@ https://ntrs.nasa.gov/search.jsp?R=19930022451 2020-03-17T05:07:47+00:00Z

/L .
< U

Real-Time Trajectory Optimization on Parallel Processors
(NASA Research Grant NAG-1-1009)

Final Report

July 10, 1993

Prepared by Mark L. Psiaki,

Principal Investigator

Comnell University

Ithaca, N.Y. 14853-7501

Summary

A parallel algorithm has been developed for rapidly solving trajectory optimization problems.
The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line
optimal guidance through repeated solution of a trajectory optimization problem. The algorithm
has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-
order-hold discretization of a continuous-time problem and solves the resulting nonlinear
programming problem using a custom-designed augmented Lagrangian nonlinear programming
algorithm. The algorithm achieves parallelism of function, derivative, and search direction
calculations through the principle of domain decomposition applied along the time axis. It has been
encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar
minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent
guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a
128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has
been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required
2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-

nodes instead of 1-node to solve a 64-stage Goddard problem.

1. Introduction

1.1 Review of Project Objective

This grant's goal has been to achieve nonlinear optimal feedback control through repeated,
on-line solution of trajectory optimization problems in real-time. Such control could be used for
aerospace vehicle guidance, such as National Aerospace Plane (NASP) ascent guidance. The
primary effort of this grant has been to develop a fast trajectory optimizer that can solve problems
which include inequality constraints. The optimizer should be able to update solutions about once
every 5 seconds. General parallel algorithms have been developed to try to meet this goal. They
have been developed and tested on INTEL iPSC/2 and iPSC/860 distributed-memory parallel
processors, but they are applicable to any highly-parallel distributed-memory machine (e.g. the

INTEL Touchstone system or Transputer-based systems).

1.2 Summary of 3 1/2-Year Grant Activities
The activities under this grant can be broken into 5 main categories:

1. Development of a parallel solver for dynamic quadratic programs (QPs).

2. Development of a robust serial nonlinear programming algorithm (NP).

3. Development of a specification and interface for trajectory optimization
problem encoding, including approximation of continuous-time phases by
discrete-time phases.

4. Integration of the parallel QP algorithm with the serial NP algorithm to
produce a parallel trajectory optimization algorithm.

5. Modelling, encoding, and testing of example trajectory optimization
problems.

The first year of the project was devoted primarily to developing a parallel dynamic quadratic
programming algorithm. The second year's effort was split between developing a refined parallel

QP algorithm and developing a robust serial NP algorithm. During these first two years Kihong

Park, the project's graduate research assistant, concentrated on the parallel QP work. Prof. Mark
Psiaki, the project's principal investigator, helped guide Park, and he developed the nonlinear
programming algorithm.

Park spent the final year and a half of the project working to parallelize the serial nonlinear
programming algorithm. This included integration of it with the parallel QP algorithm, which
calculates NP search directions, and with parallel function, gradient, and Jacobian software that
was developed by Psiaki.

Psiaki spent the last year and a half of the grant developing the specifications and software
that allow the submission of different problems to the main algorithm. He also spent time
modeling and encoding three test problems: a Goddard problem, a linear tangent steering
minimum-time problem, and a NASP minimum-fuel ascent guidance problem.

1.3 Outline of Report

The remainder of this report is divided into 6 Sections plus conclusions and 5 Appendices.
Section 2 summarizes the results of work that has been done to parallelize the computation of
trajectory optimization search directions based on first and second gradient information. Appendix
A contains two papers that give the details of this work. Section 3 summarizes the nonlinear
programming algorithm that has been developed to serve as the heart of the trajectory optimization
algorithm, and Appendix B contains a paper that describes the algorithm in more detail. Section 4
gives an overview of how the nonlinear programming algorithm has been augmented with parallel
derivative calculations and integrated with the parallel search direction algorithm to yield the final
parallel nonlinear trajectory optimization algorithm. Appendix C contains a paper that fills in some
of the algorithm details omitted in Section 4.

Section 5 presents three example trajectory optimization problems, the Goddard sounding
rocket problem, the minimum-time, acceleration-limited particle-in-a-plane problem, and a NASP
ascent guidance problem. Section 6 presents parallel computational results for these three
problems. Section 7 makes observations about the algorithm based upon computational

experience, and it suggests possible improvements. Section 8 presents the conclusions.

Appendix D presents a specification document that explains how to encode of a trajectory
optimization problem so that it can be linked to the parallel trajectory optimization algorithm. The
code that models the planar minimum-time problem is included at the end of Appendix D as an
example of how to conform to the problem encoding specification.

Appendix E outlines the theory of a multi-dimensional spline technique that has been
developed as a by-product of this research. Multi-dimensional splines have been used on the
NASP problem, and the procedure on Appendix E presents a relatively simple technique to carry
out rapid, on-line multi-dimensional spline calculations that have continuous second partial

derivatives of the interpolated function.

2. Dynamic Quadratic Programming/Search Direction Calculation on a Parallel
Processor

This part of the effort concentrated on developing an efficient parallel solver for a problem of

the form:
T_TLT T
find: w = [xo,xl,xz,...,x N] (1a)
N
to minimize: J = z (SxH iy + g%k} (1b)
k=0
subject to: Eyxp+ex+Fr Xge1= 0 fork =0 .. N-1 (1c)

Dkxk+dk=0 fork=0..N (1d)

The solution vector at a given stage, Xy, is usually a combination of a state vector, X, and a
control vector, u,. The vector could also include slack variables if required by the NP algorithm
that uses the QP solver.

The constraints in eq. (1c) are dynamic constraints that link stages. Not that the form is
general enough to admit the standard linear difference equation model of a linear time-varying

discrete-time system. The nonhomogeneous term in eq. (1c), e, is included to make the QP

algorithm compatible with NP trajectory optimization algorithms that do not satisfy the dynamics at
intermediate stages of the solution process.

The auxiliary constraints in eq. (1d) allow the modeling of state and control constraints that
apply point-wise in time, such as bounds on the throttle setting or on the dynamic pressure. Even
though the constraints in. eq. (1d) are equality constraints, they are useful for dealing with
inequality constraints if an active set strategy is employed. An active set strategy assumes that
some of the inequality constraints are active and others are inactive. The active inequalities are
enforced as equalities, and the inactive constraints are ignored. Of course, logic must be employed
to make changes to the active set assumptions as needed. In the present effort, this logic is part of
the overall NP algorithm, not part of the QP algorithm.

The QP algorithm that solves eqgs. (1a)-(1d) gets used by the nonlinear trajectory optimization
algorithm to determine a search direction in state and control time-history space. Itis used by the
NP algorithm in a sequential quadratic programs sort of approach: the constraints are linearized
about the current solution estimate and the Lagrangian function (cost plus multipliers times
constraints) is approximated by a quadratic expansion about the current solution estimate. This
yields a quadratic program, which is solved for a search direction. The solution is modified by
moving along this search direction in state and control time history space. A merit function is used
to determine the step length. This process ensures global convergence in many cases and quadratic
convergence near the solution, where the quadratic program is a good approximation of the original
nonlinear program.

A nonlinear trajectory optimization algorithm can call for hundreds or thousands of QP
solutions during one solution for an optimal trajectory. Therefore, it is extremely important that the
QP be solved rapidly. In order to accomplish this, the domain decomposition approach has been
used to parallelize the QP solution procedure.

The basic idea of domain decomposition is to split the problem into smaller problems and

partially solve the smaller problems. The unsolved parts of the problem are then joined into

progressively bigger portions that admit more partial solution to be accomplished until the entire
problem is finally solved.

The domains that are split to solve egs. (1a)-(1d) are time domains. The problem is split into
a number of groups of stages. Each group is a set of contiguous stages. Any such set of stages
can be partially optimized independently of any other such set if one assumes that the state vector
on the boundary of any two such sets must be held fixed during the partial optimization process.
After these partial optimizations, the remaining unsolved parts of contiguous sets of stages are
aggregated into a smaller number of larger sets of contiguous stages. This frees some state vectors
that had been on set boundaries, allowing them to be optimized in the next partial optimization
cycle.

The final parallel QP algorithm achieves good speed-up when run on a parallel processor. It
can solve an N-stage dynamic QP problem on p (<N) processors in wall clock time that scales as
(N/p) + Loga(p). Two versions of the algorithm and their computational timing results are
described in detail in the two papers that have been included as Appendix A of this report. The
second paper in the Appendix A describes the algorithm that actually has been used as part of the
overall nonlinear programming algorithm.

3. Nonlinear Programming Algorithm
Once approximated in a discrete-time form, most trajectory optimization problems can be

stated in a general nonlinear programming form:

find: %X (2a)
to minimize: J(%) (2b)
subject to: ce(®x)=0 (2c)

ci(x) <0 (2d)

where x is a large vector that includes the entire discrete-time state and control time histories, the

J(%) cost function is a summation over stage-wise costs, Ce(X) is a large vector of equality

constraint functions that includes, among other things, the dynamic difference equations, and the

cj(x) inequality constraints may include state and control auxiliary constraints at each stage. If N
is the number of discrete-time time steps (or stages), then the dimensions of the vectors X, €e(X),
and ¢;(%) include a factor of N.

While an efficient trajectory optimization algorithm must take advantage of special problem
structure that is not apparent in egs. (2a)-(2d), a good algorithm must also employ generic
nonlinear programming techniques that apply to problems of this general form. Therefore, an
effort has been made to develop a good algorithm for solving such problems.

The basic NP algorithm that is the heart of the a real-time trajectory optimizer must have
several important characteristics. First, it must be robustly convergent. In other words, it must be
very likely to converge to a feasible local minimum even from a poor first guess. Second, it must
have fast local convergence: it must rapidly determine the solution when it is near the solution.
Third, it must have good global convergence speed. It must progress rapidly from being "far
away" from the solution to being "near" the solution. The above requirements constitute a "tall
order” for any general NP algorithm.

The algorithm developed under this grant is a sequential quadratic programs-type
implementation of the augmented Lagrangian nonlinear programming algorithm. It uses a shifted
penalty function that is capable of achieving exact satisfaction of equality and inequality constraints
without requiring infinite penalty weights. Several features have been added to the algorithm in
hopes of speeding convergence. One is the use of constraint curvature directly in the quadratic
sub-problem. Another is the use of a special constrained form of the QP subproblem that allows
the use of large penalty weights, which speed local convergence. The box trust region technique
has been incorporated into the algorithm in order to guaranteed convergence to a local minimum of
the augmented Lagrangian function, which translates into global convergence to a problem solution
as long as the algorithm does not converge to an infeasible point near a non-zero local minimum of
the norm of the constraint violations.

