01 < Uk3 (13c)

where Xk (not shown) is a zero-dimensional vector, Xk+l is a 7-dimensional vector, and Uk is a

3-dimensional vector. Elements 1 and 2 of Xk+l are the initial positions, elements 3 and 4 are the

16

initial velocities,andelements5and6 aretheinitial accelerations.Noticehowelements5 and6of

Xk+laresetequalto elements1and2of Uk,whichallowsoptimizationof theinitial accelerations.

Thethird elementof Ukis theproblem'sfinal time,Uk3= tf, whichbecomesthe7th element

of Xk÷lat theendof this stage. As with theGoddardproblem,the algorithmworks in artificial

time x that has a fixed terminal value of 1: = 1. Thus, the relationship between this artificial time

and the real problem time is t = tf x. The extra constraint in eq. (13c) is added for the practical

purpose of preventing the algorithm from thinking that it can run time in reverse.

Stages 1 through N-1 of the problem are modeled by the following continuous-time cost

integral, differential equation, and constraints

/.

J = J x7d't

dx

"_"---- X7

-0010000-

0001000

0000100

0000010

0000000

0000000

-0000000-

X

O0-
O0

O0

+ l O0

10

01

00-

U

(14a)

(14b)

x52('_) + x62('t) < 1 (14c)

0.01 < x7 (14d)

where the constraint in eq. (14d) is added for practical purposes. Even though eq. (14d) is

redundant with eq. (13c) because dxT/dX = 0, this constraint is useful to help ensure reasonable

intermediate solution estimates during the optimization process when the constraint dx7/dx = 0

might be violated.

The terminal stage, stage N, is modeled simply by the terminal constraints on the positions

and velocities

xi(x=l) = 0 fori=l 4 (15)

coupled with one more constraint on the acceleration magnitude

17

x52(x=l) + x62(x=l) < 1 (16)

The code that models this problem has been included at the end of Appendix D as an example

of how to apply the problem encoding specification at the beginning of Appendix D. The

subroutine called FLMNTM encodes the dynamics and cost functions in eqs. (13a), (14a) and

(14b) along with their first and second partial derivatives. The subroutine CMNTM encodes the

auxiliary constraint functions in eqs. (13b), (13c), (14c), (14d), (15) and (16) along with their first

and second partial derivatives.

The first guess used for this problem takes the form

tf = 2.980345 (17a)

xl(t) = -73.605383 + 2.949018t- 0.494744t 2 (17b)

x2(t) = -35.125486 + 0.430989t - 0.072305t 2 (17c)

x3(t) = 2.949018 - 0.989489t (17d)

x4(t) = 0.430989 - 0.144610t (17e)

xs(t) = - 0.989489 (17f)

x6(t) = - 0.144610 (17g)

XT(t) = 2.980345 (17h)

Ul(t) = 0.0 (17i)

u2(t) = 0.0 (17j)

where the notation used corresponds to the def'mitions associated with eqs. (14a)-(14d). Basically,

this guess puts on the "brakes" to bring the system to rest, x3(tf) = x4(tf) = 0, but it fails to bring

the system to the origin, Xl(tf) _ 0 and x2(tf) _ 0. It satisfies the dynamics constraints and the

inequality constraint on the acceleration magnitude.

The subroutine MNTMIN in Appendix D sets the initial guess of the optimal trajectory. This

subroutine also defines all of the other user-definable optimization algorithm inputs that are called

for in the specification at the beginning of Appendix D except for N, the number of the terminal

problem stage. The quantity N must already be known by the routine that calls MNTMIN. A main

18

programthatcallstheparalleloptimizationcodecanf'wstmakeacall to MNTMIN in orderto setup

theuser-definedquantities.

MNTMIN's output arraysNUVEC, NXVEC, NECVEC, and NICVEC and its output

scalarsNUMAX, NXMAX, andNCMAX definevariousproblemvectordimensions.Thearrays

U0 and X0 containthefirst guess.The arraysIDT andT further definethe problemmodelby

indicatingwhethera stageis continuous-timeor discrete-timeandby def'mingthetimeassociated

with eachproblem stage. The arraysKRK and ISECGR provide signals to the optimization

algorithmof whichnumericalintegrationroutineto usefor continuous-timestagesandof whether

or not analyticsecondderivativesareavailablefor problemfunctions. The arraysDELTU and

DELTX providefinite differenceintervalsfor approximatinganysecondderivativesthat arenot

providedin analyticform by theuser.

5.3 NASP Minimum-Fuel Ascent Guidance Problem

A minimum-fuel NASPascentguidanceproblemcanbeposedto takethevehicle fromjust

afterlift-off (10 feetoff of thegroundatMach0.4with aflight-pathangleof 2° andagrossweight

300,000lb) to acircularorbit at 100milesaltitudeusingtheminimumamountof fuel:

find: tfand _(t), 0a(t),and0r(t) for 0 < t -< tf (18a)

to minimize: J = - m(tf) (18b)

subject to ia = V sin_/ (18c)

(RE _siny (18d)_/ = TcoSO_m -D 32.174 h +RE

m " h + RE cos Fv
= V +/_'Lh +:w'IREJ (18e)

ha = _ Cl CTa(0a,M) _ 15000 Or (18f)

32.174 Ia(0a,M) 32.174 • 444.0

h(0) = 10, V(0) -- 446.56, y(0) = 0.034907, and m(0) = 9324.3 (18g)

< 2000 (18h)

2.771x10 o8 p_ V 3 < 400.0 (18i)

19

-0.01745 < Ct < 0.20944

-0.34907 < 5E((z,M) < 0.34907

_amin(M) -< _a < Oamax(M)

0.0 < (_r < 1.0

rTcOS mO]-4.0 < k 32.174 _< 4.0

T sinc_ + L_
32.174 m .1 <-- 4.0

0.0<h

h(tf) = 528000

y(tf) = 0.0

V(tf) = 25620.39

(18j)

(18k)

(181)

(18m)

(18n)

(18o)

(18p)

(18q)

(18r)

(18s)

The problem model has four state variables; h is the vehicle altitude above the Earth's surface

in ft, V is the vehicle's inertial speed in ft/sec, _t is the flight-path angle in rad., and m is the mass

in slugs. Equations (18c)-(18e) model motion in a vertical plane over a spherical, non-rotating

Earth. They include the aerodynamic forces, lift L and drag D, the net axial thrust force due to the

air-breathing and rocket propulsion systems, T, and the usual 1/(h+Rz) 2 central gravitational force

term. Equation (18f) models the vehicle mass decrease due to fuel consumption by the air-

breathing and rocket propulsion systems. The control variables in the problem are or, the angle-of-

attack in rad., qba, the non-dimensional fuel equivalence ratio of the air-breathing propulsion

system, and (_r(t), the rocket throttle setting expressed as a fraction of the maximum available

thrust.

Other quantities that appear in the problem model are RE, the radius of the Earth in fl, el, the

dynamic pressure in lb/ft 2, M, the Mach number, CTa(_a,M), the thrust coefficient of the air-

breathing propulsion system in ft 2, Ia(_a,M), the fuel specific impulse of the air-breathing

propulsion system in sec, p(h), the atmospheric density in slugs/ft 3, 5E(c_,M), the trim elevon

angle in rad, and _amin(M) and Oamax(M), the Mach-number dependent limits on the air-breathing

propulsion system's fuel equivalence ratio. Some of the numerical constants that appear in the

20

problemmodel arethe accelerationof gravity at theEarth'ssurface,32.174ft/sec2, therocket's

maximumin vacuothrust,15000lb, andtherocket'sin vacuofuel specificimpulse,444.0sec.

Theproblem'sauxiliary constraintsenforcevariouspracticallimits. Constraint(18h)keeps

thedynamicpressurebelow2000psf in orderto ensurestructuralintegrity. Constraint(18i) keeps

themaximumlocalheatingratebelow400BTU/sec/ft2. Theangle-of-attackis constrainedto lie

between-1oand+12° byconstraints(18j),andthetrim elevonsettingis constrainedto lie between

+ 20 ° by eq. (18k). Constraints (181) enforce practical limits on the air-breathing propulsion

system's fuel equivalence ratio. Below Mach 2, Oa is constrained to lie between 0.0 and 2.0.

Above Mach 2, Oa is constrained to lie between 0.05 and 5.0. Similarly, rocket thrust is limited by

constraints (18m). Constraints (18n) limit propulsive plus aerodynamic acceleration in the velocity

direction to be between + 4 g's, and constraint (18o) limits the normal propulsive plus

aerodynamic acceleration to be below 4 g's. Constraint (18p) keeps the vehicle from flying into

the ground shortly after take-off. Constraints (18q)-(18s) enforce the final achievement of a

circular orbit at the prescribed altitude.

The air-breathing propulsion system model is an updated version of the model contained in

Ref. 3. It has been supplied by the first author of Ref. 3. The model gives tabulated data for the

thrust coefficient, CYa(Oa,M), and the fuel specific impulse, Ia(Oa,M), on a two-dimensional grid in

(Oa,M) space. The model is discontinuous at M = 2 because of a propulsion system mode switch,

presumably from a turbojet mode for M < 2 to a ramjet/scramjet mode for M >_ 2. The tabulated

data only goes up to Oa = 2 for M < 2, but it goes up to _a = 5 for M > 2, which is the reason for

the Mach-number dependent limits placed on t_a by constraints (181).

Two-dimensional cubic splines of the tabulated data have been used to generate the functions

CTa(t_a,M) and Ia(Oa,M) for use by the trajectory optimization code. These splines are continuous

with continuous first and second partial derivatives (except at M = 2). Because the underlying

functions are discontinuous at M = 2, two separate cubic splines have been generated for each

function, one that applies below Mach 2, and one that applies above Mach 2. These models are

shown in 2-D form on Figs. 1 and 2.

21

The discontinuitiesin thesefunctionscould causeproblemsfor theoptimization software

describedin thisreport. An augmentationof theproblemmodelhasbeendevelopedto avertsuch

difficulties. It enforcesauxiliaryconstraintsonMachnumber.At onepre-selectedtimestep,call it

step number Nmach-2,the equality constraint M = 2 is enforced. At all time stepsbefore

Nrnach-2theinequalityconstraintM < 2 is enforced, and at all time steps after Nmach-2 the inequality

constraint 2 < M is enforced. The low-Mach-number cubic splines of the functions CTa(_a,M) and

Ia(_a,M) are always used at time steps before Nmaeh-2, and the high-Mach-number cubic splines of

the functions CTa(_a,M) and Ia(Oa,M) are always used at time steps greater than or equal to

Nmach-2. In other words, the propulsion system mode switch is enforced at a particular time step.

A clever modeling trick allows the actual time of this transition to remain free for the optimization

process to determine. The trick uses an artificial time x to encode the problem. The Mach 2

transition occurs at a fixed artificial time, but an augmented control quantity allows the actual time

of this mode switch to be free.

The rocket model used here is borrowed from Ref. 4. It assumes an in vacuo maximum

thrust of 15000 lb, an in vacuo fuel specific impulse of 444 sec., and a nozzle area of 1 ft 2. The

thrust inside the atmosphere is

Tr = 0r[15000- 1.0 p(h)] (19)

where p(h) is the atmospheric pressure in psf, which is implemented as a cubic spline function of

altitude based on tabulated data from the 1976 U.S. Standard Atmosphere [5].

Combining the rocket thrust and the air-breathing system's thrust, the total vehicle thrust is

T = ClCTa(t)a, M) + Or[15000-1.0 p(h)] (20)

The total rate of fuel use in eq. (18f) consists of two terms: the first term is the fuel used by the

air-breathing system, and the second term is the fuel used by rocket. This thrust model assumes

that the two propulsion systems can operate simultaneously, and it lets the optimization algorithm

determine whether it would be beneficial to do so.

Before defining the aerodynamic model, it is necessary to define several aerodynamic

quantifies. The dynamic pressure takes the usual form

22

1 V2 (21)= 7P(h)

The p(h) density function is modeled as a cubic spline of tabulated data from Ref. 5. The Mach

number is given by

M = V/a(h)

where a(h) is the speed of sound in ft/sec.

density

a(h) = .x/l'4_(h)
'q p(h)

(22)

It is modeled as a function of the air pressure and the

(23)

which agrees well with the tabulated a(h) data in Ref. 5 for values of h up to 280,000 ft. Above

this altitude the concept of a speed of sound starts to break down, but eq. (23) is still used to def'me

a(h) for determination of M. This should not cause great errors because the aerodynamic and

propulsive forces that depend on M are very small above h = 280,000 ft.

The aerodynamic model gives the lift and drag forces, L and D, and the trim elevon setting,

5E(oqM). Lift and drag are determined from the nondimensional trimmed lift and drag

coefficients, CL_(a,M) and CDtr(ot,M):

L = (tSCLtr((x,M) (24a)

D = (tSCDtr(O_,M) (24b)

where S is the wing reference area, 3603 ft 2. Reference 3 provides untrimmed lift, drag, and

pitching moment coefficients along with increments to these coefficients that depend on or, M and

6E. Given a c.g. location expressed as a fraction of the mean aerodynamic chord, x/c, one can

solve the pitch trim equation for the equilibrium elevon setting:

0 = CMa(Ct,M) + 2CM_iE(OqM,_iE) + [x/c][CLa(OqM) + 2CL_E(t_,M,_iE)] (25)

where CMa(Ct,M) and CLa(O_,M) are the untrimmed pitchingmoment and liftcoefficients,and

CMSE(OqM,SE) and CLsE(Ct,M,_E) arethe increments to thesecoefficientsdue tojustone elevon

(leftor right).

The trim elevon settingcan be calculatedas a functionpurelyof t_and M, 5E = 5E(tx,M),

because the c.g. location has been modeled as being a pre-determined function of M. The function

23

x(M)/c hasbeenchosento makethevehiclenearlyneutrallystableovermuchof its flight envelope

whentrimmedat lift = weight. This is trueat highMachnumbers,but theaerodynamicdatafrom

Ref. 3hasadiscontinuityatM = 1dueto acanardretractionasM increasesthrough1. In orderto

preservecontinuityof thex(M)/c function, thevehicle is allowedto bestaticallyunstablebelow

Mach1. Thepre-programmedc.g.functionin tabulatedform is givenin Table1.

Giventhetrim elevonsettingfrom eq.(25),thetrimmedlift anddragcoefficientsbecome

CLtr(t_,M)= CL,(_,M) + 2CL_E[t_,M,_E(ct,M)] (26a)

CDtr(t_,M) = CDa(tz,M) + 2CDsE[(Z,M,_iE(ct,M)] (26b)

where CD, isthe untrimmed drag coefficient,and CDsE isthe drag increment due toone elevon

being deflected.

The functionsCLtr(Ct,M),CDtr(tZ,M), and _SE(tz,M)are implemented as 2-dimensional cubic

splines that interpolate between grid points in (ix,M) space. As mentioned above, each of these

functions has a discontinuity at M = 1 due to the assumption of a canard retraction as M increases

through this value. Therefore, each of these functions has two separate cubic splines, one that

applies for M < 1 and one that applies for M > 1. This leaves a discontinuity, which can be seen

clearly on the plots of CLtr(o_,M) and CDtr(_,M) that appear in Figs. 3 and 4.

As with the propulsion model's discontinuities, the aerodynamic discontinuities could cause

problems for the optimization software. Further auxiliary constraints on Mach number have been

added to the problem statement in order to avoid such problems. At a pre-selected time step

numbered Nmach-1, the equality constraint M = 1 is enforced. At all time steps before Nmach_ 1 the

inequality constraint M _< 1 is enforced, and at all time steps after Nmach-1 the inequality constraint

1 < M is enforced. The low-Mach-number cubic splines of the functions Cl.,tr(O_,M), CDtr(t_,M),

and _SE(tx,M) are always used at time steps before Nmach-1, and the high-Mach-number cubic

splines of these functions are always used at time steps greater than or equal to Nmach-1. As with

the propulsion mode switch, a modeling trick allows the actual problem time of the switch to be left

free despite that fact that it occurs at a fixed stage number. Of course, the stage number Nmach. 1 is

chosen to be less than Nmach-2.

24

Severalmodelingtricks havebeenusedto put the problemin aform compatiblewith the

specificationgiven in Appendix D. The statevector getsaugmentedto storedt/dx, therateof

changeof actualtime with problemtime,andsomeauxiliary control variables,or constraints,or

botharerequiredatstages0,Nmach-1,andNmach-2in orderto allowadjustmentof dt/dx sothatit is

independentlydefinablefor thethreemainproblemphases,M < 1,1< M < 2, and 2 < M.

In an attempt to improve the numerical conditioning of the problem, the inequality

constraints have been re-scaled so that the maximum or minimum limit, if nonzero, becomes + 1.

Similarly, the optimization algorithm works with the following units in order to deal with x and u

elements nearly on the order of 1 to 10. Time is in 1,000 sec. units, altitude is in 10,000 ft. units,

speed is in units of 1,000 ft/sec., mass is in 1,000 slug units, flight-path angle is in rad., and

angle-of-attack is in deg.

The first guess used is for this optimization roughly approximates two features found in

optimal trajectories that appear in Ref. 4: an arc along the Cl= 2000 psf limit followed by an arc

along the heating-rate limit. The guess starts at M = .4 and h = 10 ft. It assumes a linear increase

of h and M until M = 0.85 and h equals the altitude at with M = 2 would yield _1 = 2000 psf.

Next, the guess accelerates in level flight to increase M from 0.85 to 2, which brings the trajectory

onto the Cl= 2000 psf contour. Now M and h increase along this contour until the heating-rate

limit in eq. (18i) is reached. The guess continues increasing M and h along this contour until V =

23,000 fps. It then does a pull-up to put the vehicle into a transfer orbit with apogee = 528,000

ft., the target orbital altitude. Finally, the guess does a long burn near apogee to approximately

circularize the final orbit.

The air-breathing propulsion system is run at _a = 1 up until the pull-up into a transfer orbit,

and the rocket throttle setting is kept at zero until after the pull-up. During the circularizing burn,

_r = 1 is used, and the time of the burn is based on the velocity increment needed at apogee to

circularize the orbit.

Initially, this guess procedure yields a plot of h vs. V for the atmospheric phase. The time

parameterization of the h-V profile and the guessed time histories _(t) and m(t) are determined by

25

satisfying Euler approximationsof 3 of the statedifferential equations,eqs. (18c), (18d), and

(18f). The tx(t) guess is determined to minimize the error in the Euler approximation of eq. (18e)

subject to the minimum and maximum bounds on ct in eq. (18j).

Of course, this first guess violates many of the problem constraints. It violates all of the

differential equations slightly, and it may violate any of the auxiliary constraints that have not been

specifically used in this In'st guess procedure (e.g., the bounds on 5E(ct,M)).

6. Trajectory Optimization Computational Results

All of the results reported in this section are for work done on a 32-node INTEL iPSC/860.

Encoding has been done in parallel FORTRAN. This is a message-passing parallel processor.

Each node of the iPSC/860 is a "super" scalar processor. Simple tests indicate that each node's

floating-point processor speed is about 1.5 Mflops, which is comparable to an HI:' Apollo 9000

model 720 work station. The interconnections between nodes are on a rectangular grid, but the

effect of the "distance" between nodes in this grid is supposed to be minimal due to advanced

message routing hardware.

6.1 Results for the Goddard Problem

The Goddard problem has been solved on this machine using a variety of numbers of

discrete-time problem stages to approximate the problem and using a variety of numbers of

processors. Problems with 16, 32, 64, and 128 stages have been solved. Processor numbers

ranging from 1 to 32 have been used when appropriate. The results reported here use the alternate

NP algorithm outlined at the end of Section 3, the one that always uses curved line searches

(except during its feasibility phase).

Solution time histories for a 128-stage problem are plotted on Figs. 5 and 6. They compare

well with the exact solution given in Ref. 1. Figure 3 of Ref. 1 indicates that the fixed-end-time

solution with tf = 0.198 is also the optimal free-end-time solution. The tf = 0.198 altitude plot on

Fig. 5 of Ref. 1 is very similar to the altitude plot in the upper left-hand comer of Fig. 5 of this

26

report,andthe tf = 0.198 thrustsolutiononFig. 6 of Ref. 1 is very similar to thethrust plot on

Fig. 6 of thisreport; theslightdifferencesaredue,mostlikely, to theproblemdiscretization.

An importantpoint aboutthepresentalgorithmis how well it capturesthe singulararc that

appearson thethrustplot betweent = 0.024andt = 0.07. This is accomplishedwithout havingto

tell thealgorithm in advancethatit mustdifferentiatethe optimality conditionin orderto get the

right equation for determining the singular arc. In essence,this differentiation is done

automaticallyby theQPsolutionproceduredescribedin Section2 andin AppendixA.

Computationaltiming results for various sizedproblemsrunning on various numbersof

processorsarepresentedon Fig. 7. This figure showshow the additionof moreprocessorscan

speedup the solutionproceduresignificantly. For a 64-stageproblem,thealgorithm terminates

7.2 times faster when running on 32 nodesthan when running on one node. The speediest

solutionsfor a givennumberof problemstagesareachievedwhenthe numberof processorsis

greaterthan or equal to one half the number of problem stages. Of course the number of

processorsmustnot exceedthenumberor problemstagesor the ability to parallelizeunderthe

presentschemebreaksdown.

The timeson Fig. 7 arefor solutionof theproblemfrom a cold start,arelatively poor f'rrst

guess. If thealgorithmwereto beusedin a real-timeguidanceloop, thenit would startwith a

goodf'trstguessoneachupdate.Theguesswouldbe theremainderof theoptimal trajectorythat

had beencomputedfor the previousguidanceupdate. This would be identical to the current

optimal trajectory if not for disturbances,sensornoise,andmodel uncertainty. It is hopedthat

thesecontributionsto solutionuncertaintywouldbe relativelysmall. If suchwerecase,thenthe

real-timeversionof theguidancealgorithmwouldneedto performonly a very few of its major

iterations:computationof functionsandtheir first andsecondpartialderivativesandsolutionof a

quadraticprogram. Furthermore,thesolutionof eachquadraticprogramwould requireonly one

or a very smallnumberof minor iterationsdueto thegoodnessof the solutionguess.Thus,the

algorithmmightquicklyre-optimizetrajectoriestoprovidereal-timeoptimalcommands.

27

With this in mind,Fig. 8presentsthewall clock timepermajor iterationwhenthealgorithm

is nearthe solution. Theseresultsarefor variousnumbersof processors,all of themsolving the

64-stageGoddardproblem. Notehow the time per solution is split aboutevenly betweenthe

derivativecalculationsand the QP solutionprocedurefor thecaseof 1 processor,but the QP

proceduretakesabout5 timesaslong asthe derivativecalculationswhen using 32processors.

This happensbecausethederivativecalculationsareinherentlymoreparallelizablethan theQP

solutionalgorithm. Also, notethatthe32-processorresultis 12 timesfasterthanthe 1-processor

result.

If thealgorithmcouldterminatein 10suchiterationsduringareal-timeguidanceupdate,then

guidanceupdatescould occuraboutonceevery2.5see. Noting thattime is expressedin Hergs,

theactualtime perzero-order-holdinterval is 2.54secfor the64-stageproblem. Therefore,this

schemecould work in a real-time loop under the assumptionof 10 terminal-type algorithm

iterations per guidanceupdate. Note that the ability to perform suchupdatesin the required

numberof iterationshasnot,asyet,beenstudied.

The dependenceof thenumberof major andminor algorithm iterationson the numberof

processorsis shownin Figs. 9 and 10,respectively. Major iterations are thosethat calculate

derivativesand startsolving a newQP; theyaretermed"middle-loop" iterationsin thepaperin

Appendix B. Minor iterationsare thosethatperformonesetof matrix factorizationsanda line

search;theyaretermed"inner-loop"iterationsin AppendixB.

Figures9 and 10demonstratethatthesolutiontimeis moderatelyinfluencedby achangein

the required numberof algorithm iterationswith a changein the numberof processors.This

changeis thoughtto bedueprimarily to theway in which the algorithmdealswith directionsof

negativecurvaturein the QPprojectedHessian. It cancalculatedifferent directionsof negative

curvaturefor thesameindefiniteQPwhenusingdifferentnumbersof processors.

6.2 Results for the Minimum-Time to the Origin Problem

Both 32-stageand 64-stageapproximationsof the acceleration-limitedminimum-time to

origin problemhavebeensolved. Figure 11plotsseveraldifferent time historiesassociatedwith

28

the64-stagesolution. On theupperleft-handplot of the figure al anda2are the accelerations.

They correspondto x5 andx6,respectively,in themodelpresentedin eqs.(14a)-(14d)of Section

5.2. Similarly, vl andv2 on thelower-leftplot of Fig. 11correspondto x3 andx4,respectively,

in eqs.(14a)-(14d).Theseplotsagreevery well with theexactsolutioncomputedfrom thelinear

tangentsteeringlaw,eqs.(10)and(11).

Onenoteworthyaspectof thesolutionis thatanauxiliary state-variableinequalityconstraint,

eq. (14c)is activeatall times. Thesumof thesquaresof thecurvesfor al anda2is equalto 1at

eachtime point on the upper left-handplot of Fig. 11. The algorithm is able to computethe

optimal solution without the typical requirementthat eq. (14c) be differentiated in order to

introduceacontrolvariable. In fact,just theoppositeis thecasein thisproblem.

Thestatevariableconstraintin eq.(14c)wasoriginallyacontrolvariableconstraint,eq.(9e),

in theoriginal problemform,eqs.(9a)-(9f). Themodelhasbeenmodifiedby makingtheoriginal

controlsinto statesandcreating new controls that are the time derivatives of the original controls.

This has been done in order to smooth out the zero-order-hold effects and achieve a better

approximate solution for a given number of discrete-time steps. This modeling trick would be

counter-productive were it not for the algorithm's ability to automatically handle pure state

constraints.

The 32-stage minimum-time problem has been solved on 1, 2, 4, 8, 16, and 32 processors.

Figure 12 plots the solution times for this problem versus the number of processors used to solve

the problem. As with the Goddard problem, an increase in the number of processors decreases the

wall-clock time required for solution. The 5-fold decrease in the solution time as the number of

processors increases from 1 to 32 is about the same as for the 32-stage Goddard problem.

The variation of the number of major algorithm iterations with the number of processors for

the 32-stage minimum-time problem is plotted on Fig. 13. Similarly, Fig. 14 plots the number of

minor algorithm iterations vs. the number of problem stages. Both of these curves increase in

comparison to the corresponding plots for the 64-stage Goddard problem, review Figs. 9 and 10.

It is not clear why the iteration counts are higher for this problem. The cause may have something

29

to dowith theincreasednumberof statesin thefinal form of theproblemmodel (7 in thisproblem

vs.4 in theGoddardproblem),or it mayhaveto dowith thepresenceof anactivestateinequality

constraintin thisproblem.

Thevariationsof the iterationcountswith thenumberof processorsaremorepronounced

thanfor theGoddardproblem. The 1-processorcaserequiressignificantly fewerof eachtypeof

iteration. Again, thesediscrepanciesareattributableto the presenceof an indefinite projected

Hessianduringmany(themajority!) of theQP/line-searchminoriterations.

The timepermajoriterationasit varieswith thenumberof processorsis plottedonFig. 15.

Thesetimesare for major iterationsnear successfulalgorithm termination,when only oneQP

searchdirectioncalculationis requiredpermajoriteration. Major iterationsfar from thesolution

generallyrequiremultipleQPsearchdirectioncalculationsand,therefore,takesignificantlylonger.

Plottedalongwith thetotal timeperiterationareitsprincipal components,similar to Fig. 8for the

Goddardproblem.

Thetotal iterationtime is roughly thesameasfor theGoddardproblem(reviewFig. 8), but

theproportionof time spentsolving theQP is largerthanfor theGoddardproblem. This makes

sensebecausetheQP algorithm'sscalaroperationcount goesas In3+ O(n2)][(N/p) + log2(p)]

when solving a problemwith n statevector elementsand N stageson p processors. For the

presentproblemn -- 7 andN = 32,whereasn --4 andN = 64 for theGoddardproblemonFig. 8.

Theplots showthat theQP solutionprocedurefor the minimum-time problemis slower for all

casesconsidered,but not quite as slow in comparisonto the correspondingGoddardproblem

procedureasis indicatedstrictlybytheleadingtermsof thescalaroperationcount.

Theiterationspeedfor the32-stageminimum-timeproblemoperatingon 16or 32processors

is under0.5 sec. This is a fast executiontime andmayindicatesuitability for usein real-time

guidance. Any seriousconsiderationof thereal-time guidanceissuewill have to determinea

reliableestimateof thetypical numberof iterationsrequiredto re-convergethesolutionafterone

guidanceupdateinterval.

30

6.3 Results for the NASP Ascent Guidance Problem

A 32-stage NASP ascent guidance problem has been solved using the parallel algorithm

developed under this grant. The solved problem models the Mach 1 transition, and the

concomitant change in the aerodynamic model due to canard retraction, as occurring at stage

Nrnach-1 = 6. It models the Mach 2 transition and concomitant propulsion model switch as

occurring at stage Nmach-2 = 9. The initial stage is stage 0, and the terminal stage is stage N = 31,

which leaves 22 zero-order-hold intervals for flight above Mach 2. These hold intervals have been

modeled as all being of equal real-time duration.

The algorithm solved the problem in 2 hours of wall clock time using all 32 of the

iPSC/860's processors. It executed 2035 major algorithm iterations to solve the problem, about

100 of which were used to achieve initial approximate feasibility of the trajectory; the NP algorithm

described in Appendix B has an initial phase in which it enforces feasibility.

The alternate NP algorithm described at the end of Section 3 is the one that has been used to

solve this problem. An attempt was made to solve the NASP problem with the first NP algorithm

of Section 3, but it did not get near convergence after 2000 major algorithm iterations.

Plots of the solution are presented on Figs. 16, 17, and 18. The mass time history, the

lower-right plot on Fig. 16, shows that the final on-orbit mass is about 56% of the original post-

lift-off weight, which seems reasonable. The altitude and flight-path angle time histories, the two

left-hand plots on Fig. 16, show an initial steep climb to about 150,000 ft. After this the vehicle

climbs more slowly until it reaches its orbital velocity at an altitude of just below 200,000 ft.

Finally, it executes a pull-up into a transfer orbit to reach its target orbital altitude.

The control time histories on Fig. 17 show that the air-breathing engine provides most of the

acceleration. Its fuel equivalence ratio, shown on the upper fight-hand plot, is non-zero

throughout the ascent. It seems a little bit silly that _a remains nonzero after the exit of the

atmosphere at about t = 3,000 sec, but this does not cause much loss of final mass because so little

actual fuel flow is involved. The rocket throttle setting, the lower left-hand plot, remains at zero

until just before the terminal time when it helps to circularize the final orbit.

31

The angle of attack time history, the upper left-hand plot on Fig. 17, shows some jitteriness

coupled with a slow downward trend as speed increases toward the orbital velocity. There is a

pull-up just before t = 3,000 sec to initiate the transfer orbit, then t_ is held negative during the

transfer orbit and part of the terminal burn, presumably to help circularize at the proper altitude.

The jitteriness of the angle-of-attack plot points up a shortcoming of this solution. It seems

that the zero-order-hold intervals are too long during the flight phase above Mach 2. Each interval

is about 200 sec long. If V = 2,900 fps, then the approximate Phugoid period is 400 sec. The

lightly-damped Phugoid mode will alias if it has a shorter period (a higher frequency), which it will

have for V <_2,900 fps. This aliasing of a lightly-damped open-loop mode could easily account

for the jitters apparent on all of the plots, especially those showing angle-of-attack and flight-path

angle.

The altitude vs. Mach number plot, the left-hand plot on Fig. 18, shows related problemst.

The vehicle accelerates from Math 2 to Mach 17 in just one zero-order-hold interval -- compare this

plot with the velocity time history in the upper right-hand corner of Fig. 16. During this hold

interval the trajectory may violate the dynamic pressure constraint because the auxiliary constraints

are enforced only at the boundaries of the hold intervals. (Note that the straight-line approximation

of the trajectory shown on the figure is probably not the actual trajectory computed via numerical

integration.) The two spikes that appear on the h vs. M plot also may be due to the long hold

interval.

There are two possible fixes for the aliasing problem. One is to model the controls as being

piecewise linear or piecewise parabolic. This could be done by augmenting the state vector with

the original controls and making new control variables out of the first or second time derivatives of

the original controls. The smoothed-out control signals would be less likely to excite the lightly-

t On a different note, the h vs. M curve changes from solid to dashed above about 280,000 ft

because Mach number is not very meaningful at such extreme altitudes.

32

dampedphugoidmodeevenwhenaliasingoccurred. Another, simpler fix would be to greatly

increasethenumberof problemstages.Attemptshavebeenmadeto solvea64-stageproblem,but

thealgorithmtooktoolongto convergein thetestsconductedto date.

Theaveragetime permajor iterationof thealgorithm is 3.5 see.of wall clock time for this

problem. Iterationtimesnearsuccessfulalgorithmterminationareprobablyevenshorterthan3.5

see. This is in the ball parkof the kind of iteration speedthat might make real-time optimal

guidancepracticalfor theNASPascentproblem,butotherdifficultieswith thealgorithmneedto be

workedout beforeit canbeused.In particular,a solutionto thealiasingproblemmustbefound.

Also, algorithmmodificationsareneededin orderto speedglobal convergence.Theslow

globalconvergenceof thealgorithmontheNASPproblemimpliesthatstandardguidanceupdates,

despitehaving relatively good first guesses,would probably require many iterations of this

algorithm.This wouldprobablyrequiretoomuchtimeto makeon-linesolutionpractical.

7. Discussion of Algorithm Performance and Suggestions for Improvement

Application of the parallel trajectory optimization algorithm to the 3 test problems has shown

some strengths and some weaknesses of the approach. One of the two most significant strengths

is the ability of parallelism to greatly speed up each major algorithm iteration, which consists of

derivative calculations, a search direction calculation, and a search step. These operations are

common to almost all optimization algorithms, and the results of this work could be applied to

parallelize trajectory optimization algorithms other than the one presented here.

Another significant strength of the algorithm is the rapidity with which it is able to determine

a feasible solution to a problem. Such a solution obeys the dynamics and all of the auxiliary

constraints, including any terminal constraints, but it may be far from the optimum of the given

cost function. If the most important guidance objectives are stated in terms of terminal constraints,

such as the constraint that the NASP achieve a circular orbit of a certain altitude, then the algorithm

can rapidly design sub-optimal trajectories that meet the most important guidance objectives.

33

The main weaknessof thealgorithmis its slownessto achieveconvergenceto theoptimal

solution. It canrequiremanymajoriterations,mostof whichrequirea numberof minor iterations.

Eachminor iterationinvolvessolutionof anequality-constraineddynamicQP. While this process

hasbeenparallelized,it is inherentlydifficult to achievegoodparallelefficiency for this process.

Thealgorithmwoulddowell to cut downon thenumberof equality-constrainedQPsolutionsthat

it computesontheway to a solution.

Onepossiblecauseof muchof theslownessrevolvesaroundthealgorithm'sactionswhenit

encountersan indefiniteprojectedHessianduringcomputationof a searchdirection. Presently,it

attemptsto searchin a directionof negativecurvatureevery other time that it encountersan

indefinite Hessian,but it cannotguaranteethat it is searchingin thedirection of most negative

curvature.

Thepresenceof quadraticconstrainttermsin themiddle-loopQPproblem(seethepaperin

Appendix B) may causemoreharmthangood. Theseterms,whencoupledwith the algorithm's

logic for dealingwith negativecostfunctioncurvature,cancausethe algorithmto cyclebetween

severalsearchdirections,noneof whichmakesmuchprogressin reducingthecostfunction.

Another problem may be the augmentedLagrangianNP algorithm itself. The current

implementation,asdescribedin AppendixB, is designedto work well with largepenaltyweights

in orderto beableto assurerapid local convergence.Unfortunately, largepenaltyweightscan

causeglobalconvergenceproblemsthatarenotaddressedby thecurrentalgorithm.

Yet anotherproblemwith the algorithmmay be its useof thebox trust region methodof

assuringglobal convergence. This methodtendsto lean heavily on equality-constrainedQP

factorizationsandto relyonly very lightly on functionevaluations.In theparallelenvironment,QP

solutionsarerelativelyexpensive,andfunctionevaluationsarerelativelycheap. A moreefficient

parallelalgorithmmightbeonethatensuresglobalconvergenceby usingline searchesto determine

thesearchsteplength.

The rapidity of the constraint satisfactionphaseof the algorithm suggestsan alternate

approachto developarapidparalleltrajectoryoptimizationalgorithm. Insteadof usingastandard

34

NP typeof algorithm,onecoulddevelopa parallelequationsolvingalgorithm for the necessary

conditions.While this wouldposesomedifficulties in that theKuhn-Tuckernecessaryconditions

involve inequalities and the complementaritycondition, thesedifficulties could probably be

surmounted.Thealgorithmwouldusethenormof thenecessaryconditionviolation asits merit

function. It could usethis merit function in aLevenberg-Marquardt-typeof approach.Parallel

solution times might be on the order of the times required by the current algorithm to Fred an initial

feasible trajectory during its first phase. Such performance, if realized, would make the necessary

condition solver 20 times faster than the present algorithm when solving the NASP problem.

The equation solving approach has the advantage that many of the parallel ideas developed

under this grant could be directly applied to it, but it has the disadvantage of possible convergence

to a saddle point or to a local maximum; the necessary conditions only ensure that a stationary point

has been found. In any event, one of the parallel QP factorization algorithms of Appendix A could

be used to check whether or not the stationary point was a local minimum. The algorithm would

form and Cholesky factorize the projected Hessian at the solution. If the Cholesky factorization

terminated successfully without producing a negative diagonal element, then the solution could be

certified to be a local minimum.

8. Conclusions

An effort has been made to develop a fast parallel trajectory optimization algorithm suitable

for use in on-line, real-time guidance of an aerospace vehicle. The parallel algorithm approximates

continuous-time phases of a problem via the zero-order-hold control discretization and Runge-

Kutta numerical integration over the hold intervals. This gives rise to a large nonlinear program

with the specialized dynamic programming structure. The parallel algorithm uses a specialized

version of the augmented Lagrangian nonlinear programming algorithm to solve this problem.