The algorithm was first encoded and tested in MATLAB as a serial algorithm. In the paper

that has been included as Appendix B of this report, the NP algorithm is described, and it is

compared with NPSOL on several test problems. It performs well on the test problems, and it has
more robust convergence than NPSOL version 4.

Another, slightly different version of this algorithm has been developed which is not
described in Appendix B. The modified version has three principal differences from the algorithm
described in appendix B. All of these have to do with how the algorithm's "inner" loop solves a
quadratically-constrained quadratic program. First, the alternate algorithm uses curved line
searches on every search step. Second, it does an inexact one-variable minimization of the
augmented Lagrangian function during a parabolic line search using a golden section search with a
secant-method-type acceleration of terminal convergence. Third, it uses a different curvature
correction than that described in eqs. (11a)-(11c) of the Appendix B. Instead of finding the
correction that minimizes %- 5%T8% as in eq. (11a), it finds the correction that minimizes % SXTH 6%
where # is computed as in eq. (9) of Appendix B using the multipliers from eq. (12) of Appendix
B. This H gets modified by adding positive numbers to its diagonal if it would otherwise yield an
indefinite projected Hessian during the solution of the modified version of Appendix B's egs.
(11a)-(11c).

This modified algorithm also has been tried on the test problems described in Appendix B. It
yielded significantly more rapid convergence on most of the problems by reducing the total number

of line searches required to solve the several QPs that arise during a given NP run.

4. Parallel Nonlinear Trajectory Optimization Algorithm
4.1 Algorithm Overview
The parallel nonlinear trajectory optimization algorithm is a special version of the nonlinear
programming algorithm that is described in Section 3 and Appendix B. The special version
exploits parallelism and the special dynamic programming problem structure in order to speed up

the algorithm when solving trajectory optimization problems.

The algorithm has been encoded to solve continuous-time problems of the form

find: u(t) and x(t) fortg <t <tg (3a)
to minimize: J= t(‘EfL[x(t),u(t),t] dt + V[x(tf)] (3b)
subject to: x(tp) given (3¢)
x = flx(),u(t),t] (3d)
aclx(t),u(t),t] =0 (3e)
ailx(),u(®),1] <0 (3f)
aedx(tp] =0 (3g)
ajdx(t)] < 0 (3h)

which it first approximates as a discrete-time problem through a zero-order-hold approximation of
the control time history. The algorithm also has the option of directly solving discrete-time

problems of the form

T.T T T T TT

find: x=[“o’ Xp g "2’--~’“N-1”‘N] (4a)
N-1

to minimize: J= 2 L (x,u) + V[xN] (4b)
k=0

subject to: Xp given (4¢c)

X1 = fk(xk,uk) fork=0..N-1 (4d)

ae, (Xp,uy) = 0 fork=0..N-1 (4e)

aj, (x,u) €0 fork=0..N-1 (4f)

2en(xn) =0 (4g)

ajy(xy) <0 (4h)

The algorithm also can solve mixed discrete-time/continuous-time problems in which any given
phase is either totally discrete-time or totally continuous time. Discrete-time phases are allowed to

begin and end with different numbers of state vector elements. Through clever problem modeling

10

tricks, this feature allows for optimization of initial conditions. Other modeling tricks allow the
code to solve free-end-time problems.

The specialization of Section 3's basic NP algorithm takes two main forms. First, the NP
algorithm's linear algebra is performed using the parallel dynamic quadratic programming
algorithm that is the subject of Section 2 and Appendix A. Second, the cost and constraint
functions (including the dynamics model), the cost gradients, the constraint Jacobians, and the cost
and constraint Hessians are evaluated in parallel.

Parallel evaluation of problem functions and their derivatives is possible because the problem
can be split in a stage-wise manner. The cost, the differential equations, and their derivatives at
time step 2 and at time step 56 can be evaluated simultaneously because they do not affect each
other at intermediate solution estimates. One feature of the basic NP algorithm that contributes to
this separability is its permission of constraint violations at intermediate solutions. In particular,
the dynamics need not be exactly satisfied until the final solution is reached, which is why stage-2
functions and derivatives are independent of stage-56 functions and derivatives.

Of course, functions and their derivatives at different stages are related at the final solution.
This relationship is achieved by the NP algorithm during its search for the problem solution. The
algorithm's mechanism for achieving the necessary relationships is its search direction computation
via solution of a dynamic QP. The dynamic QP solver transmits function and derivative
information between stages.

The algorithm has been fully encoded and tested using a 32-node INTEL iPSC/860 message-
passing parallel processor. The results of this testing are described below in Section 6. The
algorithm itself is described in more detail in the paper contained in Appendix C.

4.2 Problem Encoding

The algorithm has been encoded to solve problems that are modeled via two FORTRAN 77
subroutines, each of which has a pre-specified argument list and functionality. One subroutine
models the problem'’s cost function and dynamics equations. The other subroutine models any

auxiliary constraints such as bounds on state or control variables. The algorithm needs the names

11

of these user-defined subroutines along with user-defined data that gets input to the main trajectory
optimization algorithm via several array and scalar arguments.

The necessary input data and subroutines are described in a specification document that has
been included as the first part of Appendix D. This document makes it possible for people to use
the parallel trajectory optimization algorithm even though they are not intimately familiar with its
inner workings. Also included in Appendix D is the code that has been used to model the
minimum-time to the origin problem, which is described below in Section 5.2.

As proof of the usefulness of the problem modeling specification, Prof. Psiaki was able to do
all of the problem modeling and problem encoding for the examples described below in Section S,
despite the fact that he never saw any of the parallel trajectory optimization code. He was able to

encode the problems simply by adhering to the specification in Appendix D.

5. Modeling of Three Example Trajectory Optimization Problems
5.1 Goddard Problem (Maximizing the Final Altitude of a Sounding Rocket)
The following problem maximizes the terminal altitude of a sounding rocket in flight over a

spherical, non-rotating Earth [1]:

find: trand T(t) for 0<t<ts (Sa)
to minimize: J= - h(tp) (5b)
subject to h=v (5¢)
o T- Ir)n(v,h)) hl_2 (5d)
= -5 (5€)
h(0) =1, v(0) = 0, m(0) = 1 (59)
0<T@®<35 (Sg)
m(tp) = 0.6 (5h)

where h is the distance of the rocket from the center of the Earth measured in Earth radii, v is the

velocity in Earth radii per Herg (21t Hergs is the period of a circular orbit at the Earth's surface), m

12

is the rocket mass nondimensionalized by its initial mass, T is the rocket thrust nondimensionalized
by the rocket's initial weight at the Earth's surface, D(v,h) is the velocity- and altitude-dependent
aerodynamic drag, and 0.5 is the exhaust velocity of the burned rocket fuel. Note that the two
inequalities in (5g) put minimum and maximum limits on the control, T. The drag function

assumes a constant, zero-lift drag coefficient and an exponential atmospheric density

D(v,h) =6,200e300(1-) y Ivi Cp ©6)
where Cp = 0.05.

In order to model this free-end-time problem in a fixed-end-time format, the problem has
been split into two phases, an extra state variable has been added, and an artificial problem time has
been introduced whose fixed terminal value is 1. Call the artificial problem time T. Then actual
time is t = t¢ T.

Given an N+1-stage discrete-time approximation of the problem, stages O to N with stage N

being the terminal stage, the problem has been re-modeled in the form

find: T(t) for 0<t<landupfor0 <t <(1/N) (7a)
to minimize: J = - h(1) (7b)
dh {uzv for 0 <1t < (1/N)
subject to —_= €9
dt for (1/N) <t <1
[D(" h) 12-] for 0 <1 < (1/N)
dv _ h (7d)
dr [T D(v,h) hl—-z-] for (I/N) <1 < 1
uz[-ﬁ] for 0 <1t < (1/N)
am _ (7e)
v 14, [15] for (I/N) <1 < 1
N u» for 0<1t < (1/N)
dxa _ { (7
dt 0 for (I/N) <t <1
h(0) =1, v(0) = 0, m(0) = 1 (7g)
0<T) <35 (7h)

13

m(l) = 0.6 (71)

One can understand the relationship between this formulation and the original formulation by
noting that x4(t) = t¢ for (1/N) £ 1 < 1. Due to the zero-order-hold approximation of the control
time history and the N+1-stage approximation, the algorithm assumes that uz(t) is constant over
the interval 0 £ T < (1/N). Therefore, uz(t) also equals tf on this interval. Thus, all of the
differential equations are re-scaled by tg, which correctly accounts for the modified independent
variable, 7.

Once in this problem form, it is straight-forward to encode the problem in accordance with
the specification in Appendix D. This has been done, and computational results are presented in
Section 6.1 below. In all of the runs reported in Section 6.1, the first guess of the optimal

trajectory is approximately

tf=02=x4 = (8a)
- {2 for 0<t<0.1 8b
® =10 for 0.1<t<0.2 (8b)
1 +0.5t2 for 0<t<0.1
h(t) = (8¢c)
0.99 + 0.2t - 0.5t2 for 0.1<t<0.2
{ t for 0<t<0.l1 od
VO =102.t for 0.1<t<0.2 (8)
1 -4t for 0<t<0.1 g
m(®) _{0.6 for 0.1 <t<0.2 (8e)

Which corresponds to a flat Earth, zero drag assumption and a control policy that keeps T at 2 until
all of the fuel is used up. Note that this first guess does not satisfy the dynamic constraints

because it neglects the drag term and models 1/h2 as a constant.

14

5.2 Acceleration-Limited Minimum Time to the Origin
The following problem minimizes the time to bring a particle to rest at the origin in the plane

subject to a magnitude limit on its acceleration:

find: trand u(t) for 0 <t <tf (9a)

to minimize: J= tg (9b)
0010 00
b 0001 00

subject to X = 0000 X + 10 u (9¢)
0000 01

x(0) (# 0) given (9d)

uT(u) 1.0 (9e)

x(tp) = 0 D)

where the first two elements of the state vector x are positions, its third and fourth elements are
velocities, and the two components of u are accelerations.

The solution to this problem is the well-known bilinear tangent steering control law [2]:

cos (1)
u(t) = (10)
sin 6(1)
where O(t) satisfies an equation of the form
tan 61 = DL P2 (1)
B3 + Pat

with unknown constants By, B2, B3, and B4. These constants are unique up to a common scale
factor, and they must be numerically determined simultaneously with tf by solving a set of
algebraic equations that enforce the terminal constraint, eq. (9f).

An easy way to generate known solutions to this problem is to pick B1, B2, B3, B4, and tf
and integrate backwards in time from x(tf) = 0 for tf seconds to generate x(0). This has been
done to generate an example problem for testing the trajectory optimization algorithm described in

this report. The resulting initial condition is

15

-73.605383

-35.125486
x(0) = (12)

2.949018
0.430989

Several modeling tricks have been used to get this problem into a form suitable for encoding
in accordance with the specification in Appendix D. It is desirable to have the acceleration time
history be piecewise linear rather than piecewise constant, which is what the zero-order-hold
assumption would yield. Therefore, it is necessary to augment the optimization state vector to
include the two accelerations and to create a new optimization control vector that consists of the
two rates of change of the two accelerations rather than the two accelerations themselves.

As in the Goddard problem of Section 5.1, the state vector is further augmented to allow for
the solution of this free-end-time problem with the fixed-end-time algorithm. The new state stores
the end time t;.

A further modeling trick is needed to allow optimization of the initial acceleration states in
addition to optimization of the rates of change of the accelerations. This is accomplished by
modeling the first stage as a discrete-time stage. It does not take up any actual time, but it
initializes the state vector for the remaining continuous-time steps. Thus, for an N+1 stage
problem, the first stage, stage 0, is modeled by the following difference equation and constraints

(for k = 0):

—-73.6053837
-35.125486
Xk+l = 2.949018 (13a)
0.430989
- ug -
uklz + uk22 <1 (13b)
0.01 < uk, (13¢)

where xi (not shown) is a zero-dimensional vector, Xg+] is a 7-dimensional vector, and ug is a

3-dimensional vector. Elements 1 and 2 of x4 are the initial positions, elements 3 and 4 are the

16

initial velocities, and elements 5 and 6 are the initial accelerations. Notice how elements 5 and 6 of
Xk+1 are set equal to elements 1 and 2 of uy, which allows optimization of the initial accelerations.

The third element of uy is the problem's final time, uk, = tf, which becomes the 7th element
of xk+1 at the end of this stage. As with the Goddard problem, the algorithm works in artificial
time 7T that has a fixed terminal value of T = 1. Thus, the relationship between this artificial time
and the real problem time is t = tr . The extra constraint in eq. (13c) is added for the practical
purpose of preventing the algorithm from thinking that it can run time in reverse.

Stages 1 through N-1 of the problem are modeled by the following continuous-time cost
integral, differential equation, and constraints

1

= Oj x7dT (14a)
0010000~ ~00— =
0001000 00
0000100 00
dX _x,<| 0000010 |x + |00 |up (14b)
de 0000000 10
0000000 01
\L 000000 0- Logod
x52(t) + xg2(1) <1 (14c)
0.01 € x7 (14d)

where the constraint in eq. (14d) is added for practical purposes. Even though eq. (14d) is
redundant with eq. (13c) because dx7/dt = 0, this constraint is useful to help ensure reasonable
intermediate solution estimates during the optimization process when the constraint dx7/dt =0
might be violated.
The terminal stage, stage N, is modeled simply by the terminal constraints on the positions
and velocities
xj(t=1) = 0 fori=1,..,4 (135)

coupled with one more constraint on the acceleration magnitude

17

x52(1=1) + x62(1=1) <1 (16)

The code that models this problem has been included at the end of Appendix D as an example
of how to apply the problem encoding specification at the beginning of Appendix D. The
subroutine called FLMNTM encodes the dynamics and cost functions in egs. (13a), (14a) and
(14b) along with their first and second partial derivatives. The subroutine CMNTM encodes the
auxiliary constraint functions in egs. (13b), (13c), (14c), (14d), (15) and (16) along with their first
and second partial derivatives.

The first guess used for this problem takes the form

tr = 2.980345 (17a)
x1(t) = -73.605383 +2.949018t - 0.49474412 (17b)
x2(t) = -35.125486 + 0.430989t - 0.072305t2 (17¢)
x3(t) = 2.949018 - 0.989489t (17d)
x4(t) = 0.430989 - 0.144610t (17e)
x5(t) = - 0.989489 (176)
xg(t) = -0.144610 (17g)
x7(t) = 2.980345 (17h)
ui() = 0.0 (171)
uz(t) = 0.0 (17j)

where the notation used corresponds to the definitions associated with egs. (14a)-(14d). Basically,
this guess puts on the "brakes" to bring the system to rest, x3(tf) = x4(tf) = 0, but it fails to bring
the system to the origin, x1(tf) # 0 and x2(tf) # 0. It satisfies the dynamics constraints and the
inequality constraint on the acceleration magnitude.

The subroutine MNTMIN in Appendix D sets the initial guess of the optimal trajectory. This
subroutine also defines all of the other user-definable optimization algorithm inputs that are called
for in the specification at the beginning of Appendix D except for N, the number of the terminal

problem stage. The quantity N must already be known by the routine that calls MNTMIN. A main

18

program that calls the parallel optimization code can first make a call to MNTMIN in order to set up
the user-defined quantities.

MNTMIN's output arrays NUVEC, NXVEC, NECVEC, and NICVEC and its output
scalars NUMAX, NXMAX, and NCMAX define various problem vector dimensions. The arrays
UO and XO contain the first guess. The arrays IDT and T further define the problem model by
indicating whether a stage is continuous-time or discrete-time and by defining the time associated
with each problem stage. The arrays KRK and ISECGR provide signals to the optimization
algorithm of which numerical integration routine to use for continuous-time stages and of whether
or not analytic second derivatives are available for problem functions. The arrays DELTU and
DELTX provide finite difference intervals for approximating any second derivatives that are not
provided in analytic form by the user.

5.3 NASP Minimum-Fuel Ascent Guidance Problem

A minimum-fuel NASP ascent guidance problem can be posed to take the vehicle from just

after lift-off (10 feet off of the ground at Mach 0.4 with a flight-path angle of 2° and a gross weight

300,000 Ib) to a circular orbit at 100 miles altitude using the minimum amount of fuel:

find: tr and a(t), da(t), and d(t) for 0 <t <tf (18a)
to minimize: J= - m(tf) (18b)
subject to h=V siny (18c)

. T cosa - D R .

Ve 3174 (ETE?E)Z siny (18d)

T sinat + L Rg
. [——m . 32.174 (E—_+ RE)Z cosy} v cosy
¥= A% h T REg (18¢)
qC M
PR Tal0a,M) 15000 ¢ (189

" 32178 Luou) | TET74+ 4440
h(0) = 10, V(0) = 446.56, ¥(0) = 0.034907, and m(0) = 93243 (18g)
g < 2000 (18h)
2.771x108 \ p(h) V3 < 400.0 (18i)

19

-0.01745 < o < 0.20944 (18))

-0.34907 < SE(a,M) < 0.34907 (18k)
bamin(M) < 02 < Gappa M) (181
0.0 < ¢ < 1.0 (18m)
.40 < [Z%] < 40 (18n)
[%%Zimk} < 40 (180)
0.0 < h (18p)
h(t) = 528000 (18q)
) = 0.0 (18r)
V(tp) = 2562039 (18s)

The problem model has four state variables; h is the vehicle altitude above the Earth's surface
in ft, V is the vehicle's inertial speed in ft/sec, v is the flight-path angle in rad., and m is the mass
in slugs. Equations (18c)-(18e) model motion in a vertical plane over a spherical, non-rotating
Earth. They include the aerodynamic forces, lift L and drag D, the net axial thrust force due to the
air-breathing and rocket propulsion systems, T, and the usual 1/(h+Rg)? central gravitational force
term. Equation (18f) models the vehicle mass decrease due to fuel consumption by the air-
breathing and rocket propulsion systems. The control variables in the problem are «, the angle-of-
attack in rad., ¢, the non-dimensional fuel equivalence ratio of the air-breathing propulsion
system, and ¢.(t), the rocket throttle setting expressed as a fraction of the maximum available
thrust.

Other quantities that appear in the problem model are R, the radius of the Earth in ft, q, the
dynamic pressure in 1b/ft2, M, the Mach number, Cr1,(¢a,M), the thrust coefficient of the air-
breathing propulsion system in ft2, [;(¢a,M), the fuel specific impulse of the air-breathing
propulsion system in sec, p(h), the atmospheric density in slugs/ft3, 3E(a,M), the trim elevon

angle in rad, and ¢ap;,(M) and 0ap,,, (M), the Mach-number dependent limits on the air-breathing

propulsion system's fuel equivalence ratio. Some of the numerical constants that appear in the

20

problem model are the acceleration of gravity at the Earth's surface, 32.174 ft/sec2, the rocket's
maximum in vacuo thrust, 15000 1b, and the rocket's in vacuo fuel specific impulse, 444.0 sec.

The problem's auxiliary constraints enforce various practical limits. Constraint (18h) keeps
the dynamic pressure below 2000 psf in order to ensure structural integrity. Constraint (18i) keeps
the maximum local heating rate below 400 BTU/sec/ft2. The angle-of-attack is constrained to lie
between -10 and +120 by constraints (18j), and the trim elevon setting is constrained to lie between
1 200 by eq. (18k). Constraints (181) enforce practical limits on the air-breathing propulsion
system's fuel equivalence ratio. Below Mach 2, ¢, is constrained to lie between 0.0 and 2.0.
Above Mach 2, ¢, is constrained to lie between 0.05 and 5.0. Similarly, rocket thrust is limited by
constraints (18m). Constraints (18n) limit propulsive plus aerodynamic acceleration in the velocity
direction to be between * 4 g's, and constraint (180) limits the normal propulsive plus
aerodynamic acceleration to be below 4 g's. Constraint (18p) keeps the vehicle from flying into
the ground shortly after take-off. Constraints (18q)-(18s) enforce the final achievement of a
circular orbit at the prescribed altitude.

The air-breathing propulsion system model is an updated version of the model contained in
Ref. 3. It has been supplied by the first author of Ref. 3. The model gives tabulated data for the
thrust coefficient, Ct,(¢a,M), and the fuel specific impulse, Ia(¢a,M), on a two-dimensional grid in
(¢2,M) space. The model is discontinuous at M = 2 because of a propulsion system mode switch,
presumably from a turbojet mode for M < 2 to a ramjet/scramjet mode for M 2 2. The tabulated
data only goes up to ¢, = 2 for M < 2, but it goes up to ¢ = 5 for M > 2, which is the reason for
the Mach-number dependent limits placed on ¢, by constraints (181).