The algorithm starts with a guessed solution that need not satisfy the dynamics; state and

control time histories are guessed. Next, the algorithm computes the cost, dynamics, and auxiliary

constraint functions and their first and second partial derivatives. This is accomplished in parallel

35

by havingdifferent processorssimultaneouslycomputethesequantitiesfor different time steps.

The algorithm then uses this information to set up a quadratic approximation of the original

trajectory optimization problem. It solves this quadratic approximation, subject to trust region

bounds, to compute an improved guess of the solution. It uses a special parallel dynamic quadratic

programming algorithm to solve this problem. Given an improved guess, this process repeats

itself until suitable termination criteria are satisfied.

Global convergence to a local minimum is assured by adaptively adjusting the trust region

size to enforce descent of the augmented Lagrangian function. Satisfaction of the dynamic

constraints and the auxiliary constraints is enforced via an outer loop in which multiplier guesses

are updated to bias the penalty terms in the augmented Lagrangian function.

The algorithm has been tested off-line on three problems, the Goddard problem of

maximizing a sounding rocket's peak altitude, the planar, acceleration-limited minimum-time to the

origin problem, and a lift-off-to-orbit National Aerospace Plane (NASP) minimum-fuel ascent

guidance problem. The algorithm is able to accurately solve problems with singular arcs or with

active state-variable inequality constraints without placing any special burden on the problem

modeling process.

Good solution speeds have been achieved on the Goddard and minimum-time problems,

even with fairly poor first guesses. A 128-stage Goddard problem has been solved in just 118 sec

using all 32 nodes of an INTEL iPSC/860 parallel processor. This problem has 4 state variables

and one control variable after special modeling tricks have been applied. A 32-stage minimum-time

problem has been solved in 151 sec. The problem model that was submitted to the algorithm has 7

state variables and 2 control variables.

The use of fewer processors results in increased solution times. The solution of a 64-stage

Goddard problem takes 7 times longer on 1 processor than on 32 processors. The optimum

number of processors seems to be about half the number of problem stages for typical problems.

Performance on the NASP problem has not been as good. A 32-stage problem with a 5-

dimensional state vector required 2 hours (7200 see) to reach a solution when using 32 processors.

36

The time per major algorithm iteration is low for all threeproblems,especiallywhen the

algorithmis nearsuccessfultermination.Eachmajoriterationcalculatesfunctionsandderivatives,

solvesaQP,andupdatesthesolutionestimate.Whenusingall 32processors,the iterationtimeon

the Goddardproblemis 0.26secnearalgorithm termination,but this time increasesto 3.08sec

whenusingjust 1 processor.Similarly, a32-stageminimum-time problem'siterationtime near

algorithmterminationis just 0.38secon 32processors,but it is 3.09secon 1processor.A 32-

stageNASP problemhasanaveragemajor iterationtime of 3.5 secwhenrunon 32processors,

andits iterationtimenearalgorithmterminationisevensmaller,but it required2035suchiterations

to convergefrom thefirst guesstried in this study,which accountsfor the long time requiredto

solvethatproblem.

The suitability of this algorithm for on-line, real-timeguidancepurposesdependson two

things,its iterationspeedandthenumberof iterationsthat it mustexecuteto re-convergeto the

solutionbetweenguidanceupdates.Thealgorithmdevelopedunderthisgranthasaprovenability

to iteraterapidly, but its ability to convergein few iterationsseemsto beproblem-dependent.In

summary,thealgorithmis notsuitablefor all on-lineguidanceapplicationsin its presentform,but

it maybesuitablefor someon-lineapplications.

9. References

1. Tsiotras, P. and Kelley, H.J., "Goddard Problem with Constrained Time of Flight", Journal

of Guidance, Control, and Dynamics, Vol. 15, No. 2, March-April 1992, pp. 289-

296.

2. Bryson, A.E. Jr. and Ho, Y.C., Applied Optimal Control, Ginn and Co., (Waltham,

Mass., 1969).

3. Shaughnessy, J.D., Pinckney, S.Z., McMinn, J.D., Cruz, C.I., and Kelly, M.-L.,

"Hypersonic Vehicle Simulation Model: Winged-Cone Configuration", NASA TM- 102610,

November 1990.

37

4. Corban J.E., "Real-Time Guidance and Propulsion Control for Single-Stage-to-Orbit

AirbreathingVehicles", Ph.D.Dissertation,GeorgiaInstituteof Technology,Nov., 1989.

5. U.S. Standard Atmosphere, 1976, U.S. GovernmentPrinting Office, 1976.

6. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical

Recipes, The Art of Scientific Computing, Cambridge Univ. Press, (New York,

1989).

38

Table 1

NASP Center-of-Gravity Location

as a Function of Mach Number

M x/c

0.3 0.204000

0.7 0.217000

0.9 0.230000

1.5 0.243292

2.5 0.234107

4.0 0.137814

6.0 0.068927

10.0 0.040987

15.0 0.030701

20.0 0.031225

24.2 0.030864

39

0

0

0

_4
r_

40

0

0

0

0

E

_ •

m (11 _

0 • ._

,'4 m

0 _ _

I

41

I-t

rl_ c_

.I.J

c_

_ U
c_

_ aJ

_ aJ

u_
u_ ,.c=

Lr_

E_ 0

42

0

o

c_

,._ t0

c_

o rj
cJ

o

,._ ._
u

o c_

0.c
c_

.g

0

43

C'4

0

/

/

//

j ,-

0

0

!o
I

!

_0

C_

0

0

d
E

0

i
/

/

(omssa_ _.mmuXp) b

/-

I

t_

r"4

0

($S'I_B) ILl

'L:a

¢5

_d

tr_

I

_ .-.:.

H

J_
tt_

OJ

.=

0

t....4

0

I
OO

O4

u_

0

-,,N

..I2 0

0 0

44

i
I

! I

e_ t_ 0

iO

I°

!
I
I

J_

o

E

_8

I
oO

¢xl

0

0

E
°_

0

0 •

0

0

_0

_5

i

1

.¢__

-0

")
U--

L.L-

'-'t--

Z

E

.._ 0
0 .H

>

o
0

4.-I

ffl

.I,J

0

0
r_

0

13.,

0 m

_ U

46

E

..............i.................i

i

r I i :2

0 "0

E 0
O_

r_
"0 I

0 ,.._=

4.J

0

•_ 0

0
°_-,-..)
c_ 0

&
°t-I
r-_

'i-:?_,'_}'_c!__:r:'_:-''i_'_i"_ _'_C<_--.ii_':__

47

L,_-"._

I

r- • •

0
_n.

o

C1_
_d.---

©

02

E

Z

QJ

4..I

o

o

m

I
._-i

o
o

o o

u_ o
o

o

48

................. i......................_.................... i.............................. rI

©

2.u

Z

o

_g

%1

>"a

tD
z"
o "_

•,._ o

I
0" _1"

0
..

E

. 0
0 u,_

• o

r-_

49

r

P

,\

\

b

E I I k I I L

•- _ _ _" _, _, _,

(p0qst,p]D_ptm(pqos)IX

(,,q

i

E
'$:a

I I ! (-,q

i i

o

(poqs'_)_ ptm(pHos)[_

[

i

E
! i .r'n

\,i

t

\\

i \

",\

i

I

, CD

CD

i

L ; I L L

o _ o _ o _ o _ c__,
i i

\
,\

l ' C,

0

/

J

E/-

/
/

/
J

<. \

\.

"\'x.

(p0qst,p]E^pu_(pnos)I^

o,-_

o
,i.a I_

o ID

._1

,._ o

_D

o

0 ._-I

m I

_ °_-I

N _

o _

4-1 _

_ m

o _

5O

Lr_

E

.,....................... -i

...... -I ,?_j

iL

! _.-q
i

J

r*"'--.--r_ , --:_--_ i_i--_ ,_ ,, .

©

q_
':D
'L;'
0

,.,}.,.

©

,L

Z

o

c0 _,

o ,_
o

o
-,=I

_ r

o o

J=J

• I

_ ._

0_ _

_ m
,--.t I
@Cxl

_ o'3

CM

51

,2
,D
(.0

0

E

7

E
o

.i.1 ag

I
o4
cm

E

• _t ,I-I

o _J

o o,._
°_-'_ _ o

,4,4 o _

¢. _.c

,,4

d_
°_

52

I I

i : i I

0

Z

0

_J

4_

E

o

cd

,_1

: I

c_

0

• _ 4-1

-
CJ _0

0 -,_

.g

53

I F I T

r" i............ i

cD
,m

m

0 ':-

,'_-- ©

IL

Ii
II

II

li TM

li
I I!

1{:_

I ti

L,-)

_)

i)

'-I.--

,2

'2

I

r./l o_

o

I

_J
"o ,._

d

o_,,I

54

i
l

r

k
[

_81
I J

i

i

J _

/

..... 7 ¸; .

/"

..--_--"--_L----_ _ I

- [$nlSl _ I t_

i

I 'I
I

r -t_ '_
lt,_l

<.

_o

Z

o.o

4-1

r./'J
I

C"4

C_

m

o
',.I-I

o_

,._ o

,g

r._

55

i

i

i
I
I
L

i

I

'i
r

L i I -- OJO

I_t'l

L

I

L--

ml
[I

7

L L _ 0

0

\

I i i

o o

E

J_

Io
o

'o
0

E

i

O "_

_J

I 0

¢0 .IJ
09

0 t_

•_ 0

c
' 0
0

0

,---4
,._
0

56

60o

% :

soo \i

\
\

\

0 \
0 \:
0 :\

-f

_ O 0

o_o °

Jo0 -!--

0 3- /o 15 _o _f :_o

/

600 I

i

.,tO0

thO0 !........

• i

?,00 ...

i

,_00 _

/

lUO

O i i i

0 K Io I_- 2.o _ _o

Fig. 18. Altitude vs. Mach number and altitude vs. speed

contours for a 32-stage NASP ascent guidance

problem.

57

Appendix A

Two papers on parallel dynamic

quadratic programming.

A1

A Parallel Solver for Trajectory Optimization Search Directions_

M. L. PSIAKI 2 and K. PARK 3

1 This research was supported in part bv the National Aeronautics and Space Administration
under Grant No. NAG- 1-1009.

2 Assistant Professor, Mechanical and Aerospace Engineering, Cornell Universi W,
Ithaca, NY, 14853-7501.

3 Graduate Research Assistant, Mechanical and Aerospace Engineering, Comell University.,
Ithaca, NY, 14853-7501.

A2

Abstract. A key algorithmic element of a real-time trajectory optimization hardware/software

implementation is presented, the search step solver. This is one piece of an algorithm whose

overall goal is to make nonlinear trajectory optimization fast enough to provide real-time commands

during guidance of a vehicle such as an aero-maneuvering orbiter or the National Aerospace Plane.

Many methods of nonlinear programming require the solution of a quadratic program (QP) at each

iteration to determine the search step. In the trajectory, optimization case the QP has a special

dynamic programming structure, an LQR-like structure. The algorithm exploits this special

structure with a divide and conquer type of parallel implementation. A hypercube message-passing

parallel machine, the INTEL iPSC/2, has been used. The algorithm solves a (p.N)-stage problem

on N processors in O(p+log2N) operations. The algorithm yields a factor of 8 speed-up over the

fastest known serial algorithm when solving a 1024-step test problem on 32 processors.

Key Words. Trajectory optimization, parallel processing, quadratic programming, dynamic

programming, linear quadratic regulator.

A3

1. Introduction

The present work is part of an effort to do real-time optimal guidance by repeatedly solving

trajectory optimization problems on line. The form of the nonlinear problem that must get solved is

T
FT T T T T T T-I

Find: 25.= |_,x_ 1,_u1,x_.2..... u__N-l,x N,--uN] _,1a)

N

to minimize:

subject to:

J = '_ L(x_k,U_k,k) (lb)

k--O

x_0 given (1 c)

+t - [(xk,,k) for k = 0 ... N-1 (ld)

{=}a(/_,._,k) < 0 for k = 0 ... N (le)

where x k is the state vector at stage k, and u k is the control vector. The nonlinear difference

equation [Eq. (ld)] defines the system's dynamics, and Eq. (le) defines any auxiliary constraints.

Note that control vector u N is associated with the terminal stage N, which is unusual, but possible.

Also, the number of elements in the state vector and control vector may vary. from stage to stage.

The word stage is usexl to refer to a single discrete time step, not to a system staging process such

as booster separation on a launch vehicle.

Trajectory optimization is a mature discipline, and algorithms exist for solving such problems

(e.g., Refs. 1-7), but none can be used for real-time guidance. This paper is part of a research

effort aimed at developing a parallel trajectory, optimization algorithm that can qualify for real-time

use via improved speed and convergence reliability. This paper partly addresses the issue of

algorithm speed by developing a parallel implementation that reduces the time required to determine

the search direction for a single iteration of a trajectory optimization algorithm. It is applicable to

any trajectory optimization algorithm that generates search steps and that is formulated to work on a

discrete-time system.

Many search-based trajectory, optimization algorithms compute the search direction by

solving a linear-equality-constrained, quadratic-cost problem. Such algorithms use active set

strategies, which guess that all of the equality constraints and a subset of the inequality constraints

are satisfied as exact equalities. The linear equality constraints of the search-step subproblem are

A4

just the linearizations of the constraints in the active set [Eq. (ld) and a subset of the rows of Eq.

(le)]. In Newton's method, the Hamiltonian is approximated by retaining Taylor series terms out

to the quadratics; this results in a problem with a quadratic cost. Even the steepest-descent method

effectively uses a quadratic cost model: the Hamiltonian is expanded out to the linear terms, and its

Hessian is approximated by the identity matrix in the control diagonal block and zeros elsewhere.

Such problems are similar to time-varying LQR problems. The present paper concentrates on the

development of an efficient means of solving such problems on a distributed-memory message-

passing parallel processor with a hypercube connection topology.

A number of other researchers have attempted to speed up the solution of problems like Eqs.

(la)-(le) via use of parallel processors. Larson and Tse tried to speed up Bellman's state/control

discretization approach to dynamic programming (Ref. 8). Menon and Lehman proposed a method

based on integrating matrices and general parallel matrix solvers (Ref. 9). Travassos and Kaufman

proposed methods based on the TPBVP approach and a general parallel optimization package

applied to enforce satisfaction of the terminal boundary condition (Ref. 10). Chang et. al.

decompose the problem into shorter problems of several stages each (Ref. 11), first optimizing

each group separately, in parallel, then optimizing the interconnected problem in an outer

optimization loop. Betts and Huffman have calculated cost gradients and constraint Jacobians in

parallel (Ref. 12). Wright proposes calculating the gradients. Jacobians, and Hessians in parallel

and develops an algorithm to solve for the Newton step with a parallel factorization of the

linearized necessary conditions (Ref. 13).

The present algorithm is a divide-and-conquer type algorithm and is closely related to

Wright's method of factorizing the linear necessary conditions. Both methods are, essentially,

special factorizations of the Kuhn-Tucker matrix. The present method has capabilities that

Wright's method lacks: it can handle auxiliary state constraints, and it can detect and correct for an

indefinite projected Hessian. The present factorization algorithm is interpreted as a series of

parallel partial solutions of single-stage optimization problems followed by grouping of pairs of

stages into single longer stages. Thus, parallelization is accomplished on a stage-wise basis.

A5

Repeatedapplicationeventuallyreducestheproblemto a singlestage.This parallel reductionof

thenumberof problemstagesis similar to theapproachthat Changet. al. usefor thenonlinear

problem(Ref. 11), thoughtheyonly go throughonereductioncycle. Two versionsof thebasic

algorithmarepresented:the"pure"algorithm,which assumesthatthenumberof stagesequalsthe

numberof processors,anda "hybrid" algorithm for usewhenthe numberof stagesexceedsthe

numberof processors.

The next sectionof thepaperreviewsgeneralequality-constrainedQPproceduresandthe

usual backwardssweepmethod of solving suchproblemson a serial processor. Section 3

presentstheoutlineanddetailsof theparallelQPalgorithm. It alsogivesdetailsof a benchmark

serial algorithm that hasbeenused to determinethe speed-updue to parallelism. Section4

describesthe testproblemfor the algorithm and givestiming resultsfor the parallel andserial

algorithms. Section5 includesfurtherdiscussionof theparallelalgorithm. Section6 concludes

thepaper.

2. Generalized Time-Varying LQR Problem with Equality Constraints

Algorithms for solving Eqs. (la)-(le) start with a guessed solution time history x (°) and

generate a sequence of time histories x(1),.'x.(2),29(3) that converges to the optimum. In

Newton's method (with an active-set strategy for the inequalitiesi, the search direction 8:,(, is

computed at each iteration by solving a problem that looks like a time-varying discrete-time LQR

problem, with some extra elements:

f'md:

to minimize:

subject to:

T

_),_X I,_U l,_X9 _U N I'_XN'_HN]
X= [- T T T T T T T

L
N

J = {_" (_X_k,(_Uk T
•- HxukHo..]LS]

k=0

fix_o given

8x_.k+! = F k 8_xk + G k 8u_.k * z_k

(2a)

r T, r 45 _ i
+Lgxk,.@ j} (2b)

fork=0...N-I

(2c)

(2d)

A6

Ak 6x_.k + Bk6u_k + c__k = 0 for k = 0 ... N (2e)

This is a minimizationproblemwith a quadraticcost andlinearequality constraints. The

quadraticcostin Eq. (2b)comesfrom thesecondorderapproximationof theHamiltonianaboutthe

currentiterate. The Hxxk, Hxu k, and Huu k matrices correspond to the quadratic terms and the gXk

and guk vectors correspond to the linear terms. Equation (2d) is a linearization of Eq. (ld) about

the current iterate. The F k matrix is the state transition matrix, the G k matrix is the control

effectiveness matrix, and the z k vector represents the amount by which Eq. (ld) is not satisfied at

the current iterate. At each iteration, a set of inequality constraints in Eq. (le) are assumed active

and are enforced as equalities. They are linearized about the current iterate point to yield some of

the linear equality constraints in Eq. (2e). The remainder of the linearized equality constraints in

Eq. (2e) arise from the linearizations of any equality constraints in Eq. (l e). The A k and B k

matrices make up the Jacobian of the active constraints, and the c_k vector's elements represent the

amounts by which active constraints in Eq. (1 e) are not satisfied at the current iterate.

The differences between the problem of Eqs. (2a)-(2e) and a standard time-varying, discrete-

time LQR problem are the following: the presence of auxiliary constraints [Eq. (2e)], the presence

of nonhomogeneous terms in the state difference equation, _zk, and the presence of the linear cost

terms. Also, the quadratic cost matrices need not satisfy the conditions necessary, for LQR

stability. The search step calculation problems of most trajectory, optimization algorithms can be

transformed into this special form (e.g., those of Refs. 5 and 7).

2.1. Variable Reduction Method for General Equality-Constrained Quadratic

Programming. The variable reduction method uses the constraints to solve for some of the

problem variables in terms of the remaining variables (Ref. 14). If the stagewise quantities in Eqs.

(2a)-(2e) are lumped together, the following problem results:

find: _ (3a)

rv,,TH tV6x (3b)to minimize: J = __... _i'x. +

A7

subject to: A &_ + _ = 0 (3c)

The cost in Eq. (3b) includes all the terms in Eq. (2b) combined into a large Hessian matrix and

gradient vector. The constraints in Eq. t3c) correspond to all of the constraints in Eqs. (2c)-(2e)

for all of the stages (including the difference equations), which get lumped into the large A matrix

and the large _ vector.

In the variable reduction method, the A matrix in Eq. (3c) is split into [A 1, A2] such that

At is a square matrix, and all the remaining quantities except _. in Eqs. (3a)-(3c) are split in

accordance with this:

f'md: 8xi, 8x2

to minimize:, = jLS.=j

[A,,A_lLs j+ =o

(4a)

(4b)

(4c)

If A 1 is nonsingular, the variable reduction technique eliminates 8x_ 1 and the constraints

from the problem. The vector 8x 1 is replaced by its constrained value:

8xi =- AiI[A282_ + c_l (5)

Substitution of Eq. (5) into Eq. (4b) leaves a cost that depends only upon 6"_ 2, and the constraint

in Eq. (4c) is satisfied for all values of 8x 2 by virtue of Eq. (5). Therefore, unconstrained

minimization of the resulting cost function can be performed with respect to 62_.

2.2. Sequential Variable Reduction/Partial Solution to Generate the Matrix-

Riccati Equation. The time-varying matrix Riccati Equation of discrete-time LQR theory is the

result of a QP solution procedure that is akin to the variable reduction technique. An appropriate

name would be the sequential variable reduction/partial solution technique. It allows exploitation

A8

of the special structure of the cost and constraints in Eqs. (2a)-(2e). It involves repeated

applicationof atwo-stageprocess.First, it usessomeof theconstraintsto eliminatesomeof the

variables,asin thevariablereductiontechnique.Second,it optimizesanyvariablesthat become

unconstrainedafterthefirst stage.This optimization process involves writing down the gradients

of the cost with respect to the unconstrained variables and solving the resulting equations for the

unconstrained variables. These unconstrained variables are expressed in terms of the remaining

problem variables. Substitution of this expression for the unconstrained variables back into the

cost eliminates these variables.

Assuming no control variable at the terminal stage and no auxiliary equality constraints [no

Eq. (2e)] the matrix-Riccati technique performs a variable reduction by using the stage N-1

difference equation to eliminate 8x N from the problem. This results in the stage N- l/stage N cost

expression:

1 T T _- + T + T(HxxN. l FN.IHxxNFN-I)(HxuN. l FN.IHxxNGN-I)]ISXN.I]

JN-I.N = _I_XN- 1,SUN- 1__ (Hxu N I+FT N . lHxx NG N l) T (Huu N_l +G N.I HxxNT G N-l)]L_uN.I J

+[{gxs, +FT.i(gxN+HxxNZN)}T,{guN i +GN.,(gx_ Hxx,,tZN) jLSUN_lJ

1 T T
+ _7zNH×x._N + gx _N (6)

The stage N-1 control no longer appears in any of the constraints, and it only appears in the

portion of the cost expressed in Eq. (6). Therefore, 8uN.l can be optimized out of the problem.

Optimization of Eq. (6) with respect to 6uN. 1 yields:

T T
8u_1,4.1= -(HuuN.I+GT.IHxxNGN.1)-i{(HxuN.I+FxqHxxNGN.1) 8xN.l

T
+ gUN. 1 + GN.I(gxN+HxxN_)} (7)

A9

Equation (7) is then used to eliminate 5us. l from Eq./6). This results in a stage N-l/stage N cost

that depends only on 5xN. I. The resulting formula for the Hessian of that cost is just the discrete-

time matrix Riccati equation.

3. Parallel Stage-Halving Algorithm

The principle of variable reduction followed by partial optimization is also used in the parallel

factorization algorithms of this paper. The algorithms also include the auxiliary equality

constraints, Eq. (2e). Two algorithms will be described. The first, described below and in section

3.2, is for the situation where the number of processors equals the number of stages. Section 3.3

describes a hybrid between section 3.2's stage halving algorithm and a serial backwards sweep

algorithm. It is useful when the number of problem stages exceeds the number of processors.

Three main differences distinguish the stage-halving algorithm from the backwards sweeping

method. First, the auxiliary constraints are used to reduce the number of control variables, if

possible. Second, QR factorization is used, when possible, to free control variables from

dependence on difference equation constraints. This allows partial optimization of control

variables at early stages. Both of these operations can be carried out in parallel. Neither of these

operations changes the number of stages or the number of state variables at each stage, but they

both can reduce the number of controls at each stage, and the first operation can reduce the number

of auxiliary constraints at each stage.

The third main deviation from the backwards sweep algorithm is that this algorithm follows

its control vector/constraint reduction with a halving of the number of stages. This is accomplished

by a standard variable reduction. State vectors 5x_l, 5x_3, ..., 5x_s iassume N is odd) are eliminated

by substitution of state difference equations 0,2 N- 1 into the cost and the remaining auxiliary

constraints. This is done in parallel and yields a problem of the same form as Eqs. (2a)-(2e), but

with half as many stages; each stage corresponds to a doubled discrete-time interval. The sizes of

the state vectors at the remaining stages are unchanged. The number of control vectors and the

number of auxiliary constraints per stage both grow, but are bounded -- recall that the operations

AIO

just prior to stagehalving bothserveto reducethe numberof constraintsand controls. In both

cases,theboundequalstwicethedimensionof thestatevector.

The algorithmthenrepeatsits cycleof reducingthe numberof control vectorelementsand

constraintsfollowed by a halvingof the numberof stages. This goeson until only one stageis

left. Thatstageis completelysolved,andtheresult is back-substitutedinto thepreceding2-stage

problemandsoforth until theentiresolutionis generated.The timeto performtheseoperationson

N processorsgoesasn31oga(N),wheren is the(average)numberof statevectorelements.

The only messagepassingof theabove-outlinedalgorithmoccursduring thestage-halving

cycleandduring thebackwardssubstitution.Theidealarchitecturefor suchoperationsis a binary

tree. Suchatreecanbeimplementedona generichypercubearchitecture.The algorithm has been

implemented on a 32-node hypercube, the INTEL iPSC/2 at the Comell Theory. Center.

Figure 1 displays the binary tree and the initial distribution of problem stages on 16

processors (nodes of the tree) for a 16-stage problem. The arrows indicate the message passing

that occurs during the first stage-number halving. The bottom plot indicates the processor

locations of the remains of the problem stages after this halving process.

3.1. Stage-Having Algorithm on an Example Problem. In this section, a simple

4-stage QP problem is solved using the above algorithmic idea. This should help understand the

detailed algorithm that is described in the next section.

The example problem to be solved here is:

f'md: [u0,x 1,u 1,x2 ' U2,X 3]T
2

tO minimize: j = y. I __(x_ + u k)

k=0

subject to: x0 = 1

Xk+ l = X k -t- Uk

x3=4

for k = 0,1,2

(8a)

(8b)

(8c)

(8d)

(8e)

where all of the variables are scalar quantifies. Table 1 shows this problem in a stagewise manner.

All

Table 1. Stages of original example problem.

Stage Dynamic equations(D/E) Auxiliary constraints_A/C) Cost

1 2
0 x I = 1 + u0 none 7(I + u0)

1 x 2 = x 1 + u 1 none _(x 1 + u_)

1 2 U_2 x 3=x 2+u 2 none _(x. 2+)

3 none x 3 = 4 none

The first step in this example is to halve the number of stages by joining stages in pairs using

the dynamic equations, i.e., x l is eliminated from the problem using the dynamic equation for

stage 0, and x 3 is eliminated from the problem using the dynamic equation for stage 2. Table 2

shows what the problem becomes after this operation. Stage 0' in Table 2 represents the {0,1}

stage pair of the original problem and stage 1' represents the {2,3 } pair. The new variables in

Table 2 are defined as follows:

u01u_o,= ul j, x_,=x:, ut,= u: _9)

Table 2. Example problem after stage halving.

Stage D/E A/C Cost

t xl,=l+[1, 1]u o,

]. ' none

1 01none _Uo' 3 1 u-°'+{l'O]u--°'+l

I 2

x l, + u,, = 4 _(xl, + u_,)

A12

The next step is to remove u r from the problem using the auxiliary equation, x v + u r = 4,

which yields u r = 4 - x r. This expression is used to eliminate u_. from the cost at stage 1'. Table

3 shows the resulting problem.

Table 3. Example problem after elimination of auxiliary constraints.

Stage D/E A/C Cost

,T[20' x r = 1 + [1, 1] u 0, none _'-_0' 0

1' none none

o]1 u-°' + [1' O] u-°' + 1

2
xl.- 4 x 1, + 8

The next step is to QR factorize the [1, 1] matrix in the dynamic equation of stage 0'. This

right QR factorization transforms _, so that one of the transformed control vector elements does

not enter the dynamic equation.

[1, 1] Q = [,[-2, 01 whereQ=_"7 1 - ,anorthogonalmatrix. (10a)

[u 01
QI_u%. j = u_o. (10b)

where U3o,

problem.

and u40, are the elements of the transformed control vector. Table 4 shows the resulting

Table 4. Example problem after orthogonal transformation of control vector.

Stage D/E A/C Cost

, ru,o,7,___,,,,,[u:o,]0' ,:_.= 1+ 4i %. none Z[%' %'] 1 = JLU40.j+ _2 %.
2

1' none none x_, - 4 x 1. + 8

+1

AI3

The next step eliminates u%. from the problem. Since it does not enter the constraints, the

cost can be optimized with respect to u%,. By setting to zero the partial derivative of the cost with

respect to u40,, one can derive the formula

1 "_-

u%, =- _-u30.- T (11)

Equation (11) can be used to eliminate u%, from the problem. The resulting problem appears in

Table 5.

Table 5. Example problem after partial optimization of controls.

Stage D/E A/C Cost

22 ;'_- +5
0' Xr= 1 +-_ u30, none _'u30. +'7"u30' g"

1' none none x_,- 4 x 1, + 8

The next step joins stage 0' and 1', eliminating x 1. from the problem using the dynamic

equation from stage 0'. At this point, the original constrained 4-stage problem has been reduced to

the following unconstrained 1-stage problem:

8 2 5-42 + 35 (12)
find: u30. to minimize J = _- u30, - -7 u30' T

5_2

The solution is easily found, and it is u30, = I'-g- •

Back Substitution

Once U3o, is known, the optimal values of the original variables in (8a) are found by back

substitution. For example, u0 is found as follows: first, u%, is computed by Eq. (1 1), and u%,

AI4

together with U3o, yields _to' by Eq. (10b), u o is just the first entry of u_o.from Eq. (9).

- 1/8 in this case. Other variables are found in a similar way.

3.2. Details of General Algorithm.

Steps and D_tai!_ Op_n'ations for One Stage-Halving Cycle

.l.e,9.[. Completely QR factorize the B k auxiliary constraint matrix (in parallel):

It is uo =

IRlk 0] (13)Qlk BkQ2k= 0 0

where QI k and Q2 k are orthogonal and R 1k is square and upper triangular.

This effectively transforms the control coordinates and the constraint equations, splitting the

controls into those that are in the auxiliary constraints and those that are not, and splitting the

constraints into those that involve controls and those that do not. Note, the matrix on the right may

not always take the most general form shown above. The factorization effort can be reduced by

taking advantage of any rows and columns of B k that are already zero.

This factorization necessitates a reformulation of other problem matrices to account tbr the

reformulated control variables and constraints:

_Ul kt T

5u2 kJ = Q2kSUk

A2kJ = QI kAk,

Hllk Hl2k] TT = Q2kHuukQ2k,
H12 k H22 k

Cl kt

_c2kj = Q1kC-k,

[Hxlk,H,2k] = Hx,,ke2k,

[Glk 'G2k] =GkQ2k

gl kt T
g2k j = Q2kgu k

(14a)

(14b)

(14c)

AI5

The subscripts 1 and 2 on the new A matrices and c__vectors refer to the transformed constraints; the

1 subscript corresponds to constraints that depend on controls, and the 2 subscript refers to

constraints that are independent of controls. The 1 and 2 subscripts on the H and G matrices and

on the g vectors refer to the index of the transformed control vector that gets multiplied by these

matrices and vectors in the cost and in the state difference equations.

.$.lglL2.. Use the first auxiliary constraint to solve for _u I k in terms of 5x k, and

eliminate the first auxiliary, constraint and 5u lk from the problem (in

parallel):

8u-I k =- Ritk[Al k5x-k ÷ c--Ik] _15)

()I k

This takes the form of a feedback control law. This is the necessary feedback to stay on the

transformed constraint. After elimination of 5u lk and the ()1 k auxiliary constraint, the

problem takes the form

find:

to minimize:

subject to:

T T T T c T _Tc T'] T
= _U20,_Xl,_tl21,_X_ OUo ,OX_,OU-)_, i

N

k=O

_T _T _Xk

8x_o gxven

5X-k+l = _k _X--k + G2 k _U--2k + _k

A2 k 5X-k + C-2k = 0

+ constant }

for k = 0 ... N-1

for k = 0 ... N

16a)

16b)

16c)

(16d)

(16e)

AI6

which has the same form as the problem in Eqs. (2a)-(2e). The matrices and vectors with the (-)

overstrike are derived by substitution of equations (14a)-(14c) and (I 5) into problem (2a)-(2e).

They are

-
_x2 k = Hx2 k - [RllkAI k]TH12k

x k=gxk" {Hxlk[RilkAl T - _ -1 Tk] Hllk}RllkC--lk [RIkAI k] gl k

T -1
g2k = g2k " HI2kR1 kc--Ik

-1A -1
_k=Fk-GlkRlk 1k, _k=-Zk-GlkRlkC--lk

(17a)

(17b)

(17c)

(17d)

(17e)

_dL,}-. Right QR factorize G2k to eliminate extra controls from the state difference

equation (in parallel).

G2kQ3 k = [L3k, 0]

where Q3 k is orthogonal and L3k is square and lower triangular.

(18)

This step can be done only if G2k has more columns than rows. Such may not be the case

initially, but after several halvings of the number of stages, this will generally be true. Again, this

factorization necessitates a reformulation of other problem matrices to account for the reformulated

control variables:

ISU3k] T

_llakJ = Q3kSU2 k (19a)

[H33kT H34k] T H = Ig3kl T_H34k H44kj=Q3k 22kQ3k ' [Hx3k,Hx4k] _×2kegk, [.g.4kj=Q3kg2k (19b)

A17

The 3 and 4 subscripts on the H matrices and on the g vectors refer to the index of the transformed

control vector that gets multiplied by these matrices and vectors in the cost.

This step is one of the most costly parts of the whole algorithm due to the large size of the Q3

matrix -- it is usually 2n x 2n where n is the state space dimension. The operation time can be

reduced by exploiting the special structure of the G 2 matrix -- after several stage-halvings, the

rightmost part of G 2 is already lower-triangular -- and by working with individual Householder

vectors rather than explicitly forming the Q3 matrix.

_$.lgg..4. Partially optimize by computing the optimal 8_k as a function of 8U3k and

8x__(in parallel for all stages where step 3 has been camed out). Solve the

equation

I__4 kSu_ak _[HT4kSU3k T= + Hx4k_Xk + g,4k] (20)

then eliminate U_Zkfrom the cost function by substituting this solution tor it.

T and back
This equation can be solved using a Cholesky factorization of Ha..tk = P,ZkRak

substitution; R4k is upper triangular. This implies that the H4a k matrix is positive definite.

If I444 k is not positive definite, then the search-step problem [Eqs. t2a)-(2e)] is ill-defined: it has

an infinite minimum.

An important feature of this algorithm is that it can be used to detect whether or not the

projected Hessian is indefinite. This is done during the Cholesky factorization of H44 k. In the

event of an indefinite H44 k, the Cholesky factonzation procedure can be modified to determine a

diagonal modification to H44 k which ensures that the solution of the (modified) Eqs. (2a)-(2e) is a

descent direction of the original problem in Eqs. (la)-(le). Alternatively, the modified Cholesky

A18

factorizationprocedurecanbeusedto determinea direction of negativecurvature(Ref. 14,pp.

108-111),which couldbeusedasa searchdirection.

The solutionof Eq. (20) looks somewhatlike a feedbackcontrol law, in that 6u_.zkdepends

on5_, but the "controllaw" is peculiarin that61,!zk alsodependson 5u3k. Upon substitutionof

thesolutioninto thecost,theproblembecomes

T T T T T T]Tfred: _ = 5u30,Sx..... 1,5u31,5x2.....5u3S-l'SxN (21a)

tominimize:

subjectto;

N

k=0

5x_o given

5X--k+l = _k 5X--k+ L3 k 5B3 k

A2k 5x_.k + c_.2k= 0

÷ j+ constant} (21b)

(21c)

+ _2"k for k = 0 ... N-1 (21d)

for k = 0 ... N (21e)

which has the same form as the problem in Eqs. (2a)-(2e). Note that there is no longer a control at .

the terminal stage -- 5U3N is a vector of zero dimension. The matrices and vectors with the (-)

overstrike are derived by substitution of the solution of Eq. (20) and Eqs. (19a)-(19b) into problem

(16a)-(16e). They are

_IXXk = _Ixxk - [Hx4kR41k][Hx4 kR41kIT

-1 H R-t T
Hx3 k = Hx3 k - [Hx4kRZk][34 k -_k]

(22a)

(22b)

A19

H33 k (22c)

gXk = gxk

g3 k = g3 k

-1 -t T

= H33 k - [H34kR_tk][H34kR4k]

R-1 -T
- [Hx4 k 4k][R4kg4k]

-[H34kR;ik][R4Tkg4kI

(22d)

(22e)

S_!gp..._. Halve the number of stages by using the difference equations [Eq. (21d)]

for stages k = 0, 2, 4 N-1 to eliminate state vectors 8x 1, 8x 3, 8x 5.....

8xN from the cost and from the auxiliary constraints. Assume that N is odd

(N = 2M+l). This is done in parallel and includes parallel message passing

between M+ 1 pairs of processors.