Two-dimensional cubic splines of the tabulated data have been used to generate the functions
Ct,(¢a,M) and Ia(¢a,M) for use by the trajectory optimization code. These splines are continuous
with continuous first and second partial derivatives (except at M = 2). Because the underlying
functions are discontinuous at M = 2, two separate cubic splines have been generated for each
function, one that applies below Mach 2, and one that applies above Mach 2. These models are

shown in 2-D form on Figs. 1 and 2.

21

The discontinuities in these functions could cause problems for the optimization software
described in this report. An augmentation of the problem model has been developed to avert such
difficulties. It enforces auxiliary constraints on Mach number. At one pre-selected time step, call it
step number Npach.2, the equality constraint M = 2 is enforced. At all time steps before
Nmach-2 the inequality constraint M < 2 is enforced, and at all time steps after Npmach-2 the inequality

constraint 2 < M is enforced. The low-Mach-number cubic splines of the functions Cr,(¢a,M) and

1,(¢a,M) are always used at time steps before Npach.2, and the high-Mach-number cubic splines of
the functions Ct,(9a,M) and Ia(¢a,M) are always used at time steps greater than or equal to
Nmach-2. In other words, the propulsion system mode switch is enforced at a particular time step.
A clever modeling trick allows the actual time of this transition to remain free for the optimization
process to determine. The trick uses an artificial time T to encode the problem. The Mach 2
transition occurs at a fixed artificial time, but an augmented control quantity allows the actual time
of this mode switch to be free.

The rocket model used here is borrowed from Ref. 4. It assumes an in vacuo maximum
thrust of 15000 1b, an in vacuo fuel specific impulse of 444 sec., and a nozzle area of 1 ft2. The
thrust inside the atmosphere is

Tr = ¢[15000 - 1.0 p(h)] (19)
where p(h) is the atmospheric pressure in psf, which is implemented as a cubic spline function of
altitude based on tabulated data from the 1976 U.S. Standard Atmosphere {5].

Combining the rocket thrust and the air-breathing system's thrust, the total vehicle thrust is

T = q C1y(¢aM) + ¢[15000 - 1.0 p(h)] 20)
The total rate of fuel use in eq. (18f) consists of two terms: the first term is the fuel used by the
air-breathing system, and the second term is the fuel used by rocket. This thrust model assumes
that the two propulsion systems can operate simultaneously, and it lets the optimization algorithm
determine whether it would be beneficial to do so.

Before defining the aerodynamic model, it is necessary to define several aerodynamic

quantities. The dynamic pressure takes the usual form

22

q = 2p(h) V2 1)
The p(h) density function is modeled as a cubic spline of tabulated data from Ref. 5. The Mach
number is given by

M = V/a(h) (22)
where a(h) is the speed of sound in ft/sec. Itis modeled as a function of the air pressure and the

density

a(h) = /—LI'E(“) (23)
p(h)

which agrees well with the tabulated a(h) data in Ref. 5 for values of h up to 280,000 ft. Above
this altitude the concept of a speed of sound starts to break down, but eq. (23) is still used to define
a(h) for determination of M. This should not cause great errors because the aerodynamic and
propulsive forces that depend on M are very small above h = 280,000 ft.

The aerodynamic model gives the lift and drag forces, L and D, and the trim elevon setting,

SE(a,M). Lift and drag are determined from the nondimensional trimmed lift and drag

coefficients, Cp(a,M) and Cp (0, M):

L = §SC (0.M) (242)

D = qSCp,(a,M) (24b)
where S is the wing reference area, 3603 ft2. Reference 3 provides untrimmed lift, drag, and
pitching moment coefficients along with increments to these coefficients that depend on o, M and
SE. Given a c.g. location expressed as a fraction of the mean aerodynamic chord, x/c, one can

solve the pitch trim equation for the equilibrium elevon setting:

0 = Cm(M) + 2CMzp(@M,BE) + [X/][CL(M) + 2CLgp(a,M,8E)] (25)
where Cpm, (a,M) and Cp,(a,M) are the untrimmed pitching moment and lift coefficients, and
Cmgg(,M,0E) and CLgg(0,M,3E) are the increments to these coefficients due to just one elevon
(left or right).
The trim elevon setting can be calculated as a function purely of & and M, 3E = 8E(a,M),

because the c.g. location has been modeled as being a pre-determined function of M. The function

23

x(M)/c has been chosen to make the vehicle nearly neutrally stable over much of its flight envelope
when trimmed at lift = weight. This is true at high Mach numbers, but the aerodynamic data from
Ref. 3 has a discontinuity at M = 1 due to a canard retraction as M increases through 1. In order to
preserve continuity of the x(M)/c function, the vehicle is allowed to be statically unstable below
Mach 1. The pre-programmed c.g. function in tabulated form is given in Table 1.

Given the trim elevon setting from eq. (25), the trimmed lift and drag coefficients become
Cr (M) = Cr,(@,M) + 2CLgg[0,M,SE(a,M)] (262)

Cp,(a,M) = Cp,(a,M) + 2Cpgsg[o, M,0E(ct, M)] (26b)

where Cp, is the untrimmed drag coefficient, and Cpgg is the drag increment due to one elevon
being deflected.

The functions Cr, (&t,M), Cp, (&,M), and 8E(a,M) are implemented as 2-dimensional cubic
splines that interpolate between grid points in (&,,M) space. As mentioned above, each of these
functions has a discontinuity at M = 1 due to the assumption of a canard retraction as M increases
through this value. Therefore, each of these functions has two separate cubic splines, one that
applies for M < 1 and one that applies for M 2 1. This leaves a discontinuity, which can be seen
clearly on the plots of Cr (a,M) and Cp,(c,M) that appear in Figs. 3 and 4.

As with the propulsion model's discontinuities, the aerodynamic discontinuities could cause
problems for the optimization software. Further auxiliary constraints on Mach number have been
added to the problem statement in order to avoid such problems. At a pre-selected time step
numbered Npacn.1, the equality constraint M = 1 is enforced. At all time steps before Npach-1 the
inequality constraint M < 1 is enforced, and at all time steps after Niach-1 the inequality constraint
1 <M is enforced. The low-Mach-number cubic splines of the functions Cp (o, M), Cp (a,M),
and 3E(a,M) are always used at time steps before Npach.1, and the high-Mach-number cubic
splines of these functions are always used at time steps greater than or equal to Nmach-1. As with
the propulsion mode switch, a modeling trick allows the actual problem time of the switch to be left
free despite that fact that it occurs at a fixed stage number. Of course, the stage number Npyacp.1 18

chosen to be less than Npach-2.

24

Several modeling tricks have been used to put the problem in a form compatible with the
specification given in Appendix D. The state vector gets augmented to store dt/dt, the rate of
change of actual time with problem time, and some auxiliary control variables, or constraints, or
both are required at stages 0, Npach.1, and Npach-2 in order to allow adjustment of dt/dt so that it is
independently definable for the three main problem phases, M <1,1< M <2,and 2 < M.

In an attempt to improve the numerical conditioning of the problem, the inequality
constraints have been re-scaled so that the maximum or minimum limit, if nonzero, becomes + 1.
Similarly, the optimization algorithm works with the following units in order to deal with x and u
elements nearly on the order of 1 to 10. Time is in 1,000 sec. units, altitude is in 10,000 ft. units,
speed is in units of 1,000 ft/sec., mass is in 1,000 slug units, flight-path angle is in rad., and
angle-of-attack is in deg.

The first guess used is for this optimization roughly approximates two features found in
optimal trajectories that appear in Ref. 4: an arc along the q = 2000 psf limit followed by an arc
along the heating-rate limit. The guess starts at M = .4 and h = 10 ft. It assumes a linear increase
of h and M until M = 0.85 and h equals the altitude at with M = 2 would yield q = 2000 psf.
Next, the guess accelerates in level flight to increase M from 0.85 to 2, which brings the trajectory
onto the q = 2000 psf contour. Now M and h increase along this contour until the heating-rate
limit in eq. (18i) is reached. The guess continues increasing M and h along this contour until V =
23,000 fps. It then does a pull-up to put the vehicle into a transfer orbit with apogee = 528,000
ft., the target orbital altitude. Finally, the guess does a long burn near apogee to approximately
circularize the final orbit.

The air-breathing propulsion system is run at ¢; = 1 up until the pull-up into a transfer orbit,
and the rocket throttle setting is kept at zero until after the pull-up. During the circularizing burn,
or = 1 is used, and the time of the burn is based on the velocity increment needed at apogee to
circularize the orbit.

Initially, this guess procedure yields a plot of h vs. V for the atmospheric phase. The time

parameterization of the h-V profile and the guessed time histories Y(t) and m(t) are determined by

25

satisfying Euler approximations of 3 of the state differential equations, egs. (18c), (18d), and
(18f). The a(t) guess is determined to minimize the error in the Euler approximation of eq. (18¢)
subject to the minimum and maximum bounds on o in eq. (18j).

Of course, this first guess violates many of the problem constraints. It violates all of the
differential equations slightly, and it may violate any of the auxiliary constraints that have not been

specifically used in this first guess procedure (e.g., the bounds on 6E(a,M)).

6. Trajectory Optimization Computational Results

All of the results reported in this section are for work done on a 32-node INTEL iPSC/860.
Encoding has been done in parallel FORTRAN. This is a message-passing parallel processor.
Each node of the iPSC/860 is a "super” scalar processor. Simple tests indicate that each node's
floating-point processor speed is about 1.5 Mflops, which is comparable to an HP Apollo 9000
model 720 work station. The interconnections between nodes are on a rectangular grid, but the
effect of the "distance" between nodes in this grid is supposed to be minimal due to advanced
message routing hardware.
6.1 Results for the Goddard Problem

The Goddard problem has been solved on this machine using a variety of numbers of
discrete-time problem stages to approximate the problem and using a variety of numbers of
processors. Problems with 16, 32, 64, and 128 stages have been solved. Processor numbers
ranging from 1 to 32 have been used when appropriate. The results reported here use the alternate
NP algorithm outlined at the end of Section 3, the one that always uses curved line searches
(except during its feasibility phase).

Solution time histories for a 128-stage problem are plotted on Figs. 5 and 6. They compare
well with the exact solution given in Ref. 1. Figure 3 of Ref. 1 indicates that the fixed-end-time
solution with tf = 0.198 is also the optimal free-end-time solution. The tf = 0.198 altitude plot on

Fig. 5 of Ref. 1 is very similar to the altitude plot in the upper left-hand comer of Fig. 5 of this

26

report, and the tf = 0.198 thrust solution on Fig. 6 of Ref. 1 is very similar to the thrust plot on
Fig. 6 of this report; the slight differences are due, most likely, to the problem discretization.

An important point about the present algorithm is how well it captures the singular arc that
appears on the thrust plot between t = 0.024 and t = 0.07. This is accomplished without having to
tell the algorithm in advance that it must differentiate the optimality condition in order to get the
right equation for determining the singular arc. In essence, this differentiation is done
automatically by the QP solution procedure described in Section 2 and in Appendix A.

Computational timing results for various sized problems running on various numbers of
processors are presented on Fig. 7. This figure shows how the addition of more processors can
speed up the solution procedure significantly. For a 64-stage problem, the algorithm terminates
7.2 times faster when running on 32 nodes than when running on one node. The speediest
solutions for a given number of problem stages are achieved when the number of processors is
greater than or equal to one half the number of problem stages. Of course the number of
processors must not exceed the number or problem stages or the ability to parallelize under the
present scheme breaks down.

The times on Fig. 7 are for solution of the problem from a cold start, a relatively poor first
guess. If the algorithm were to be used in a real-time guidance loop, then it would start with a
good first guess on each update. The guess would be the remainder of the optimal trajectory that
had been computed for the previous guidance update. This would be identical to the current
optimal trajectory if not for disturbances, sensor noise, and model uncertainty. It is hoped that
these contributions to solution uncertainty would be relatively small. If such were case, then the
real-time version of the guidance algorithm would need to perform only a very few of its major
iterations: computation of functions and their first and second partial derivatives and solution of a
quadratic program. Furthermore, the solution of each quadratic program would require only one
or a very small number of minor iterations due to the goodness of the solution guess. Thus, the

algorithm might quickly re-optimize trajectories to provide real-time optimal commands.

27

With this in mind, Fig. 8 presents the wall clock time per major iteration when the algorithm
is near the solution. These results are for various numbers of processors, all of them solving the
64-stage Goddard problem. Note how the time per solution is split about evenly between the
derivative calculations and the QP solution procedure for the case of 1 processor, but the QP
procedure takes about 5 times as long as the derivative calculations when using 32 processors.
This happens because the derivative calculations are inherently more parallelizable than the QP
solution algorithm. Also, note that the 32-processor result is 12 times faster than the 1-processor
result.

If the algorithm could terminate in 10 such iterations during a real-time guidance update, then
guidance updates could occur about once every 2.5 sec. Noting that time is expressed in Hergs,
the actual time per zero-order-hold interval is 2.54 sec for the 64-stage problem. Therefore, this
scheme could work in a real-time loop under the assumption of 10 terminal-type algorithm
iterations per guidance update. Note that the ability to perform such updates in the required
number of iterations has not, as yet, been studied.

The dependence of the number of major and minor algorithm iterations on the number of
processors is shown in Figs. 9 and 10, respectively. Major iterations are those that calculate
derivatives and start solving a new QP; they are termed "middle-loop" iterations in the paper in
Appendix B. Minor iterations are those that perform one set of matrix factorizations and a line
search; they are termed "inner-loop" iterations in Appendix B.

Figures 9 and 10 demonstrate that the solution time is moderately influenced by a change in
the required number of algorithm iterations with a change in the number of processors. This
change is thought to be due primarily to the way in which the algorithm deals with directions of
negative curvature in the QP projected Hessian. It can calculate different directions of negative
curvature for the same indefinite QP when using different numbers of processors.

6.2 Results for the Minimum-Time to the Origin Problem
Both 32-stage and 64-stage approximations of the acceleration-limited minimum-time to

origin problem have been solved. Figure 11 plots several different time histories associated with

28

the 64-stage solution. On the upper left-hand plot of the figure al and a2 are the accelerations.
They correspond to x5 and xg, respectively, in the model presented in eqs. (14a)-(14d) of Section
5.2. Similarly, v1 and v2 on the lower-left plot of Fig. 11 correspond to x3 and x4, respectively,
in egs. (14a)-(14d). These plots agree very well with the exact solution computed from the linear
tangent steering law, egs. (10) and (11).

One noteworthy aspect of the solution is that an auxiliary state-variable inequality constraint,
eq. (14c) is active at all times. The sum of the squares of the curves for al and a2 is equal to 1 at
each time point on the upper left-hand plot of Fig. 11. The algorithm is able to compute the
optimal solution without the typical requirement that eq. (14c) be differentiated in order to
introduce a control variable. In fact, just the opposite is the case in this problem.

The state variable constraint in eq. (14c) was originally a control variable constraint, eq. (9¢),
in the original problem form, eqgs. (9a)-(9f). The model has been modified by making the original
controls into states and creating new controls that are the time derivatives of the original controls.
This has been done in order to smooth out the zero-order-hold effects and achieve a better
approximate solution for a given number of discrete-time steps. This modeling trick would be
counter-productive were it not for the algorithm's ability to automatically handle pure state
constraints.

The 32-stage minimum-time problem has been solved on 1, 2, 4, 8, 16, and 32 processors.
Figure 12 plots the solution times for this problem versus the number of processors used to solve
the problem. As with the Goddard problem, an increase in the number of processors decreases the
wall-clock time required for solution. The 5-fold decrease in the solution time as the number of
processors increases from 1 to 32 is about the same as for the 32-stage Goddard problem.

The variation of the number of major algorithm iterations with the number of processors for
the 32-stage minimum-time problem is plotted on Fig. 13. Similarly, Fig. 14 plots the number of
minor algorithm iterations vs. the number of problem stages. Both of these curves increase in
comparison to the corresponding plots for the 64-stage Goddard problem, review Figs. 9 and 10.

It is not clear why the iteration counts are higher for this problem. The cause may have something

29

to do with the increased number of states in the final form of the problem model (7 in this problem
vs. 4 in the Goddard problem), or it may have to do with the presence of an active state inequality
constraint in this problem.

The variations of the iteration counts with the number of processors are more pronounced
than for the Goddard problem. The 1-processor case requires significantly fewer of each type of
iteration. Again, these discrepancies are attributable to the presence of an indefinite projected
Hessian during many (the majority!) of the QP/line-search minor iterations.

The time per major iteration as it varies with the number of processors is plotted on Fig. 15.
These times are for major iterations near successful algorithm termination, when only one QP
search direction calculation is required per major iteration. Major iterations far from the solution
generally require multiple QP search direction calculations and, therefore, take significantly longer.
Plotted along with the total time per iteration are its principal components, similar to Fig. 8 for the
Goddard problem.

The total iteration time is roughly the same as for the Goddard problem (review Fig. 8), but
the proportion of time spent solving the QP is larger than for the Goddard problem. This makes
sense because the QP algorithm's scalar operation count goes as [n3 + O(n2)][(N/p) + log2(p)]
when solving a problem with n state vector elements and N stages on p processors. For the
present problem n = 7 and N = 32, whereas n =4 and N = 64 for the Goddard problem on Fig. 8.
The plots show that the QP solution procedure for the minimum-time problem is slower for all
cases considered, but not quite as slow in comparison to the corresponding Goddard problem
procedure as is indicated strictly by the leading terms of the scalar operation count.

The iteration speed for the 32-stage minimum-time problem operating on 16 or 32 processors
is under 0.5 sec. This is a fast execution time and may indicate suitability for use in real-time
guidance. Any serious consideration of the real-time guidance issue will have to determine a
reliable estimate of the typical number of iterations required to re-converge the solution after one

guidance update interval.

30

6.3 Results for the NASP Ascent Guidance Problem

A 32-stage NASP ascent guidance problem has been solved using the parallel algorithm
developed under this grant. The solved problem models the Mach 1 transition, and the
concomitant change in the aerodynamic model due to canard retraction, as occurring at stage
Nmach-1 = 6. It models the Mach 2 transition and concomitant propulsion model switch as
occurring at stage Nmach2 = 9. The initial stage is stage 0, and the terminal stage is stage N = 31,
which leaves 22 zero-order-hold intervals for flight above Mach 2. These hold intervals have been
modeled as all being of equal real-time duration.

The algorithm solved the problem in 2 hours of wall clock time using all 32 of the
iPSC/860's processors. It executed 2035 major algorithm iterations to solve the problem, about
100 of which were used to achieve initial approximate feasibility of the trajectory; the NP algorithm
described in Appendix B has an initial phase in which it enforces feasibility.

The alternate NP algorithm described at the end of Section 3 is the one that has been used to
solve this problem. An attempt was made to solve the NASP problem with the first NP algorithm
of Section 3, but it did not get near convergence after 2000 major algorithm iterations.

Plots of the solution are presented on Figs. 16, 17, and 18. The mass time history, the
lower-right plot on Fig. 16, shows that the final on-orbit mass is about 56% of the original post-
lift-off weight, which seems reasonable. The altitude and flight-path angle time histories, the two
left-hand plots on Fig. 16, show an initial steep climb to about 150,000 ft. After this the vehicle
climbs more slowly until it reaches its orbital velocity at an altitude of just below 200,000 ft.
Finally, it executes a pull-up into a transfer orbit to reach its target orbital altitude.

The control time histories on Fig. 17 show that the air-breathing engine provides most of the
acceleration. Its fuel equivalence ratio, shown on the upper right-hand plot, is non-zero
throughout the ascent. It seems a little bit silly that ¢ remains nonzero after the exit of the
atmosphere at about t = 3,000 sec, but this does not cause much loss of final mass because so little
actual fuel flow is involved. The rocket throttle setting, the lower left-hand plot, remains at zero

until just before the terminal time when it helps to circularize the final orbit.

31

The angle of attack time history, the upper left-hand plot on Fig. 17, shows some jitteriness
coupled with a slow downward trend as speed increases toward the orbital velocity. There is a
pull-up just before t = 3,000 sec to initiate the transfer orbit, then a is held negative during the
transfer orbit and part of the terminal burn, presumably to help circularize at the proper altitude.

The jitteriness of the angle-of-attack plot points up a shortcoming of this solution. It seems
that the zero-order-hold intervals are too long during the flight phase above Mach 2. Each interval
is about 200 sec long. If V = 2,900 fps, then the approximate Phugoid period is 400 sec. The
lightly-damped Phugoid mode will alias if it has a shorter period (a higher frequency), which it will
have for V < 2,900 fps. This aliasing of a lightly-damped open-loop mode could easily account
for the jitters apparent on all of the plots, especially those showing angle-of-attack and flight-path
angle.