This is the concluding step in the process of halving the number of problem stages. After

this step the problem is back in the form of Eqs. (2a)-(2e) only with half as many stages -- M+I

stages instead of N+ I:

find:

to minimize:

subject to:

T
"eATeAT eATeAT eAT eAT eAT-]

YO¢= OU 0,OX.... t,OU t ,Ox o_..... OU__.M. 1'Ox-.M 'Ou-.Mj

M

l O_Xk,OU__kj A T A + e.]_Xk"_Uk

k=0

+ constant} (23b)

6_o given (23c)
A A

5A--Xk+l= Fk 5_-k +GkS_ +-_k for k = 0 ... M-1 (23d)
A A

A k 8_ + B k 8_ + _k = 0 for k = 0 ... M (23e)

(23a)

where the vectors and matrices with the (^) overstrike are derived from substitution of alternate

difference equations into Eqs. (21a)-(21e):

A20
I

8U-32k7
5% = |

8-U32k+lJ

Fk = F2k+iF2k,

for k = 0 M-l, = _u32 M,&_m 8_ = 8x2k

G k = 2k+iL32k,L32k+l ,

r i - - lA A22k+lF2k ^ A22k+lZ--2k + C22k+1
Ak: , C_k=

L A22k J -C22k

E °o]^ A22k+lL32k for k = 0 M-1 B M =
Bk= 0

Hxx k = Hxx2k + F2k Hxx2k+lFzk for k = 0 M

for k = 0 M

(24a)

fork=0 M-1 (24b)

fork=0 M (24c)

"A22M+l L32M 1 (24d)
J0

(24e)

^ [- - T - L32k],

r

Hxu k = [Hx32k + F2k Hxx2k+l

^ - -T- L
Hxu M =[Hx32M +F2MHxx2M+I 32M]

I [_I332k + LT Hxx, L3_]

^ 2k .k+ 1 _k

Huu k =

T - T
I-L32kH x32k+ 1]

a T - L
Huu M = [_I332M + L32MHxx2M+l 32M]

7

- T _ix3 /[F2k 2k+l]
J

W
[L32k X32k.l]

H332k+l

for k = 0 M-1 (240

(24g)

fork=0 M-1 (24h)

(24i)

A - ~ T + - l_2k lgxk = gx2k + F2k L_X2k+l Hxx2k. for k = 0 M

guk =

m l

T °

g32k + L32k[gX2k+l + Hxx2k+l_2k]

-T ~
g32k+l + Hx32k+l_Z2k

for k = 0 M-1

A T . -

gUM = g32M + L32M[gX2M+l + HXX2M÷I_2M]

(24j)

(24k)

(24m)

A21

This step is the only step in the entire stage-number halving cycle that involves message

passing. The quantities that get computed in equations 124b)-(24m) must all reside on a single

processor at the end of this step, one processor for each index k. At the beginning of this step,

however, the information associated with index 2k resides on one processor, while the information

associated with index 2k+l resides on another processor. The binary, tree structure of Fig. 1

ensures that all such pairs of processors will have a direct connection. Thus, the M+I messages

that must get passed can get passed in parallel. Repeated application of this 5-step stage-number

halving procedure results in information fan-in on the binary tree -- information moves up the tree

in Fig. 1.

Nestin_ and Back S ubstitufion

The foregoing 5-step process can be repeated until the entire problem is solved: the halved

problem is again halved in a nested cycle. Thus, the hatted vectors and matrices at the end of a

cycle become the un-hatted vectors and matrices at the beginning of the next cycle -- note the exact

replication of the problem (2a)-(2e) form in problem t23a)-(23e). Suppose that, initially, N -- 2J-l.

That is, suppose the problem starts with 2J stages. After j times through the halving cycle, the

problem will have only one stage, stage 0. During subsequent application, the cycle will terminate

at step 4. The dimension of 5u30 will be zero, and the state, 8x_0, is known: so, 8_0 is completely

determined.

Back substitution is used to reconstruct the entire state and control time history, after the

problem halving sequence has yielded a problem with a single stage. The back substitution

process is the reverse of the problem halving process, it is a stage-number doubling process. It

involves repeated application of a two-step process.

Given a certain level of problem halving, and given the 5x_k and _U3k vectors at each stage

corresponding to that level, the first step is to determine the 8u_k vector at each stage for that level.

This can be done in parallel by successive application of Eqs. C20) [to determine 5u_.zk], (19a) [to

determine 5U2k], (15) [to determine _u_1kl, and 14a) [to determine 8u_kl. Knowledge of the 6u k

vector at each stage for the current level of halving translates into knowledge of the

A22

_U32k and _U32k+ 1 vectors at each pair of stages for the next previous level, the level with twice as

many stages [see Eq. (24a)1.

The second step is to determine the 5_xk vector at each stage for the next previous level of

halving. The state time history at the current level already contains half of the desired vectors [Eq.

(24a)]. The unknown state vectors at the alternate stages are determined in parallel from the state

difference equations at alternate stages of the previous problem level [Eq. (21d) for k = 0, 2, 4

N-l]. This can be done because each stage's _U3k vector at this previous level has already been

determined.

Message passing occurs during this back substitution procedure. The pattern of the

information flow is a fan-out along a binary, tree ttraveling downward on Fig. 1). After each 8_

has been calculated at a given level -- each stage on a different processor, it is broken into its two

components, _u32 k, _U32k+ 1, and one of the components is sent to a neighboring processor. The

other component remains on the current processor, which will handle the corresponding stage at

the next level of doubling.

3.3. Hybrid Multi-Stage-per-Processor Parallel QP Algorithm. The algorithm

in the foregoing section requires as many processors as the number of problem stages. A small

additional procedure enables the algorithm to handle problems with more stages than the given

number of processors. Two benefits come from the improvement. First, it allows solution of a

greater range of problems on a given hypercube, a 32-node hypercube in this research. Second,

for typical problems, significant problem speed-up can be achieved even with more than one

problem stage per processor. For a given number of processors, the speed-up over the best

known one-processor algorithm grows with the number of stages in the problem.

The working of the multi-stage-per-processor algorithm is slightly more complex than the

single-stage-per-processor algorithm. When a single processor has more than one stage, the

algorithm starts by working only with the last stage of this set of stages -- it must have a

contiguous set of problem stages. It starts by performing steps 1-4 of section 3.2 on this last

stage. Then it performs step 5 to join the last stage on the processor to the second-to-last stage. At

A23

theendof this cycle,eachprocessorhasonelessstage.Figure 2 showshow a 24-stageproblem

on8 processorsbecomesa 16-stageproblemon thesesame8 processors.This goeson until each

processorhasonly one stage. At this point, the algorithmcan do stagehalving in the manner

presentedin section3.2. Effectively,a backwardssweepis performedoneachprocessorbefore

thestagehalvingprocessbegins.Thus, this algorithm is termed a hybrid algorithm.

The back substitution process described in the foregoing section undergoes a similar

modification. It starts with the algorithm's original stage-doubling back substitution process. This

terminates when each processor has received a control vector and a state vector corresponding to

the first of its set of stages. A forward sweep of the state equation and the "feedback" control

equations is then pertbrmed. This sweep extends to all of the stages on the given processor.

3.4. Bench-Mark (Best Knownl Serial QP Algorithm. In order to determine the

benefits due to parallelism, a good serial algorithm is needed for comparison purposes. To make

an honest comparison, the bench-mark algorithm has to solve the same problem as the parallel

algorithm in the fastest possible serial way. The fastest known serial QP algorithms for Dynamic

Quadratic programs are those based upon the backwards sweep -- their serial execution time is

O(N), where N is the number of discrete-time problem stages. Unfortunately, the standard

backwards-sweep algorithm, the discrete-time matrix Riccati equation, does not handle auxiliary

equality constraints.

The principles in section 3.2 have been used to develop a backwards sweeping algorithm

that overcomes these difficulties. The algorithm starts with the last problem stage. It applies steps

1, 2, and 4 of section 3.2 to this stage. Step 3 need not be performed because there is no state

difference equation for propagation to a next stage. Step 5 is then performed to just the last two

stages. The result is a problem with just one tess stage. This process is repeated until the first

problem stage is reached. The resulting one-stage problem is completely solved. The entire state

and control time histories are then reconstructed using a tbrward sweep.

As a further complication, assume that derivatives are calculated in parallel as in Ref. 12.

Then this bench-mark serial algorithm must operate with gradients, Hessians, and Jacobians that

A24

aredistributedon different processors. If this serialalgorithm runson a singleprocessor,the

communicationtime to transfer thedistributed QP information onto the single processor would

greatly slow the algorithm.

A better way to use the serial algorithm is to have the backwards sweep transferred from one

processor to the next as it needs information for a different stage. For the case when there are

more stages than the number of available processors, each processor deals with a set of contiguous

stages whose gradients, Hessians, and Jacobian have been calculated on it. Figure 3 depicts this

backwards sweep as it transfers between processors that have derivative information about

different sets of problem stages. In this case, there are more problem stages than nodes. On a

given node, the serial algorithm sweeps backwards through all of the stages (arrows between

numbers). After sweeping through all of the stages on a given node, it transt'ers to the node with

the next previous stage (arrows between nodes).

4. Computational Test and Results

4.1. Aeromaneuvering Test Problem. In order to test the algorithm, a specific

nonlinear trajectory optimization problem and a linear-quadraticization of the problem about a

guessed solution are needed. An aeromaneuvering problem t¥om Miele and Lee/Re(. 15) has been

used.

The maneuver involves transfer from a geosynchronous Earth orbit (GEt) of 0 ° inclination

to a circular low Earth orbit of + 28 ° inclination (LEO) (see Fig. 4). The maneuver that Miele and

Lee call type 2 has been used: three propulsive impulses with plane changes and one atmospheric

maneuvering arc. The first impulse (point 1 in Fig. 4) is nontangential; it changes the inclination,

and it puts the spacecraft (S/C) into an elliptical transfer orbit that takes it toward the Earth. Next,

the S/C enters the upper atmosphere 4 (point 2) and performs a deceleration and further plane

change using aerodynamic drag and lift. No thrusting is used during this phase. Next, it exits the

'_ Atmospheric entry and exit are defined as occurring at an altitude of 120 km.

A25

atmosphere(point 3), simultaneouslyperformingits secondnontangentialpropulsivebum. The

maneuverendswhen the S/C reachesthecorrectLEO altitude (point 4) and performs its final

nontangendalburn to circularize the orbit and achievethecorrect final inclination. The LEO

altitudeis setat 300km.

Statepropagationhasbeenperformedin two ways.Outsideof theatmosphere,thestatehas

beenpropagatedusingKepler'slawscoupledwith thetransformationsbetweenKepler'selements

andthestatevectorelements.Insidetheatmosphere,MieleandLee'ssimplemodelsof the lift and

draghavebeenusedalongwith atablelook-upof theatmosphericdensity(Ref. 16,p.820)to get

the aerodynamicforces. The gravitational force is basedon the spherical Earth model. The

resulting systeminvolves six coupled scalarordinarydifferential equations-- threedynamics

equations and three kinematics equations. Inside the atmosphere,6th-order Runge-Kutta

numericalintegrationof theseordinary,differentialequationsfrom time tk to time tk. t effectively

definesthefunction f_k, uk,k) on the right hand side of the systems nonlinear difference equation

[Eq. (ld), the discrete-time system dynamics]. The control is held fixed at u_k during this

integration, which gives a zero-order hold. The state vector at all stages is:

[:1
x = (25)
-- r

L:J
where V is inertial speed, y is flight path angle, _ is heading angle (0 ° = east, +90 ° = north), r is

radial distance to Earth's center, _ is latitude (positive north), and e is longitude Ipositive east).

This is the same state vector as in Miele and Lee (Ref. 15), where the equations of motion are

presented.

The definitions and lengths of the control vector and constraint vector vary with different

problem discrete-time steps. The cost function also varies with time step. This is necessary for

A26

efficient modelingof theproblem. Supposetheproblemis modeledby 2J(= N+I) steps, labeled

0 N. Table 6 defines the steps, the controls, the constraints, and the cost. Note that the time

duration of step zero has been automatically adjusted to ensure that the S/C altitude is 120 km at the

end of the step. Similarly, Vc and Yc have been eliminated from step N by requiring them to yield a

circular orbit. The controls during the atmospheric portion are CL, the lift coefficient, cr the bank

angle, and x, the actual time duration of the discrete-time step. The control Av after the second

impulsive burn is the change in the mae anomaly until the third burn (the coast distance).

A27

Table 6. Activities, controls, constraints, and cost modeling at different time

steps of the aeromaneuvering example.

Step No. Portion of Flight Control vector Constraints Cost

0 First burn and coast to (Vc,'¢c,_c) 5

upper atmosphere

1 Nonthrusting atmos- (CL,O,z)

pheric flight with control-

led lift and drag.

Perigee altitude vf

transfer orbit less

than atmosphere
height.

z _>0.25 sec:

-0.9 _<CL <--0.9:

Heating rate <__

Ixl06 watts/m 2.

Magnitude

of AV

impulse 6

0

N-2

N-1 Second bum at atmos- (Vc,Yc,_c,AV)

phere exit and coast to
LEO altitude

r = atmosphere

edge
= rE + t20km;

7_> 0:

7c>0.

Magnitude

of AV

impulse

N Third burn to circular- X_c

ize and correct inclina-

tion at LEO altitude.

r = LEO ra0ius Magnitude

= rE + 300km: of AV

Inclination = 280 impulse

5 Defines the velocity, vector after the impulsive burn.

6 This definition is used by Miele and Lee and reflects fuel use. Total fuel use is a monotonic

function of the sum over all stages of the impulsive velocity changes.

A28

A guessedoptimal solution is neededin order to obtain a linear-quadraticproblemfor

solution by theparallel QPsolver. This guessed solution has been generated as follows. The

guessed solution makes a first burn to achieve the correct inclination and to reduce the perigee

altitude to 60 km. The guess then follows this transfer orbit to perigee neglecting atmospheric

effects. It lumps all of the aerodynamic forces into an assumed velocity reduction at perigee that

lowers the apogee altitude to 300 km. It then propagates this orbit to apogee where it circularizes it

with a bum. It does no burn at atmospheric exit. All but stages 0, N- 1, and N have been assumed

to occur within the atmosphere during later linear-quadmticization.

The controls for the burn/coast arcs are well defined in the first-guess procedure. The

controls for the atmospheric portions have been guessed to be CL = .05, cr = 45 °, and "_ = time to

traverse a fixed change in true anomaly along the guessed trajectory.

The guessed active constraints include those inequalities that are violated by the guessed

solution. All of the equality constraints -- both the auxiliary constraints listed in the above table

and the state difference equation equality constraints -- have been considered active. The

multipliers associated with each active constraint have been guessed to be a positive constant times

the signed constraint violation: this is akin to the penalty function approach.

The cost gradients, Hessians of the Hamiltonians, and Jacobians of the active constraints are

needed by the parallel QP solver. All of these have been generated numerically by finite

differencing. In addition, a positive multiple of the identity matrix has been added to the Hessian

before QP solution. This assures a positive definite problem for the QP procedure as would occur

if this search step procedure were part of a nonlinear programming algorithm that used the L 2 trust-

region method. The authors do not intend to use the L2-trust region method when they eventually

develop the full nonlinear optimization algorithm. Rather, the addition of a multiple of the identity

matrix to the Hessian has been done because the Hessian modification capability, to which section

3.2 alludes, has not been implemented yet.

All of the calculations that produced the necessary QP have been done off-line on a serial

processor, an IBM PC-XT. The results have been loaded onto the i.PSC/2 nodes to test the parallel

A29

QPalgorithm. Thetiming resultspresentedbelowdonot reflect thetimesfor off-line generation

andnodeloading. In thefuture,theseoperationswill alsobedonein parallelon theiPSC/2nodes,

butsuchcomplexityhasnotbeennecessary,to thetestingof theparallelQPalgorithm.

4.2. Computational Timing Results. The parallel and serial QP algorithmshavebeen

usedto solve 8, 16, 32, 64, 128,256,512 and 1024stagecasesof the aero-maneuveringtest

problem. With the parallelalgorithm,different numbersof processors(8, 16and32) havebeen

used to solve the sameproblem. The serial algorithm of section3.4 has beensweptover 8

processorsfor the8 stageproblem, 16processorsfor the 16stageproblem,and32processorsfor

all problemswith 32or morestages.Figure 5 givestiming resultsfor bothalgorithmswith the

variouscombinationsof processorsandnumbersof problemstagesmentionedabove.

For theparallelalgorithm,althoughthedifferenceis minute,the 16stageproblemis solved

fasterwith 8 processorsthanwith 16processors;the32 stageproblem is solvedfasterwith 16

processorsthanwith 32 processors.This meansthathaving2 stagesper nodeinitially andone

lessoverall stage-halvingcycle is betterthanstartingwith a singlestagepernode. Although this

improvementmightnotoccurfor differentproblems,asavingof half asmanynodesasthenumber

of stagescouldbea significanteconomyfor problemswith manystages.

Thespeed-upof theparallelalgorithmwith 32processorsover theserialalgorithmis shown

in Fig. 6. For theserialalgorithm, a problemwith twiceasmanystagestakestwice thetime(see

Fig. 5). For the parallel algorithm, asthe numberof stagesbecomeslarge, theearly work of

backwardssweepingthroughmultiple stageson a singleprocessordominatesthe computation

time; theamountof workdoublesasthenumberof stagesdoubles.Thus,thecurvein Fig. 6 will

eventuallylevelout asthenumberof problemstagesincreases.Theslopeof thecurveis already

decreasingafter256stages.Notethat thespeed-upreportedonFig. 6 would beslightly lessif the

serialalgorithmcouldwork with informationthatwasalreadyconcentratedonasingleprocessor.

Theachievedalgorithmspeed-upis significant. Figure6 showsan8-fold speedincreasefor

a 1024-stageproblemwhensolvedon 32processors.In consideringthisspeed-up,recall thatthe

parallel algorithm is beingcompared to the bestknown serial algorithm. This is the most

A30

conservativeway of determining speed-up. A less conservative measure of speed-up due to

parallelism would compare the parallel algorithm executed in parallel with itself executed serially.

In this case, the speed-up factor would be 29, a 91% efficiency, on the 1024-stage problem.

Efficiency aside, an important characteristic of this algorithm is its ability to reduce wall-

clock time for problems with a large number of stages. The lowest curve on Fig. 5 illustrates this

ability to maintain low wall-clock time by increasing the number of processors as the number of

problem stages grows.

The only other known parallel algorithm for similar problems is that developed by Wright

(Ref. 13). Wright's algorithm scales with problem size the same way that the present algorithm

scales with problem size. Wright's algorithm probably is faster than the present algorithm by a

scale factor that is independent of problem size. This is because it is a simpler algorithm: it

"divides" in the same way, but it "conquers" each sub-problem more efficiently. Wright's

algorithm is probably about 4 times faster than the present algorithm on problems that can be

solved by both algorithms. Unfortunately, Wright's algorithm cannot handle auxiliary state

constraints; therefore, it could not be used to solve this example problem to provide a comparison

between the two parallel algorithms.

5. Additional Discussion of Algorithm

5.1. Relationship of Stage-Halving to Control Concepts. The stage-halving

algorithm of section 3.2 can be further illuminated by considenng it in the control context.

Suppose that the states at certain points of time before the end time are totally prescribed. In this

case, the original optimal control problem divides neatly into independent sub-problems, which can

be solved in parallel. After these are solved, the original cost of the total problem can be

computed. This cost will depend on the values prescribed for the states at the interim points where

the states are fixed. These states can then be varied to optimize the total cost. The resulting

solution will solve the original problem. This idea, coupled with the idea of algorithm nesting,

yields the approach of section 3.2. This concept is also found in Ref. 11.

A31

5.2. Bottleneck Performance. In general, a parallel algorithm can be subject to

bottlenecks. For instance, suppose one stage has more auxiliary, constraints to factorize than does

another stage. This will delay the other stage at some point by making it wait to combine (step 5)

with a slower executing stage. One might conjecture that such effects get compounded to slow the

overall stage-halving algorithm.

This issue has been investigated. The time to execute each step of the algorithm on each

processor has been determined for example problems. These results show that delays occur, but

they do not get compounded. The total execution time of the algorithm is no slower than the sum

over all of the stage halvings of the execution time of the slowest stage at each level of stage

halving.

5.3. Compatibility with Parallel Gradient, Jacobian, and Hessian

Calculations. The algorithm of section 3 brings an additional benefit (beyond its real-time

speed-up factor) to the solution of nonlinear trajectory optimization problems. It is well suited for

use in conjunction with parallel gradient and Jacobian calculation. References 12 and 13 both point

out the possible advantage of calculating the gradients of the cost function and the Jacobians of the

constraints in parallel. This also turns out to be a stage-wise parallelization. After calculation,

these matrices and vectors get used by the current algorithm in the same distributed manner as the

manner in which they are generated -- no additional message passing is needed. This is the reason

that the bench-mark serial algorithm has been constrained to use distributed derivative information.

5.4. Numerical Stability. One point of caution concerns the numerical stability of the

algorithm. If the F k matrices for k = 0, 1, 2 N-1 are large compared to 1 (if the open-loop

system is wildly unstable), then numerical problems can occur. The algorithm includes repeated

multiplication by these matrices. Other trajectory optimization algorithms seem to suffer from this

same drawback. The authors do not know of any examples where this becomes a problem.

Alternatively, ifAlk in Eq. (15) is very, large compared to R t k' then numerical instability can

occur. This can happen when the overall nonlinear programming algorithm, of which this

A32

algorithmis apart,allowsconstraintviolationsin theform of slackvariablesthatlatergetpenalized

in thecost.

If either of these problems occur, then steps 1, 2, and 5 can be altered to yield a parallel

version of the standard null space method. Such an algorithm would be guaranteed to have

numerical stability. This alteration would result in a slower algorithm, but its execution time would

still scale as n31og2N on N processors.

6. Conclusions

An algorithm has been presented that can solve an equality-constrained time-varying discrete-

time LQR problem. It uses a hypercube message-passing parallel processor to solve the problem

in O(n310g2N) operations on N processors, where N is the number of problem stages and n is the

number of state vector elements. It can also solve problems with more stages than the number of

processors -- it solves an N stage problem on p processors in O(n3{[N/p]+log2p}) operations. It

uses a stage-wise parallelization, divide and conquer approach. It is a specialized form of a

technique known as domain decomposition. It can handle auxiliary equality constraints. Such

auxiliary constraints would arise from state or control equality or inequality constraints if the

present algorithm were used to calculate the search direction as part of an active-set nonlinear

trajectory optimization algorithm.

In order to test the algorithm, an aeromaneuvering problem has been solved. The problem,

being nonlinear, has been lineanzed about a guessed solution. A good serial algorithm that can

handle auxiliary equality constraints also has been developed for fair evaluation of the parallel

algorithm's speed. A significant speed-up of the parallel algorithm over the serial algorithm has

been achieved -- a factor of 8 for a 1024-stage problem on 32 processors. With more processors

available, a higher speed-up should be possible.

The algorithm has been developed as part of an approach to the problem of doing nonlinear

trajectory optimization on line. It reduces the wall clock time that a trajectory optimization

algorithm must spend to solve for a search direction.

A33

References

1. POLAK, E., An Historical Survey of Computation Methods in Optimal Control, SIAM

Review, Vol. 15, pp. 553-584, 1973.

2. BREAKWELL, J.V., The Optimization of Trajectories, SIAM Journal on Applied

Mathematics, Vol. 7, pp. 215-247, 1959.

3. BRYSON, A.E. and HO, Y.C., Applied Optimal Control, Hemisphere Publishing,

Washington, DC, 1975.

4. KELLEY, H.J., Method of Gradients, Optimization Techniques, Edited by G. Leitmann,

Academic Press, New York, New York, pp. 206-254, 1962.

5. MIELE, A., PRITCHARD, R.E., and DAMOULAKIS, J.N.. Sequential Gradient-

Restoration Algorithm]'or Optimal Control Problems, Journal of Optimization Theory. and

Applications, Vol. 5, pp. 235-282, 1970.

6. YAKOWITZ, S.J., The Stagewise Kuhn-Tucker Condition and Differential Dynamic

Programming, IEEE Transactions on Automatic Control, Vol. AC-31, pp. 25-30, 1986.

7. HARGRAVES, C.R., and PARIS, S.W., Direct Trajectory. Optimization Using Nonlinear

Programming and Collocation, Journal of Guidance, Control, and Dvnamics, Vol. 10, pp.

338-342, 1987.

8. LARSON, R.E., and TSE, E., Parallel Processing Algorithms for the Optimal Control of

Nonlinear Dynamic Systems, IEEE Transactions on Computers. Vol. C-22, pp. 777-786,

1973.

9. MENON, P.K.A., and LEHMAN, L.L., A Parallel Quasilinearization Algorithm for Air

Vehicle Trajectory. Optimization, Journal of Guidance, Control, and Dynamics, Vol. 9, pp.

119-121, 1986.

10. TRAVASSOS, R., and KAUFMAN, H., Parallel Algorithms 3"or Solving Nonlinear Two-

Point Boundary-Value Problems Which Arise in Optimal Control. Journal of Optimization

Theory and Applications, Vol. 30, pp. 53-71, 1980.

A34

11. CHANG, S.C., CHANG, T.S., andLUH, P.B., A Hierarchical Decomposition for Large-

scale Optimal Control Problems with Parallel Processing Structure, Automatica, Vol. 25, pp.

77-86, 1989.

12. BET'rS, J.T., and HUFFMAN, W.P., Trajectory Optimization on a Parallel Processor,

Journal of Guidance, Control, and Dynamics, Vol. 14, pp. 431-439, 1991.

13. WRIGHT, S.J., Solution of Discrete-Time Optimal Control Problems on Parallel Computers,

Report No. MCS-P89-0789, Argonne National Laboratory, Chicago, Illinois, 1989.

14. GILL, P.E., MURRAY, W., and WRIGHT, M.H., Practical Optimization, Academic Press,

New York, New York, 1981.

15. MIELE, A., and LEE, W.Y., Optimal Trajectories for Hypervelocity Flight, Proceedings of

the 1989 American Control Conference, Pittsburgh, Vol. 3, pp. 2017-2023, 1989.

16. WERTZ, J.R., Editor, Spacecraft Attitude Determination and Control, D. Reidel Publishing

Company, Boston, Massachusetts, 1978.

A35

List of Figures

Fig. 1. Mapping of trajectory optimization problem stages to processor nodes on a binary tree

message passing machine.

Fig. 2. Stage locations during part of the multi-stage-per-processor parallel QP algorithm.

Fig. 3. Stage locations and message passing during a serial backwards sweep with distributed

derivative information, a 24-stage problem on 8 processors.

Fig. 4. Orbit transfer of an aeromaneuvering spacecraft (not to scale).

Fig. 5. Time to solve the test problem on the INTEL iPSC/2 as a function of the number of

problem stages.

Fig. 6. Speed-up of the (32-processor) parallel algorithm compared to the serial algorithm as a

function of the number of problem stages.

A36

Stage Locations at Nodes

Before Stage Number Halving

0

8

4 12

6 2 14

7 5 3 1 9 11 13 15

Combined-Stage Locations at Nodes

After Stage Number Halving

6,7 2,3

0,1

I
8,9

10,11 14,15

P,,.._,,,_ P._. A37

Stage Locations at Nodes Before

Elimination of Last Stage at Each Node

0,1,2

12,13,14

18,19,20

9,10,11 3,4,5 15,16,17 21,22,23

Stage Locations at Nodes After

Elimination of Last Stage at Each Node

(Parentheses indicate two stages that

have been joined into a single stage)

0,(1,2)

12,(13,14)

6,(7,8) 18,(19,20)

9,(lO,11) 3,(4,5) 15,(16,17) 21 ,(22,23)

A38

18 _ 19_20
21 _ 22 _ 23

17 _ 16 _ 15
14 _ 13 _ 12

3 5

2_1_0
11 _t0_9

A39

LEO

GEO

4

Atmosphere

f
A40

A

u_

i
_D

Q.
t--

"0

¢o

I

l--

6

5

4

3

2

Serial

Parallel (8 nodes)

Parallel (16 nodes)

Parallel (32 nodes)

N Stages on N Nodes

(Extrapolated)

0

100 101

!

102

N+I

I

103

I

104

A41

O.

i-

el

o

I--

9

8

7

6

5

4 m

1 I I I

101 10 2 10 3 10 4

N+I

[

A42

A Parallel Orthogonai Factorization Null.Space Method

Programming 1

M. L. PSIAKI 2 and K. PARK 3

for Dynamic Quadratic

2

This research was supported in part by the National Aeronautics and Space Administration
under Grant No. NAG-I-1009.

Assistant Professor, Mechanical and Aerospace Engineering, Cornell University,
Ithaca, NY, 14853-7501.

Graduate Research Assistant, Mechanical and Aerospace Engineering, Comell University,
Ithaca, NY, 14853-7501.

A43

Abstract. An algorithmhasbeendevelopedto solvequadraticprogramsthat havea dynamic

programmingstructure. It is beingdevelopedfor useaspart of aparallel trajectoryoptimization

algorithm. The dynamic quadraticprogrammingalgorithm has beendeveloped to achieve

significantspeedwithout sacrificingnumericalstability. The algorithm makes use of the dynamic

programming problem structure and the domain decomposition approach. It parallelizes the

orthogonal factorization null-space method of quadratic programming by developing a parallel

orthogonal factorization and a parallel Cholesky factorization. Tests of the algorithm on a 32-node

INTEL iPSC/2 hypercube demonstrate speed-up factors as large as 10 in comparison to the fastest

known equivalent serial algorithm.

Key Words. Quadratic programming, dynamic programming, orthogonal factorization, parallel

algorithms, domain decomposition.

A44

1. Introduction

The objective of this paper is to develop and test a parallel algorithm for solving equality-

constrained quadratic programs that have a dynamic programming problem structure. The

algorithm must be rapid, it must have good numerical stability, and it must be able to detect an

indefinite projected Hessian. Also, the algorithm must be able to determine a feasible direction of

negative curvature when the projected Hessian is indefinite.

This algorithm has been designed to be part of a sequential quadratic programming-type

nonlinear trajectory optimization algorithm (Refs. 1 and 2). The dynamic quadratic programming

(DQP) algorithm must execute very rapidly because the parent nonlinear trajectory optimization

algorithm may be used to provide real-time guidance commands to an aerospace vehicle.

The nonlinear programming (NP) core of the parent trajectory optimization algorithm requires

the solution of an equality-constrained quadratic program (QP) each time it generates a search

direction (Ref. 2). The characteristics of the core NP algorithm dictate the required good numerical

stability of this paper's QP algorithm. A general variable reduction null-space method may lead to

extreme ill-conditioning when used in conjunction with the core NP algorithm of Ref. 2, but an

orthogonal factorization null-space method will have satisfactory numerical stability. The NP core

also dictates the required ability to detect and determine feasible directions of negative curvature

when they exist.

A general form of a dynamic quadratic program is
T

i_md: X T T T
= Ix0,xl,x2 x_l (Ia)

N

E 1 T TtO minimize: J = { _¢,_HkXk + g kXk} (lb)

k=0

subjectto: EkXk+ek+Fk+lXk+l+fk.1 = 0 fork=0...N-1 (lc)

Dk Xk + dk = 0 for k = 0 ... N (Id)

The index k refers to the stage or time-step number. There are a total of N stages. The large

solution vector, 'X., is a composition of components from each stage, Xo, xl, x2 and XN.

A45

,'hedimensionof thesolutionvectorXk at a givenstageis nk. This dimensionmay vary from

stageto stage.In anoptimalcontrolproblem,thevectorXk will beacompositeof the"state"and

"control"vectorsattime-stepk.

Thecost function J in Eq. (lb) is asummationof stage-wisecosts,eachof which includes

both linearandquadraticterms.Thecostis de-coupled:thecostat anygiven stagedependsonly

thesolutionvectorat thatstage.ThenkxnkmatrixHk is thecostHessianfor stagek andthenkxl

vectorgk is thecostgradientfor stagek whenXk = 0.

Two typesof linearconstraintsentertheproblem,constraintsthat link neighboringstages,

Eq. (lc), andconstraintsthat involve only thesolutionvector of a given stage,Eq. (ld). The

formerconstraintsusuallyarisefromdynamicmodels,andtheyprovidetheonly couplingbetween

the stages.The matricesEk and Fk+l are the Jacobian matrices of the dynamic constraints. The

Dk matrices are the Jacobians of the single-stage constraints. The fixed vectors dk, ek,

and fk+l are the nonhomogeneous constraint terms. The vectors ek and fk+l could be added to

form a single nonhomogeneous term for each dynamic constraint, but the more general form in Eq.

(lc) has been chosen to facilitate bookkeeping for the parallel domain decomposition algorithm that

is developed in this paper. The number of constraint equations may vary from stage to stage, but

the total number of constraints will normally be less than the dimension of X (the total number of

unknowns).

The cost function in Eq. (lb) can be aggregated into two large terms, one quadratic and one

linear:

IH° 1
H2

1 T I . _,

J = _-'X, I
"°

0 HN-1

HN

+ [g0T,glT,g2 T gN_lT,gN T] X (2)

where cost de-coupling is reflected in the block-diagonal sparsity structure of the Hessian.

Similarly, the constraints in Eqs. (lc) and (ld) can be formed into one large vector of equalities:

A46

I Do - I do -
Eo Ft 0 eo+fl

Dt dl

Et F2 X + el+f2 = 0 (3)

•.. j :j0 EN-1 FN eN-l+fN

_ DN - dN

The sparsity structure of this matrix is called a staircase structure for obvious reasons. Much

research has already been done on how best to exploit this structure, especially for the linear

programming case (e.g., Refs. 3 and 4).

Wright (Ref. 5) and Psiaki and Park (Ref. 6) have both developed parallel algorithms for

solving time-varying Linear Quadratic Regulator-type control problems. They are applicable to a

special form of problem (la)-(ld) where Fk = [I, 0] for k = 1..... N and where the solution

vector consists of a state and control vector, Xk = [xkT,ukT] T. When run on a distributed memory

parallel processor, these algorithms offer significant savings in wall clock time in comparison to

the fastest known serial algorithms. Wright's algorithms, although faster than the algorithm of

Psiaki and Park, have the further restriction that they cannot handle single-stage state constraints:

they are restricted to single-stage constraints of the form Dk = [0, Duk]. Also, none of Wright's

algorithms can detect an indefinite projected Hessian, and they may yield a cost ascent direction

when the Hessian is indefinite.

Unfortunately, the previously-developed algorithms are unsuitable for use with the core NP

algorithm in Ref. 2. Wright's algorithms' inability to deal with general Dk matrices and their

inability to guarantee descent make them unsuitable. Psiaki and Park's algorithm does not have

good enough numerical stability because parts of it use the variable-reduction null-space method.

Therefore, a new parallel algorithm is needed.

The parallel algorithm developed in this paper is based on the domain decomposition

approach developed by Psiaki and Park (Ref. 6). It is designed to run on a distributed-memory,

message-passing parallel computer. The new algorithm is very similar in spirit to the algorithm of

A47

Ref. 6. The main difference is in the exclusive use of the orthogonal factorization version of the

null-space method. This provides the requisite numerical stability, but makes the algorithm use

more memory. Additionally, this paper defines a method of determining directions of negative

curvature when the projected Hessian is indefinite.

The remainder of this paper is divided into two sections plus conclusions. Section 2

develops the new DQP algorithm. It starts by developing an algorithm for the case where the

number of processors equals the number of stages, N. Later, it generalizes to the case of fewer

processors than problem stages. Section 3 presents a test problem and computational timing

results using an INTEL iPSC/2 32-node hypercube. These results demonstrate the scaling of the

wall clock execution time with the problem size.

2. Algorithm Design

2.1 Review of Orthogonal Factorization Null-Space Method. The algorithm to

solve problem (la)-(ld) is a special parallel form of the orthogonal factorization null-space method

described in Ref. 7. When solving dense problems on a serial processor, this method begins by

performing a right (or LQ) orthogonal factorization of the large constraint matrix in Eq. (3):

- Do 1
E0 F1 0

D1

E1 F2 O = [L,0] (4)

0 EN-1 FN

DN_

where Q is an orthogonal matrix and L, is a square lower-triangular matrix. This is done using

Householder transformations, and the form in Eq. (4) can always be achieved when the dimension

of X exceeds the number of problem constraints. The O matrix transforms X into two

components:

A48

whereZ2 is in thenull spaceof theconstraints.

After transformation,theoriginalproblemtakestheform

find:

to minimize:

subjectto:

Zl andZ2

J
[_,;r _22 z2 z2

- do 1eo+f_

dl

Lzl + I=0

eN-1+fN_
- dN

(6a)

(6b)

(6c)

where the transformed Hessian and gradient are

I H°H 0
: 0

},t2T]'[,22 J 0 HN-1

-g°1gt

gN-l[

- gN..a

Q

HN-

(Ta)

(7b)

If the constraints are non-degenerate, then the transformed problem in Eqs (6a)-(6c) is easy

to solve. L is nonsingular in this case, and Zl is determined uniquely by the constraints:

- d0 -

eo+fl

dl

Zl = -L "1

eN-l+fN
dN -

(8)

A49

The null-spacecoordinateZ2, whichdoesnot entertheconstraints,canbeoptimizedby setting

3J/_'2,2= 0. Solutionof thisexpressionfor Z2 yields

Z2 = -_'_22 "l [_'1_!2 T Zl +92] (9)

where _2 must be positive definite for the original problem to have a unique local minimum. In

this case, _22 "l call be computed using the Cholesky factorization of _1"_22. The final problem

solution X can be computed from Zl and _'-2 by inverting the orthogonal transformation in Eq.

(5).

The technique justdescribed does not account for the sparsityor specialstructureof the

problem matricesin Eqs. (2)and (3).A straight-forwardapplicationof thistechniqueislikelyto

resultinthe generationof dense matricesQ, L,,3"I11,_I'112,and _'I;22.This would lead toO(N 2)

storage requirements, and the orthogonal and Cholesky factorizationswould require O(N 3)

operations.As N, the number of problem stages,becomes large,a standard techniquebecomes

inefficientor even infeasible.

2.2 Overview of New Algorithm. The technique of this paper uses the domain

decomposition principletodevelop a sparse,parallelorthogonalfactorizationtechniqueforsolving

problem (la)-(ld). It's memory requirements and operation count are both O(N) for an N-stage

problem. When run on p (<N) processors with distributed memory and message passing

capabilities, the wall clock time to execute the algorithm is O[(N/p) + log2(p)].

The general idea of the algorithm is to perform the steps of the standard LQ null-space

method in a piecemeal, stage-wise manner, where possible, to avoid creating fill in the resulting

matrix factors. Different processors deal with different stages at the same time. First, it LQ

factorizes all of the single-stage constraints, Eq (ld) for k = 0 N. This can be done in parallel

and results in a transformation of the x k at each stage. Part of the transformed x k is completely

determined by the constraints, and the single-stage constraints along with some of the unknowns

are eliminated from the problem. At this point the only remaining constraints are those that link

neighboring stages. These can be LQ factorized at each stage to further transform the remaining

unknowns. Some of the transformed unknowns do not enter any constraints. All of the preceding

A50

operationscanbedonewithoutdisturbingtheblock-diagonalstructureof the large Hessian matrix

in Eq. (2).

The next operation optimizes the unconstrained variables. The partial derivatives of the cost

with respect to these variables are taken. These partial derivatives are set equal to zero, and the

resulting equations are solved for the unconstrained variables in terms of the remaining constrained

variables. This solution is substituted back into the cost expression to eliminate the unconstrained

variables from the problem. This can be done at each stage in parallel. At the end of this operation

the dynamic QP has been transformed into one that has the same number of stages as the original

QP, but it has no single-stage constraints, and it has fewer unknowns at each stage.

One final operation is performed; then, the above steps are repeated. The final operation is to

reduce the number of stages by a factor of 2 by combining adjacent stages into a single larger

stage. This operation increases the number of variables per stage and makes some of the remaining

constraints into single-stage constraints. Message passing must occur between pairs of processors

at this point. The resulting problem is in the form of Eqs. (la)-(ld), and the algorithm can be re-

applied in a nested fashion. The resulting flow of data between processors in the nested

application of the algorithm is a fan-in along a binary tree, with a processor at each node (Ref. 6).

As in Ref. 6, the problem eventually boils down to a single-stage problem, which gets

completely solved. The solution of the single-stage problem then gets back-substituted into a

double stage problem and so on in a stage-doubling operation. This back substitution process

completes the determination of the variables that have been eliminated during parallel, stage-wise

partial optimization. This process includes message passing in a fan-out along a binary, tree of

processors.

2.3 Algorithm for Solving N-Stage Problem on N Processors. The following

algorithm solves problem (la)-(ld), and it also determines the Lagrange multipliers for the

constraints in Eqs. (lc) and (ld). The algorithm assumes that the constraints are not degenerate

and that the projected Hessian is positive definite. Section 2.4 describes modifications that allow

A51

determinationof feasible directions of negative curvature when the projected Hessian is indefinite.

The necessary modifications to handle degenerate constraints are discussed in Section 2.5,

Steos and Detailc, d Ot_erarions for One Stage Halving

_dllL!..LQ factorizetheDk constraintmatrices(inparallel):

Dk Q1k = [Llk 0] for k = 0.....N

where Q lk is orthogonal and L Ik is sqtlare,lower

nonsingular.

(10)

triangular, and

This effectively transforms the Xk vectors, splitting them into components that are in the

single-stage constraints, call these xl k, and components that are not, call these X2k:

Xlk] _ QT k Xk for k = 0.....N (II)
X2kJ

This factorizationnecessitatesa transformationof otherproblem matrices and vectorsconsistent

with thestage-wisevariabletransformations:

[F1 k F2k] = FkQ1 k for k = l N (12a)

[Elk E2k] - EkQlk for k = 0 N-1 (12b)

IHllk Hl2k T Igakl
1-Q,,nkQlk, -OTkg k for k : 0 N (12c)

HIIk H22k] [.g2kj

The 1 and 2 subscriptson the F, E, and H matricesand on the g vectorsreferto the index of the

transformed x vector thatgets multipliedby these matrices and vectorsin the costand in the

constraintequations. In largesparsc matrix form, the transformed constraintJacobian matrix

becomes

A52

Llo 0
Elo E2o Fll F21

L11 0

Etl E2_ F12 F22

0

E1N.I E2N.X FIN

L1N

which still has staircase structure. The transformed Hessian becomes

I Hll0 HI2O 0 1

Hl_o H22o Hilt H121

HIT1 H221 • I

".

0 H1TN H22N

which still has the block-diagonal structure.

F2N

0
J

(13)

(14)

dL.. Use the single-stage constraints to solve for the constrained X lk and

eliminate the single-stage constraints and the Xlk from the problem (in

parallel):

Xlk =" L[lkdk for k = 0 N (15)

After elimination of the x_ k and the single-stage constraints, the problem takes the form

(16a)
find: x2 o, x21 , x22 x2 s

N

E l xTkH + _TkX2k } (16b)to minimize: J = { _ 22kX2 k
k=0

subject to: E2k X2k + ek + F2k+l X2k÷l + fk÷l = 0 for k = 0 ... N-1 (16c)

which is similar in form to the problem in Eqs. (la)-(ld) only without any single-stage constraints.

The new problem is derived by substitution of Eqs. (10), (1 I), (12a)-(12c), and (15) into problem

(la)-(ld). The vectors with the (-) overstrike are

g2k = g2k Hl_kLlk dk for k = 0,...,N (17a)

A53

-I fk+l = fk+l" Flk+iLlk+Idk+lek = ek -ElkLlkdk, -I for k = 0.....N-I (17b)

Step 2 eliminates all of the rows and columns that contain an Ll k matrix from the constraints

in Eq. (13). Also, it eliminates all of the rows and columns that contain an Htlk matrix from the

Hessian in Eq. (14). In large sparse matrix form, the new constraint Jacobian and Hessian for the

problem in Fa s. (16a)-(16c) are, respectively,

F22 0 1

0 E2N.I F2N

(18a)

(18b)

F2k] to eliminate variables from the remaining by_,1_-. LQ factorize E2 k
constraints

forming zero columns in the transformed Jacobian matrix:

E2oQ2o = [L40 0]

[F2kl,_ [L3k 00]E2kJ %_2k= E3k L4k 0
for k = 1..... N-1

(19a)

(19b)

F2NQ2N = [L3N 0] (19c)

where the Q2k are orthogonal and the L3k and L4k are square and lower

triangular (in parallel).

This step can be done only if the matrix to be factorized has more columns than rows. For

general dynamic QPs this may not be true initially, but this factorization will become possible after

several halvings of the number of stages.

Step 3 effectively transforms each X2k vector and splits it into three components. One

component enters two constraints, the constraint that couples the current stage (k) to the preceding

A54

stage(k-l) andtheconstraintthatcouplesthecurrentstage(k) to thefollowing stage(k+l); call

thiscomponentx3k. It is a"state'-typecomponentin theterminologyof controltheory. Another

componententersonly theconstraintthatcouplesthecurrentstage(k) to thefollowing stage(k+l);

call this component x4k. It is a "control"-type component. The third component, xsk, enters

none of the constraints. One might call it an "ineffective control". The transformations are

x'°l =Q o" o
XS0.]

X4 k[T X

I
xskj

XSNJ

(20a)

for k = 1..... N-1 (20b)

(20c)

Again, this step necessitates a transformation of other problem matrices and vectors to account for

the transformed x variables:

[..o .,,o]__ ig,01_H4_o HssoJ- QzT°H2:°Q2°' Lgsoj

IH33k a34k H35k rg3k-]H31kH,,kH,sk] T |g4,|- Q:tH22kQ2k,

H3Tk H4Tk Hssk _l LgSk_l

H3TN HssNJ g5

(21a)

-QTkg2k for k = 1..... N-I (21b)

(21c)

The 3, 4, and 5 subscripts on the H matrices and on the g vectors refer to the index of the

transformed x vector that gets multiplied by these matrices and vectors in the cost. After the step-3

orthogonal transformations, the large sparse form of the Jacobian becomes more sparse, but it

retains its staircase form:

A55

I
L

L40 0 L3I 0 0

E31 L41 0

0

L32 0

E32 L42

0

0

L3N.1

E3N.I

0

0 0

L4N.1 0

and the transformed Hessian retains its block-diagonal form

H440 H450

H4:0 H550
H331 H341 H35t

H3:I H441 H451

H3_'I H4_"I H551

H33N.I H34N.I H35N_l
T

H34N.1 H44N.l H45N_l

T T
H35N.1 H45N.1 H55N.1

I
L3N 0

H33N H35 N

H3: N H55N _

(22)

(23)

d.. Partially optimize by computing the optimal xsk as a function of X3k and

")g,4k (in parallel for all stages where step 3 has been carried out). Solve the

equation

= TH55kX5k "[n3:kX3k + H45kX4k + g5k] (24)

then eliminate XSk from the cost function by substituting this solution for it.

This equation can be solved using a Cholesky factorization, H55k = L 5 kLsTk , and back

substitution; LSk is square and lower triangular. The H55k matrix constitutes a block on the

diagonal of the projection of the Hessian of the original problem onto the null space of the

constraints. It must be positive definite for the original QP to have a finite, unique solution. Given

the assumption of a positive definite projected Hessian for the overall problem, the Cholesky factor

Lsk exists and is nonsingular, and Eq. (24) has a unique solution• (Section 2.4 explains useful

A56

calculations that can be performed in the case of an indefinite or semi-definite H55k.) Upon

substitution of the solution x5 k into the cost, the problem becomes

X40 , X31 , X41, X32, X42 X4N.I, and x3 N (25a)find:

to minimize:

subject to:

N-1

E'
k=l

I x3 kl+

X4k.J

1 Y "

+ _'x3NH33NX3N + gTNx3 N

L40x40+eo+L3_x31 +fl = 0

E3 k x3 k + L4k X4k + _t + L3k+ 1 X3k+ 1 + fk+l =0

LX%j

(25b)

(25c)

fork= 1 ... N-1

(25d)

This problem is derived by first applying the transformations in Eqs. (19a) through (21c) to the

problem in Eqs. (16a)-(16c) followed by substitution of the solution of Eq. (24) into the resulting

QP. The resulting matrices and vectors with the (-) overstrike are

_ -T -1 TISI33k = H33k H35kLSkLSkH35k for k = 1..... N (26a)

_ -T -1I_I34k = H34 k H35kLSkLSkH4_'k for k = 1..... N-I (26b)

_ -T -1 TI2144k = Hn4k H45kLSkLSkH45k for k = 0 N-I (26c)

- -Y -1 for k = l N (26d)g3k = g3k " H35kLSkLSkgSk

- -T -1 for k = 0 N-1 (26e)g4k = gnk " H45kLSkL5kgSk

Step 4 eliminates from the constraint Jacobian in Eq. (22) all those columns that contain only

zeros. Also, it eliminates all of the corresponding rows and columns from the Hessian matrix in

Eq. (23), which are the rows and columns that contain an H55k matrix. Additionally, the

remaining nonzero blocks of the large sparse Hessian get modified. The new large sparse forms of

the constraint Jacobian and cost Hessian for the problem in Eqs. (25a)-(25d) are, respectively,

A57

- L40 L31

E31 L4 t L32 0

E32 L42

0

°.

L3N.1

E3N.1 L4N.1 L3N-

1_I440 0

I_1331 IS1341

I:I34TtI 441
°°.

I'[33 N.I I_34N.1

" T i.._44H34N-1 N-1

ISI33N _

(27a)

(27b)

The Jacobian is still a staircase matrix, and the Hessian is still a block diagonal matrix. Steps

1 through 4 do not involve any calculations which require data to be passed between stages, nor do

they create any new coupling in the problem matrices.

.S.Lgg._. Halve the number of stages by joining each even-numbered stage, stages

0,2,4 N-l, to the odd numbered stage that follows it. Assume that N is

odd (N = 2M+l). This is done in parallel and includes parallel message

passing between M+ 1 pairs of processors.

This aggregation of adjoining stages amounts to a re-definition of the boundaries between

stages in the large sparse problem matrices. Stages 2k and 2k+l get joined together into a

"hyperstage". The dashed vertical lines in the following large sparse Jacobian show how step 5

super-imposes on the Jacobian of Eq. (27a) boundaries between a new "hyperstage" and its

neighboring "hyperstages".

A58

I L40 L3 ! } t

f

E31 [t

". I I
• I

L42k.llt L32k Ii

i E32k L42k L32k+1 I

I E32k+t L42k+l I,L3

t ¢

2k+2

0 1

L3N_1

E3N.I L4N.1 L3N_

(28)

Similar boundaries between new "hyperstages" can be drawn to split up the Hessian matrix of Eq.

(27b):

I I:I44° ,[1')"" i i 0
I

121442k. 1 I

I I_1332k IS1342k I
I I

Ht42kH 42k I
I " iS1342k+1 II 1t332k+1
I I

- T 1S1442k+i II H342k+l
t

"I

t] H332k+2

0 v T ..

I I
I ISI33 N _

(29)

Step 5 is the concluding step in the process of halving the number of problem stages. After

this step the problem is back in the form of Eqs. (la)-(ld) onlv with half as many stages, M+I

stages instead of N+ 1"

A A A A

find: Xo, x t, x2 and X M (30a)
M

1 A"rA A A Ato minimize: J= {_XdHkXk + gTxk} (30b)

k=0

A59

A A A A A A

subjectto: SkXk + ek + Fk+l Xk+l +fk+t = 0 fork =0 ... M-1 (30c)

A A A
Dk Xk + dk = 0 for k = 0 ... M (30d)

The vectors and matrices with the (^) overstrike are derived by grouping of neighboring pairs of

stages:

,o-/x31, _,k- X3_2k_li for k=l,...,M-1,
L'x'41_1 _X42k.l

A

Fk-[L32k, 0, 0, 0] fork= 1..... M-l,
A A

Do-=[L,o,L_,,01, O_-[E_, L,_, L3_+_,o]
A

DM _- [E32M, L42M' L32M+l]
A A

Eo-[o,E_,,L,,], E_-[0,0,Z_.,, L,_+_]
A _ ^

dk-- e2k +f2k+1 for k = 0.....M, ek - e2k+1

^

Hk =

A

fk _f2k fork=lM

oi
-- I[1332k I_342k 0 0

l_T42k I_442k

0 0

_ 0 0

A r I_332M I_I342M

HM _ H3_TM I[1442M0

0 0

I'[I 3 3 2k+ 1 1[1342k+1

- T 1_1442k+ 1H342k+l

I,,ol r
I _42k

-- _32k+1

A I X32M 1

_'M --/ X42M /

LX32M+l..I

(31a)

FM-[L32M, 0, 0] (31b)

for k = 1..... M-l,

for k = 1..... M-1

fork=0 M-l,

for k = 1 M-l,

(31c)

(31d)

(31e)

(31f)

for k = t M-1 (31g)

[_g3 2M+l-[

(31h)

(31i)

A60

As in the algorithmof Ref. 6, this stepis theonly step in theentire stage-numberhalving

processthatinvolvesmessagepassing.Thequantitiesthat getcomputedin Eqs.(3lb)-(3 li) must

all resideon a singleprocessorat the endof this step,one processorfor eachindex k. At the

beginningof thisstep,however,theinformationon theright-handsideof theequationsassociated

with index 2kresidesononeprocessor,while theinformationassociatedwith index2k+1resides

onanotherprocessor.A binarytreestructureof inter-processorconnectionsensuresthat all such

pairsof processorswill haveadirectconnection,andtheM+I messagescangetpassedin parallel

(Ref. 6). A binarytreecanbeimbeddedin anyhypercubeprocessor.

Nesting. The foregoing 5-step process can be repeated until the entire problem is solved: the

halved problem is again halved in a nested cycle. Thus, the hatted vectors and matrices at the end

of a cycle become the un-hatted vectors and matrices at the beginning of the next cycle -- note the

exact replication of the problem (la)-(ld) form in problem (30a)-(30d). Suppose that, initially, N

= 2LI. That is, suppose the problem starts with 2J stages. After j times through the halving cycle,

the problem will have only one stage, stage 0. Data will have fanned in to a single processor along

a binary tree with j levels of branches (Ref. 6).

The final single-stage problem can be solved by a similar technique. Steps 1, 2, and 4 of the

above cycle can be applied. There is no need for step 3 because there cannot be any multi-stage

constraints. The vectors x20 and xs0 are equivalent, and the vectors x30 and X4o have zero

dimension. The vector x50 can be determined from Eq. (24), and the vector xl0 can be

determined from Eq. (15). Finally, the vector Xo can be determined from Eq. (11).

After the first stage-halving cycle, further computational efficiency can be realized if attention
A A

is paid to the structure of Fk in Eq. (31b) and of Dk in Eq. (31c). They both contain zeros, and

these zeros can translate into savings during the LQ factorizations of steps 1 and 3 in the above

cycle. The timing results reported in Section 3 are for an algorithm that includes this time-saving

feature.

Ba_:k Substitution and Stage Doubling. Back substitution is used to reconstruct the entire

solution history after the nested problem-halving sequence has yielded a problem with a single

A61

stageand after that single-stageproblemhasbeensolved. The backsubstitutionprocessis the

reverseof theproblem-halvingprocess,it is a stage-numberdoubling process.Given a certain

levelof problemhalving,andgiventhex3k and x4k time histories corresponding to that level, the

first step is to determine the Xk time history for that level -- recall that Xk denotes the solution at

stage k prior to the two orthogonal transformations and partitionings that occur in steps 1 and 3.

The vector Xk can be determined in parallel by successive application of Eq. (24) [to determine

xsk], Eq. (20) [to determine x2k], and Eq. (11) [to determine Xk --Xlk has already been

determined during the stage-halving process via Eq. (15)]. Knowledge of the x k time history for

the current level of problem halving translates into knowledge of the

X32k, X42k, X32k+l, and X42k+l time histories for the next previous level -- the level with twice

as many stages -- [see Eq. (31a)]. The stage-doubling algorithm can then repeat itself.

Message passing occurs during this back substitution procedure. The pattern of the

information flow is a fan-out along a binary tree. After each Xk has been calculated at a given level

-- each stage on a different processor, it is broken into it two pairs, (x32_,,x42k) and

(_,32k+l,X4_:.l). One of the pairs is sent to a neighboring processor. The other pair remains on

the current processor, which will perform computations for the corresponding stage at the next

level of doubling.

Multiplier Ggmputation. One often needs to determine Lagrange multipliers for the original

problem constraints in Eqs. (lc) and (ld). The nonlinear programming algorithm of Ref. 2

sometimes requires these multipliers. Alternatively, an active-set algorithm for solving inequality-

constrained QPs needs to determine multipliers in order to decide which constraints to drop from

the active set.

The multipliers can be calculated during the same stage-doubling process that calculates the

Xk vectors. Suppose that the multiplier vectors associated with Eq. (lc) are _ for k = 0 N-I

and that the multipliers associated with Eq. (ld) are l_ for k = 0 N. Given all of the _ vectors

at a given level of stage doubling, the following process determines the 1_ vectors. First, adjoin

the constraints to the cost in Eqs. (la)-(ld) using the _ and _u_ multipliers. Second, perform the

A62

Qtk transformationsdefined in Eqs.(11)-(12c). Third, setthepartial derivativewith respectto

Xlk of theresultingexpressionequalto zero. Last,solve theresultantequationfor _.kby back

substitutionwith theL_ matrix.

Knowledge of the c_ and 1_ time histories at a given level of stage doubling translates into

knowledge of the _k time history at the next higher level of stage doubling. Thus, the process can

be repeated. The single-stage problem that terminates the stage-halving process has no constraints

like Eq. (ld); therefore, it has no _ vector that needs to be known ahead of time. This fact

allows the multiplier computation algorithm to initialize at the beginning of the stage-doubling

process.

2.4

Hessian.

Procedures for an Indefinite or Positive Semi-Definite Projected

Section 2.3's equality-constrained QP solution procedure breaks down when the

projected Hessian is indefinite or positive semi-definite. Step 4 fails for some stage number and

level of problem halving. This situation is signaled by a break-down in the Cholesky factorization

process. Either a negative square root or a divide-by-zero occurs, and the real Cholesky factor LSk

cannot be computed. In the indefinite case, the equality-constrained QP cost function has an

infinite minimum at infinity. In the positive semi-definite case, the QP has a non-unique minimum.

Two useful pieces of information can be derived in the indefinite and semi-definite cases if

this algorithm is used as part of an SQP-type NP algorithm or as part of an active-set inequality-

constrained QP algorithm. First, the parent algorithm usually will want to know whether the

equality-constrained QP's projected Hessian is positive definite, positive semi-definite, or

indefinite 4. Second, the parent algorithm may want to know a feasible direction of negative (zero)

curvature in the indefinite (positive semi-definite) case.

The method of determining these things is based on the modified Cholesky factorization

process presented on pp. 108-110 of Ref. 7. When Cholesky factorizing a matrix that is not

sufficiently positive definite, this procedure adds positive values to some of the matrix's diagonal

4 Negative definite and negative semi-definite are considered to be synonymous with indefinite for
purposes of this paper.

A63

elementsduring factorization. This modificationensuresthat the matrix is sufficiently positive

definite. For stage i, whose matrix H55i is not sufficiently positive definite, the modified process

would compute Cholesky factors of H55i + El:

LsiL_'i = H55i + _--,i (32)

where 15i is a positive semi-definite diagonal matrix that gets generated during the modified

Cholesky factorization process. Nonzero diagonal elements of Ei get generated if a diagonal

element of Lsi would otherwise be imaginary, zero, or too small or if any off-diagonal elements of

Lsi would be too large. All of these situations correspond to an H55i matrix that is either

indefinite, positive semi-definite, or positive definite but poorly conditioned. The latter two cases

are effectively equivalent.

The stage-halving and stage-doubling processes of Section 2.3 can still be carried to

completion by using the modified Lsi Cholesky factor where necessary in Eqs. (26a)-(26e) and by

replacing H55i in the corresponding Eq. (24) with Hssi+_i • If the constraints are homogeneous,

then this technique is guaranteed to produce a feasible descent direction for the original problem.

If the _i matrix has any nonzero elements, then some of these elements correspond to

directions of zero or negative curvature. When the modified Cholesky factorization process

produces a nonzero diagonal element of Ei to avert an imaginary, diagonal element of L5i, this

corresponds to a direction of negative curvature. A nonzero diagonal element of Ei that has been

produced to avert a zero (or small) diagonal element of Lsi corresponds to a direction of zero (or

low) curvature. If, on the other hand, a nonzero diagonal element of Ei gets produced to keep the

off-diagonal terms of Lsi from becoming too large, then another nonzero diagonal element of of

_i will get produced later in the process. This latter element will correspond to a direction of

negative or zero curvature.

The modified Cholesky factor Lsi can be used to compute an actual direction of negative,

zero, or low curvature. Suppose that the jth diagonal element of Ei is nonzero and that this

element was produced to avoid an imaginary diagonal element of Lsi. The calculation of a

negative curvature direction begins with solution of the equation

A64

L_"i pj = _j (33)

for pj, where ej is a unit vector with a 1 in the jth row and zeros elsewhere. By referring to Ref.

7, it is easy to prove that pjTH55ipj/pjTpj < 0. The vector Pi is a direction of negative curvature

for the xsi vector. Similarly, if the jth diagonal element of Ei had been produced to avoid a small

or zero diagonal element of L5 i, then piTH55 ipj/pjTpj would be small or zero.

Additional calculations are needed in order to determine the corresponding direction of

negative curvature for the original problem in Eqs. (la)-(ld). These calculations axe similar to the

stage-doubling back substitution process defined in the Section 2.3. The process starts by setting

xsi = Pj and Xsk = 0 for all k _ i at the current level of stage halving. It also sets all of the Xlk,

X3k, and x4k vectors to zero at this level of stage halving. The feasible direction of negative

curvature is calculated under the assumption that all of the constraints are homogeneous (i.e., dk =

ek '" fk = 0 for all k); it is a feasible direction in the null space of the constraints.

Next, the process determines the negative-curvature Xk time history for the current level of

"-- problem halving. This time history can be determined in parallel by application of Eq. (20) [to

determine the x2k] followed by application of Eq. (11) [to determine the xk]. Knowledge of the

x k time history for the current level translates into knowledge of the X32k, 'X, 42k,

x32k+t, and X42k÷l time histories for the next previous level, and the stage-doubling back-

substitution algorithm of Section 2.3 can be applied. During the ensuing stage-doubling cycles,

the homogeneous constraints assumption is maintained, i.e. xt k = dk = 0.

When the projected Hessian matrix of the original problem in Eqs. (la)-(ld) is sufficiently

positive definite, then all of the Ek will be identically zero for all of the levels of stage halving. If

any of the Ek matrices have a nonzero diagonal element, then the projected Hessian is either

indefinite, positive semi-definite, or positive definite but almost positive semi-definite. In the latter

case, the projected Hessian is treated as being positive semi-definite to within the precision of the

calculation.

The indefinite case can be distinguished from the positive semi-definite case. If not one of

the nonzero elements of the Ek matrices was needed to avert an imaginary element of the

A65

correspondingLsk matrix, then theprojectedHessianof theentire original problemis positive

semi-definite.Otherwise,it is indefinite.

In theindefinite case,severaldirectionsof negativecurvaturemaybecalculablebytheEq.-

(33) technique. Thesemay correspondto different stagesand to different levels of problem

halving. A parent algorithm that usesthis QP algorithm may want to calculateall of these

directionsin orderto dosomethinglike pick theonewith themostnegativecurvatureasa search

direction. Note that noneof thesedirectionsis guaranteedto be the directionof mostnegative

curvaturefor theprojectedHessian.This shouldnot bea problemfor mostparentalgorithms,so

longasatleastonedirectionof negativecurvaturecanbecalculated.

The use of a parallel algorithm can compromisenumerical stability when calculating

directionsof negativecurvature.ThemodifiedCholeskyalgorithmof Ref.7 enforcesamaximum

limit on off-diagonalelementsof theCholeskyfactors. This maximumlimits thesizeof theEk

matrices and ensures numerical stability when the Hessian is indefinite.

The parallel algorithm uses the modified Cholesky procedure to ensure that the off-diagonal

elements of all of the Lsk matrices remain small, but elements of mamces such as L_IH3_k and

L_IH4_k, which are used in Eqs. (26a)-(26e), can grow without bound. Numerical experiments

indicate that this growth causes no problem when the original problem's projected Hessian is

positive definite, but it can lead to round-off error problems in the indefinite case. The ultimate

result of this instability is that calculated directions of negative curvature may not have as much

negative curvature as they would have had if growth in matrices such as L5kH35 k and

could have been limited in a sensible way. Unfortunately, there seems to be no obvious way to

limit this growth without incurring adverse side effects in the positive-definite case.

2.5 Modifications to Deal with Degenerate Constraints. If the constraints in Eqs.

(lc) and (ld) are degenerate, then the algorithm of Section 2.3 breaks down at step 2 for some

level of stage halving. One of the Llk matrices will be singular.

When the constraints are degenerate, they may or may not admit a feasible solution. If they

do not admit a feasible solution, then a sensible approach is to find the optimal Xk time history that

A66

also minimizes the mean square error in Eqs. (lc) and (ld). Whether or not the residual mean

square error is zero, the approach to solving this modified problem is the same. It is a variation to

the method in Section 2.3. The algorithm must be modified at steps 1 and 2 in order to handle

degenerate constraints.

In the modified step 1, the LQ factorization of the single-stage constraint Jacobian gets

replaced by a complete LQ factorization; equation (10) gets replaced by

Q3k Dk Qlk = 0 for k = 0....,N (34)

where Q1k and Q3k are orthogonal and Llk issquare,lower triangular,and nonsingular. Any

matrix Dk can always be factoredin thismanner. The new orthogonalmatrix Q3 k transformsthe

single-stage constraints, splitting them into two types:

0 0 LX2kj Ld2kd
fork=0 N (35)

where Xlk and X2k have been defined in Eq. (11). The first row of the transformed constraints in

Eq. (35) is non-degenerate. The second row in Eq. (35) is a set of degenerate constraints. In the

degenerate case, Eqs. (lc) and (ld) of the original problem can be exactly satisfied if and only if

d2k = 0 for all k and for all levels of stage halving.

In the modified step 2, the solution for xl k from the single-stage constraints gets replaced by

a least-square solution of the single-stage constraints. In other words, Eq. (15) gets replaced by

Xtk = " L1Ldlk for k = 0 N (36)

Except for multiplier determination, all of the other parts of the algorithm remain the same,

including the stage-doubling back-substitution process. The multiplier vector is under-determined

when the constraints are degenerate. A sensible thing to do is to determine the minimum-norm

multiplier vector. Suppose, as in Section 2.3, that 1_ for k = 0 N are the multipliers

associated with the constraints in Eq. (ld) at a given level of stage halving. These multipliers can

be transformed and split to correspond to the transformed and split constraints in Eq. (35):

A67

.lk] = Q3k: for k = 0.....N (37)l kJ

The minimum-norm multipliers can be determined by a procedure similar to the multiplier

determination procedure of Section 2.3. The cost is augmented by adjoining the transformed

constraints using the transformed multipliers, and the partial derivative of the augmented stage-

wise cost with respect to the Xtk vector is set equal to zero. This yields an equation for filk,

which can be solved by back substitution with the LTk matrix. The l_k vector does not affect any

such partial derivatives. It is set equal to 0. The 1_ vector is then determined by inverting Eq.

(37).

2.6 Modifications to Handle Multiple Stages per Processor. A modified

algorithm can solve problems that have more stages than the number of available processors. It is

similar in spirit to the multi-stage-per-processor algorithm described in Ref. 6. When a single

processor has more than one stage, the algorithm starts by working only with the last stage of this

set of stages -- it must have a contiguous set of problem stages. It starts by performing steps 1-4

of Section 2.3 on this last stage. Next, it performs a modified version of step 5 to join the last

stage on the processor to the second-to-last stage. Step 5 gets modified to account for the fact that

the second-to-last stage may have some single-stage constraints. At the end of these steps, each

processor has one less stage. This sequence of steps is repeated until each processor has only one

stage.

The modified algorithm performs a sort of backwards sweep through the stages on a given

processor. After the sweep reaches the first stage on the processor, the algorithm can continue in

the stage-halving manner described in Section 2.3.

This backwards sweep is related to but different from the matrix Riccati backward sweep of

LQR theory. First, the current backwards sweep operates on a more general problem form.

Second, it uses LQ factorization rather than variable reduction to eliminate the constraints that join

stages. Third, this sweep can handle arbitrary single-stage constraints such as "state" constraints.

A68

Figure 1,borrowedfrom Ref. 6, showshowa 24-stageproblemwould bemappedontoan

8-processorbinarytree (which canbe formedon an 8-processorhypercube). The uppergraph

showsthe original 24 stages(0 to 23). Thelower graphshowshow 16stagesremainafter one

stage-joiningcyclehasbeenexecutedon eachnode. Eight of the remainingstagesareoriginal

problemstages,0, 3, 6, 9, 12, 15, 18,and21. Eachof the othereight stagesis the remainsof

two of the original problem'sstagesthat havebeenjoined, (1,2), (4,5), (7,8), (10,11), (13,14),

(16,17), (19,20), and (22,23).

Thebacksubstitutionprocessdescribedin Section2.3undergoesa similar modification. It

startswith thealgorithm'soriginalstage-doublingbacksubstitutionprocess.This terminateswhen

eachprocessorhasreceivedanxk vectorcorrespondingto thefirst of its setof stages.A forward

sweep is then made through the remaining stages to determine the remaining x k vectors.

2.7 Expected Scaling of Wall Clock Time. The expensive operations of Section

2.3's algorithm are the orthogonal matrix factorizations and matrix multiplications in steps 1 and 3

and the Cholesky factorizations and matrix multiplications of step 4. If n is the average number of

elements of an x k vector, then each of these operations requires O(n 3) flops or less. The actual

number of operations depends upon the number of constraints in Eqs. (l c) and (ld), and this

number is limited if the constraints are not degenerate. At later levels of stage halving, the average

number of elements of x k may increase, possibly becoming as large as 4n. The expensive steps

then require O(64n 3) flops or less, which is still O(n3).

Step 2 and the back-substitution steps are relatively inexpensive. Both require O(n 2) flops

because they only involve matrix-vector multiplications and back substitution solutions of

triangular linear systems. Step 5 is also inexpensive. It involves only message passing between

processors and movement of data within the local memory of some processors.

Analysis of the stage-halving procedure of Section 2.3 indicates that its wall-clock time is

O[n31og2(N)] for an N stage problem executing on N processors. The time is O(n 3) per stage-

halving cycle, and the entire process requires log2(N) stage-halving cycles.

A69

When thenumberof stages,N, is greaterthanthenumberof processors,p, thenadditional

timeis requiredfor theinitial backwardssweepthatsimultaneouslyoccursoneachprocessor.If

eachprocessorhasN/p stages,thenthis timeisO[n3(N/p)]. Theentiresolutionprocedure,which

includes the backwardssweepfollowed by the stage-halvingprocess,requiresO{n3[(N/p) +

log2(p)]} This scalesjust asthealgorithmin Ref.6, althoughtheconstantin front of the scaling

law differsbetweenthetwoalgorithms.

TheINTEL iPSC/2is themachineonwhich thisalgorithmhasbeentested. It hasavector

processorattachedto eachnode. The vectorprocessortime for doing suchthings as an inner

productis approximatelyindependentof n whenn is small. Thepresenceof avectorprocessorat

eachnodeaffectstheactualscalingof thewall clock time asa function of n whenn is small: the

algorithm'swall clock time is O{n2[(N/p) + log2(p)]} when solving an N-stageproblemon p

processorsin thiscase.

3. Performance Evaluation on a Test Problem

3.1 Aero-maneuvering Test Problem. An aero-maneuvering problem described in

Refs. 6 and 8 has been used to test the algorithm. It is a linear-quadraticization about a guessed

solution of a nonlinear trajectory optimization problem. The problem has a 6-element state vector

and a 3- or 4-element control vector, depending on the problem stage. The linear-quadratic

problem form from Ref. 6 is

find: u0, xl, ul, x2 UN-I, XN, and UN (38a)
N

1 T T HxTk Huuk. Uk Uk
torninimize: J = { _- [Xk,Uk] Hxx k Hxuk- x k x k

k=0

subject to: x0 given (38c)

Xk+l = Ak Xk + Bk Uk + Ck for k = 0 ... N-1 (38d)

RR Xk + Sk Uk + tk = 0 for k = 0 ... N (38e)

where Xk is the state vector at stage k and Uk is the control vector.

A70

Equation(38d)is a linearizeddynamicsystemmodel,linearizedabouta guessedtrajectory.

It is the linearizationof amodelbaseduponNewtonslaws for 3-degree-of-freedomtranslational

motionof a point masssubjectto gravity,andthrustor aero-maneuveringforces. A zero-order-

hold assumptionfor the control inputs yields a discrete-time model. The presenceof the

nonhomogeneousekvectorin the linearizeddynamicmodel indicatesthattheguessedsolutionis

infeasible;it doesnot obeythedynamicmodel. This situationis allowedatintermediatesolution

guessesby theNPalgorithmof Ref. 2.

The auxiliary single-stageconstraintsin Eq. (38e)arepresentonly for somestages.The

matrices Rk and Sk form the Jacobianfor each stage'sconstraints,and the vector tk is the

nonhomogeneousterm. Constraintsof this form areusedat intermediatestagesto defineentryand

exit of theatmosphere.Fork = N, theEq. (38e)constraintsensurethatthedesiredterminalorbit

is achieved.At stageswherethepeakallowableheatingrate is exceededby theguessedsolution,

additionalEq. (38e)constraintsareincludedto enforcethemaximumheatingratelimit.

Slackvariableshavebeenaddedto theproblembeforetestingthealgorithm. Slackvariables

arenot necessary.They havebeenaddedin orderto put theQP into theform thatwould beused

by the NP algorithmof Ref. 2 if that algorithmwerebeing usedto solvethe nonlinearoptimal

trajectory. In that situation,theQPalgorithmof this paperwould becalculatinganNP search

direction. Slackvariablescanbeaddedto eachof theconstraintsto penalizeviolations. Thenthe

QPbecomes

f'md:

tominimize:

Uo, Y0, z0, Xl, Ul, Yl, Zl, x2 UN-1, YN-I, ZN-I, XN, UN, and zrq
N

1 Z r I HxxkHxuk" t_[Uk]I::l-- / HxTH0u + I
k=O

N-1

+ h
_'{Yk + ck}T{yk + Ck}

k=0

N

_{zk + tk}T{zk + tk}
k=0

(39a)

(39b)

A71

subjectto: x0 given (39c)

= Ak Xk + Bk Uk - _--Yk for k = 0 ... N-1 (39d)Xk+l

11-

RkXk+SkUk-'X --f_-Zk =0

_p
for k = 0 ... N (39e)

The QP in Eqs. (39a)-(39e) can be restated in the form of Eqs. (la)-(ld), given the following

definitions of the solution vector at each stage:

[uo1Xo- Yo

ZO

Ex l_ Ilk
Xk = Yk

Zk

XN ------UN

LZNJ

(40a)

for k = 1..... N-1 (40b)

(40c)

The corresponding constraint Jacobians, constraint nonhomogeneous vectors, cost Hessians, and

cost gradients are easy to determine. For example,

Ok---- Rk, Sk, 0, - P I

Ek- Ak, Bk, - ; I, 0

Fk- [-I, 0, 0, 0]

E..H.001HxTk Huuk 0 0
Hk

0 0 hi 0

0 0 0 hi

for k = l N-1 (41a)

for k = 1..... N-1 (41b)

for k = 1..... N- l (41c)

for k = 1..... N-1 (41d)

For the sake of brevity, the remaining definitions of the equivalent problem (la)-(ld) matrices and

vectors have been omitted.

3.2 Computational Timing Results. Different size versions of this problem have been

solved ranging from 8 to 128 stages. The storage requirements of the 128 stage problem take up

more than half of the available 4 Mbytes of memory per node on a 32-node INTEL iPSC/2.

A serial version of this algorithm has also been tested in order to determine the speed-up due

to parallelism. The serial version solves the same problem, Eqs. (la)-(ld), but it does it using the

A72

bestknownserialtechnique:asinglebackwardssweep,which is similar to theserialalgorithmof

Ref. 6.

The timing results for theseruns are reportedon Fig. 2. The horizontal axis gives the

numberof problemstagesonalog scale.Theverticalaxisgivesthewall clock time on theINTEL

iPSC/2. Eachcurve correspondsto a particularalgorithm running on a particular numberof

nodes. As can be seen,all of the parallel algorithmsare significantly faster than the serial

algorithm. Figure 3 displaysthe speed-updue to parallelismby plotting the ratio of the serial

algorithmtimeto theparallelalgorithmtimefor thedifferentcases.