The altitude vs. Mach number plot, the left-hand plot on Fig. 18, shows related problems?.
The vehicle accelerates from Mach 2 to Mach 17 in just one zero-order-hold interval -- compare this
plot with the velocity time history in the upper right-hand corner of Fig. 16. During this hold
interval the trajectory may violate the dynamic pressure constraint because the auxiliary constraints
are enforced only at the boundaries of the hold intervals. (Note that the straight-line approximation
of the trajectory shown on the figure is probably not the actual trajectory computed via numerical
integration.) The two spikes that appear on the h vs. M plot also may be due to the long hold
interval.

There are two possible fixes for the aliasing problem. One is to model the controls as being
piecewise linear or piecewise parabolic. This could be done by augmenting the state vector with
the original controls and making new control variables out of the first or second time derivatives of

the original controls. The smoothed-out control signals would be less likely to excite the lightly-

t On a different note, the h vs. M curve changes from solid to dashed above about 280,000 ft

because Mach number is not very meaningful at such extreme altitudes.

32

damped phugoid mode even when aliasing occurred. Another, simpler fix would be to greatly
increase the number of problem stages. Attempts have been made to solve a 64-stage problem, but
the algorithm took too long to converge in the tests conducted to date.

The average time per major iteration of the algorithm is 3.5 sec. of wall clock time for this
problem. Iteration times near successful algorithm termination are probably even shorter than 3.5
sec. This is in the ball park of the kind of iteration speed that might make real-time optimal
guidance practical for the NASP ascent problem, but other difficulties with the algorithm need to be
worked out before it can be used. In particular, a solution to the aliasing problem must be found.

Also, algorithm modifications are needed in order to speed global convergence. The slow
global convergence of the algorithm on the NASP problem implies that standard guidance updates,
despite having relatively good first guesses, would probably require many iterations of this

algorithm. This would probably require too much time to make on-line solution practical.

7. Discussion of Algorithm Performance and Suggestions for Improvement

Application of the parallel trajectory optimization algorithm to the 3 test problems has shown
some strengths and some weaknesses of the approach. One of the two most significant strengths
is the ability of parallelism to greatly speed up each major algorithm iteration, which consists of
derivative calculations, a search direction calculation, and a search step. These operations are
common to almost all optimization algorithms, and the results of this work could be applied to
parallelize trajectory optimization algorithms other than the one presented here.

Another significant strength of the algorithm is the rapidity with which it is able to determine
a feasible solution to a problem. Such a solution obeys the dynamics and all of the auxiliary
constraints, including any terminal constraints, but it may be far from the optimum of the given
cost function. If the most important guidance objectives are stated in terms of terminal constraints,
such as the constraint that the NASP achieve a circular orbit of a certain altitude, then the algorithm

can rapidly design sub-optimal trajectories that meet the most important guidance objectives.

33

The main weakness of the algorithm is its slowness to achieve convergence to the optimal
solution. It can require many major iterations, most of which require a number of minor iterations.
Each minor iteration involves solution of an equality-constrained dynamic QP. While this process
has been parallelized, it is inherently difficult to achieve good parallel efficiency for this process.
The algorithm would do well to cut down on the number of equality-constrained QP solutions that
it computes on the way to a solution.

One possible cause of much of the slowness revolves around the algorithm's actions when it
encounters an indefinite projected Hessian during computation of a search direction. Presently, it
attempts to search in a direction of negative curvature every other time that it encounters an
indefinite Hessian, but it cannot guarantee that it is searching in the direction of most negative
curvature.

The presence of quadratic constraint terms in the middle-loop QP problem (see the paper in
Appendix B) may cause more harm than good. These terms, when coupled with the algorithm's
logic for dealing with negative cost function curvature, can cause the algorithm to cycle between
several search directions, none of which makes much progress in reducing the cost function.

Another problem may be the augmented Lagrangian NP algorithm itself. The current
implementation, as described in Appendix B, is designed to work well with large penalty weights
in order to be able to assure rapid local convergence. Unfortunately, large penalty weights can
cause global convergence problems that are not addressed by the current algorithm.

Yet another problem with the algorithm may be its use of the box trust region method of
assuring global convergence. This method tends to lean heavily on equality-constrained QP
factorizations and to rely only very lightly on function evaluations. In the parallel environment, QP
solutions are relatively expensive, and function evaluations are relatively cheap. A more efficient
parallel algorithm might be one that ensures global convergence by using line searches to determine
the search step length.

The rapidity of the constraint satisfaction phase of the algorithm suggests an alternate

approach to develop a rapid parallel trajectory optimization algorithm. Instead of using a standard

34

NP type of algorithm, one could develop a parallel equation solving algorithm for the necessary
conditions. While this would pose some difficulties in that the Kuhn-Tucker necessary conditions
involve inequalities and the complementarity condition, these difficulties could probably be
surmounted. The algorithm would use the norm of the necessary condition violation as its merit
function. It could use this merit function in a Levenberg-Marquardt-type of approach. Parallel
solution times might be on the order of the times required by the current algorithm to find an inital
feasible trajectory during its first phase. Such performance, if realized, would make the necessary
condition solver 20 times faster than the present algorithm when solving the NASP problem.

The equation solving approach has the advantage that many of the parallel ideas developed
under this grant could be directly applied to it, but it has the disadvantage of possible convergence
to a saddle point or to a local maximum; the necessary conditions only ensure that a stationary point
has been found. In any event, one of the parallel QP factorization algorithms of Appendix A could
be used to check whether or not the stationary point was a local minimum. The algorithm would
form and Cholesky factorize the projected Hessian at the solution. If the Cholesky factorization
terminated successfully without producing a negative diagonal element, then the solution could be

certified to be a local minimum.

8. Conclusions

An effort has been made to develop a fast parallel trajectory optimization algorithm suitable
for use in on-line, real-time guidance of an aerospace vehicle. The parallel algorithm approximates
continuous-time phases of a problem via the zero-order-hold control discretization and Runge-
Kutta numerical integration over the hold intervals. This gives rise to a large nonlinear program
with the specialized dynamic programming structure. The parallel algorithm uses a specialized
version of the augmented Lagrangian nonlinear programming algorithm to solve this problem.

The algorithm starts with a guessed solution that need not satisfy the dynamics; state and
control time histories are guessed. Next, the algorithm computes the cost, dynamics, and auxiliary

constraint functions and their first and second partial derivatives. This is accomplished in parallel

35

by having different processors simultaneously compute these quantities for different time steps.
The algorithm then uses this information to set up a quadratic approximation of the original
trajectory optimization problem. It solves this quadratic approximation, subject to trust region
bounds, to compute an improved guess of the solution. It uses a special parallel dynamic quadratic
programming algorithm to solve this problem. Given an improved guess, this process repeats
itself until suitable termination criteria are satisfied.

Global convergence to a local minimum is assured by adaptively adjusting the trust region
size to enforce descent of the augmented Lagrangian function. Satisfaction of the dynamic
constraints and the auxiliary constraints is enforced via an outer loop in which multiplier guesses
are updated to bias the penalty terms in the augmented Lagrangian function.

The algorithm has been tested off-line on three problems, the Goddard problem of
maximizing a sounding rocket's peak altitude, the planar, acceleration-limited minimum-time to the
origin problem, and a lift-off-to-orbit National Aerospace Plane (NASP) minimum-fuel ascent
guidance problem. The algorithm is able to accurately solve problems with singular arcs or with
active state-variable inequality constraints without placing any special burden on the problem
modeling process.

Good solution speeds have been achieved on the Goddard and minimum-time problems,
even with fairly poor first guesses. A 128-stage Goddard problem has been solved in just 118 sec
using all 32 nodes of an INTEL iPSC/860 parallel processor. This problem has 4 state variables
and one control variable after special modeling tricks have been applied. A 32-stage minimum-time
problem has been solved in 151 sec. The problem model that was submitted to the algorithm has 7
state variables and 2 control variables.

The use of fewer processors results in increased solution times. The solution of a 64-stage
Goddard problem takes 7 times longer on 1 processor than on 32 processors. The optimum
number of processors seems to be about half the number of problem stages for typical problems.

Performance on the NASP problem has not been as good. A 32-stage problem with a 5-

dimensional state vector required 2 hours (7200 sec) to reach a solution when using 32 processors.

36

The time per major algorithm iteration is low for all three problems, especially when the
algorithm is near successful termination. Each major iteration calculates functions and derivatives,
solves a QP, and updates the solution estimate. When using all 32 processors, the iteration time on
the Goddard problem is 0.26 sec near algorithm termination, but this time increases to 3.08 sec
when using just 1 processor. Similarly, a 32-stage minimum-time problem's iteration time near
algorithm termination is just 0.38 sec on 32 processors, but it is 3.09 sec on 1 processor. A 32-
stage NASP problem has an average major iteration time of 3.5 sec when run on 32 processors,
and its iteration time near algorithm termination is even smaller, but it required 2035 such iterations
to converge from the first guess tried in this study, which accounts for the long time required to
solve that problem.

The suitability of this algorithm for on-line, real-time guidance purposes depends on two
things, its iteration speed and the number of iterations that it must execute to re-converge to the
solution between guidance updates. The algorithm developed under this grant has a proven ability
to iterate rapidly, but its ability to converge in few iterations seems to be problem-dependent. In
summary, the algorithm is not suitable for all on-line guidance applications in its present form, but

it may be suitable for some on-line applications.

9. References

1. Tsiotras, P. and Kelley, H.J., "Goddard Problem with Constrained Time of Flight", Journal
of Guidance, Control, and Dynamics, Vol. 15, No. 2, March-April 1992, pp. 289-
296.

2. Bryson, A.E. Jr. and Ho, Y.C., Applied Optimal Control, Ginn and Co., (Waltham,
Mass., 1969).

3. Shaughnessy, J.D., Pinckney, S.Z., McMinn, J.D., Cruz, C.I, and Kelly, M.-L,,
"Hypersonic Vehicle Simulation Model: Winged-Cone Configuration”, NASA TM-102610,
November 1990.

37

Corban J.E., "Real-Time Guidance and Propulsion Control for Single-Stage-to-Orbit
Airbreathing Vehicles", Ph.D. Dissertation, Georgia Institute of Technology, Nov., 1989.
U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, 1976.

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical
Recipes, The Art of Scientific Computing, Cambridge Univ. Press, (New York,
1989).

38

Table 1
NASP Center-of-Gravity Location

as a Function of Mach Number

M x/c
0.3 0.204000
0.7 0.217000
0.9 0.230000
1.5 0.243292
2.5 0.234107
4.0 0.137814
6.0 0.068927
10.0 0.040987
15.0 0.030701
20.0 0.031225
242 0.030864

39

o'

- o
\;

[%I 3

147
____,_.-———"’;_{"'L /‘(‘?%é’ 0
e /}J"y\' ™

i

~ T e
TR e
nly " "‘ i"""'ﬁ_‘
TR l“#" [N
- AN IR T
SRR

ALK t, {'.\\‘ '. '

LN - .7. LMY l'.
SRR NI
T TRETREY "h\[‘

D

!

UAII,
KD

’l"!f,

[;"‘l’)”f "%
R s iy
it 'IZ’! LORIAD z/’

DRI [N
il

i
3

)
il

“f I.)‘ h
"f;f’;”,'#l’:l‘l, f‘f\ qb

¢

il i
ATH AN

BRI S TR T D
el

AT JW’

i

10.0

40

T '
W s

LO

oty

) /) .

bl b iy b
0 Y e,

i

(Mach

Mach number and fuel equivalence ratio.

Air-breathing propulsion system's thrust coefficient
number scale changes at Mach 2.)

1.
vs.

Fig.

(*Z YyoeW 21e sagdueyo J[eds Iaqunu
YoER) °OTIBI 9DUSTEBATNDLI T[ONJ PUE 1dquUNU YOBY °SA
asTndwy O9TJTroads S, wa3sas UOTSINAOIa FUTYIEdIQ-1ITY

‘T

.&ﬂ

4

41

g0°

+.0°

LA AR
—~ 1557 ST A AL
Y L N S O e
IR AR - Wt gy N ey ST
- NIRRT v /2;»—,: i Sy T Ss
W\ A =/ e T 7
ANy s ety o
“{‘\‘)\\i‘.‘ P -‘i’-. rA-4 ! iy
Nt R N AR e e e e L o
RN L NN DYt 7 P A !
SRRy Crrrese st/
+RATRY M “5 o Sy O
I s s S e e e e)
n':*'“‘:’:*:?si!??ﬁf:c'. PSS P ©
A Wit N

-l.0°

.'-'."'."'7":‘.:'-' 5

L
4
'., ‘% J "‘?
:,c,'ﬁ;"‘c,;c.,",um"@&
A iy
,{",.u,'t‘# "T."'g""ii
h
R R

2 A0 LD (¥ A
K t??"t) :"".v"o, MG
I AR R A

)
A 'lp,'".':‘ LA

42

(Mach number scale changes at Mach 1.)

Trimmed 1ift coefficient vs. Mach number and angle

of attack.

3.

Fig.

" D,
t'&?‘%’h

A

AN
(INOYAG

G
I

43

Trimmed drag coefficient vs. Mach number and angle

4.

Fig.

(Mach number scale changes at Mach 1.)

of attack.

sT0

‘wayqoad paeppoy
2yl 03 uorinjyos adeis-gg[9yl JO SITI03ISTY awil Inog ¢ 314

(pwn) 3 (awn)1
0 ¢1°0 [0 <00 0 €T’0 0 €10 1'0 €00 0
R R -1 I I ml — "1 1 - 1 JWO
e \o s | T - N 90
, I o '
\ e § Lo 3
/ / m =
a \
i ‘m v . w
o ot g N80 =
/ 2] N
J E y
! ¢l - /Jod
/
i —_ 1 N [ON - 1 — i | - N —
(wn)1 (awn)1
o s1'o 1'0 SO0 0 €T0 0 SI°0 1'0 €00 0
tT T T T [=T o no.ol - L T T i S P —
10 < -
/ ; = SO0’ I
| : ;
,// S0°0 W ‘ e
.] - ’ 0’1
AN / - -~
N \\ ~ O o
N/
N
- . , 181071
1 L ——— L J _ ! mmo 1 i [S S

44

a3e3s-Q7] °®yl 103

‘wdTqoad paeppoy

A1031STY awll] ([oi3uod) 3Isniyl 3y -9 314

L

S0

Sl

e m.m

(isup) L

45

*s10ssadoad jo
s19qunu SNOTIBA U0 uUnl walqoid pieppos ayl 103

sa3e3s wafqoad jo iaqunu ay3z °sa awrl uoIrInfog °/ 814

| 4N ‘safinyg wBjqoad f0 janquung

cird k! Fi_

- - e e e o 4
e Bt S St TEAel SRt s SR SR e ‘)l‘llkanl«ilJ_‘l.I.],. [- T T _:.

40N

1 00 -

Do

AP 5

sapoN ¢ R

: [N

: 1005 o

W C
sapoN g -

19

~—

46

‘wayqold pieppoy azdels-Hg 8yl JO UOTINTOS 9yl ieau
uayM sjuduodwod S3IF pue UOTIEBAIIT 1ofeW 13d LWT]

[S[) SI0SSRI014 10 1AgUIny

0% ¢ o g1 t
T LI ¥ - 1 - T -
Jl.lm'lll!.llll.lllilll.l.lllllﬂolp,"ll
P e —— e ———— s ——

uonniay __..:.___.t,_mﬂ 1o L] m.ﬂ,,:c__,_._._wa
c:_ﬁ:,m: JCUILASY & uolpind g

U DAY DUy e o oo

‘g 814

47

*waTqoxd
pieppoy 98e1S-Hg 9yl I10J SIOSS3IV0id JO 1aqunu
9yl ’sA suorleaa3T wyitrodre rolew jo 1aqunu 3y ‘6 ‘314

SAOEEAD0IA JO Jaquln N

Te)
T
=
1:2
L

VT
[

48

*wdlqoad pieppoy adels-y9 9yl 10J siossavoxd
JO 18qunu 3yl °*SA SUOTIIBISIT) aoulw JO Iaqunu 3y °Q1 ‘814

CIOSEAICA] JO AN

e e {1 Gl 1 4 i
sl N Eatieba St A 1 e A g N

(AR

Ny

SRR

BN
1

QN

-

49

‘wdTqOId UT3TI0 9yl 03 JwWII-wnururw IZBIS—HQ9
9yl 103 30Td oseyd pue S3TI03ISTY SwWII uoIIniog “[]

08-

(Paysep) Zx pue (prjos) [X

0T

314

(poysep) A pue (pYjos) [A

(Paysep) Ze pue (prios) [e

50

‘warqoxd urdtio ayl 03 awll-wnuWIuIw 33e3IS-gg
24yl 10J S10Ss9201d JO I13aqunu ayl °*SA swT3 uorinjog °zl °S14

SA0SSaT0IA JO J3QUUNN

[}
)

Y

T T T T T T T T T T T ¥ T T L I A

i

1

i

Sl

I3 her

DOt

s ARUS

Slae!

Y

0AK

51

t
‘waTqoad urdtao ayj o3l
auTjl-wnuiujw 23e3S-g¢ 9l 2Yl SI0SSIV01u JO I2qunu
2yl °SA SuoTleasl] wyiltiod[e lofew jo zaqunu SYyy ¢l ‘314

-

SUOSEADIUH 1O ASQIINY

S a7 = ! ¢

T [1 T - B B e

52

‘watqoad urldtao
sy3 03 suril-wnuiutw 28e3s-g¢ 9yl 2Yy3l siossadord
JO 18qunu 2yl 'SA SUOTIBIIIT b I0oUTw Jo Idqunu ayy ¢ ‘314

CANERATOU] O IBQUINY

a7 7 Gl 1 2

LT el

el S il [!ll.la.}t(.?.’.}!x!:‘ [

(vl

}

e

1

1%

A o

i

ey

ety

s

53

*waTqoad urdrio ayl 03 swIj
—-wNWTUTW 23e3S-g¢ 9Yl 3JO UOTIN[OS 9Yl ieau uaym
sjuauodwod S3F pue uoflleaalr iolfew iaad aswyr] -G 814

PSS SUNKSARIOL] IO 1] LNy

- - \
c Y i i sl ol g
I - g st (R — —_— — l'—l ||I| ——— - .HI “u T T T 1

—_— e ——

—_— :
. ——

UONDIAY [PURLHIEY b0 Lo 3L)
UYL LUILASY Je uniyiud 4
UeHDAe) [DUILLEY 4 g oy g
71 _ rf L ————] L} —— e Lo 1 —_

54

[9s] swn
000¢ 000V 000t 0002 0001 0
[:(H\uw\ l‘q T T . §W
N 10009
///, Iw
. // -1000 m
=
- o008 &
0006
— b1 i N g—
[29s] aum
000§ 000V 000¢ 0002 0001 0
T T - T —T— 730
<0 <
5
. — m.
e g
/ z
e 8
T : 18T
L 1 1

‘wayqoad aduepingd

Juadse JQyN 23eis-g¢ B 10J S9T101STY dwrl dieis °91 °314

[2as] awn

000¢ 000v 000t 0002 0001 ow
~ T T T T -8
- e N .;/\\,,xn//\ 0
: S
Yot
!
118
1674
r 0t
| UUDURS R, | S N o S, WM

[09s] awn

000¢ 000% 000¢ 000T 0001 0
A S S I R o
/h

‘\\ ' 1€

/
Hp
/
e S
L — i L 1 J
mo:o

[39p) orBue e WAty 'R

[y] 3prazre 'y

55

000§

e ——

000v

N

awn wajqoud ! L

9'0

——

o
S0

{595} swn

000t
=T

0002
ST

70 0
=0
{0001
o+
ooz g
- 000g 3
-1 000w
- - —looos
001 0
o0
I {so
! 5
| ~
g
2
\Amuﬁ m.
1z
S B

$T

*watqoad
20uepInd U3dSe JSyN a3eis-zg¢ ® 103 dIysuoljerax

awT}-waTqoixd/awTl-Tea1 @Yl pue SITA0ISIY SWII [01JU0)

[09s] own

000§ 000v 000t
N skt

0007 0001

- — P

L d.- . S N §
[oes] aug
000§ 000¥ 000t 000Z 0001
[T T AFT -1 T T

e
. H

A

"314

—Jzo

18] xomze o orfve /)0

56

Altitude, h (1,000 ft)

600

500

300

200

100

T T T T 600 T T ?
I ‘\ ________ e N v o) |
\
‘N
A\
\
Y N e - Lf_w._. ... ~
~
N
AN
~
"
\ S S
Bw ; —
o B

/00 @St e D -

I 1 O pl . ! [L

O § Jo !5 20 25 30 O § o I§ 20 a5 30

Ma ch A/umbcr/ M Sfeecj) 14 (IIOOO Fé/§e°>

Fig. 18. Altitude vs. Mach number and altitude vs. speed
contours for a 32-stage NASP ascent guidance
problem.