These graphs clearly display the benefits of parallelism. For the 128-stage problem, the new

parallel algorithm running on 32 nodes is more than l0 times faster than the serial algorithm (the

serial algorithm takes 12.4 sec in this case, which puts it well off of the scale of Fig. 2). This

speed-up increases with increased problem size and vice versa. The efficiency of the parallel

algorithm is not great, a speed-up of 10 for 32 processors translates into a 32 % efficiency.

Note that this comparison is between the parallel algorithm and the best known serial

algorithm of equivalent numerical stability. If the parallel algorithm were run on a single

processor, it would be slower than the serial algorithm used in this study. Some authors in the

parallel computation field use the latter type of "serial" algorithm as the benchmark to determine

their speed-up due to parallelism. In that case, the parallel algorithm's speed-up would be about a

factor of 16 for a 50% efficiency. This is a measure of the average busy time of each node during

the execution of the parallel algorithm. This efficiency rises with (N/p), the number of problem

stages per node.

Though neither efficiency is impressive, efficiency is not the ultimate goal of this work. The

ultimate goal is a reduced wall clock time so that real-time applications will be feasible. The

extrapolated "N-stages-on-N-nodes" line on Fig. 2 shows that a problem with many stages can be

solved in a reasonably small amount of wall clock time if enough processors are available.

For comparison purposes, results from the earlier study of Psiaki and Park are included on

Fig. 2 (Ref. 6). These are the two lowest curves on the graph; they do not apply to the algorithm

A73

presentedin this paper. Thesecurvesarethetiming curvesfor thealgorithmof Ref. 6 applied to

aem-maneuvering problems in the form of Eqs. (38a)-(38e). This is lower-dimensional problem

because it does not include the slack variables Yk and Zk. The new parallel algorithm takes

between 2.5 and 3 times longer to solve the Eqs. (39a)-(39e) version of a given problem as

compared to the parallel algorithm of Ref. 6 operating on the Eqs. (38a)-(38e) version of the same

problem.

In order to make a sensible comparison between the two algorithms, the scaling results of

section 2.7 must be used. The average number of unknowns at a given stage is 9 in the smaller

problem, Eqs. (38a)-(38e), and it is 15 in the larger problem, Eqs. (39a)-(39e). One would expect

the algorithm of this paper to execute about (15/9) 2 = 2.8 times faster when solving the smaller

problem because the wall clock time scales as n2. Thus, scaling analysis predicts that the new

algorithm's speed on the smaller problem would be about equal to the speed achieved on that

problem by the algorithm of Ref. 6. No comparison has been made with any of Wright's

algorithms because they cannot solve the state-constrained aero-maneuvering problem.

4. Conclusions

This paper has presented an algorithm for the solution of dynamic quadratic programming

problems on a parallel computer. The algorithm is an adaptation of the orthogonal

factorization/null-space method to the parallel/dynamic programming framework. It takes

advantage of the sparse "staircase" structure, and it uses domain decomposition techniques to

achieve efficiency and parallelism. The use of a structured orthogonal factorization to determine

the null space of the constraints ensures numerical stability of the null space determination. A

structured block Cholesky factorization of the projected Hessian ensures numerical stability of the

null-space optimization procedure when the projected Hessian is positive definite.

Solution time scales as n3[(N/p) + log2(p)] for an N-stage problem on p processors with an

average of n unknowns per stage. On a 32-node INTEL iPSC/2, the algorithm achieves solution

times as low as 1.2 sec for a 128 stage problem with 6 state vector elements, 3 control vector

A74

31

elements,and6 slackvariables. It is fasterthanthebestknown equivalentserialalgorithmby a

factorof 10or morewhensolvinglargeproblems.

References

1. PSIAKI,M.L. andPARK,K., A Parallel Trajectory Optimization Tool for Aerospace Plane

Guidance, AIAA Paper No. 91-5069, presented at the AIAA Third International Aerospace

Planes Conf., Orlando, FL, 1991.

2. PSIAKI, M.L. and PARK, K., An Augmented Lagrangian Nonlinear Programming Algorithm

that uses SQP and Trust Region Techniques, submitted to the Journal of Optimization Theory

and Applications, in review.

3. FOURER, R., Solving Staircase Linear Programs by the Simplex Method, Proceedings of the

IIASA Workshop on Large-Scale Linear Programming, Laxenburg, Austria, pp. 179-259,

1981.

4. PSIAKI, M.L., An Algorithm for the Solution of Dynamic Linear Programs, Proceedings of

the 3rd Annual Conference on Aerospace Computational Control, Oxnard, California, pp.

327-341, 1989.

5. WRIGHT, S.J., Partitioned Dynamic Programming for Optimal Control, SIAM Journal on

Optimization, Vol. 1, pp. 620-642, 1991.

6. PSIAKI, M.L. and PARK, K., A Parallel Solver for Trajectory Optimization Search Directions,

Journal of Optimization Theory and Applications, Vol. 73, pp. 533-560, 1992.

7. GILL, P.E., MURRAY, W., and WRIGHT, M.H., Practical Optimization, Academic Press,

New York, New York, 1981.

8. MmLE, A., and LEE, W.Y., Optimal Trajectories for Hypervelocity Flight, Proceedings of the

1989 American Control Conference, Pittsburgh, Pennsylvania, Vol. 3, pp. 2017-2023, 1989.

A75

List of Figures

Fig. 1. Stage locations for a 24-stage problem on an 8-processor binary tree before (top) and

after (bottom) one step of the backwards sweep (Ref. 6).

Fig. 2. Wall-clock solution time on the INTEL iPSC/2 as a function of the number of problem

stages.

Fig. 3. Speed-up of parallel algorithm solutions compared to serial solutions as a function of the

number of problem stages.

A76

Stage Locations at Nodes Before

Elimination of Last Stage at Each Node

0,1,2

12,13,14

18,19,20

9,10,11 3,4,5 15,16,17 21,22,23

Stage Locations at Nodes After

Elimination of Last Stage at Each Node

(Parentheses indicate two stages that

have been joined into a single stage)

0,(1,2)

12,(13,14)

6,(7,8) 18,(19,20)

9,(10,11) 3,(4,5) 15,(16,17) 21 ,(22,23)

A77

A

tJ
Q}

I'-- • X c o4 c_
E _ m z

, • , • • ,..!

10 0 101

32 nodes [Ref.6]

10 2

N stages on N nodes

(extrapolated [Ref.6])

10 3

N+I

/

A78

r_

Q)

10

32 nodes

16 nodes

8 nodes

" " " ' ''''1

10 0 101

........ I i

102 103

N+I

/

A79

Appendix B

A paper describing a static

nonlinear programming algorithm.

B1

An Augmented Lagrangian Nonlinear Programming Algorithm that uses SQP and

Trust Region Techniques 1

M. L. PSIAKI 2 and K. PARK 3

1 This research was supported in part by the National Aeronautics and Space Administration
under Grant No. NAG-l-1009.

2 Assistant Professor, Mechanical and Aerospace Engineering, Cornell University,
Ithaca, NY, 14853-7501.

3 Graduate Research Assistant, Mechanical and Aerospace Engineering, Cornell University,

Ithaca, NY, 14853-7501.

B2

Abstract. An augmented Lagrangian nonlinear programming algorithm has been developed. Its

goals are to achieve robust global convergence and fast local convergence. Several unique

strategies help the algorithm achieve these dual goals. The algorithm consists of three nested

loops. The outer-loop estimates the Kuhn-Tucker multipliers at a rapid linear rate of convergence.

The middle-loop minimizes the augmented Lagrangian function for fixed multipliers. This loop

uses the sequential quadratic programming technique with a box trust region step-size restriction.

The inner-loop solves a single quadratic program. Slack variables and a constrained form of the

fixed-multiplier middle-loop problem work together with curved "line" searches in the inner-loop

problem to allow large penalty weights for rapid outer-loop convergence. The inner-loop quadratic

programs include quadratic constraint terms, which complicate the inner-loop, but speed the

middle-loop's progress when the constraint curvature is large.

The new algorithm compares favorably with a commercial sequential quadratic programming

algorithm on five low-order test problems. Its convergence is more robust, and its speed is not

much slower.

Key Words. Nonlinear programming, sequential quadratic programming, augmented

Lagrangian, trust region, constraint curvature.

B3

1. Introduction

An algorithm that solves a typical nonlinear programming problem is presented in this paper.

It is a variant of the augmented Lagrangian algorithm proposed by Hestenes (Ref. 1) and by

Powell (Ref. 2) and described by Fletcher (Ref. 3). This paper adds several special features to the

basic augmented Lagrangian algorithm to make it faster and more likely to converge. One such

feature is the solution of a constrained problem that includes slack variables for each estimate of the

multipliers. Another feature is the use of a sub-problem that has quadratic terms in the constraints

in addition to the usual quadratic cost terms. The algorithm solves a sequence of such sub-

problems, each subjected to box trust region constraints.

This algorithm has been developed to serve as the core of a new nonlinear trajectory

optimization algorithm (Ref. 4). The algorithm might be used to do real-time guidance of

aerospace vehicles. This creates the need for a high degree of convergence reliability and speed.

The algorithm of this paper has been designed to solve nonlinear programs of the form

find: x (la)

to minimize: J(x) (lb)

subject to: ci(x) = 0 for i = 1..... rne (lc)

ci(x) < O for i = (me+l) m (ld)

where x is the n-dimensional vector of quantifies to be optimized, J(x) is the scalar cost function,

and the ci(x) for i = I m are the scalar constraint functions with the Fn'st me consu'aints being

equality constraints and the last mi (--m-me) constraints being inequalities. The functions J(x) and

ci(x) for i = 1 m are assumed to be continuous and to have continuous first and second

derivatives.

The remainder of this paper is divided into 2 sections plus conclusions. Section 2 describes

the algorithm, which consists of 3 nested iterative loops. Section 3 describes some test problems

and compares the performance of the algorithm on these problems to that of NPSOL (Ref. 5).

B4

2. Nonlinear Programming Algorithm Description 4

2.1. Outer-Loop Augmented Lagrangian Algorithm. The basic outer-loop

algorithm for applying the augmented Lagrangian method to problem (la)-(ld) is given by Fletcher

(Ref. 3). Reference 3 also gives a proof of global convergence when a feasible point exists and

when the global minimum of each fixed-multiplier problem can be determined. The algorithm is

repeated with minor modifications here. The method works with guessed values for the optimal

Kuhn-Tucker multipliers, _.i for i = I , m, and penalty parameters, Pi for i = I, m, to define

the augmented Lagrangian function:
me m

Laug(X;_,, R) = J(x) + T [ci(x) + -- + T [[ci(x) + } (2)
Pi Pi

i=l i=me+l

where Pi > 0 for i = 1..... m and _,i > 0 for i = (me+l) m, where the operation []+ returns

the quantity in the brackets if it is non-negative and zero otherwise, and where the vectors _ and R

refer to [_1, Xm] T and [Pl, 0m] T, respectively.

Outer-Loop Aum'nented Lam-angian Algorithm [from Ref. 3 with modifications]:

1. Start with guesses _.i, and Pi for i = 1..... m. Set Ile(°ld)llo. = oo. Be sure ;£i -> 0 for

i = (me+ 1) m. Define constraint violation limits, ci max (> 0) for i = 1..... m.

2. Minimize Laug(x;h,R) with respect to x to find x*(_,R). Increase Pi if necessary to

ensure that Ici(x*)l < ci max for i = 1..... me and that ci(x*) < ci max for i = (me+l),

.... m to keep intermediate guesses within reasonable limits.

3. Let ci - ci {x* (Tk,_ } for i = 1..... me

and

Ci - ci{x*(Tk,O_)} + -- - -- for i = (me+l) m.
Pi Pi

4 Reference 6 gives many algorithmic details that have been omitted from this section for the sake
of brevity.

B5

4. If all Icil for i = 1..... m are small enough, then terminate.

5. If Icil> l_tlc(°ld)lloo for any i = 1.... , m, then set Pi = 100pi for all such i and go

to step 2.

6. Set c (°ld) = [Cl Cm]T

7. Set gi = _,i + pici for i = 1..... m and go to step 2.

The quantifies ci for i = 1..... m axe, nominally, the constraint violations.

Step 5 of the above algorithm is different from the algorithm given by Powell (Ref. 2) and

repeated in Fletcher (Ref. 3). It raises penalty weights more rapidly to ,:nforce a faster linear rate

of convergence of the multiplier estimates, 1/100 rather than 1/4 as in Ref. 2. The enforcement of

ci max limits in step 2 is an added feature that precludes the possibility that extreme descent of the

J(x) function would cause the algorithm to diverge in a nonfeasible region.

2.2. Transformation and Quadratic Approximation of Augmented Lagrangian

Sub-Problem. An equivalent constrained form of the fixed-multiplier sub-problem in step 2 can

be developed, one that remains numerically well-conditioned even as the Pi --->oo:

find: x and y (= [Yl, Ym]T) (3a)

m_ h mto minimize: Jt(x,y) --- J(x) + yi 2 + _. '_ { [yi]+ }2 (3b)
i= 1 i=me+ 1

subject to: ci(x) _ Yi + (_.i/Pi) = 0 for i= 1..... m (3c)

where Jt is the transformed cost function, the Yi for i = 1, m axe added slack variables, and h is

an arbitrary positive constant that allows adjustment of scaling. The slack variables are added to

equality constraints and inequality constraints to penalize constraint violations.

A quadratic problem (QP) that approximates problem (3a)-(3c) is

find: Ax and Ay (4a)

B6

tominimize:

subjectto:

AJtG)(Ax,Ay) = 1AxTHG)Ax + g(j)TAx

me

ill

nl

+ E(_{[Ayi+ _ p_ ei(J)]'}2- _'_{[aiG)]'} 2)

ifme+l

1
ai(J)TAx + _'AxTBiG)Ax - _ Ayi = 0 for i = 1..... m

-d(J) "; Ax < d (j)

(4b)

(4c)

(40)

where Ax and Ay are, respectively, deviations of x and y from current guesses, x (j) and y(J):

Ax -= x - x Ci) (5a)

Ayi - Yi - Yi(j) = Yi - P*_ {ci(x(j)) + (_.i/Pi)} for i= 1..... m (5b)

and where H G) is the cost function Hessian evaluated at x (j), Bi G) is the Hessian of constraint i,

gO) is the cost function gradient, ai (j) is the gradient of constraint i, and

ci (j) - ci(x (j)) + (_.i]Pi) = _f'_i Yi(j) for i= 1.... , m (6)

The quantifies d(J) (> 0) are box trust region bounds. The algorithm assumes that the Hessians of

the cost and constraint functions are available either analytically or via finite-difference

approximation.

QP (4a)-(4c) is similar to the QP of an SQP technique in both form and function; the middle-

loop solves a sequence of such problems in order to perform step-2 of the outer-loop. However,

the inclusion of quadratic constraint terms in the problem, the AxTBi(J)Ax terms in Eq. (4c), is a

significant deviation from the standard SQP technique. They make the approximate problem valid

over a larger region, but complicate the solution procedure for Eqs. (4a)-(4d). The box trust

region bounds in Eq. (40) ensure that a solution to the approximate problem produces a decrease of

the original augmented Lagrangian function.

2.3. Middle-Loop SQP/Trust Region Algorithm for Minimizing the Fixed fl./_.

Augmented Lagrangian Function. This section defines the middle-loop algorithm to

accomplish step 2 of the outer-loop augmented Lagrangian algorithm.

B7

Migtdl¢-Loov SOP/Trust-Re_ion Al2orithm for Minimizing an Aumnented Laman_ian Function:

2.1. Start with a guess of the solution to problem (3a)-(3c), x (°), and a guess of the

box trust region bounds, d (°) (> 0). Set j = 0. Compute L_°)g = Laug(X(°);_,,R).

2.2. Calculate y(J), H (j), Bi (j), ai (j), and _:i(j) for i = 1..... m.

2.3. (Approximately) solve problem (4a)-(4d) to determine Ax, Ay, and AJt (j).

2.4. Compute L_aug_ = Laug(X(i)+Ax;_.,R), compute r = (LtJ_ - La(Ja)g)/AJttJ), and

compute Y- l'._nIAxil/dq)"

2.5 Ifr g 0.25,then setd0+i) = 0.25 *7" d(J).

Ifr > 0.75 and Y = I,then setd0+l) --min(2.d(J)d(0)).

Otherwise, setdo+ l)= d(J).

10+I)
2.6 Ifr<0, setx(j+1)=x (j)and_aug =La0u).

i(J+l)= L(J)+_Otherwise, setx(j+l)= x(J)+Ax and "--aug aug •

2.7 Test terminationconditionsforx(j+1)and terminatesuccessfullyiftheyarc

satisfied.

2.8 Setj -j + 1. Ifr > 0, go to step 2.2; otherwise, go to step 2.3.

This algorithm adopts the SOP philosophy of solving a quadratic approximation to the

original problem to determine the next solution iterate. The use of quadratic terms in both the

constraints and the cost makes the quadratic sub-problem a very accurate approximation of the

problem in Eqs. (3a)-(3c) when near a local minimum of the latter problem that satisfies second-

order sufficient conditions. Steps 2.5 and 2.6 of the algorithm implement the trust region ideas

found in Ref. 3 (p. 96).

2.4 Inner-Loop Solution of the Quadratically-Constrained QP

The quadratic constraint terms make problem (4a)-(4d) much more difficult than a standard

QP. An iterative Newton-type procedure is used to solve this sub-problem. This inner-loop

generates a sequence of solution estimates Ax (k) and associated slack variables

B8

Ayi(k) = _ { ai TAx(k) + IAx(k)TBiAx(k) } for i= 1..... m (7)

where the superscripts (j) that appear in Eqs. (4a)-(4d) have been dropped for the sake of

convenience. Equation (7) guarantees feasibility of Eq. (4c).

Each successive iterate of Ax (k) is generated by a line search along a march direction _Sx.

Search directions are determined by solving a linear-equality-constrained QP of the form

Fred 8x and _iya (8a)

(Sb)
tO minimize: 8J(Sx,Sya) = _ [SxT,Sya T] 0 hi 8y + [gxT'gYaT] _iy

subjectto: [A(k)E(k)D0(k)][88yXa]=[00] (8c)

where 8ya is a vector of increments to the slack variables associated with the active subset of the

problem constraints in Eq. (4c), [A (k) D (k)] is the Jacobian of these active constraints evaluated at

Ax(k), E_) is the Jacobian of the active box trust region constraints, [gxT,gy T] is the gradient of

the Eq.-(4b) cost at Ax (k), Aya (k), and _ is a Hessian matrix of the form

tl_ = H + _ 13i Bi (9)

i_ Active Set

Given a positive definite projected Hessian, the QP in Eqs. (8a)-(8c) remains well-coeditioned as

penalty weights approach infinity. The corresponding elements of D (k) approach 0 in this case.

When the projected Hessian is indefinite, the algorithm detects this condition and toggles back and

forth in its choice of 8x between choosing a feasible direction of negative curvature and a projected

steepest descent direction.

The algorithm chooses one of two alternate updates for Ax (k). One update makes a straight-

line search in the 8x direction:

Ax (k+l) = Ax (k) + et 8x (10a)

where ot is the step length. The other update makes a curved search

Ax (k+l) = Ax (k) + ot _ix + b_(ot) (10b)

where 8"_(ot) corrects for the curvature in the active problem constraints. A similar correction has

been used by Coleman and Corm (Ref. 7), Fletcher (Ref. 8 and Ref. 3, pp. 393-396), and Betts

B9

andHuffman (Ref. 9).

limit ot in Eq. (10a)-type steps.

find 51

to

I (Ot_x)TBit(Ot_X)_

(0tSx)TBi2(Ot6x) /1

(_gx)rBi_(_6x)

It helps the algorithm take larger steps when high penalty weights would

The curvature correction is a solution of

(lla)

(llb)

= 0 (llc)

where il, ..., is are the indices of the active subset of the Eq.-(4c) constraints.

The 13i multipliers used to form the Hessian in Eq. (9) are calculated in two different ways,

depending on which type of line search is to be performed. They must make the cost in Eq. (8b) a

valid approximation, to second-order in (z _ix, of the cost in Eq. (4b). If the straight-line search of

Eq. (10a) is used, then the correct multipliers are

13i = Pi ci + _ Ayi for i = il, ..., is (12)

If the curved search of Eq. (10b) is to be used, then the correct multiplier vector is the solution of

find 1_ = [[5il..... ISis]T (13a)

to minimize 2 (A(k)T 1_+ gx)T(A(k)T l_+ gx) (13b)

The step length 0t is determined by a univariate minimization. When the straight-line step in

Eq. (10a) is used, the cost function in Eq. (4b) is used as the step-length merit function, subject to

the box trust region bounds in Eq. (4d). Equation (7) determines feasible values of Ay 0_+1) as a

function of Ax (k+l) for use in this merit function. The merit function is piecewise-quartic in a.

Exact univariate minimization can be performed in a f'mite number of operations. When the curved

step in Eq. (10b) is used, a local approximation of the Eq.-(4b) cost is used as the merit function.

It yields a piecewise-quadratic univariate minimization problem that also can be solved exactly [6].

B10

Inner-Loop Minimization Algorithm for the Ouadratically-Constrained. Piecewise-Ouadratic-Cost

Sub-m_blem:

2.3.1 Start with the solution guess Ax C°) = 0 and Ay (°) - 0. Set k = 0, and initialize

the active set of problem constraints and the active set of box trust region

constraints.

2.3.2 Solve the linear-equality-constrained QP of Eqs. (8a)-(8c) for the search

direction, [Sx,Sya]. Use Eqs. (13a)-(13b) to determine the J]i multipliers for

the Hessian.

2.3.3 Determine ¢t by performing a line search. Use the merit function associated

with the curved step. Update the active set of problem constraints and the

active set of box trust region constraints.

2.3.4 Test termination conditions for Ax (k+l) = Ax (k) + txSx+ ffx(o0 and stop with

solution Ax (k+1) if conditions are satisfied. Otherwise, set Ax (k+l) = Ax (k) +

o_x and set k = k + 1

2.3.5 Test stationary point conditions. If they are satisfied, then go to step 2.3.11.

2.3.6 If k > 7 and AJt(Ax(k),Ay (k)) > 0, then set Ax (k) = 0, Ay (k) = 0, and re-

initialize the active set of problem constraints and the active set of box trust

region constraints.

2.3.7 If k > 15, then terminate before reaching the optimal solution.

2.3.8 Solve the linear-equality-constrained QP of Eqs. (8a)-(8c) for the search

direction, [Sx,Sya]. Use Eqs. (12) to determine the J]i multipliers for the

Hessian.

2.3.9 Determine tz by performing a line search. Use the merit function associated

with the straight-line step. Update the active set of problem constraints and the

active set of box trust region constraints.

2.3.10 Set Ax (k+{) = Ax (k) + 0_Sx, set k = k + 1, and go to step 2.3.5.

Bll

Stepsthat drop active trust region bounds if non-optimal.

2.3.11 If AJt(Ax(k),Ay 0')) can be reduced by moving off of some active trust region

bounds, then determine a feasible descent direction 8x that moves away from

the non-optimal bounds, drop these bounds from the active set, and go to step

2.3.9.

2.3.12 IfAJt(Ax(k),Ay(k))> 0, then setAx (k)= 0, Ay (k)= 0, re-initializethe active

set of problem constraints and the active set of box trust region consu'aints, and

go to step 2.3.8.

2.3.13 Terminate successfully.

This algorithm should terminate after just one execution of steps 2.3.1-2.3.4 when the

middle-loop algorithm is near its optimum. The active set will have been correctly identified, and

the 8x direction calculated in this case will be the Newton direction for the middle-loop. Figure 1

depicts a typical scenario for termination at step 2.3.4.

When the algorithm enters the loop in steps 2.3.5-2.3.10, it searches for the optimum via a

series of steps that use straight-line searches. Figure 2 depicts such a scenario. The heavy arrow

marked (zSx (0) is the step-2.3.3 increment. The curvature correction 8_(00 is rejected in step

2.3.4 because it does not come near enough to the optimal solution or to the constraint. The two

increments (zSx (1) and o_Sx(2) are the search steps taken in the two subsequent iterations of steps

2.3.5-2.3.10. The reason for trying the curvature correction 8_(00 before resorting to the straight-

line searches o_Sx (1) and otSx (2) is that 8"_(00 is relatively inexpensive to calculate.

One danger of this technique is that a cost increase may occur during the o_Sx (°) step. The

approximate nature of the merit function used in step 2.3.3 could allow this to happen. Steps

2.3.6 and 2.3.12 provide logic for recovering from such a problem.

The inner-loop terminates after 15 iterations at step 2.3.7 even if problem (4a)-(4d) has not

been completely solved. It is unwise to take too many inner-loop search steps per middle-loop

search step because each inner-loop iteration involves a significant amount of linear algebra.

B12

Changesto theactiveconstraintsetscanoccurin two places.Probleminequality constraints,

which arc enforced via penalty terms, can be added or dropped during the line searches of steps

2.3.3 and 2.3.9. Box trust region constraints can bc added to the active set in these same steps,

but step 2.3.11 is the only place where box trust region bounds can be dropped from the active set.

2.5. Phase-I Constraint Satisfaction Algorithm. The convergence proof of the

outer-loop algorithm assumes that the middle-loop can f'md a global minimum (Ref. 3), which is

not guaranteed for this paper's algorithm. This limitation could cause the algorithm to converge to

a point near an infeasible local minimum of the norm of the constraint violations. The algorithm

tries to avoid this situation by using a Phase-I procedure to move from an arbitrary fast guess to an

almost-feasible fu'st guess, one that does not violate any problem constraint, i, by more than

0.01ci max. Phase-I executes the middle- and inner-loops with a multiplier guess _. = 0, with very

large penalty weights, and with the assumption that J(x) = 0. In order to make the inner-loop QP

problem well posed, Phase-I uses H(J) = d and g(J) = 0 in Eq. (4b).

2.6. Discussion of Algorithm. The algorithm has several advantages as compared to

other nonlinear programming techniques. It has a strong likelihood of global convergence because

the augmented Lagrangian outer-loop has good global convergence. Even with highly-curved

constraints, the algorithm has reasonably fast global convergence because of the explicit use of

quadratic constraint approximations in the QP sub-problem. Rapid local convergence is assured

because the inner- and middle-loops converge quadratically under "normal" conditions, and the

outer-loop has a very rapid linear convergence rate of.01.

The algorithm also has several significant disadvantages. It must re-do full matrix

factorizations for each iteration of the inner-loop. In a general context this is a serious deficiency,

but in the intended application, trajectory optimization problems, a parallel factorization algorithm

is available (Ref. 10), which decreases the impact of this weakness. Another disadvantage is the

algorithm's reliance on analytic or finite-difference Hessians. The algorithm requires many more

gradient-type evaluations per search step than a quasi-Newton method. Again, this weakness is

B13

not seriousin the context of trajectoryoptimization,where the Hessian is sparsebut the quasi-

Newton approximation isnot,and where Hessian calculationsarchighlyparallclizable(Rcf.1I).

3. Performance Evaluation on 5 Test Problems

This sccuon reports the results of tests of the algorithm's speed and convergence robustness,

and it compares the algorithm with NPSOL version 4.02 (Ref. 5). Each NPSOL iteration is one in

which it calculates a gradient, does a BFGS quasi-Newton update to the projected Hessian, solves

a QP, and performs a line search. For comparison purposes, each iteration of the augmented

Lagrangian algorithm's middle-loop is defined as one "iteration". Five test problems arc described

in the appendix. Table 1 compares the performance of the two algorithms on the five problems.

Table 1.

Iteration Count Comparison of New Algorithm with NPSOL on 5 Test Problems.

Problem NPSOL New Algorithm Loops

Middle Middle Outer Inner Middle

Total Phase-I Total Total OptJmafity

1 6 6 1 3 15 5

2 Quits at 34 73 46 4 285 27

3 Quits at I 15 3 5 71 12

4A Quits Quits

4B Quits at 7 14 3 6 89 11

5 9 13 2 5 70 11

Obviously, the new algorithm is more robust. It converged in all but one of the cases listed,

but NPSOL converged in only two of the cases. (Note that NPSOL's poorer robustness should

not be construed as evidence that all SQP techniques are inherently less robust.) When NPSOL

B14

doesconverge, it is as fast or slightly faster in terms of the number of QPs that get solved; compare

the second and third columns in Table 1 for problems 1 and 5. For static problems on a serial

processor, NPSOL's speed advantage is more pronounced than indicated by the iteration counts

because its QP sub-problems are cheaper to derive and cheaper to solve.

A comparison of the last two columns in Table 1 shows that the average number of inner-

loop iterations per middle-loop iteration ranges from 3 to 10.5 for the new algorithm. For each

successful run, the early middle-loop iterations require multiple inner-loop iterations, and the latter

middle-loop iterations each require only one inner-loop iteration, consistent with the second-order

nature of the inner-loop.

Variations in the choice of initial penalty weights can affect the performance of the new

algorithm. Another solution run for problem 5 has been tried in which the initial penalty weights

Pi are set at 100 (they are 1000 for the run listed in Table 5). This latter run is slower, requiring a

total of 22 middle-loop iterations to solve the problem.

4. Conclusions

An augmented Lagrangian nonlinear programming algorithm has been developed. It consists

of 3 nested loops. The outer-loop is an augmented Lagrangian algorithm with a fh'st-order

multiplier update and a rapid rate of linear convergence. The middle-loop algorithm is an SQP-type

minimization of the augmented Lagrangian function. To alleviate ill-conditioning, the middle-loop

problem is recast into a constrained form with slack variables that get penalized. The inner-loop

algorithm solves a quadratically-constrained piecewise quadratic program with box trust region

bounds. The algorithm has been compared with NPSOL on 5 low-order test problems. The

algorithm has much more robust convergence than NPSOL, and its speed is comparable to

NPSOL.

B15

Test m'oblerr_],:

find:

to minimim:

subject to:

Appendix, 5 Test

x = Ix1, xzl T

J(x) = - xl - x2

x2+x_- 1 <0

(Xl + 1) 2+x 2-4<0

-2Xl + x2 - 2 < 0

First guess: x = [2,01T

Optimum: x = [.7071,.7071] T

Test m'oblem 2 (very_ difficult constraint curvanne case):

find: x = [xI, x2] T

to minimize:

subject to:

First guess: x = [0,.99] T

Optimum: x = [.9688,-.2480]T

Test Droblem _ [Ref. 3, p. 330]:

find: x = [Xl, x2, x 3, x4] T

to minimize: J(x) = xlx2

Problems

J(x) : x2

(x] - 1) 2 + x_ + 10000 (x] 2 + x22 - 1) 2 - .0625 < 0

x = [3.41,3.41,2.41,1]T

subject to: (XlX3 + x2x4) 2 2 2
2 "x3-x4+l=02

x 1 +x 2

-Xl+X3+ 1<0

-x2+x4 +1<0

- x3 +x4 <0

-x4+l<0

First guess: x = [1,1,1,1]T

Optimum:

B16

I

Test m'oblem 4:

find:

to minimize:

subject to:

x = [Xl, x2, x3, x4, xs, x6, XT]T

1
J(x) = _(x4- x2)(x3 - Xl)

(x6- x4)(x3 - x0- (xs - xO(x2 - x4) = 0

x5 - xT(x,, - x:) = 0

x6 - XT(X3 - Xl) = 0

2
- x5- x2 + 1 <0

xj + 1 <0 forj = 1,2

- xj < 0 for j = 3,4,5,6,7

First guess 4A: x = [-2, -3, 6, 6, 6, 6, 6] T

First guess 4B: x = [-2, -3, 6, 6, 6, 6, .7] T

Optimum: x = [-1, -1, 2.41, 2.41, .71, .71, .21] T

Test oroblem 5: Minimum-fuel 2-burn impulsive orbit transfer from equatorial geosynchronous

Earth orbit to 28O-inclination low Earth orbit. This problem is described in Ref. 6. It has 8

elements in its x decision vector, a linear cost, and 9 nonlinear inequality constraints.

References

1. HESTENES, M.R., Multiplier and Gradient Methods, Journal of Optimization Theory and

Applications, Vol. 4, pp. 303-320, 1969.

2. POWELL, M.J.D., A Method for Nonlinear Constraints in Minimization Problems, in

Optimization, Edited by R. Fletcher, Academic Press, London, pp. 283-298, 1969.

3. FLETCHER, R., Practical Methods of Optimization, 2nd Ed., J Wiley & Sons, New York,

New York, 1987.

4. PSIAKI, M.L. and PARK, K., A Parallel Trajectory Optimization Tool for Aerospace Plane

Guidance, AIAA Paper No. 91-5069, presented at the AIAA Third International Aerospace

Planes Conf., Orlando, FL, 1991.

B17

5. GILL, P.E., MURRAY, W., SAUNDERS,M.A., and WRIGHT, M.H., User's Guide for

NPSOL (Version 4.0): A FORTRAN Package for Nonlinear Programming, Stanford

University, Systems Optimization Laboratory Report No. SOL 86-2, 1986.

6. PSIAKI, M.L. and PARK, K., Detailed Description of an Augmented Lagrangian Nonlinear

Programming Algorithm that uses SQP and Trust Region Techniques, Mechanical and

Aerospace Engineering Report No. MSD-92-02, 1992.

7. COLEMAN, T.F. and CONN, A.R., Nonlinear Programming via an Exact Penalty Function:

Asymptotic Analysis, Mathematical Programming, Vol. 24, pp. 123-136, 1982.

8. FLETCHER, R., Second Order Corrections for Non-differentiable Optimization, Numerical

Analysis, Dundee 1981, Lecture Notes in Mathematics 912, Edited by G.A. Watson,

Springer-Verlag, New York, New York, pp. 85-114, 1982.

9. BETTS, J.T., AND HUFFMAN, W.P., Application of Sparse Nonlinear Programming to

Trajectory Optimization, Journal of Guidance, Control, and Dynamics, Vol. 15, pp. 198-206,

1992.

10. PSIAKI, M.L. and PARK, K., A Parallel Orthogonal Factorization Null-Space Method for

Dynamic Quadratic Programming, submitted to the Journal of Optimization Theory and

Applications, in review.

11. BETI_, J.T., AND HUFFMAN, W.P., Trajectory Optimization on a Parallel Processor, Journal

of Guidance, Control, and Dynamics, Vol. 14, pp. 431-439, 1991.

B18

List of Figures

Fig. 1. Rapid termination of the inner-loop after one optimization step and one curvature-

correction step.

Fig. 2. Search steps taken by the inner-loop when it fails to terminate in one iteration.

B19

Contours of Actual 1st-order approximation
constant cost constraint of constraint

B20

Contours of Actual 1st-order approximation
constraint of constraint

constant cost . _ ..'
e e t'e

-_ -
.BB_WO eo

.:..::_:........ ._.......;"_u.o_
.......... "............"" guess of

-..solution'""...

......x_(.__<"....:: (_). '".-...'"'.-.."'"'",..'"".,.""...

...-'" . ,. ,,, , ;: ,, "_ ;. ';,,,,\

B21

AppendixC

A paperaboutthe integrationof
componentalgorithmsinto aparallel

trajectoryoptimizationalgorithm.

C1

A PARALLEL TRAJECTORY OPTIMIZATION TOOL FOR AEROSPACE PLANE GUIDANCE

Mark L. Psiaki* and Kihong Park**

Cornell University
Ithaca, N.Y. 14853-7501

Abstract

A parallel trajectory optimization algorithm is being
developed. One possible mission is to provide real-time,
on-line guidance for the National Aerospace Plane. The
algorithm solves a discrete-time problem via the augmented
Lagrangian nonlinear programming algorithm. The
algorithm exploits the dynamic programming structure of
the problem to achieve parallelism in calculating cost

functions, gradients, constraints, Jacobians, Hessian
approximations, search directions, and merit functions.

Special additions to the augmented Lagrangian algorithm
achieve robust convergence, achieve (almost) superlinear
local convergence, and deal with constraint curvature
efficiently. The algorithm can handle control and state
inequality constraints such as angle-of-attack and dynamic
pressure constraints. Portions of the algorithm have been
tested. The nonlinear programming core algorithm
performs well on a variety of static test problems and on an

orbit transfer problem. The parallel search direction
algorithm can reduce wall clock time by a factor of 10 for
this part of the computation task.

1. Introduction

1.1. Objectives.

This effort aims to develop a fast trajectory
optimization algorithm that converges with high reliability.
One possible application of such a tool is for real-time
guidance of an aerospace vehicle such as an aerospace plane.
Other applications would be to off-line trajectory planning
or to off-line vehicle/design studies.

The algorithm is designed to solve a fixed-time Bolza-
type optimal control problem. Other problem types can be
stated in this form, e.g., the minimax problem can be
approximated by a Bolza problem, and the free-end-time
problem can be transformed into a fixed-end-time problem.
The problem under consideration is

l'md: u(t) and x(t) for tO -< t < tf (la)

tf

to minimize: J = S L[x(t),u(t),t] dt + V[x(tf)] (lb)
to

" Assistant Prof., Mech. and Aero. Eng.; Member, AIAA.

"" Graduate Student.

Copyright © 1991 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved.

subject to." x(t0) given (lc)

J: =.tlx(t),u(0,t] (ld)

ae[x(t),u(O,tl = 0 (le)

ai[x(O,u(t),t] <-0 (If)

aef[x(tf)] = 0 (lg)

aif[x(tf)] < 0 (lh)

where x(0 and u(0 are the state and control time histories,
respectively. Equation (lb) is a Bolza type cost, and Eq.
(ld) defines the system's dynamics. Equations (le) and (If)
are auxiliary constraints and may be pure control
constraints, such as maximum angle of attack, pure state
constraints, such as heating rate of an aerospace plane, or
mixed contlot and state constraints, such as normal load

factor. Equations (lg) and (lh) are terminal state
constraints.

LI_ For real-Time Guidance. A block diagram of how

a trajectory optimization algorithm might be used for real-

time control is shown in Fig. 1. It approximates u(0 by a
sequence u(tk) U(tN-l) [tN = tf]. The algorithm takes a

sensor-based estimate of the initial state, _:(tk). It uses that

state as the initial condition in a trajectory optimization
problem to compute the entire optimal control and state
time histories, U(tk) U(tN-1) and X(tk+l) x(tN), and

it sends the control for the current time, U(tk), to the

controlled system.

The proposed guidance system uses feedback by
discarding its prediction of X(tk+l) at time tk+l in favor of

the sensor-based estimate 2_(tk+l). Any discrepancy

between these values forces the algorithm to re-optimize the
trajectory. Such a system should be more robust than
programmed optimal control. A similar system has been
used successfully on the Boeing Inertial Upper Stage [1].

LI_ for Off-line Studies. A faster algorithm with more

robust convergence would also be helpful to off-line

trajectory optimization. When used for traditional mission
planning, increased speed and robustness would reduce the
amount of engineering time required to do a job. The
increased speed might make exotic design studies more

practical. For example, robust trajectory optimization, in
which the sensitivity of the solution to poorly known
parameters is also constrained or penalized, could be made
more practical.

The present algorithm uses parallelism to achieve faster
solution speeds. It is compatible with a new parallel

supercomputer that NASA and a consortium of other
agencies have purchased. This machine is a 500+ node

C2

Objective,
Constraints

,Controller

, v Real-Time

Trajecto ry

Optimizer

u(tk) :

u(tk+l):

-_ u(t N. 1)

x(t k+l)

x(t k+2)

A

k

itlClock

Flight
Vehicle

Dynamics

State _-Estimator

Y(t k)
v

Fig. 1. Block Diagram of a Guidance System that uses a Trajectory Optimization Algorithm in the
Loop.

INTEL touchstone machine. Each node is rated at 18

Mflops or more. Thus, this algorithm could take advantage
of a highly parallel machine with about 9 Gfiops of speed.

1.2. Related Research.

Many algorithms have been developed for off-line
trajectory optimization, e.g. see Refs. 2-7. These are
numerical gradient-based search algorithms. Generally, such
algorithms are unsuited for on-line applications because
they are too slow or because they do not converge reliably
enough.

Another approach to real-time optimization is the
perturbation technique. It expands the problem in terms of
a small parameter in such a way that the zeroth-order
solution has a closed-form solution or one that is easily
computed numerically. The higher-order terms are
computed by solving a series of linear, nonhomogeneous
problems [8]. Such designs may be very effective for a
given application, but they will only work when a natural
perturbation parameter exists and when the zeroth-order
problem is easy to solve. Furthermore, each new
application requires a new perturbation analysis to design
the approximate opdmal controller.

Several researchers have explored the possibility of

,sing parallelism to speed up numerical search trajectory
optimization. Betts and Huffman were the first to

implement a complete numerical trajectory optimization
algorithm that makes use of parallelism [9]. Their work
concentrated on parallelizing the calculation of cost
derivatives and constraint Jacobians. Their algorithm
realizes significant improvements until the problem size
becomes too large, at which point their serial nonlinear
programming algorithm becomes a significant bottleneck.

Wright [10] and Psiaki and Park [11,12] have both
worked on algorithms for parallelizing the linear algebra in
the nonlinear programming portion of a trajectory
optimization algorithm. Both approaches use a divide-and-
conquer approach that does a stage-wise domain
decomposition of the linear algebra. Both algorithms are
faster than serial backwards sweep algorithms. Wright's
algorithm is faster than that of Psiaki and Park, but it
cannot handle auxiliary state constraints or an indefinite
Hessian.

The present algorithm uses the numerical search
trajectory optimization approach. It defines a
transformation to a discrete-time problem in order to make
use of ideas from the field of general nonlinear
programming (parameter optimization), but it retains the
structure and benefits of the dynamic programming form.

The parallel linear algebra and the augmented Lagrangian
nonlinear programming algorithm developed in previous
work are used [12]. Parallel gradient and Jacobian
calculations are used, similar to Betts and Huffman [9].

C3

Parallel discrete-Newton Hessian approximation is used
also.

1.3. Outline of Paper.

Section 2 describes the trajectory optimization
algorithm. It gives transformations to a discrete-time
problem form and then to a parameter optimization problem
form. The section defines and discusses the nonlinear

programming algorithm in the parameter optimization
form. Section 2 finishes with explanations of how

parallelism is used to speed up the calculation of
derivatives, to perform matrix factorizations, and to evaluate
a merit function. Section 3 describes the performance of

sections of the code on test problems, the general nonlinear
programming algorithm and the parallel linear algebra
algorithm --- the entire algorithm is not yet running.
Section 4 explains the planned development sequence for
completion of the entire algorithm, and section 5 gives
conclusions about the algorithm's design and about the
performance of some algorithm components.

2. Algorithm Design.

2.1. Transformation to Discrete Time.

The problem in Eqs. (la)-(lh) will be solved on a
digital computer via a numerical technique. Some form of
problem discretization must be used simply to represent the
solution. A number of researchers have developed
algorithms directly for the continuous-time problem, which
they implement approximately. Our approach is to first
approximate the problem in Eqs. (la)-(lh) by a finite-
dimensional numerical optimization technique. Then we
develop an algorithm for the finite problem that can be
exactly implemented (neglecting round-off error). Such a
problem becomes a parameter optimization problem.

Approximation of a continuous-time problem by a
parameter optimization problem has several advantages. A
parameter optimization algorithm can use many of the
sophisticated techniques that have been developed by
researchers in the general field of nonlinear programming.

For example, the continuous-time problem of determining
switching times and transversality conditions for state
inequality constraints is conceptually simpler in discrete-
time: it reduces to a matter of determining the active set of
inequality constraints. With a good linear algebra package
there is no need to differentiate the state constraints in order

to get the controls to appear in them.

The parameter optimization technique sometimes gets

criticized because it can destroy problem structure and cause
the resulting algorithm to be very slow. The particular
form of parameter optimization problem used in this paper
is a discrete-time optimal control problem. This preserves

the dynamic programming structure.

A special-purpose algorithm has been designed to solve
the resulting nonlinear program (NP). General-purpose NP
algorithms can be used [7,9], but they take no advantage of
the dynamic programming problem structure. Such

algorithms run very slowly for a large number of discrete-
time steps t. The special algorithms of this paper exploit

the sparsity and structure of the dynamic programming
form.

The zero-order-hold discretization of the control time

history splits the interval [tO,tf] into N intervals [tk,tk+l]

for k = 0 N-l, with tN = tf. The control is modeled as

being constant at the value Uk for each interval [tk,tk+l):

I"Uk-1 for tk-I < t <tk

Uk
u(t) = '_

Uk+l

for tk < t < tk + 1

for tk+l < t < tk+2
(2)

Then, the problem in Eqs. (la)-(lh) may be transformed
into the discrete-time form

T T T T T T'I TI"

fred: x=lU0, X_,U_,X2 UN.t, XN] (3a)L

to minimize:
N-I

J = Z Lk(Xk'Uk) + V[XN]

k,,,O

(3b)

subject to: xo given (3c)

Xk÷1 = fk(Xk,Uk) for k = 0 ... N-1 (3d)

aek(Xk,Uk) = 0 fork = 0 ...N-I (3c)

aik(Xk,Uk) < 0 for k = 0 ... N-I (3f)

aeN(xN) = 0 (3g)

aiN(xN) < 0 (3h)

where the correspondence between the discrete-time control

time history, u 0, u t, u2..... UN.1, and the continuous-time

u(t) has been defined in Eq. (2). The discrete-time state

time history, xo, x_, x2 xN, corresponds to a sampling

of the continuous-time state time history, X(to), x(tt), x(t2),

.... x(tN).

The difference equation in the discrete-time problem,
Eq. (3d), models the system's dynamics. The function

fk(Xi,Uk) on the fight-hand side is defined by the solution of

an initial value problem using the continuous-time system's

*The terms step and stage are used interchange,ably to refer
to one discrete-time interval.

C4

fferential equation, Eq. (ld). Defining x k(t) to be the

,ate between sample times q, and t,_, it is the solution of

the following initial value problem,

x k =/Ixk(t),%,t] (4a)

xk(tk) = x k (4b)

withthecontrolheldfixedatuk fortheinterval.Given that

Eqs.(4a)and (4b)definexk(t),the discrete-timedynamics
functionisdefinedas

fk(Xk,U0--=xk(tk+t) (5)

A consistentdefinitioncan also be made of the

summand in the discrete-timecost,Eq (3b). Given the

definitionofxk(t)inEqs.(4a)and (4b),thesummand is

tk+l

I-_(Xk,Uk) - JL[xk(t),uk,t]dt (6)

tk

Equations (4a)-(6) ensure that the discrete-time cost in
Eq. (3b) and the discrete-time dynamics in Eq. (3d) exactly
model their continuous-time counterparts, Eqs. (lb) and
(ld). Equations (3b) and (3d) accurately model the effect of
the zero-order hold on Eqs. (lb) and (ld). This modeling
'o,chnique is borrowed from Ref. ! 3.

"- Note that the definitions in Eqs. (4a), (4b) and (6)
involve integration. The computer subroutines that

evaluatethefk(Xk,nk)and Lk(Xk,Uk)functionsuse numerical

integrationand user-suppliedcontinuous-timefunctions,

JIx(t),u(t),t]and L[x(t),u(t),t].Section2.5explainshow to

transform partialderivativesfrom continuous-time to

discrete-time in a way that is consistent with these
definitions.

The auxiliary continuous-time constraints in the
original continuous-time problem are sampled to produce
the auxiliary constraints of the discrete-time problem:

a%(xk,u k) - ae(Xk,Uk,q,) for k = 0 ... N-I (7a)

aik(Xk,U k) -=ai(Xk,Uk,tk) for k = 0 ... N-1 (7b)

Care must be taken so that the sample interval does not get
too long. Otherwise, the continuous-time constraints in
Eqs. (le) and (If) may get violated by significant amounts
in the interval between sample times.

The terminal constraints of the continuous-time

problem carry over directly to the discrete-time problem:

aeN(X_) -=aef(XN) (8a)

aiN(XN) -=aif(xN) (8b)

2.2. Transformation to Static Parameter

Optimization Problem Form.

The problem in Eqs. (3a)-(3h) is in a dynamic
programming form. It has a special structure that can be
used to develop an efficient algorithm. Nevertheless, this
section transforms the problem into a general static
parameter optimization form. This is done to simplify
notation during the subsequent discussion of the overall
nonlinear programming solution procedure, sections 2.3 and
2.4. Later, in sections 2.5-2.7, the special structure will be
discussed to show how efficiency and parallelism can be
achieved.

In static form, the problem becomes

fred: _, (9a)

to minimize: J(x) (9b)

subject to: ce(x) = 0 (9c)

ci(x) -< 0 (90")

where the parameter vector x is defined in Eq. 3a. It is a

long vector that contains the entire discrete-time control and
state time histories. The cost in Eq. 9b is defined by the
cost in Eq. 3b.

The equality constraint in Eq. (9c) has many rows. It
includes the state difference equations and the auxiliary
equality constraints for stages 0 through N-l, Eqs. (3d) and
(3e), and the terminal equality constraint, Eq. (3g):

I a_(x°'u°) 1
f0(Xo,Uo)-x_

ae1(xl,u0

L a_.l(XN._,U_.)
fN.I(XN.I,UN.I)-x N

aeN(XN)

0o)

The inequality constraint in Eq. (9d) also has many
rows. It includes the auxiliary inequality constraints for
stages 0 through N-l, Eq. (3f), and the terminal inequality
constraint, Eq. (3h):

C5

ci(x) =

- aio(Xo,Uo) -

ail(xl,ut)

aiN.t(xN.l,uN.l)

_ ais(XN) _

(11)

2.3. An Augmented Lagrangian Nonlinear
Programming Algorithm.

The augmented Lagrangian algorithm is a standard
nonlinear programming algorithm for dealing with
nonlinear constraints [14,15]. Normally, the augmented
Lagrangian method solves a series of unconstrained
minimizations. Each unconstrained minimization works on

a penalty function that includes linear and quadratic penalties
of the constraint violations. The linear terms arise from

guesses of the constraint multipliers, and they allow the
algorithm to achieve exact constraint satisfaction with finite
penalty weights on the quadratic terms. After each
unconstrained minimization, the algorithm corrects its
guesses of the constraint multipliers in order to improve the

degree of constraint satisfaction.

The augmented Lagrangian algorithm used in this paper
formulates the problem in terms of slack variables, which
get penalized. The slack-variable augmented Lagrangian
algorithm solves a series of sub-problems of the form

find: x, _, and 0 i (12a)

h T +T +
<o minimize: J(X)+_'flet).e+7[Oi] [0i] (12b)

subject to: Ce(X) - x/-h-)p fie + (1/0) _ = 0 (12c)

ci(x)- "wrap + (i/p) = 0 (l l)

where the parameter vector x, the cost function J(x), and

the constraint functions Ce(X) and ci(x) have been defined

in section 2.2. The vector _e contains the slack variables

for the equality constraints, and Oi contains the slack

variables for the inequality constraints. The scalar constant
h is arbitrary and is included to enhance numerical stability.

The scalar p is a penalty weight. The vectors A_e* and A__i*

constitute the guesses of the multipliers for the equality and
the inequality constraints, respectively.

The []+ symbol in Eq. (12b) is an operator that takes a
vector input and produces a vector result in which all of the
nonpositive elements have been replaced by zeros. This

operator allows the inequality constraints' slack variable
penalty terms to penalize only positive constraint
violations.

A more traditional augmented Lagrangian algorithm
arises when Eqs. (12c) and (12(t) are used to eliminate the
slack variables from the cost. The resulting cost function is

called the augmented Lagrangian function:

lit ,

J ,,g(x ,Ai = J(x)

+ +
+ L

The traditional augmented I-allan algorithm performs a
series of unconstrained minimizations of the this function

with respect to x. Our reasons for preferring the

formulation in Eqs. (12a)-(12d) to this formulation centers

around algorithm numerical stability issues for large p,
which are discussed in Ref. 12.

The solution to the augmented Lagrangian sub-problem

is the solution of the original problem when the multiplier
guesses are correct. More specificaUy, if the multiplier
guesses in Eqs. (12c) and (12d) are the Kuhn-Tucker
multipliers associated with a local minimum of F.,qs. (9a)-

(9(1), and if 13 is large enough, then a corresponding local

minimum occurs in Eqs. (12a)-(12d). One can see this by
comparing the first-order necessary conditions for the two
problems.

The multiplier guesses act as biases on the conswaints

in Eqs. (12c) and (12d). They cause the slack variables to
be nonzero when the constraint functions are zero. In effect,

they bias the penalties associated with the slack variables so
that a nonzero penalty can occur when a constraint is
exactly satisfied. This feature allows the minimum of the

augmented Lagrangian function to occur at a value ofx that

yields zero constraint violation. This is true even for a

finite penalty weighting, p.

The main difficulty of the augmented Lagrangian
algorithm is to determine the correct multipliers. The
following algorithm has been proved to be globally
convergent under appropriate assumptions [15]:

Augmented La_m-anoan Outer-Lop v Iteration

1. Start with guesses A,*, &.i*, and p. Set k = 0 and

IIc(0)llo. _- oo. Be sure &i* > 0.

J 'x, * *2. Minimize aug(;&e ,&i ,P) with respect to x to find

x(_* At*,13).

C6

4. If Ilcllo. > 1_0 Ic(k)ll_o set p = 100p and go to step 2.

5. Setk=k+ landc (k)=c.

6. Set Ai* = Ai* + pc and go to step 2.

The critical steps of this algorithm are steps 2, 3, 5,
and 6. They form an iteration that feeds back constraint
errors from step 3 to update multiplier estimates in step 6,
which, in turn, affect the constraint violations that will

result after the next minimization in step 2. This

"feedback" has been proved to be stable for large enough p,

and its rate of convergence is adjustable through p, which is

why step 4 appears in the algorithm. The algorithm starts
with initial multiplier guesses of 0 and successfully
estimates the correct multipliers via this technique.

The most expensive part of the algorithm is step 2.
The algorithm completely solves the sub-problem in Eqs.

(12a)-(12d) for each iteration of step 2. A technique akin to
sequential quadratic programming is used to solve this sub-

problem. Fortunately, after the first iteration of the main
augmented Lagrangian outer-loop, a good first guess to the

"-- sub-problem of step 2 is usually available. In this case the
algorithm used in step 2 requires very few iterations,
sometimes just one.

Another important point about step 2 is that the sub-

problem can be ill-posed if p is not large enough. The

problem may have an infinite minimum or it may have a

minimum at x = _. Reference 12 describes a method of

detecting difficulties and increasing p when necessary.

An initial feasibility portion of the algorithm has been
included as a further precaution to help ensure convergence.
The algorithm performs an initial step-2 minimization with
only the norm of the constraint violations for a cost

function. The original cost function, J(x), is not

considered. This step-2 minimization iterates until the
maximum constraint violation is brought down below some
user-specified tolerance. The Newton search directions
during these iterations may be under-determined because
there are fewer constraints than problem variables. The
feasibility algorithm uses the minimum-norm search
direction to resolve any such ambiguity. After this
feasibility portion has been carried out, the algorithm
initializes multiplier guesses at 0 and proceeds to step 1.

2.4. Sub-Sub-Problems in the Augmented
Lagrangian Algorithm.

._ The second step of the outer-loop of the augmented
Lagrangian algorithm is solved by a method that is like the

method of successive quadratic programs (SQP). The basic
SQP method guesses a solution and then expands the cost
and constraints about the guessed solution in a Taylor series
to create a quadratic program (QP) sub-problem. The cost
gets expanded out to quadratic teams, and the constraints get
expanded out to linear terms. This sub-problem then gets
solved via a quadratic programming technique.

In this paper the SQP-like technique is being applied to

a sub-problem; therefore, each successive QP is a sub-sub-
problem of the overall augmented Lagrangian algorithm.
The sub-sub-problem solved here uses quadratic
approximations of both the cost and the constraints in Eqs.
(12a)-(12d). In addition, it includes box trust region
bounds. The sub-sub-problem is

find: Ax, A_, and AOi (14a)

to minimize:

Jsub = 2 AxTHAx + gTAx

T
h

+T

h + + ei]+ (14b)

subject to: AeAX +)2AXTBeAX " "_p A0.e = 0 (14(:)

AiAX + 2AxTBiA_, " _ A_=0 (14(:I)

-A_,bo x < AX _.< AXbox (14e)

where AX, Afle, and A0i are increments to the corresponding

quantities in Eqs. (12a)-(12d). The matrix II is the Hessian

of the cost function J(x), and g is the gradient of J(x). The

matrices Ae and A i axe the Jacobians of Ce(_,) and oi(x),

respectively, and the 3-index tensors Be and Bi are the

second derivatives of Ce(X) and ©i(x), respectively. The

vector Ve = ©e + (Up)A,-*, and the vector ci - ci + (l/p)Ai*.

The vector AXbox contains the box trust region limits on

the increments Ax. The guesses of lle and _.i are selected so

that Eqs. (12c) and (12d) are satisfied. That is why Eqs.

(14c) and (14d) are satisfied for Ax = A_ = Afli = 0.

In order to solve the sub-problem in step 2 of the outer-
loop augmented Lagrangian algorithm, a sequence of sub-
sub-problems of the form in Eqs. (14a)-(14e) must be

solved until Ax -+ 0. For a well-posed sub-problem, this

sequence of sub-sub-problems can be made globally
convergent by adaptive selection of the box trust region size

AXbox [15].

C7

The sub-sub-problem in Eqs. (14a) - (14e) is, itself,
difficult to solve. If the quadratic terms in the constraints
were not included, i.e., if Be = Bi = 0, then the problem

would be a piecewise quadratic program with continuous
t-u'stderivatives. It would be solvable in a finite number of

operations by a QP-type technique. The addition of the
constraint curvature terms makes the problem piecewise
quartic, and no algorithm exists that can exacdy solve it in
a fintie number of steps. It must get solved iteratively.

The complication of constraint curvature has been added
to this sub-sub-problem in order to reduce the number of
sub-sub-problem solutions [Eqs. (14a)-(14e)] needed for a
sub-problem solution [Eqs. (12a)-(12d)]. This happens
because the sub-sub-problem provides an accurate model of

the sub-problem for a larger range of A_,, which speeds the

convergence rate remote from the solution. This reduces the
number of times that first and second derivatives need to get
calculated to set up the sub-sub-problem, which is
important because these derivatives are computationally
expensive. They involve numerical integration to do
transformations from continuous-time to discrete-time, and

the number of derivatives is large, on the order of the

number of discrete-time steps.

The solution procedure for the sub-sub-problem in Eqs.
(14a)-(14e) is, itself, an iterative technique. It guesses a

solution AXg, calculates a search direction, and does a line

search. The line searches use a piecewise-quartic merit
function with continuous-first derivatives. The

discontinuous-changes in the higher derivatives occur when
inequality constraints change from active to inactive or vice
versa. Constraint activity changes occur when an element

of the vector in the expression []+ changes sign.

The search direction calculations for this sub-sub-

problem involve solution of an equality-constrained

quadratic program. This is accomplished by some matrix
factorizations that are used to implement the null space

method of quadratic programming [14]. First, a right QR
factorization is performed on a cons_'aint Jacobian mamx of
the form

I Ae -q-f_ I 0 1
Aia 0 - "f_ I (15)

Ebox 0 0

The matrix Aia isthe Jacobian of the activeinequality

constraints,the constraintscorrespondingto nonnegative

values of A_ + _ di. The mamx Ebox corresponds to

active box trust region constraints. For a trajectory

optimization problem all of these matrices are large, but
they are also sparse and structured.

The algorithm must then determine the projected
Hessian and factorize it. The orthogonal transformation

from the QR factonzation is used to transform the original

Hessian matrix to determine the projected Hessian. The
original Hessian takes the form

0 hi 06)

0 0

Each of the matriceswillbe large,and H willbe block

diagonal for a trajectoryoptimizationproblem. After
transformation,the last factorizationis a Cholesky

factorizationoftheprojectedHessian.

These factorizationsare used to calculatea search

direction,and a linesearchisperformed.The meritfunction

used in the line search is the augmented Lagrangian function
associated with the sub-sub-problem in Eqs. (14a)-(14e):

Jaug = 1_A%THA x + gTAx

P t + 2 AW'TBeAW" } T

{_e + AeAX + 1AXTBeAX }

+_[Ci + AjAX +IAxTBiAx] +T

l +
[_i + AJAX+ _-Ax,TBiAx] (17)

The foregoing discussion has been in terms of a gengral
parameter optimization framework. This has been don¢ for
the sake of notational convenience, but the actual algorithm

has been specialized to the dynamic programming problem
structure in Eqs. (3a)-(3h). This is necessary for efficiency

and parallelism. The most time-consuming parts of this
algorithm are the calculation of derivatives to set up the
sub-sub-problem, the factorization of matrices at each search
step of the sub-sub-problem, and the calculation of the
augmented Lagrangian function during line searches for the
sub-sub-problem. The next three sub-sections explain how
parallelism and the special dynamic programming problem
structure can both be exploited to speed the algorithm steps
described in this sub-section.

2.5. Derivative Calculations.

The sub-sub-problem in Eqs. (14a)-(14e) has various
vectors and matrices that are first or second partial

derivatives of functions from the problem in Eqs. (12a)-
(12d): g, H, Ae, Be, Ai, and B i. For trajectory

optimization, the problem functions in Eqs. (12a)-(12d) are
defined in terms of discrete-time problem functions from

Eqs. (3a)-(3h). This sub-section shows how the discrete-
time problem functions' derivatives can be determined from
the continuous-time problem functions' derivatives, and it
presents an efficient means of parallelizing these derivative
calculations. The parallel derivatives scheme is almost
identical to that developed by Betts and Huffman [9], except

C8

that it operates on a different discretization of the
_ntinuous-time problem. Their idea is extended to include

_nd derivative calculations via finite differencing.

Discrete-Time Derivatives from Continuous-Time

_. The algorithm assumes that first partial

derivatives with respect to x and u of the continuous-time
problem functions in Eqs. (la)-(lh) are available. Second
partial derivatives may also be available, or they may be
estimated by finite differencing of the first derivatives.

Given this information, the partial derivatives of most of
the discrete-time problem functions in Eqs. (3a)-(3h) are
known. The only two functions whose partial derivatives
aredifficulttocalculateare fk(Xk,Uk) and Lk(Xk,Uk).

Reference 13 explainshow to differentiatethesetwo

functions with respect to theirarguments. First,one

differentiatesEqs.(4a)and (4b)withrespecttotheargument

toget an initialvalueproblem forthe partialderivativeof

xk(0 with respect to the argument. Suppose one wants the

derivative with respect to u k. Then the partial derivatives of

Eqs. (4a) and (4b) yield

F _
• L auk j

axk(q)
- 0

auk

+ 0O_'uIlx_(t),uk.t]

(18a)

(18b)

""which is a nonhomogeneous linear time-varying matrix

initial value problem for axk(t)/auk, the control

effectiveness matrix. To finish determining the partial
derivative of fk(Xk,Uk), one differentiates Eq. (5):

af k axk(tk+l)

3u"'_"- aU_ (19)

The partial derivative of Eq. (6) finishes the calculation for

ta(xk,uk):

tk+ 1

_L
ra __Lw.l d';; f Lau.] ÷

tk

(20)

First partial derivatives with respect to xk are calculated in a

similar manner.

If Eqs. (4a), (6), (18a), and (20) are all integrated
simultaneously with a Runge-Kutta algorithm, then

truncation errors enter the calculations in a consistent way.
This translates into the following fact: the derivatives
calculated numerically in Eqs. (19) and (20) are the exact

_ derivatives, neglecting round-off error, of the numerical-

integration approximations of the functions in Eqs. (5) and
(6). In other words, the computed derivatives are consistent
with the computed functions. This is important to
numerical optimization. It guarantees that, in the
computer, the sub-sub-problem in Eqs. (14a)-(14e) is
locally an accurate approximation of the sub-problem in
Eqs.(12a)-(12d).

Second derivativesarecalculatedina similarway [13].

Equations (18a)-(20) (or theira/axk equivalents)are

different/atedonce more. Thisresultsina nonhomogencous

lineartensorinitialvalue problem, which can be solved

numerically.

ParallelDifferentiation.For each iterationinstep2 of

the main augmented Lagrangian algorithm,a sub-sub-

problem ofthe form inEqs. (14a)-(14e)must be setup and

solved.Sub-sub-problemset-uprequiresderivativesofall
of the functionsateach stageof thediscrete-timeproblem

[Eqs. (3a)-(3h)]. The cost gradient g in Eq. (14b) is

composed of the gradientsof _(Xk,Uk) fork = 0.....N-I

and thegradientof V(xN).The costHessianH inEq. (14b)

iscomposed ofthe HessiansofLk(Xk,Uk)fork = 0.....N-I

and the Hessian of V(x_). The equality constraints'

Jacobian matrix A s in Eq. (14c)iscomposed of identity

matrices,theJacobiansof fk(Xk,Uk) and a_k(Xk,Uk)fork = 0,

....N-I, and the Jacobian of acrc(XN). The equality

constraints'second derivativetensor Bc in Eq. (14c) is

composed of thesecond derivativetensorsof fk(Xk,Uk)and

a_(Xk,Uk) for k = 0.....N-I, and the second derivative

tensorof a_N(xN). The inequalityconstraints'Jacobian

matrix A iin Eq. (14d) iscomposed of the Jacobiansof

ai(xk,Uk)fork = 0.....N-I, and the Jacobianof aiN(xN).

The inequality constraints' second derivative tensor B i in Eq.

(14d) is composed of the second derivative tensors of

a_(xk,u),) for k = 0 N-l, and the second derivative

tensor of aiN(XN).

Thus, first and second partial derivatives of the
following functions must be calculated for each stage:

Lk(Xk,Uk) , fk(Xk,Uk), ack (Xk,Uk) , and aik (Xk,Uk). This isa

time-consuming operation because of the numerical
integration required to transform from continuous-time to
discrete-time and because of the numerical differentiation

required to calculatesecond derivatives.

The derivative calculations that get carried out at one

stage are independent of the derivative calculations that get
carried out at any other stage. Therefore, these operations
can be done in parallel for different stages. If the number of
stages equals the number of processors, then each stage's
derivatives can be computed on a separate processor. If the
number of processors is fewer than the number of stages,
then each processor can compute the derivatives for several

C9

stages. A speed-up factor of p can be obtained on p
processors for this part of the algorithm if the number of
problem stages, N, is an integer multiple of p and if each
stage requires an identical amount of derivative calculation
time.

No message passing needs to occur during this process:
therefore, no bottlenecks can occur. Nevertheless, one must

be careful about which processors calculate derivatives for
which stages. The results of the derivative calculations are
used by a special parallel matrix factorization algorithm.
That algorithm requires that the derivative information be
distributed over the nodes of a binary tree in a particular way
in order to expedite its message passing. The parallel
factorization algorithm is described in Ref. 12.

For a 24 stage problem (N = 23) running on an 8-node
processor each proces,_r could calculate the derivatives for 3
stages. Figure 2 shows the 8 processors with a binary tree
connection topology. The numbers next to the processor
nodes show a distribution of problem stages for parallel
derivative calculation. This distribution is consistent with

the factorization algorithm of Ref 12.

0,1,2

,13,14

9.10,11 3,4,5 15,16.17 21,22,23

Fig 2. Node Locations of Derivative
Calculations for Each Stage of a 24-Stage

Problem Run on 8 Processors.

2.6. Parallel Linear Algebra.

The current algorithm uses matrix factorization to
determine a search direction. This is equivalent to solving
the linearized statedadjoint boundary value problem that

arises in calculus-of-variations-based numerical trajectory
optimization algorithms [111. The matrix
factorizations41inear algebra associated with Eqs. (15) and
(16) can be time consuming because the matrices are large.
Furthermore, these factorizations may get carried out one
hundred or more times during one trajectory optimization;
one complete factorization is performed for each search step

in a sub-sub-problem. Therefore, the algorithm makes use
of parallelism and the special dynamic programming
problem structure to expedite these factorizations.

All of the matrices in Eqs. (15) and (16) are sparse
(have many zero entries), and their nonzero elements fall
into a block structure. Their structures are

X x
H= X

0 '.

-X

X X

X

Ae= X X

X

- 0

[XxAi a = X

0

IXxEbox = X

0

0

0

°.°

0

°,.

m

]
]

(21)

(22)

(23)

(24)

where the X's indicate nonzero blocks. The blocks are not

necessarily square, except for the blocks of the H matrix.
Each column of the above block structures corresponds to a
different discrete-time stage. The Ae matrix is the only one

with coupling between the stages. This is known as the
"staircase" structure of dynamic programing, and it arises
from the linearizations of the difference equations [Eq. (3d)].

The special matrix factorizations used by this algorithm
are described in Ref. 12, and related factorizations are

described in Ref. 11. The factorizations amount to a special
domain-decomposition t of the null space quadratic
programming technique. They can factorize the matrices in

wall clock time that is order O{n3[(N/p) + Log2p]} for an

,,i-stage problem running on p processors with a block size
n. The factorizations have additional beneficial

pwperties. They can check the 2nd-order sufficiency
conditions for optimality, they can detect directions of
negative curvature, and they can ensure that the search
direction is a descent direction for the augmented Lagrangian
function.

2.7. Parallel Constraint and Merit Function
Evaluations.

The functions ce(x) and ci(x) must be evaluated to set

up the sub-sub-problem in Eqs. (14a)-(14e). Furthermore,

* Domain decomposition is a paraUelization technique that

divides the problem into smaller problems, solves them,
and then aggregates the problems.

CIO

augmented Lagrangian functions must be evaluated at two
_ints in the algorithm. The augmented Lagrangian

-_uncuon in Eq. (17) is used as a merit function during the
line searchesthat seek a solution to the sub-sub-problem in
Eqs. (14a)-(14e). The augmented Lagrangian function in
Eq. (13) is used as a merit function to evaluate and adapt the
L1 trust region size. Some of these function evaluations

involve numerical integration. All involve a number of
operations that goes as the number of discrete-time problem
stages.

These operations can be expedited by a stage-wise
splitting of the evaluation of components. The calculation
of Ce(X) and ci(x) paraUelizes in the same manner as the

derivative calculations parallelize (see section 2.5).

Evaluation of fk(Xk,Uk),a,,, (Xk,Uk),and aik(Xk,Uk)for all of

the stages constitutes evaluation of Ce(X) and ci(x) [see

Eqs. (10) and (11)], and these functions can be evaluated for
different stages simultaneously on different processors.

The augmented Lagrangian function in Eq. (13) can be
rewritten as a sum over all of the discrete-time problem
stages of a stage-wise augmented Lagrangian function.

, , N

Jaug(X;Ae,Ai ,P) = '_ Jaugk

k,,O

(25a)

where

Jaugk = Lk(Xk.Uk)

1+ fk(xk,Uk) - Xk+1 + (l/p)_ k

Xk,Uk)- Xk+1 + (i/p)_, k

+ _/aek(xk,uk) + (1/p)l_k_

fork=0 N-1

(25b)

Jaug N = V(xN)

+ aeN(x_) + (I/P)KeN

(aeN()XN + (1/P)ht_N)

: l +T

["TaiN(X N) + (l/0)t-t,i N (25c)

Equations (10) and (11) have been used to replace ce(x) and

vi(x) by their discrete-time problem component functions.

The multiplier guess vectors h0*, hl', h2* and 1/_*,

l,t,.l*, 1,k¢2".... are the components of the large equality-

constraint multiplier guess vector A_*, and the multiplier

guess vectors gi0*, gil*, gi2" are the components of

the large inequnlity-constraint multiplier guess vector Ai*.
A similar breakdown can be made for the discrete-time form
of Eq. (17).

The parallel computation of the augmented Lagrangian
function in Eq. (25a) first computes the component
functions, Jaug k, in parallel. Each component function can

be computed on a separate node, or if there are fewer nodes
than problem stages, each node can compute the augmented
Lagrangian components for several stages. Figure 2 shows
a sensible distribution of component function calculations
when solving a 24-stage problem in 8 processors. The only
message passing that will be required during this first part
of the calculation will be to send the value of Xk÷1 tO the

node that is calculating Jaug k for those values of k where

this is necessary (for k = 2, 5, 8, 11, 14, 17, and 20 on Fig.
2). The computation of the component functions is the
most time-consuming part of the calculation, and it is
completely parallelizable.

The augmented Lagrangian calculation finishes by
summing the component functions in what is called a "fan-
in" on the binary tree. This can be illustrated in Figure 2
for the 24-stage problem. First, each node sums the
component functions for its three stages. Next, the 4 nodes
at the bottom of the figure send their sums to the node
above them in the tree. The four receiving nodes then sum
their 3-stage result with the received 3-stage result to
produce a 6-stage result. The process then repeats itself; the
2 nodes that are one row up from the bottom of the figure
send their sums to the node above them in the tree. This

process leaves some nodes idle for a fraction of the time,
but it constitutes a very small fraction of the time required
to calculate the augmented Lagrangian function. Therefore,
the augmented Lagrangian calculation is almost 100%
parallelizable.

During solution of the sub-sub-problem in Eqs. (14a)-
(14e) the algorithm does line searches to a univariate
minimum of the function in Eq. (17). This function is
piecewise quartic, and the univariate minimization procedure
needs to know the exact quartic function for a given line
search direction and interval of search length. This

Cll

calculation can be performed in a manner similar to the
calculation of the augmented Lagrangian function. In this
case, there is a binary fan-in to calculate each of the 5 terms
in the 4th-order polynomial.

The solution procedure for the sub-sub-problem in Eqs.
(14a)-(14e) also calculates quadratic approximations of

fk(Xk,Uk),aek(Xk,Uk),and aik(Xk,Uk). Parallel evaluation of

the quadratic approximations is performed in the same way
as parallel evaluation of the functions themselves (see
above). The solution procedure also needs to know when

the quadratic approximation of aik(Xk,Uk) + (l/p)l, kik*

changes sign during a line search. This signals a
discontinuity in the second derivative of the piecewise
quartic merit function and triggers calculation of new
coefficients of a 4th-order polynomial. The solutions of a
quadratic equation give the search step lengths at which the
inequality constraints change activity. These quadratic
equation solutions can be distributed over different
processors in the same stage-wise manner as depicted in
Fig. 2.

2.8. Review and Unification of Algorithm
Parallelism.

Sections 2.5-2.7 explain how to parallelize portions of
the trajectory optimization algorithm presented in sections
2.3 and 2.4. The parallel calculations have a recurrent
theme: split the calculations by stages. Figure 2 shows
how a 24-stage problem can be mapped onto 8 processors
for parallelization of the derivative calculations, the linear
algebra, the function evaluations, and the merit function
evaluation.

Information for a given stage resides on a single node,
as in Fig. 2, in the over-all algorithm. That node stores the

current guesses of x k, uk, hk*, tJ,ek*, and I_ik*. It evaluates

the functions fk(Xk,Uk), Lk(Xk,Uk), a_ (Xk,Uk), aik (Xk,Uk), and

Jaug k. It stores the search directions Axk and Au k, and it

updates the solution guesses of xk, uk,hk*, lick*, and I_ik*.

Each node communicates with other nodes only during
certain operations: matrix factorizations to determine the
search step, merit function calculations to check the box
trust region size, and line search calculations in the sub-sub-
problem of Eqs. (14a)-(14e). The algorithm uses one
"master" node. The master node does things like determine
the final line search length, and it synchronizes the other
processors so that each major and minor iteration of the
algorithm happens simultaneously on all processors. The
master node communicates with the other nodes in a "fan-

out" along the binary tree. In the example of Fig. 2, the
master node is the node at the top of the figure.

3. Performance of Algorithm Components.

The algorithm described in section 2 is still under
development. Two key components have been developed

and tested. One component is the augmented Lagranglan
nonlinear programming algorithm described in sections 2.3
and 2.4. The other component is the algorithm that does
parallel matrix factorizations to solve a QP for the search
direction, which is briefly described in section 2.6 and fully
described in Ref. 12. The performance of these components
is described in this section.

3.1. Augmented Lagrangian Algorithm
Performance in Test Problems.

A serial patametex optimization form of the augmented
Lagrangian algorithm has been encoded and tested. It has
been encoded in matlab and tested on an IBM PC-AT. This
section compares its performance to that of NPSOL version
4.02. Two questions are to be answered: is the algorithm
more likely to converge than NPSOL, and does the
algorithm converge in fewer iterations than NPSOL?

Each NPSOL iteration is one in which it calculates a
gradient, doe.s a BFGS quasi-Newton update to the projected
Hessian, solves a QP, and performs a line search. Each
augmented Lagrangian iteration is one in which it calculates
derivatives and solves the sub-sub-problem in Eqs. (14a)-
(14e). For dense parameter optimization on a serial
processor, an augmented Lagrangian iteration is more
expensive than an NPSOL iteration. The augmented
Lagrangian requires more gradients per iteration (to do a
discrete-Newton Hessian evaluation), it does multiple
matrix factorizations per iteration, and it does multiple line
searches per iteration. Nevertheless, iterations of the two
algorithms are compared on a one-to-one basis because the
augmented Lagrangian algorithm's iterations will be greatly
sped up when put into the trajectory optimization/parallel
processor framework.

The performance of the two algorithms is discussed on
a problem-by-problem basis for 5 different test problems.

Test 0roblem 1:

find:

to minimize:

subject to:

xl, x2 (26a)

J = - Xl - x2 (26b)
2 2

xI +x 2- 1 <0 (26c)

(Xl + 1)2 + x_ - 4 <_0 (260")

-2Xl + x2 - 2 _<0 (26e)

Both algorithms have been started from the same first
guess: (x 1, x2) = (2,0). This is an infeasible first guess,
and the Jacobians of constraints (26c) and (26d) are
degenerate at this point: they have linearly dependent rows.
The optimum is (.7071,.7071). NPSOL reaches it in 6
iterations, and the present algorithm reaches it in 1
feasibility and 5 optimality iterations. The two algorithms
are about equally fast on this problem.

Test problem 2:

C12

:nd: x 1, x2 (27a)

-to minimize: J = - x2 (27b)

subject to:
2 2

(Xl- 1)2+x 2+ 10000(x l +x 2- 1)2-.0625<0 (27c)

Both algorithms have been started from the same first
guess: (Xl, x2) = (0,.99). This is an infeasible first guess.

The constraint function has a deep curved valley whose

bottom also has a gentle slope. Only a narrow section at
the very bottom of a part of the valley is feasible. The first
guess is slightly up the wall of the valley and remote from
the feasible part. The optimum is (.9688,-.2480). NPSOL
quits without reaching the solution. It is not able to
achieve feasibility in 34 iterations, and it stops making
progress. The present algorithm reaches the solution after
52 feasibility and 25 optimality iterations. This test
problem was designed to have particularly difficult
constraint curvature. The curvature was enough to cause
NPSOL to fall. The present algorithm was slowed down,
but it eventually reached the optimum.

Test oroblem 3: find the minimum-area right triangle

that circumscribes a given circle [15].

f'md: Xl, x2, x3, x4

to minimize: J = XlX 2

(XlX3 + x2x4) 2
"-subject to: 2 2

x 1 +x 2

-Xl +x3+ 1 <0

-x2+x 4 +1<0

- x3 + x4 <0

-x4+l<0

(28a)

(28b)

2 2
-x 3-x 4+ 1 =0 (28C)

(9.80)

(28e)

(9.813

(28g)

Both algorithms have been started from the same first

guess: (Xl, x2, x3, x4) = (1,1,1,1). This is an infeasible

first guess. The optimum is (3.41,3.41,2.41,1). NPSOL
quits without reaching the solution. The present algorithm
reaches it after 3 feasibility and 16 optimality iterations.

Test oroblem 4: find the minimum-area right triangle

that circumscribes a given circle. Problem modeling differs
from test problem 3.

find:

to minimize:

subject to:

Xl, x2, x3, x4, x5, x6, x7 (29a)
1

J = _(x4- x2)(x3 - Xl) (29b)

(x4-x6)(x3-xl) - (x5-xl)(X2-X4) = 0 (29c)

x5 - XT(X4 - x2) = 0 (29d)

x6 - x7(x 3 - x 1) = 0 (29e)
2 2

-x 5-x 6+ 1<0 (29t3

x l+l<-0 (29g)

x2 + 1 < 0 (29h)

- xj <_0 for j -- 3,4,5,6,7 (29i)

Both algorithms have been started from the same first
guess: (x 1, x2, x3, x4, xs, x6, xT) -- (-2, -3, 6, 6, 6, 6, 6).

This is an infeasible first guess. The optimum is (-1, -1,
2.41, 2.41, .71, .71, .21). NPSOL quits without reaching
the solution. The present algorithm reaches it after 4
feasibility and 9 optimality iterations.

Test problem 5: find the minimum-fuel 2-burn

impulsive orbit transfer to go from equatorial
geosynchronous Earth orbit (GEO) to low Earth orbit with

a 28 ° inclination (LEO). This could be used by a space taxi
to plan a rendezvous with the National Aerospace Plane in
LEO after having ferried an astronaut out to GEO to fix a
communications satellite.

fred:

to minimize:

subject to:

m0, AVI, av, AV2 (30a)

J = m0 (30b)

Newton's laws for a spheric.a/Earth O0c)
Finite specific impulse of fuel (30d)

rLEO - er < rf < rLEO + _r (30e)

Vcire. - ev < Vf <_ Vcirc" + ev (30t)

-ey < yf <- +ey (30g)

28 °-e i < if < 28°+¢i O0h)

mernpty < mf (300

where the usual terminal equality constraints on the final
orbital elements have been replaced by the upper and lower
bounds on the terminal quantities rf (geocentric radius), Vf

(inertial speed), yf (flight path angle), and if (inclination) in

Eqs. (30e)-(30h). This has been done to make the problem
harder. The quantities m0 and mf are the initial and

terminal masses; their difference is the mass of the fuel

burned during the two impulses. The quantifies AVI and

AV 2 are the vector velocity changes during the two

impulses. The angle Av is the coast arc length between the
burns.

The effects of the decision quantities in Eq. 30a on the

terminal quantities in Eqs. (30e)-(30h) are calculated by
numerical integration of 6 coupled scalar equations of
motion of the system. These equations can be found in
Ref. 16. The formula for the mass change due to impulsive
thrusting is

p_- tIAV l II - IIAV2II_mf = m0 ex TCf " (31)

where Vf is the nozzle exit velocity of the fuel. Note that

Vf = gI, where g is the acceleration of gravity at the Earth's

surface and I is the specific impulse of the fuel.

Both algorithms have been started from the same first
guess, which satisfies all of the constraints except Eq.

C13

(30i). NPSOL reaches the solution in 9 iterations. The
present algorithm solves the problem in 6 feasibility
iterations followed by 22 optimality iterations. It is about
3 times slower than NPSOL. It gets near the solution
fairly quickly, in about 6 feasibility iterations and 9

optimality iterations, but it takes time to converge to the
correct multipliers and to determine a high enough value of

the penalty parameter, p.

NPSOL is about 3 times faster on this problem for the
given first guess, but it has trouble for a different first
guess. If the first guess value of m0 is increased to make

the first guess entirely feasible, then NPSOL fails to solve

the problem, which seems counter-intuitive. Failure occurs
because the cost has no curvature of its own lEq. (30b)].
When none of the constraints are active, the Lagrangian
function also has no curvature; its Hessian is zero. NPSOL

attempts to do a BFGS quasi-Newton update of a Hessian
approximation. This results in a divide-by-zero, and the
algorithm fails. Thus, NPSOL cannot handle linear
programs. The algorithm presented in this paper has no
such problems.

The forgoing results indicate that NPSOL is more
likely to have convergence problems than the algorithm of
this paper. We believe that the main reason for this is
because our algorithm first achieves feasibility. NPSOL
could be modified to do the same. It would probably be
slower, but its convergence would probably be more robust.
Another problem with NPSOL could be its merit function.
NPSOL is an SQP procedure. It is difficult to design a
merit function to ensure global convergence for an SQP
procedure when applying it to problems with nonlinear
constraints. This may explain NPSOL's failure on test

problem 2.

The present algorithm can also fail to converge. This
will happen if, during the feasibility phase, it reaches a
nonzero local minimum of the norm of the constraint

violations. Most algorithms would have difficulty in such
a situation. The way to avoid such situations is to make a
more reasonable first guess. Of course, a better first guess
would help NPSOL as well, but NPSOL's ability to

converge seems to be more sensitive to the choice of first
guess.

3.2. Performance of Parallel Algorithm for
Matrix Faetorizations and QP Solution.

The algorithm that performs parallel calculation of
search directions has been described in Ref. 12, where it is

tested on a problem that is like test problem 5 in section
3.1 above. The test problem in Ref. 12 performs the same
orbit transfer, but it uses aeromaneuvering and three

impulsive burns. A dynamic programming problem form
is set up similar to the form described in Eqs. (3a)-(3h).
The problem has 6 state vector elements and 3 or 4 control
vector elements at each stage. The search direction
algorithm has been tested on a linear-quadratic expansion of
the nonlinear problem about a guessed solution. Figure 3,

borrowed from Ref. 12, shows how the wall-clock time of

the algorithm varies with the number of processors and the
number of problem stages. It also shows results for a
backwards-sweep serial algorithm that solves the same
problem. The parallel algorithm executes 10 time faster
than the serial algorithm when solving a 128-stage problem
on 32 nodes of an INTEL iPSC/2 hypercube.

,..->

,-d

eo

e,
O

O'

"6

E 0 " " "" "'"I " " " "''''I " " " !

100 101 102 103

Number of Problem Stages

Fig. 3. Wall Clock Time to Solve for the
Search Direction as it Varies with Problem Size

and with Number of Processors.

4. Planned Developments (the LORD willing!).

The full algorithm is being developed to run on the
INTEL iPSC/'2 hypercube. C urrendy, the serial code for
augmented Lagrangian parameter optimization is being
translated from matlab code into FORTRAN code. We plan

first to implement the algorithm serially on one processor
of the hypercube. Afterwards we plan to replace the time-
consuming serial parts with the parallel algorithms
described in sections 2.5-2.7. Code that is borrowed from
Ref. 13 will be used, with minor modifications, to do the

parallel derivative calculations. The parallel linear search
solver is already running. The only part of the parallel code
that needs significant development is the parallel augmented
Lagrangian calculation portion, described in section 2.7.

The current plan is to develop the code to work with
generic problem function forms. This would allow a user
to rapidly change system models, cost functions, and
constraints. The specification of these functions would be

through user-written subroutines. The hope is that this
code will be accessible to a wide variety of applications

from different disciplines.

C14

5. Conclusions

A nonlineartrajectory optimization algorithm has been
developed. It has been formulated to run on a message-
passing parallel processor. Special care has been taken to
ensure convergence robustness. The algorithm solves a
discrete-time trajectory optimization problem, which results
from a continuous-time problem after a zero-order-hold
discretization of the control time history. Numerical

integration is used to complete the continuous-time to
discrete-time transformation. It has been designed to handle
both state and control constraints. The entire algorithm has

not, as yet, been fully encoded, but the most complex
portions have been encoded and tested.

The algorithm uses the nonlinear programming

technique known as the augmented Lagrangian algorithm.
The discrete-time problem form can be directly solved by
the augmented Lagrangian algorithm. The particular

augmented Lagrangian algorithm of this paper has been
specially tailored to increase the terminal convergence speed
and to handle extreme constraint curvature.

A serial parameter optimization form of the algorithm
compares favorably with NPSOL version 4.02. It has a
higher likelihood of converging from a given initial guess
than NPSOL: NPSOL failed to work on more than half of

the test problems, but the present algorithm worked on all

of them. The present algorithm converges as quickly as
NPSOL on one test problem, but has run as much as 3

"-" times slower on another.

The algorithm has been designed to paraUelize its most
time-consuming parts. Function and derivative
calculations, search direction calculations, and merit
function calculations can all be parallelized on a stage-wise
basis. Information about a particular problem stage always

resides on a single node. The solutions for stages on
different nodes affect each other only in two ways: through a
special parallel routine that calculates a global search
direction and through the limit to the search length as
determined by a global merit function. The global search
direction routine operating on 32 processors has achieved a
speed-up factor as large as 10 over the best known serial
algorithm. The other parallel portions should have speed-up

factors approaching the number of processors.

Acknowledgement

This research was supported in part by the National
Aeronautics and Space Administration under grant no.
NAG- I- 1009.

1 .

References

Hardtla, J.W., "Gamma Guidance for the Inertial Upper
Stage", Proceedings of the AIAA Guidance and
Control Conf., Aug. 7-9. 1978. Palo Alto, CA, pp.
357-362.

2. Breakwell, J.V., "The Optimization of Traj_tories," J,
Soc, Indust, Appi. Math., Vol. 7, 1959, pp. 215-
247.

3. Bryson, A.E. and Ho, Y.C., Applied Optimal
Control, Hemisphere Publishing, (Washington, D.C.,
1975).

4. Kelley, H.J., "Method of Gradients," Optimization
Techniques. G. Leitmann, ed., Academic Press, (New
York, 1962), Chap. 6. pp. 206-254.

5. Miele, A., Pritchaxd, R.E., and Damoulakis, J.N.,
"Sequential Gradient-Restoration Algorithm for Optimal
Control Problems," Journal of Optimization
Theory and Applications, Vol. 5, 1970, pp. 235-
282.

6. Yakowitz, S.J., "The Stagewise Kuhn-Tucker Condition
and Differential Dynamic Programming," IEEE Trans.
Auto. Cont,, Vol. AC-31, 1986, pp. 25-30.

7. Hargraves, C.R., and Paris, S.W., "Direct Trajectory
Optimization Using Nonlinear Programming and
Collocation," Journal of Guidance, Control, and
Dynamics. Vol. i0, No. 4, July-Aug. 1987, pp. 338-
342.

8. Feeley, T. and Speyer, J.. "Techniques for Developing
Approximate Optimal Advanced Launch System
Guidance", Proceedings of the 1991 American
Control Conf., June 26-28. 1991, Boston. pp. 2238-
2243.

9. Betts, J.T. and Huffman, W.P., "Trajectory Optimization
on a Parallel Processor," Journal of Guidance,
Control, and Dynamics. Vol. 14, No. 2. March-
April 1991, pp. 431-439.

i0. Wright, S.J., "Solution of Discrete-Time Optimal
Control Problems on Parallel Computers," Report No.
MCS-P89-0789, Argonne National Lab., Chicago,
Illinois. July, 1989. (To appear in Parallel
Computing.)

II. Psiaki, M.L. and Park, K., "A Parallel Solver for

Trajectory Optimization Search Directions", Nov. 1990.
(to appear in the Journal of Optimization Theory
and Applications).

12. Psiaki, M.L. and Park. K., "Trajectory Optimization on a
Hypercube via Step-Wise Parallelism". Presented and
disu'ibuted at the 1991 American Control Conf.. June
26-28, 1991, Boston, MA.

13. Psiaki, M.L., "Control of Flight Through Microburst
Wind Shear Using Deterministic Trajectory
Optimization," Ph.D. Thesis, Princeton University,
October, 1987.

14. Gill, P.E., Murray, W., and Wright, M.H., Practical
Optimization, Academic Press, (New York, 1981).

15. Fletcher, R., Practical Methods of Optimization,
2rid Ed., J. Wiley and Sons, (New York, 1987).

16. Miele, A., and Lee, W.Y., "Optimal Trajectories for
Hypervelocity Flight", Proceedings of the 1989
American Control Conference, June 21-23, 1989,
Pittsburgh, pp. 2017-2023.

C15

AppendixD

Specificationsfor problemmodelencoding

Examplecodefor theminimum-timeproglem.

D1

User-Defined Input Arguments to the Host Machine Multi-Processor

Trajectory Optimization Program (MTOP)

Note: All arguments must be dimensioned and typed in the FORTRAN 77 calling program

exactly as dimensioned and typed in the definitions below.

1. Problem size/dimension specifications:

N The INTEGER*4 SCALAR stage number of the terminal

stage. The initial stage is number 0; so, there are N+I stages

in total.

NUVEC(O:N) The INTEGER*4 ARRAY that specifies the number of

controls at each stage (e.g., NUVEC(K) is the number of

controls at stage K). It is permissible for this number to be

zero for some stages.

NXVEC(0:N) The INTEGER*4 ARRAY that specifies the number of

states at each stage (e.g., NXVEC(K) is the number of states

at stage K). It is not permissible for this number to be zero

for any stage except stage 0. Such a problem would better

be solved as two seperate trajectory optimization problems.

If NXVEC(K) ;_ NXVEC(K+ 1), then the dynamic transition

from stage K to stage K+ 1 must be defined by an algebraic

discrete-time function (see the discussion of the FLFNCT

function in section 5). An algebraic discrete-time state

transition function will be signalled by setting IDT(K)=I, as

discussed in section 3.

D2

NECVEC(0:N)

NICVEC(0:N)

NUMAX

NXMAX

NCMAX

2. Initial guessof solution:

UO(1:NUMAX,0:N)

The INTEGER*4 ARRAY that specifies the number of

auxiliary equalityconstraintsof theform Ck(Xk,Uk,tk) = 0 at

each stage. It is permissible for this number to be zero for

some stages.

The INTEGER*4 ARRAY that specifies the number of

auxiliary inequality constraints of the form Ck(Xk,Uk,tk) <--0

at each stage. It is permissible for this number to be zero for

some stages.

An INTEGER*4 SCALAR that is used in dimensioning

arrays that store control vectors. It must be true that

NUMAX >_ NUVEC(K) for all K = 0 N.

An INTEGER*4 SCALAR that is used in dimensioning

arrays that store state vectors. It must be true that NXMAX

> NXVEC(K) for all K = 0 N.

An INTEGER*4 SCALAR that is used in dimensioning

arrays that store auxiliary equality and inequality constraint

vectors. It must be true that NCMAX >_

NECVEC(K)+NICVEC(K) for all K = 0 N.

The REAL*8 ARRAY that contains the initial guess of the

optimal control time history. Note that U0(J,K) will be

ignored for J > NUVEC(K).

D3

X0(1:NXMAX,0:N)

3.Problemmodelling:

IDT(0:N)

The REAL*8 ARRAY that containsthe initial guessof the

optimal state time history. Note that X0(J,K). will be

ignoredfor J > NXVEC(K). Theinitial stateguessneednot

satisfy the dynamic equationsdefined in the subroutine

FLFNCT of section5 of thisdocument,normustthe initial

guess satisfy the auxiliary constraints defined in the

subroutineCFNCT of section 6 of this document. The

optimizationprocesswill forcethefinal solutiontrajectoryto

obeythedynamicequationsandtheauxiliaryconstraints.

Note that X0(I:NXVEC(0),0) constitutesthe state vector

initial conditionof the trajectoryoptimizationproblem. It

will notbealteredby thetrajectoryoptimizationalgorithm.

This INTEGER*4 ARRAY tells the algorithmwhetherthe

user-suppliedFLFNCT function, defined below and in

section5, returnscontinuous-timefunctionsthat definethe

right-hand-sideof thestatedifferentialequationandthecost

integrandfor stageK, or discrete-time state transition and

cost functions for stage K.

IDT(K) = 0 implies continuous-time stage-K dynamics and

cost of the form:

Dynamics: x = fk(x,u,t)

Stage cost:

tk+l

_ Lk(x,u,t) dt
tk

D4

T(0:N)

IDT(K) = 1 (or any nonzero integer) implies discrete-time

stage-K dynamics of the form

Dynamics: Xk+ 1 = fk(Xk,tlk,tk)

Stage cost: Lk(Xk,Uk,tk)

The algorithm ignores IDT(N), the stage N value, and

assumes that a value of 1 applies. This lets it call FLFNCT

to determine the terminal cost. No state transition function

or differential equation function is needed at the terminal

stage.

This REAL*8 ARRAY gives the values of the problem's

independent variable (normally called time) at the different

stages, i.e., X0(:,K) is the state vector initial guess for time

T(K). For free end time problems, one must model the real

time as a function of an artificial problem time whose end

value is fixed. The vector T(0:N) stores the artificial

problem time values. In this case, the rate of change of real

time with respect to problem time will usually be a function

of the controls and, perhaps, the states as well. The real

time may need to get modelled as an extra state. The

elements T(0:N) must not decrease as K increases. If a stage

is modelled as a discrete-time process, if IDT(K) = I (or

anything other than 0), then T(K+I) = T(K) is permissible.

Otherwise, if the stage is modelled by a continuous-time

process [IDT(K) = 0], then T(K+ 1) > T(K) is required. In

D5

FLFNCT

CFNCT

this latter case,T(K+I)-T(K) is the time interval usedfor

numericalintegration.

The nameof auser-suppliedSUBROUTINEthatcalculates

the functions fk(x,u,t) and Lk(x,u,t), which define the

dynamicsandcost at stageK. This subroutine also must

calculate the first partial derivatives of these functions with

respect to the state vector, x, and the control vector, u.

Section 5 gives detailed specifications for the correct design

of this subroutine.

The name of a user-supplied SUBROUTINE that calculates

the function ek(x,u,t), which defines the auxiliary equality

and inequality constraints at stage K. Regardless of whether

the stage is a continuous-time stage or a discrete-time stage,

these constraints are enforced only at the beginning of the

stage

cki(xk,uk,tk) = 0 for i = 1..... NECVEC(K)

and

cki(xk,uk,tk) <_0 for i = [NECVEC(K)+ 1]

[NECVEC(K) +NICVEC(K)]

The first NECVEC(K) elements of the ck constraint vector

are equality constraints, and the last NICVEC(K) elements

are inequality constraints.

D6

4. Algorithracontrol:

KRK(I:2,0:(N- 1))

ISECGR(0:N)

TheCFNCTsubroutinealsomustcalculatethe tin'stpartial

derivativesof theek(X,U,t)function with respectto thestate

vector,x, andthecontrol vector,u. Section6 givesdetailed

specificationsfor thecorrectdesignof this subroutine.

This INTEGER*4ARRAY containsquantitiesthat control

the algorithm and number of steps used for numerical

integrationof the continuous-timesegments,the segments

for whichIDT(K) = 0. If KRK(1,K) = 1,then thestandard

4th-orderRunge-Kuttaalgorithm is usedon stepK to do

numerical integration. If KRK(1,K) = 2 (or any integer

otherthan 1),thena 7-step,6th-orderRunge-Kuttamethod

is used. In either case,KRK(2,K) gives the number of

Runge-Kuttastepsusedto integratefrom time T(K) to time

T(K+I).

This INTEGER*4 ARRAY specifieswhethertheFLFNCT

andCFNCTsubroutineshavebeenprogrammedto calculate

analyticsecondderivatives. If ISECGR(K) = 0, thenall of

the required analytic secondderivatives at stage K are

calculatedby the FLFNCT and CFNCT subroutines. If

ISECGR(K) - l, then the optimization algorithm will

approximatethesesecondderivativesvia one-sidedfinite-

differencingof thefirst derivativesprovidedby theFLFNCT

andCFNCT subroutines.For example,anelementof the

D7

DELTU(1:NUMAX,0:N)

second derivative of f(x,u,t)

approximated by

Of Of
02f _xIi (x+ejtxxj) " _xli (x)

= axj

with respect to x is

where ej is a unit vector with a 1 on row j. If ISECGR(K) =

2 (or any larger integer), then the optimization algorithm will

approximate the second derivatives via central-differencing

of FLFNCT's and CFNCT's first derivatives. For example,

an element of the second derivative of f(x,u,t) with respect

to x is approximated by

Of Of
02f _xli (x+ejtxxj) " _xIi (x-ejax j)

' -- 2Axj

Additionally, symmetrization of the finite difference second

derivatives is performed by averaging each Hessian (of a

scalar) with its transpose. This symmetrization is performed

in both the one-sided and central difference cases.

Note that ISECGR(K) = 2 will execute more slowly than

ISECRG(K) --- 1, but the second derivatives will be more

accurate. The numerical differentiation steps used are

contained in the user-supplied arrays DELTU and DELTX.

This REAL*8 ARRAY contains the finite-difference values

used for calculating numerical second derivatives when

analytic second derivatives have not been supplied. If

ISECGR(K) _: 0, then the values in

D8

DELTU(I:NUVEC(K),K) are usedasdescribed above in

the section on the ISECGR flag army.

DELTX(1 :NXMAX,0:N) This REAL*8 ARRAY contains the finite-difference values

used for calculating numerical second derivatives when

analytic second derivatives have not been supplied. When

ISECGR(K) _ 0, then the values in

DELTX(I:NXVEC(K),K) are used as described above in

the section on the ISECGR flag army.

5. Detailed specifications for the FLFNCT SUBROUTINE

This is the dummy name of the subroutine that determines the dynamics and the cost

function at each stage. The user uses this subroutine to model the problem. The user

has the option of modelling any given stage as a continuous-time process or as a

discrete-time process.

If stage k is modelled as a continuous-time process, if IDT(K) = 0, then a zero-order-

hold will be assumed for the control inputs, and FLFNCT's output functions fk(x,u,t)

and Lk(x,u,t) model a state differential equation and a cost integrand, respectively, for

stage k. They are used as follows. Given

t

x(t) = Xk + Jfk[x('_),Uk,X] d'c
tk

the state at the next stage and the cost for the stage are

Xk+l = X(tk+l)

(Cost)k =

tk+ 1

fLk[x(_),Uk,'C] d'c
tk

D9

whereUkandXkare,respectively,thecontrolandstate vectors at stage k.

If, on the other hand, stage k is modelled as a discrete-time process, if IDT(K) = 1 or

some other nonzero integer, then FLFNCT's output functions fk(x,u,t) and Lk(x,u,t)

define, respectively, the discrete-time state difference equation transition function and the

discrete-time cost:

Xk+ 1 = fk(Xk,Uk,tk)

(Cost)k = Lk(Xk,Uk,tk)

In this case, it is permissible that dim(xk+l) _ dim(xk) (i.e., NXVEC(K+I)

NXVEC(K)).

Regardless of whether stage k is a continuous-time stage or a discrete-time stage, the

FLFNCT subroutine must also calculate the first partial derivatives of fk(x,u,t) and

Lk(x,u,t) with respect to x and u when an input flag calls for these to be calculated.

Optionally, the user can program the function to calculate the second partial derivatives

of fk(x,u,t) and Lk(x,u,t) with respect to x and u upon request as signalled by an input

flag.

If FLFNCT has not been programmed to calculate second derivatives for stage k, then

the user must set ISECGR(K) to some other value than 0 so that the optimization

algorithm will estimate the second derivatives via finite differencing. Also, values must

specified for DELTU(I:NUVEC(K),K) and DELTX(I:NXVEC(K),K) if FLFNCT

does not calculate second derivatives for stage k.

The user is responsible for programming FLFNCT correctly so that it accurately models

each stage k. The current stage number is provided as an input argument so that

FLFNCT can perform the necessary branching to change models for stages that require

D10

suchchanges.Notethat, at stageN, FLFNCT mustnotreturnavaluefor thefN(x,u,t)

function becausethereis no nextstageto which atransitionmustoccur. Any fN value

calculatedfor stageN will beignoredbytheoptimizationalgorithm.

TheFLFNCT program must have the following argument list and dimensioning and data

typing information:

SUBROUTINE FLFNCT(X,U,T,K,IFLAG,NX,NU,NF,F,L,DFDX,DLDX,

1 DFDU,DLDU,D2FDX2,D2LDX2,D2FDXU,D2LDXU,D2FDU2,

2 D2LDU2)

INTEGER*4 K,IFLAG,NX,NU,NF

REAL*8 X(NX),U (NU),T,F(NF),L,DFDX(NF,NX),DLDX(NX),

1 DFDU(NF,NU),DLDU(NU), D2FDX2(NF,NX,NX),

2 D2LDX2(NX,NX),D2FDXU(NF, NX,NU),D2LDXU(NX,NU),

3 D2FDU2(NF,NU,NU),D2LDU2(NU,NU)

Note that all of the above arrays must be adjustable-sized arrays in order for the program

to work properly.

The input 0.rg_uments for the subroutine are:

X REAL*8 ARRAY containing the state vector where XfI) = xi, the ith

element of x.

U REAL*8 ARRAY containing the control vector where U(I) = ui, the ith

element of u.

T REAL*8 SCALAR containing the problem time, t. It is expressed in

the same units and with the same origin as the T(0:N) input array

defined in section 3 above.

K INTEGER*4 SCALAR specifying the current stage number.

IFLAG INTEGER*4 SCALAR flag specifying which outputs are needed:

IFLAG = 0: Only the functions, outputs F(:) and L, need be

calculated on this call.

Dll

NX

NU

NF

IFLAG = 1: Only the functions and their first partial

derivatives, outputs F(:), L, DFDX(:,:),

DLDX(:), DFDU(:,:), andDLDU(:), needbe

calculatedon thiscall.

IFLAG = 2: Thefunctions,theirfirst partialderivatives,and

their second partial derivatives, F(:), L,

DFDX(:,:), DLDX(:), DFDU(:,:), DLDU(:),

D2FDX2(:,:,:), D2LDX2(:,:), D2FDXU(:,:,:),

D2LDXU(:,:), D2FDU2(:,:,:), and

D2LDU2(:,:), needto be calculatedon this

call. Note that, if ISECGR(K) _ 0, then the

subroutineFLFNCT will alwaysbecalledwith

IFLAG = 0 or IFLAG = 1.

INTEGER*4 SCALAR usedto define the sizeof adjustable-sized

dummyargumentarrays.

INTEGER*4 SCALAR usedto define the size of adjustable-sized

dummyargumentarrays.

INTEGER*4 SCALAR used to define the size of adjustable-sized

dummyargumentarrays. This must be allowed to bedifferent than

NX becauseof thepossibilityof havingexplicit discrete-timestepsin

which the dimension of the state vector changesduring a state

transition.

The o0tPUt arguments for the subroutine are:

F REAL*8 ARRAY containing the fk(x,u,t) function where F(I) = fki,

the ith element of fk(x,u,t).

L REAL*8 SCALAR containing Lk(x,u,t).

D12

DFDX

DLDX

DFDU

DLDU

REAL*8 ARRAY containing Ofk(x,u,t)/Ox where DFDX(I,J) =

3fk_Oxj.Thisoutputneedsto becomputedonly whenIFLAG _:0.

REAL*8 ARRAY containingOLk(x,u,t)/OxwhereDLDX(J) = 3L/Oxj.

Thisoutputneedsto becomputedonly whenIFLAG _ 0.

REAL*8 ARRAY containing Ofk(x,u,t)/Ou where DFDU(I,J) =

_fk_OUj.This outputneedsto becomputedonly whenIFLAG # 0.

REAL*8 ARRAY containing3Lk(x,u,t)/OuwhereDLDU(J) = 3IdOuj.

Thisoutputneedsto becomputedonly whenIFLAG # 0.

Thefollowing 6optional output arguments need not be calculated if the user specifies the

use of finite differencing to compute second gradients -- by setting ISECGR(K) _ 0. In

all cases, however, the names of these optional arguments must appear in the argument

list.

D2FDX2

D2LDX2

D2FDXU

D2LDXU

REAL*8 ARRAY containing O2fk(x,u,t)/3x2 where D2FDX2(I,J,M)

= O2fki/OxjOxm. This output needs to be computed only when IFLAG

is neither 0 nor 1.

REAL*8 ARRAY containing 32Lk(x,u,t)/Ox 2 where D2LDX2(J,M) =

32Lk/0Xj3Xm. This output needs to be computed only when IFLAG is

neither 0 nor 1.

REAL*8 ARRAY containing _2fk(x,u,t)/3x3u where

D2FDXU(I,J,M) = _2fki/3xj3u m. This output needs to be computed

only when IFLAG is neither 0 nor 1.

REAL*8 ARRAY containing 32Lk(x,u,t)/Ox3u where D2LDXU(J,M)

= O2Lk/OXjOUm. This output needs to be computed only when IFLAG

is neither 0 nor 1.

D13

D2FDU2 REAL*8 ARRAY containing32fk(x,u,t)/0u2whereD2FDU2(I,J,M)

= 02fk_OujOum. This outputneedsto becomputedonly whenIFLAG

is neither0 nor 1.

D2LDU2 REAL*8 ARRAY containingO2Lk(x,u,t)/Ou2whereDL2DU2(J,M) =

O2Lid0ujOum. This outputneedsto becomputedonly whenIFLAG is

neither0 nor 1.

WARNINGS:

a) Never write to one of the input arguments. The optimization program that calls this

subroutine assumes that FLFNCT does not change the value of any of the input

arguments.

b) Never write to an adjustable-sized output array if it has any zero dimension, NU =

0 or NF = 0. The quantity NU will be equal to the value that the user has input to

the main optimization routine as NUVEC(K). The quantity NF will be equal to the

value that the user has input to the main optimization routine as NXVEC(K+I)

except for stage N, in which case NF will be zero. As an example, if NU is zero,

then the output arrays DFDU, DLDU, D2FDU2, D2LDU2, D2FDXU and

D2LDXU will have no elements because one of their adjustable dimensions is zero.

The main optimization program will not work in this case if FLFNCT tries to write

to any of these arrays.

c) Never write to any of the partial derivative output arrays if IFLAG has not been set

to call for that quantity to be output. That is, do not write to DFDX, DLDX,

DFDU, or DLDU unless IFLAG > 1, and do not write to D2FDX2, D2LDX2,

D2FDXU, D2LDXU, D2FDU2, or D2LDU2 unless IFLAG > 2.

d) The output value of L must be defined for every problem stage K. If stage K does

not contribute to the cost, then the assignment statement L = 0 must be included in

FLFNCT. Likewise, for the terminal stage where NF = 0, a value must be

D14

assignedto theL outputargumentdespitethefact that no values will be assigned to

the output array F.

6. Specifications for the CFNCT SUBROUTINE

This is the dummy name of the subroutine that determines the auxiliary constraints at

each stage. The user uses this subroutine to further model the problem. The constraints

defined in this subroutine are always enforced at the initial time of the interval. The

constraints are specified in terms of the elements of the ek(X,U,t) vector function:

cki(xk,uk,tk) = 0

Cki(Xk,Uk,tk) < 0

for i -- I NECVEC(K)

for i = [NECVEC(K)+ 1] [NECVEC(K)+NICVEC(K)]

Note that CFNCT must be correctly programmed so that the first NECVEC(K) elements

of ek(X,U,t) define the equality constraint functions for stage k, and the last NICVEC(K)

elements of ek(x,u,t) define the inequality constraint functions for stage k.

The CFNCT subroutine must also calculate the first partial derivatives of Ck(X,U,t) with

respect to x and u when an input flag calls for these to be calculated. Optionally, the

user can program the function to calculate the second partial derivatives of Ck(X,U,t) with

respect to x and u upon request as signalled by an input flag.

If CFNCT has not been programmed to calculate second derivatives for stage k, then the

user must set ISECGR(K) to some other value than 0 so that the optimization algorithm

will estimate the second derivatives via finite differencing. Also, values must specified

for DELTU(I:NUVEC(K),K) and DELTX(I:NXVEC(K),K) if CFNCT does not

calculate second derivatives for stage k.

The user is responsible for programming CFNCT correctly so that it correctly models

each stage k. There may be stages where the length of the equality part of the constraint

D15

vector is zeroor wherethelengthof theinequalitypartof theconstraintvector is zero.

Thecurrentstagenumberis providedasaninputargumentsothatCFNCTcanperform

thenecessarybranchingto changeconstraintsif theconstraintsaredifferentat different

stages.

TheCFNCTprogrammusthavethefollowing argumentlist anddimensioninganddata

typinginformation:

SUBROUTINE CFNCT(X,U,T,K,IFLAG,NX,NU,NC,C,DCDX,DCDU,

1 D2CDX2,D2CDXU,D2CDU2)

INTEGER*4 K,IFLAG,NX,NU,NC

REAL*8 X(NX),U(NU),T,C(NC),DCDX(NC,NX),DCDU(NC,NU),
1 D2CDX2(NC,NX,NX),D2CDXU(NC,NX,NU),D2CDU2(NC,NU,NU)

Note,all argumentarraysmustbeadjustable-sizedarrayswith thedimensionsasdefined

abovein orderfor thecallingprogramtofunctionproperly.

The input armaments for the subroutine are:

X REAL*8 ARRAY containing the state vector where X(I) = xi, the ith

element of x.

U REAL*8 ARRAY containing the control vector where U(I) = ui, the ith

element of u.

T REAL*8 SCALAR containing the problem time, t. It is expressed in

the same units and with the same origin as the T(0:N) input array

def'med in section 3 above.

K INTEGER*4 SCALAR specifying the current stage number.

[FLAG INTEGER*4 SCALAR flag specifying which outputs are needed:

IFLAG = 0: Only the function C(:) needs to be calculated on

this call.

D16

NX

NU

NC

IFLAG= 1: Only the function and its first partial

derivatives, outputs C(:), DCDX(:,:), and

DCDU(:,:),needbecalculatedon thiscall.

IFLAG = 2: Thefunction,its f'trst partial derivatives, and its

second partial derivatives, outputs C(:),

DCDX(:,:), DCDU(:,:), D2CDX2(:,:,:),

D2CDXU(:,:,:), and D2CDU2(:,:,:), need to be

calculated on this call. Note that, if

ISECGR(K) ;_ 0, then the subroutine CFNCT

will always be called with IFLAG = 0 or

IFLAG = 1.

INTEGER*4 SCALAR used to define the size of adjustable-sized

dummy argument arrays.

INTEGER*4 SCALAR used to define the size of adjustable-sized

dummy argument arrays.

INTEGER*4 SCALAR used to define the size of adjustable-sized

dummy argument arrays.

The outgot arguments for the subroutine are:

C REAL*8 ARRAY containing the Ck(X,U,t) function where C(I) = cki,

the ith element of ek(X,U,t).

DCDX REAL*8 ARRAY containing _ck(x,u,t)/3x where DCDX(I,J) =

igcki/_xj. This output needs to be computed only when IFLAG _ 0.

DCDU REAL*8 ARRAY containing _Ck(X,U,t)/_u where DCDU(I,J) =

OCki/_u j. This output needs to be computed only when IFLAG ;_ 0.

The following 3 optional output arguments need not be calculated if the user specifies the

use of finite differencing to compute second gradients -- by setting ISECGR(K) ;_ 0. In

D17

all cases,however,thenamesof theseoptionalargumentsmustappearin theargument

list.

D2CDX2

D2CDXU

D2CDU2

WARNINGS:

a)

REAL*8 ARRAY containing 32Ck(X,U,t)/3x2 where D2CDX2(I,J,M)

= _2ck_bxjbx m. This output needs to be computed only when IFLAG

is neither 0 nor 1.

REAL*8 ARRAY containing _2Ck(X,U,t)/3x3u where

D2CDXU(I,J,M) = 32Cki/3xjOUrn. This output needs to be computed

only when IFLAG is neither 0 nor 1.

REAL*8 ARRAY containing 32Ck(X,U,t)/3u2 where D2CDU2(I,J,M)

= 32Cki/buj3u m. This output needs to be computed only when IFLAG

is neither 0 nor 1.

Never write to one of the input arguments. The optimization program that calls this

subroutine assumes that CFNCT does not change the value of any of the input

arguments.

b) Never write to an adjustable-sized output array if any of its dimensions is NU and

NU = 0 for the current call of CFNCT. (CFNCT will not be called if NC is zero.)

The quantity NU will be equal to the value that the user has input to the main

optimization routine as NUVEC(K). The quantity NC will be equal to the sum of

two values that the user has input to the main optimization routine:

NECVEC(K)+NICVEC(K). If NU is zero, then the output arrays DCDU,

D2CDXU and D2CDU2 will have no elements because one of their adjustable

dimensions is zero. The main optimization program will not work in this case if

CFNCT tries to write to any of these arrays.

c) Never write to any of the partial derivative output arrays if IFLAG has not been set

to call for that quantity to be output. That is, do not write to DCDX or DCDU

D18

unlessIFLAG >__1, anddo not write to D2CDX2, D2CDXU, or D2CDU2 unless

IFLAG > 2.

D19

, . .,,,I -

f7

C

£i THESE '_-,Ui3RG_R]r!ES [,EFTrE TIE T. _,_IA,',7171 (]ST. AIII-,

C CONSTRAI;-FE (:v #- Z2-:£T;4DE. ;CCELEi'P,F](]ti-LI;iTTE£ '

.. bll N I M_ l_,!-IF I ,_E.- TO-FI4E-©F;; i G i r'-- I ! ! -THE -F : _#_tIE

2 PROBLEI'!, <JllIC: TB ,_ qT_:_NDAF:[I _-:'POLLE ! I!_ THE OPTI!'I,:_ _Z.:Z?ZTF;OL

C I..ITAF;:ATLIF-,'E. T_-4E S(:',LL]TIO_ iS THE F3'EOUS LII!EAF>-TANGEi'_T ZTEEFI_F

C CONTROL LA!.!._ THIE 'EFSIOH C,F THE F:RGBLEII L!SFS C:ONTF',_[FI_-_E2; ,-_'E; T;-<-

C

O

C

(:

C

C

C

C

C

C

C

c

C

C

C

E:

C

C

C

C

C

C

d

C

C

C

C

C

C

C

[-

C

CONTROL. _i,t OF![_E::" TO GET ; PIECE-WISE L.IHEAr';: COr_l'l::;:[il.._.THE ¢,]FH -].',<,i]_EIS]"

A I)ISCRETE-"-IIE STAGE] I'HAT I- NECESSARY IN ORDER]",7',SET !E! IHE

THE COi'lTF,,ior_Ill]TIP" Z:ONI)ITIOt!. ::,liE;TRA COlITF'L]L VARIAEt[It ,:DOE r,

TO STAGE.'-_- 7-r_ _l.i-" TN ORDEF TO ._L',._O<iPRC'BLEII TIHE F9 EE TJI<FERE!F

P"ROM F:EAL_ TIbE TqE ACCELE_L:/rlOI MAGi]ITU[r I: LIi[IIT_TEZ T- i.

TH!E CODE !-_,q:. PEE!,_ _IRTTTEi'.E ,=C,_ IIEE LJ[TI-' THE F',SF_-,LLE TP.<]EZTC:P;" O;Ir, IZZATIOf_

m'ROGRA'I TH.:.T , ,'-AG_ _4,.,S DE"EL<rET .:-rp !_tZ PH.[.. r_'ESEC-__'-k.

THESE E:!l[#:-:" IT fEZ L;EF:E L-lr-I--_"E-r ;- rl.L. ÷:":_TA}] li! t.A::(-: !:q;E:.

S!JBF:OtJl If:E F_MNTM r ; , _[,T-} - IFL.AG,I:_ ,NtJ,r4F.F,i._,DFr*: ,E'LL_;- .

DFDU, EL.I:Li, DLFD_ 2 --_-OLD ; S • DSFE' _U- _-_LL [_;<t:, :_FDU_.'.

D,_LDU_

IMPLICIT REAL*8'iA-14,0-Z

IMPLICII'. IIITEGER*.q.(I-N_

PARAMETEF: , N=31)

REAL_*8 L.

DIr-!E,qS]O_ : _,_._..I.J(NU_ ,F WE, ,
2,FD_:,HF,NX) ,DLD_ (Nx _ ,DFDU,:NF,NU. ,DLDU(NL!) •

D2F[; (,P_, NF • t,_, _ ; . D_LD" 2 ,:N_ • N:,_ _ , DE_FD:xU " _T . r_ _ . NL!

DLLD _U ,:N_ • NU } , DLFDU2, _i!:-, r_U, NO) , b_LDU2 ', t_!J, NU,

ISA '_'E

.......... :.TA_,_-. _ THROUGH ,N-1NOTE "THE FF_! [rm:If <- [:EFIHITIOt'.,. AF'F't ; 7r-_ e _:'=c

" [: ; ! F'OEITIOI!

. _:p = - :' r:@EITIO!i

E' t ','ELGC: .-r

_ _ _ = :2 9ELOCIT',

(_-' = , 1 ACCELEF:AT _r:*_,,. {USL<L_L'_'. CALLEI' '_., i

: _::_'_TE OF F'AE, SAGE F_F PE_M-.. TIME '-SEE _-;ITq PEE:F'E{: "T

7'- r:R!-!E.;LEt'I TTb!E STAGES I :I'_

U I = I_:,,TE (-_F CHAiIGE r7 • i p.,CCELERATIOf_

!J P' = F-LATE OF CHANGE OF _:E ACCELERAT'[ON

tJ:]'_ = ,'<'ATE OF F'ASSAGE OF PEAt_ TIME SEC _,il'T,qr:'ESPECT

_rL-,'PROBLEM TIME <STAGE ,71 ONLY _.

NOTE THAT tHE FF'OBLEr4 TIME HAS A TERr'IIN#_L VALUE OF :_•

E:f STAGE . ASSLII"IE i"-_F= 7. N:' = ,- ,-J!D k'U : E. THIS FISCPETE-TIPE STAGE

SETS !#-' TLE F.I'_(EE, ;OSITIO;q AI-.!'I:_',,EL©ST]-'< T__ITIAi_ LZON.bIT:OiE,, Fal',IDIT

ALLOWS -T,_E OrlbllLYrlo_. ' f:<OtJ[l_!E T: EET L! r:' OFTIMAL I_IITI,.L ACEELERAT]OIE.

AN[] TH:-_- TE!:?! : h_-< P ROBLEI4 l- lie.

lP . .£;-_,_,:,: :HEbl

D20

oRIGINAL PAGE |5

OF poOR QUALITY

C

C

C

I <;

2C

3

] = _. ;Lq_.<),[)

;:' I = -TS.-_C'5382551:+E:?3_D+,:.b

,_:' = - E:5. I _15U8,!, _5-q 2 !C'41_i>+,<_

; E: : E:,,='L#:;'i:_1 cd,___L......P_U _•q'7[_+._i!

F _: = I, I

F , <] = ! I, :'3!

_:, -' , i r :3

TF ii:[AG.3E. i _]HEU

F D E'O II : 1,2

_2LIZ'U(l] _ = 0..0+<_,_

':}FrI :: "rE = I ,'7

I>FDU,J.J, iI : = ,3.D+OO

L O;qT I NUE

7 Fh"_T I!!UE

:,FDU' 5, I = 1.D÷O.O

[,f-:D! ! Z:,,L-' , : l .L+':IO

2gfq! _,B : I.D+O,I

T = . IFLAG.EO.2_ THErl

fO 5 _ I I : 1 ,2:

Z':<} -_, I7 = _ .2

D2L£-:'U2,ZJJ. I]) = ,.,.D_-O,,

F,:_-Iq(:l Mfl = 1 ,'7

DE'F,-:_L,'E ' ' M__t . I . . 7 7, = , _. i,*,<".,

-OllT INLIE

,i !7': { T I ','I.tE

CG_T I!_UE

EI!D IF

EHTJ i r-

E'C; STAGEE [r_4F'Olt(B_1 ,Iq-_ ,. ,hEBLIHE i'Ic : Nx = _ AI4D NLI = ,£.

1 _'0

i _+C,

ELSE := '_" .LE. ',_-i) _ THEN

F(P_ _ = :':_q ,_,:(7:,

F '_ 1 : ' ' • D _-([)(-i

] :T I F'LA,:3. GE. I I THEr,.I

DO ',_i._ " I ::: l ,?

F'O i''_ 77 :- I ,?

E,FD_:,: li,JJ_ = ,'_.D_,I"I

CO_IT]:HUE

:Z,O 1 l':, JJ = I,_-

OFDU l I I , _,__ _ _ = 0. D+,-<_

C O,_T I_ _tlE

C C_NT I '. HIE

Dt_UU, I I ! : ,1,.[,+(,O

ZZOHT I NUE

D!. Dx '-'_ = 1.D+O <_

DFD:-,] ,3' = X('?'.

1Z!F'Dx , 1 ,T _ = ; ,:3"_

U_FDY.'_,,,) = X(7,

T,FIj,, 2,'.' : = , 4

-_P<-_ .13.5, = '_: <9'_

L]FD_: _., ,a., = K :"7;
1-} r_F,:x '-_,Ti -: x'(@.,)

U-7.,'" 5 , _ i = ;, 7_

[_[, _ "= ':' _ = U' I i

T",..L-T,..,__ C:,,_Ji _ X _:'

't

230

235

243

245

250

2_.0

270

C

C

C

C

C

C

C

C

oF-Did: ,?_ = U<2

IF , IFLAG.EQ.2 THEN

DO 250 l: = i,?

DO 240 .'TS = I _

D2LD'2' Ii . 7] =: :J.b+O'

DE! _!3H _'IM =] ,7

D2FDY2' II ,J] .MV = ,D+O

CONTINUE

DO .-,-,=':_=MP = 1 .2

D2FDXU(I I ,J3,bM = <,. D+'.._,

CONTINUE

CONTINUE

DO _.5 J3 = I.,2_

D2LDXUcII,J'_ = O.D+O0

DO 2qS MM = i,,_

D2FDU__'I],_7,MM_ = O.D+O-_

CONTINUE

CONT INUE

CONT INUE

DO 2?b I I = i ,2

DO 260 JJ :: i ,£

D2LDU2< i:,JJ_ :).D+O('

CONTIh'UE

COMT I NUE

D2FDYP_.(1 ,3, _ = i.D--,'-,

D2FDX2': ! ,?,S' = i.D+<O

r}2FD<_"B._.,? = 1 ,.D+O'_

D2FDX2(2,'7',L = 1 .D+O0

D2FDX2(3,5,? =].D+O,-I

D2FDX2(3,?,5) = I.D+O0

D2FDX2(_+,6,Ti = I.D+O0

D2FDX_(4,7,6) = I.D+00

DSFDXU(5,7,1) = I.D+A,',

D2FDYU(6,?,2) = I,D+O0

EHD IF

END IF

DO STAGE N. ASSUME NF = O, N; = 7, AND NU = ,b.

_4FI

q5<;

ELSE IF <I .EO.N; THEN

I. = "_.D+Oq

IF < iFLAG.GE. I } THEF:

DO 32('. II = 1.7

ULD,<II; = O.D+qO

C©nT INUE

TT IFLAG.ED.2, THEN

Dql ,-+50 II = 1,7

D_LDXE:] I,SS} = O,D+O,J

CONTIHUE

CONT I NUE

END IF

END IF

END I =

RET_!RH

END

THIS SUBROHTI,HE DEFINES THE AUXILIAPY CONSTRAIflTn vD: THE 3S-STAGE

M IN I MUM-T T_"E-TO-THE-OR I G I N =ROELEM.

_UBPOUTI[}E CMHT,_I{ <,U.T,_ , iFLAG.N_: .NU,NC,C,DCD_,

DCDU, L;{CDX_, D2CDXU, D2CDU2

!MPLI-TT PEA_ *E'(A-H,O-2

IMPLICIT INTEGE_ /-H

_I AI:::'A ME T E ,':-' M=31

D22

[-,

(-

C

C

C

C

C

C

!)CD_ (NE,Nx , ,D(ZD!J,'{'IC.NUi ,D2CDX2_r%,11 .<:- i ,

DE:CDYU _.NC, r__, lqu) ,DECDL}2 <_C, liU, IWU)

:::6:_t I E

FCtg]HE ?EF'GTH _TAGE_ WHICH Oi,;_.; 'SETS F' THE i_!1~1,;,_.. ,-%CELER;:,TIC_il.

-!HE!-,E Z:::: ("q,'. ,&L{>-IL.:'&P' :_iEF!_AL. IT' COl;_':-.-:TF'g:II':T :7::]H£- ,::-'CEL.

2'>

3,¸:¸

rr- , .__.L-'-.':"; THEi'I

-] = t!] _"-_ : U<E i**.:) -] .[+,_)

(_2 = - L!':3' ÷ .O1D+<I(

Z_ , TFLAG.CE. i _ THEh'

EICEil.l_ 1 , I _ = E:.i _,: *, , 1 'J

C,2i,ti 2: = .:!.D+<-)*L!:2_

DPDI!_ _ , 3i : O.D+O0

DCDU(S,1 _ : D+O0

OCDI!,:E.2_ = ,).[,÷(x:,

I ,--: I FL_#,E,.EC!. 2, 7 HEr,!

_-'-' 3 TT = 1 ,[-

JN p_(l "T7 : _ :.

CO_ T l_Lii--
- - +TTL. OJ,, ,MUE

:l L-EIT iNUE

D_C[,!_I2_ _ , 1 , i =: 2.E,+(,,:_

E[,I[TP-

EI_D i F

D(-i STAGEE I THROUGN _N-I). ,_SSUt'|E NC = 2, N_: = ?. AND NU = 2.

rH ADr:Z rTON._ TO _ _MITIHG. _ THE ACCELERATION MAGNITI_IDE , _'_'_Ir_, THE

APIO!INT OF ll_IEf:iLI. TT_pII:LZ I_ THE EI._TIRE TF. AJEC:TOR'_ TO i'JO LESS THAN .0] SEC.

ELEE I-- <} .LE. ;N-I _) THEN

£(J : = _<5_**P- + _,,,_-._**_ - : .D+,)O

,1(2' : _ ,'7; + .,:)ID+uO

1:_: , I'FL,&G.GE.I I THEM

DC 120 II = I ,2

r,,- _ :!:) "[j -: _ , ?

[CD_ : : i,]'_ ' =).[:+q<)

l l' _ :l O: IT INUE

Nr] "_i -_ "" _ I 2

DCDU: I I ,LTJ_ = ,::i . [,+O<.

I] ,I) COt;T I i',iUE

1 S::O CON r INUE

l-,mm

DCD×_ I ,c., : &.D'*'O0*:.(c_

E_C :j_ _ (: S ' -- i = --] • ['*':1}(:1

IF , IFLAG.EO.-2 THEN

[_] 2.E-':) II = l,i!

NIq P_q',) -r'r = i, _

DE} 23,) MM = 1,'7'

D2CDXP_(II,33.MM) = O.D+O0
P.3,. CONT INLE

DO ._3'=; MM : I ,E

,r:C.... U II ,MM LI.D*,_,_

2.55 CONT] HUE

Z:] I rI ?tiT I _IIE

D!I Pq5 - _ - _ :'

["C' c_':z_S MM = I ,2

DECIDL;2,: l'.75.MM_ - ._.D+o,>

3_S CDPZT INUE

;-:_ _: :: C't !T I M!IE

D23

_5,.) ,7_O_T I NUE

DPCD::2(1_5.5._ = P..D+(-)

DEU-_:;:2,: 1. ,_..::. ; = _.9+0,:)

EI'_!, IF

C

C DO STAGE ; . i_SS!_lriE P4C = :5, _, = ":'. ;_4__ _U = O.

C PJOTE TH_qT T41_:: ii, THE O_IL.' £T_:_GE !JTTH EDL!ALIT, {ZOIGTGAI:F_

C THE :-IF:S 7 -* COI_STRAIHTS ARE EQU/<IT'_ CON'7,TF:A!HTS.

ELSE]_-: ,I .EO.I;, _HE_q

C 3: = >:!_3_

C (.:-i ' = _ (,-_ ;

.:fS_ :: _ '.5_**P. *- X_*'*P_ -- 1 .D*O0

T _- l FLAG. GE. i) THE_

DO 32<I II = ' ,5

DO 3,)q JJ = l,-

OCgx_ ll,J _ _ = O.D+O)

3(<! CONT I NUE

320 C 3NT I NUE

DCD'<, I . J _ =] .O+O<,

[Z[:_ 2.,_) = I.[+(':,

:rDX_3,3 = : .D+,<_

DCD):(_,_ i = i.[,*,)(_

LCD.x;5,5._ = E.[>_-(<)*;,:':5)

DCDX(5,_! = E_.D+Oq_X(_.)

IF (IFLAG.EQ.2_ THEN

[_0 350 II = 1,5

DO 340 JJ = 1,9

LO 330 MM = I,'?,

D2CDXP_(II,JJ,MM_ = (_.D+O,)

33{:I CONT I NL!E

340 COHT I HUE

35(11 CONT I ,_IUE

E'2CI._<2 = = ='.......... , = 2_.[_+00

EHD IF

EHD I F

END IF

PETL!RH

END

C

C THIS. SUBROUTINE INITIALISES VECTOF:S HEEDED FCF F'AEI _- MAI_! O_'TT_'IIZ; TIC:!!

C: ALGORIZHM. HOTE]HAT THIS IS FOR A 32-STAGE _ROBLE,"I, STAGES) THROUG_ E:i.

C IH OTHEF: _OB:[S R = l:l IS ;_SSUMED.

C

C OrE CAt' EASIL< E:IJlTCH THESE THREE SUBROUTINES -[C) USE ;: DIFFEF',E_7 h_UMBE_

C Ci_ PAPAMETEFS BY SIMPLY CHANGING I'_ Ilq THE THREE PARA#iETE_I STATEMENTS

THAT OCCUR ,qE_g: THE BEGINHIHG 0; EACH OF THE THF:EE S!JBROUTINES_C

C

C

C

C

C

C

C

C

C

C

C

C

(

"(HIS SUBF:OUTINE SHOULD SET CALLED B_;' THE MAIH F_OGF:AM BE;ORE __

CALLS THE C,PTTMIZATI'ON ALGORITHM. THE MAIN F'ROC, RAI'_ I_UST BE

SLIRE T} PIATC!{ [IMENSIC.NS WITH THE rI_(ED-DIME_E:IO_Ib_ I.'_FORMATIF¢I

OF THIS SUBROUTINE'S ARRAY ARGUMENTS. ALL OF TIdE ARGUMENTS OF

TNIS SUBROUTINE ARE OUTPUT APGUMENTS.

NOTE THAT THE MLIH F'ROGRAPI WILL HAVE TO INCLUDE THE STATEMENT

ExTEg'I'IAL FLMI._Tk. CMtlTM

It! C_:UEP TO REFEF TO THE _BOJE T_JFj PROBLEM MODELLI,_G FU,qCTIONE:.

tHESE T_O =UIICT:OIiS PEFLAC:E THE DUM!dY _L!_CTIONS FLFNET AND CFNCT

rT AS T_F'i!T_ FRO!"_ THE _IAI,H F ROGRA_I TC FHE MAIN OF'TI_!IZATIO,q IE:UBROL!TI,_E.

C

D24 oRIGINAL pAGE IS

0[pOOR QUALITY

C

C

C

C

C

C

C

C

C

C

C

:,LJ,3F'2'!J7 _ HE PII'iT M I r.I { NUVEC. I4 "_' 'EC. I IEC':EC. N I C: ;EZ, i ddr '.-_, • _.' ;: _';A _ • ri,':_:MH _ •

_t U':), "<') • IDT. T .I-::RI: , I SECGF;:. DELI]!, DEL T X

IMP_ IE[T _EAL*S A--H-,3--'_

I_,fFL T,:_-]'T THTEEEP._ .-',d

F AF -:_,"]ETEF: H=3.

[IMFI"dSIOf! _II.r,,,EC,O:.N'_,iq_:VEC(O:i_,,I'_ECVEC',O:I]_,rdlC','EZ _,:!_ ,

7 i _-i_ I :,: .: :_t--I, ,ISECGF':(,_:N .DEL.TU- i :_:,C,:,l, -

:_ C'L-LT_, _ :-.,.,:14)

ME-_,- iO_ ! _ _T t -'"rt"T-I.,LI:-'E ::I :, ING i'dFOF:r.IATIO,<I AI]I:: !/-1T_E[: FP:C,b._E!_ MCIDE:LL'r m

,-_1'1!3 CONTPC,L I;'IFZ_P,"!,_TIOI',!.

i I)

HU'JEEt :_ =

b!_("Ed' -; J = '

_IEC'.'EC (O _ -= '_

I!!CVE2_,:_, = P

DEL] =: ; ._,+(:)I:_,'D_-LEIrZL-Ch:_] _4-1 i

TDLiI'I = (: .D+,_,,

:F: ' I .0 = "}

I'-ECG:,O_ =

D:'3 :(I = _ . <N-]

i'IUVEC, i , = E

H:_VEE.', I _ :- "_

IdEE"EE_ I ; : {I_

';IE:'JEC(: ; =

i DT I _ = ',

T (I = TDUM

]-OUM = Tl-;!_![i 4- DELT

kF'l-::,, _. I _ = I

ISECGt:" 1 _ = ,:,

COI_T I HUE

NUVEC"_"!_ = ',

NECVE:C, _J , = ._

41CVEC,N = I

IDT(i,;_ = :

I"!LIM_._:,' = ,,

b.I:KMAX = "_

HCMr_ - 5

r4013, THEPE TE. PEA'_L_ NO t',EED TO SFECIFY THE SITATE "ff II'!ITIAL .ZOHDiTION:

[%4_',_EE2 " 1; _ , T _dE SLIBF:OLI'TII'JE FLM!qTM ESSENTIALL",' SFECIFIES THE STATE'S

IHI TIAt. ':?F]H[[TTION.

II'IITIALITE SUEES ,D;- TIdE SOLL!TIOH. THIS IS A F'OO_:

FIRS7 G JESS, iT ONLY BRINGS THE VELOCIT<]'C: 2ERO.

IT DOES HOT BF:I_G THE POSITION TO ZERO.

,:-_ < , , l) - _T. 6053S_55 t 4873"?D+O0

:"!:-_, i _ = :2 ,,q'q"_Ol,=q3UO_S lq"?D+O('

,:,.1 , -- ._30q8q313'-+'73_60+O0

USGU :=': CSORT<,:':}(S,L _*'_E + '_::;_4," _*-*,_i

U_*F-L_IESE : ;)_.S,_ _.'USGUESS

J2GUESE :: - _ i)_ _, I) , USGUESE

_'6 5- ; , : U]GUESS

_"',=.- i _ - URG!JESC

p GF.. IS

OF pO0_

D25

C

C

C

_,-,.'T, _ =. USGUES8

II!;_ I /i = t!]r cc--

iJ 1__ ,:2, :_ = L<:E'UEE S

L'' %, L,:_::'SI_,ESS

{s), i ,] :: ":.b_"}

U'}! R , I [)+')(

DTFEHL _: DEL]- < {..:iSI2[t._E B _'

T_IEAL :: 0 . _i+,'),%

D',-q3_1 tI = E:,N

IF 'P_:.LT.N',' T_-4Er_

!2!-I(;_,} !) := ,!.[,+_,!)

Elql} !F

TR'EAL = TFcEAL.. -, LSTREAI..

_ >'L i _t:_) = _,_-Ii 1 , i i + TREAL*)I,:h IS. 1

•,O(F_,} _", = _,')(_, i _ + TF:EAL*;<,'_-_. i

:: 0 .',c,, i 1

;:'-!3,t , = _:("(S,1 T_:E6L:_:O _. i

::,:t,i:f::_ =: -<,-_(c,, 1

{-rjt'4'T "-_tt _

* .5£'*_,, +' TRE;-,L_-*Et) *

INITIALIZE DELTx AND DELTU FOR THE E,A_E _-_ CHELf I_ EiERI' _Ti%'EE,

_O

5(;

60

C

DO 60 tt = O,N

DO _c:_ J3 = 1,'7

DELTX(J3.KI-:.; = ,0001,r,+00

CCINT INUE

DO 50 J3 -= 1,3

:']-,ELTLI, J 7 , V:t:: '_ :: . ,,:li:lCl 10+')':,

COt4T I NUE

C OI'4T I i_UE

C NORMAL POINT O _- PETURI'" -[',_ -rile CALLI[:G r'lAIt_ F'F_'QGPArl.
C

RETL_Rr,I

EH[_

D26

AppendixE

A multi-dimensionalcubicsplineformlation.

E1

A Multi-Dimensional Cubic Spline Formulation

This appendix describes a relatively simple way to generate a cubic spline interpolation of a

single dependent variable as a function of multiple independent variables. It works when the data

is laid out on a rectangular gird in the space of the independent variables. The grid spacing for any

one variable need not be uniform. This is useful to trajectory optimization because cubic splines

are continuous with continuous first and second partial derivatives. Continuity of a function and

its first and second partial derivatives is a must to ensure convergence of most second-order

optimization algorithms. The present spline procedure is intended to offer rapid on-line

computation of the spline function and its partial derivatives given that some off-line calculations of

spline coefficients have been performed.

The mathematical problem at hand is to generate a function y(xl,x2,x 3 Xn) given the

values of y at gird points. Suppose that the rectangular gird points are (Xljl,X2j2,x3j3 Xnjn)

where ji = 1..... ki, for all i = 1..... n. Suppose, also, that xij < xij÷l for all i = 1 n and j =

1..... (ki-1), and define Axij =- xij+l - xij. Note that the values of Axij may vary with the index j

for fixed i, but they will all be positive. Let the data for the function values at the grid points be

denoted as

YJl,JE,J3 Jn = y(Xljl'X2j2'X3j3 Xnjn) (E-l)

A cubic interpolation function can be developed that requires only the following data at the

grid points: y, Oy/Oxi for i = 1..... n, O2y/Oxi_x j for i,j = 1..... n, i _ j, _3y/OxiOxj3x k for i,j,k =

1..... n, i _: j _: k Ony/OxlOx2_x3..._Xn. In other words, the functions value is needed along

with all of the function's partial derivatives that differentiate at most one time with respect to any

given independent variable. For n = 1 independent variable, the required data is y and _y/Oxl at

each grid point. For n = 2 independent variables, the required data is y, Oy/_xl, Oy/Ox2, and

32y/_xlOx2 at each grid point. For n = 3 independent variables, the required data is y, Oy/Oxl,

_y/_x2, Oy/_x3, _2y/OxlOx2, _2y/_xlOx3, O2y/_x2_x3, and _3y/OxlOx2Ox 3 at each grid point, etc.

E2

The cubic interpolation function uses 4 special basis functions

gl(x) = (x-1)2(2x + 1)

g2(x) = x2(-2x + 3)

ga(x) = (x- 1)2x

gn(x) = (x-1)x2

(E-2a)

(E-2b)

(E-2c)

(E-2d)

These functions have the special properties: gl(0) = 1 and g{(1) = dgl/dxl 0 = dgl/dXl 1 = 0;

g2(1) = 1 and g2(0) = dg2/dxl0 = dg2/dxll = 0; dg3/dxl 0 = 1 and g3(0) = g3(1) = dg3/dxll = 0;

dg4/dxl 1 = 1 and g4(0) = g4(1) = dg4/dxl 0 = 0. These special properties permit the writing of a

cubic interpolation directly as a weighted sum of products of these functions, and the weighting

factors are simply the function and its partial derivatives at the node points.

To see how the function y(xl,x2,x3 Xn) is evaluated it is best to give the explicit formula

for the 2-dimensional cases because a general formula applicable to all dimensions gets very

complicated. After presenting the two-dimensional formula, the generalization to higher

dimensions can be discussed.

For the 2-dimensional case, suppose that point (Xl,X2) falls in the gird box (Jl,J2). That is,

suppose that xiji < xi < xiji+l for i = 1,2. Also, define xi = (xi - xiji)/Axiji for i = 1,2. Then the

cubic interpolation formula is

y(xl,x2) = YJl,J2 gl(xl)gl(x2) + Yjl+x,j2 g2(xl)gl(x2)

+ yjl,J2+l gl(xl)g2(x2) + yjl+l,j2÷l g2(xl)g2(x2)

_X1 [Jl,J2+ AXljl g3(xl)gl(x2) +

_X11jl,J2+ 1 g3(xl)g2(x2)+ AXljl

+ Ax2j2 gl(xl)g3(x2) +

_X21 jl,J2 +1+ Ax2j2 gl(xl)g4(x2)

_X_l Ijl+l,j 2 AXljl g4(xl)gl(x2)

_X_I] Jl +l,j2+l g4(xl)g2(x2)+ AXljl

_x_2{Jl+l,j2 Ax2j2 g2(xl)g3(x2)

+ Ax2j2 g2(xl)g4(x2)

_X2 Jl,J2+ AXljlAX2j2 g3(xl)g3(x2)

_X2 [jl+l,j2+ Ax lj 1Axzj2 g4(xl)g3(x2)

E3

_X2[J1,J2 + I+ Ax ljlAX2j 2 g3(x 1)g4(x2)

+ _x21jl+l,j2+l AXljlAx2j2 g4(xl)g4(x2) (E-3)

Based on the properties of the gi(x) functions and the definition of xi for i = 1,2, it is straight-

forward to conf'Lrm that y(xl,x2) and its partial derivatives take on the values assigned to these

quantities at the grid points. It is also straight-forward to prove that the y(xl,x2) cubic

interpolation function and its first partial derivatives are continuous everywhere, even at the

boundaries between grid boxes.

To understand how the formula would generalize to n independent variables, consider the

individual terms in eq. (E-3). First notice that there are 16 terms. There are 4 n terms in the general

expression for an n-dimensional spline. Each term is of the form

C*gil(Xl).gi2(x2)*gi3(x3)*...*gin(Xn) for il, i2, i3 in = 1,2,3,4. The constant C is a function of

the indices il, i2, i3 in. In general, if ik = 1 or 2, then the expression for C will not include

partial differentiation with respect to Xk, but if ik = 3 or 4, then the expression for C will include

operator (Axkj k °x_k) operating on y. Additionally, if ik = 1 or 3, then C will be a valuethe

associated with a node with the index jk, but if ik = 2 or 4, then C will be a value associated with a

node with the index jk+ 1. These rules completely determine the function.

The partial derivative data values at the grid points can be chosen arbitrarily and the function

and its first derivatives will be continuous, but the second derivatives will normally be

discontinuous at the gird box boundaries.

With care, the grid-point partial derivative values can be chosen to yield continuity of the

second derivatives also. A 2-dimensional example is convenient for understanding how to do this.

Suppose that 3y/0xl is assigned arbitrarily only at the extreme grid points in the Xl direction, at

grid points (Xll,X21), (Xll,X22), (Xll,X23) (Xll,X2k2) and at (Xlkl,x21), (Xlkl,X22),

(Xlkl,X23), (Xlkl,X2k2). Suppose also that 0y/Ox2 is assigned arbitrarily only at the extreme

grid points in the x2 direction, at grid points (x11,x21), (x12,x21), (x13,x21) (Xlkl,x21) and at

(Xll,X2k2) , (x12,X2k2) , (x13,X2k2), ..., (Xlkl,X2k2). Also assume that O2y/OxlOx 2 is arbitrarily

E4

defined only at the 4 extremecomerpoints of the 2-dimensionalgrid, (Xll,X21), (Xlkl,X21),

(Xll,X2k2), and (Xlkl,X2k2). This situation is illustrated in Fig. E-1.

These boundary partial derivatives can be used to define the interior point partial derivatives

through a sequence of 1-dimensional splines. Suppose that z(w) is a function of just one

independent variable, w. Suppose also that z is specified on a 1-dimensional w grid that consists

of k points: Zl = Z(Wl), z2 = z(w2), z3 = z(w3), Zk = Z(Wk). Then, knowledge of 3z/3wll and

3z/_wlk is sufficient to uniquely determine a cubic spline that passes through all of the data points

and whose second derivatives are everywhere continuous. This is a standard result of 1-

dimensional spline theory [6]. This standard cubic spline has well-defined fh'st derivatives at the

interior grid points, Oz/_wl2, _z/_wl3, _z_wl4 OZ]_wlk-1. These are exactly the remaining data

that would be needed to implement the 1-dimensional counterpart to eq. (E-3).

For the 2-dimensional case this process is generalized to determine the required interior-

point partial derivatives. First, the values of 3y/_xl at interior grid points can be determined by

applying the 1-dimensional technique for computing interior derivatives to each set of grid points

with a fixed value of x2. This is done k2 times, once for each for x2 _ {x21, x22, x23 X2k2}.

In a similar fashion, the values of by/Ox2 at interior grid points can be determined by applying the

1-dimensional technique kl times, once for each Xl e {Xll, Xl 2, Xl 3 Xlk 1}. At the end of

these two sets of 1-dimensional spline operations, Oy/Oxl and Oy/Ox2 are available at every grid

point, but _2y/_xl_x2 is still available only at the 4 comer grid points.

The Fast step in determining O2y/OxlOx 2 at the interior points is to determine it at the Xll and

Xlk 1 extremities of the grid. This can be done by using z = _y_x 1 and w = x2 in a 1-dimensional

spline operation. For the two cases, Xl = Xll and Xl = Xlkl, z is available at all of the w grid

points (w = x21, X22, X23 X2k2) and bz/Ow is available at the w endpoints (w = x21 and X2k2).

Therefore, the spline operation can be used to determine Oz/Ow at the interior w points (w = x22,

X23 X2k2. I, but 3z/Ow = _2y/Oxl_x 2 according to the current definition of z; so, at the end of

this operation _2yfJxl_x2 will be available at the points marked on Fig. E-2.

E5

The final step in determining _2y/_xl_x 2 at the interior points is to perform a series of 1-

dimensional splines of z = by/bx2 in the w = Xl direction, one for each grid value of x2. This can

be done because in each case, z is available at all of the interior points and bz/3w is available at the

w end points. The resulting values of bz/bw at the interior points are just the interior values of

32y/_xl_x2 that are needed in eq. (E-3) to compute y(xl,x2). Note that the roles of xl and x2 can

be reversed in the process of determining the interior-point values of 32y/bxlbx2 without affecting

the final results.

All of the 1-dimensional spline operations that are needed to get the interior partial derivatives

can be computed off-line, and the resulting grid-point partial derivatives can be stored for rapid on-

line evaluation of y(xl,x2) via eq (E-3). The total number of off-line 1-dimensional splines

required to compute all of the interior-point partial derivatives is 2 + kl + 2k2, which is relatively

inexpensive.

The boundary-point partial derivatives defined on Fig. E- 1 are still arbitrarily selectable. In

practice, the function y(xl,x2) is insensitive to the selected boundary partial derivatives at points far

in the interior of the grid. In grid boxes near the boundary the function becomes sensitive to these

arbitrary quantities. A useful approach to selecting these quantities is to compute finite difference

approximations of these quantities near the boundary and extrapolate the required quantities to the

boundary. The required finite-difference approximations can be computed from the y data values

at the grid points. Figure E-3 illustrates the _nterior points at which various finite-difference partial

derivative approximations get computed in order to extrapolate a particular partial derivative to a

particular boundary point. This method of determining the arbitrary boundary partial derivatives

has been used in all the calculations of this report.

There is a straight-forward, but tedious generalization of this method to the problem of

computing interior-point partial derivatives for higher-dimensional splines. In the interests of

brevity, higher-dimensional generalizations have been omitted.

E6

X
2

X 2 ,Ih •

X2k2_ 1

X24 _:._

xz3 C.:-_-----

X22 (.'._._--_

Xl 1 Xl 2 Xl 3

J

m

I

x I x 1 x 1
kl-2 kl-1 k 1

v X
1

_y

0 Points at which _ is arbitrarily defined

_y

0 Points at which _x 2 is arbitrarily defined

2

• Points at which _y _y and _y are arbitrarily defined
_x I ' _x 2 ' _Xl_X 2

Fig. E-1. Boundary points on a 2-dimensional spline's grid at which

partial derivatives may be assigned arbitrarily.

E7

x
2

X2k2 (P /

X2k2.1 _ h /

x____._ _

1

X2 4

X2 3

X2 2

X21

(t

(L

X 1
1

\
\
\

X12 X13 Xlkl.2

J

Xlkl. 1 Xlkl

Fig. E-2.

X
1

• Points at which 02y is available after splining of Oy
_ along

x I = x_l1 and along x 1 = x 1kl

Propagation of the second cross partial derivatives along two edges

of the grid from the four corners.

E8

X
2

©

_7

X2k2 /

x2k2.11_ _ /

/
X2k2. 2

.

x2 4

X2 3

x2 2

x21

m

x11 Xl 2 Xl 3 Xlkl_ 2
X 1

k 1-1 Xlkl

v x
1

Example boundary point where Oy_x 1 is calculated by linear extrapolation from two
interior points

Corresponding interior points where finite-difference values of 3y/3x 1 are available

Example boundary point where 3y/'0x 2 is calculated by linear extrapolation from two
interior points

Corresponding interior points where finite-difference values of _y_x 2 are available

Example boundary point where _2y/'dxl_x2 is calculated by bi-linear extrapolation from
four interior points

Corresponding interior points where finite-difference values of 32y/_xl_x 2 are available

Fig. E-3. Examples of how partial derivatives on the boundary are

extrapolated from finite-difference interior values.

E9