57

Appendix A

Two papers on parallel dynamic
quadratic programming.

Al

A Parallel Solver for Trajectory Optimization Search Directions!

M. L. PSIAKI 2 and K. PARK?

' This research was supported in part by the National Aeronautics and Space Administration
under Grant No. NAG-1-1009.

2 Assistant Professor, Mechanical and Aerospace Engineering, Cornell University,
Ithaca, NY, 14853-7501.

3 Graduate Research Assistant, Mechanical and Aerospace Engineering, Cornell University,
[thaca, NY, 14853-7501.

A2

Abstract. A key algorithmic element of a real-time trajectory optimization hardware/software
implementation is presented, the search step solver. This is one piece of an algorithm whose
overall goal is to make nonlinear trajectory optimization fast enough to provide real-time commands
during guidance of a vehicle such as an aero-maneuvering orbiter or the National Aerospace Plane.
Many methods of nonlinear programming require the solution of a quadratic program (QP) at each
iteration to determine the search step. In the trajectory optimization case the QP has a special
dynamic programming structure, an LQR-like structure. The algorithm exploits this special
structure with a divide and conquer type of parallel implementation. A hypercube message-passing
parallel machine, the INTEL iPSC/2, has been used. The algorithm solves a (p-N)-stage problem

on N processors in O(p+log,N) operations. The algorithm yields a factor of 8 speed-up over the

fastest known serial algorithm when solving a 1024-step test problem on 32 processors.

Key Words. Trajectory optimization, parallel processing, quadratic programming, dynamic

programming, linear quadratic regulator.

A3

1. Introduction
The present work is part of an etfort to do real-time optimal guidance by repeatedly solving

trajectory optimization problems on line. The form of the nonlinear problem that must get solved is

find: % ={uT,éf,gT,ig,...,gL_l,gL,gLi' (la)
N

to minimize: J =) Lx.u,k) (1b)

subject to: Xg gl;v(;n (1c)

X+l = f(Xpo4i.K) fork=0.. N-1 (1d)

a(Xyly.K) { 2} 0 fork=0..N (le)

where x, is the state vector at stage k, and u, is the control vector. The nonlinear difference

equation [Eq. (1d)] defines the system's dynamics, and Eq. (le) defines any auxiliary constraints.
Note that control vector uy is associated with the terminal stage N, which is unusual, but possible.
Also, the number of elements in the state vector and control vector may vary from stage to stage.
The word stage is used to refer to a single discrete time step, not to a system staging process such
as booster separation on a launch vehicle.

Trajectory optimization is a mature discipline, and algorithms exist for solving such problems
(e.g., Refs. 1-7), but none can be used for real-time guidance. This paper is part of a research
effort aimed at developing a parallel trajectory optimization algorithm that can quaiify for real-time
use via improved speed and convergence reliability. This paper partly addresses the issue of
algorithm speed by developing a parallel implementation that reduces the time required to determine
the search direction for a single iteration of a trajectory optimization algorithm. It is applicable to
any trajectory optimization algorithm that generates search steps and that is formulated to work on a
discrete-time system.

Many search-based trajectory optimization algorithms compute the search direction by
solving a linear-equality-constrained, quadratic-cost problem. Such algorithms use active set
strategies, which guess that all of the equality constraints and a subset of the inequality constraints

are satisfied as exact equalities. The linear equality constraints of the search-step subproblem are

A4

just the linearizations of the constraints in the active set [Eq. (1d) and a subset of the rows of Eq.
(1e)]. In Newton's method, the Hamiltonian is approximated by retaining Taylor series terms out
to the quadratics; this resuits in a problem with a quadratic cost. Even the steepest-descent method
effectively uses a quadratic cost model: the Hamiltonian is expanded out to the linear terms, and its
Hessian is approximated by the identity matrix in the control diagonal block and zeros eisewhere.
Such problems are similar to time-varying LQR problems. The present paper concentrates on the
development of an efficient means of solving such problems on a distributed-memory message-
passing parallel processor with a hypercube connection topology.

A number of other researchers have attempted to speed up the solution of problems like Egs.
(1a)-(1e) via use of parallel processors. Larson and Tse tried to speed up Bellman's state/control
discretization approach to dynamic programming (Ref. 8). Menon and Lehman proposed a method
based on integrating matrices and general parallel matrix solvers (Ref. 9). Travassos and Kaufman
proposed methods based on the TPBVP approach and a general parallel optimization package
applied to enforce satisfaction of the terminal boundary condition (Ref. 10). Chang et. al.
decompose the problem into shorter problems of several stages each (Ref. 11), first optimizing
each group separately, in parallel, then optimizing the interconnected problem in an outer
optimization loop. Betts and Huffman have calculated cost gradients and constraint Jacobians in
parallel (Ref. 12). Wright proposes calculating the gradients. Jacobians, and Hessians in parailel
and develops an algorithm to solve for the Newton step with a parallel factorization of the
linearized necessary conditions (Ref. 13).

The present algorithm is a divide-and-conquer type algorithm and is closely related to
Wright's method of factorizing the linear necessary conditions. Both methods are, essentially,
special factorizations of the Kuhn-Tucker matrix. The present method has capabilities that
Wright's method lacks: it can handle auxiliary state constraints, and it can detect and correct for an
indefinite projected Hessian. The present factorization algorithm is interpreted as a series of
parallel partial solutions of single-stage optimization problems followed by grouping of pairs of

stages into single longer stages. Thus, parallelization is accomplished on a stage-wise basis.

AS

Repeated application eventually reduces the problem to a single stage. This parallel reduction of
the number of problem stages is similar to the approach that Chang et. al. use for the nonlinear
problem (Ref. 11), though they only go through one reduction cycle. Two versions of the basic
algorithm are presented: the "pure" algorithm, which assumes that the number of stages equals the
number of processors, and a "hybrid" algorithm for use when the number of stages exceeds the
number of processors.

The next section of the paper reviews general equality-constrained QP procedures and the
usual backwards sweep method of solving such problems on a serial processor. Section 3
presents the outline and details of the parallel QP algorithm. It also gives details of a benchmark
serial algorithm that has been used to determine the speed-up due to parallelism. Section 4
describes the test problem for the algorithm and gives timing results for the parallel and serial
algorithms. Section 5 includes further discussion of the parallel algorithm. Section 6 concludes

the paper.

2. Generalized Time-Varying LQR Problem with Equality Constraints
Algorithms for solving Egs. (1a)-(le) start with a guessed solution time history x? and
generate a sequence of time histories D @« that converges to the optimum. In
Newton's method (with an active-set strategy for the inequalities), the search direction 3% is
computed at each iteration by solving a problem that looks like a time-varying discrete-time LQR

problem, with some extra elements:

T
find: Ox = [8@,55189},65;,...,SQL_I,SLL,SQL} (2a)
N
Hex, Hxu) Sxu |
R T OX T T Xk
to minimize: | = (L [sgl,agq T Kl [gx 2, J} (2b)
- quk Huuk Sﬂk L Sgk
k=0
subject to: dxg given (2¢)
dxy) = Fy 0%y + Gy Sy + 2 fork =0 .. N-1 (2d)

A6

Ay Ox + B Oy +¢, =0 fork=0..N (2e)

This is a minimization problem with a quadratic cost and linear equality constraints. The

quadratic cost in Eq. (2b) comes from the second order approximation of the Hamiltonian about the

current iterate. The Hyx , Hyy,, and H,, matrices correspond to the quadratic terms and the gy,

and 8y, Vectors correspond to the linear terms. Equation (2d) is a linearization of Eq. (1d) about

the current iterate. The F, matrix is the state transition matrix, the G, matrix is the control
effectiveness matrix, and the z, vector represents the amount by which Eqg. (1d) is not satisfied at
the current iterate. At each iteration, a set of inequality constraints in Eg. (le) are assumed active
and are enforced as equalities. They are linearized about the current iterate point to yield some of
the linear equality constraints in Eq. (2¢). The remainder of the linearized equality constraints in
Eq. (2¢) arise from the linearizations of any equality constraints in Eq. (le). The Ay and By
matrices make up the Jacobian of the active constraints, and the ¢, vector's elements represent the
amounts by which active constraints in Eq. (1e) are not satisfied at the current iterate.

The differences between the problem of Eqs. (2a)-(2e) and a standard time-varying, discrete-
time LQR problem are the following: the presence of auxiliary constraints (Eq. (2e)], the presence
of nonhomogeneous terms in the state difference equation, z,, and the presence of the linear cost
terms. Also. the quadratic cost matrices need not satisfy the conditions necessary for LQR
stability. The search step calculation problems of most trajectory optimization algorithms can be
transformed into this special form (e.g., those of Refs. 5 and 7).

2.1. Variable Reduction Method for General Equality-Constrained Quadratic
Programming. The variable reduction method uses the constraints to solve for some of the
problem variables in terms of the remaining variables (Ref. 14). If the stagewise quantities in Egs.

(2a)-(2e) are lumped together, the following problem results:

LoxTH 8x + g'ox (3b)

find: % (3a)
to minimize: J = 3

A7

subject to: Adx +c=0 (3¢)

The cost in Eq. (3b) includes all the terms in Eq. (2b) combined into a large Hessian matrix and
gradient vector. The constraints in Eq. (3¢) correspond to all of the constraints in Egs. (2¢)-(2e)
for all of the stages (including the difference equations), which get lumped into the large -4 matrix
and the large ¢ vector.

In the variable reduction method, the A matrix in Eq. (3c) is splitinto [A,, "12] such that
A, is a square matrix, and all the remaining quantities except ¢ in Egs. (3a)-(3¢) are split in

accordance with this:

find: 81, 5, (4a)
Hyp Hiys [8x, 5%,
to minimize: J =+ 8{,625;? T + [1, ’] (4b)
2[VOS2 My Ha | o, 914 5
. 0%,
subject to: [A,, A,] +¢=0 (4¢)
7.9

If A, is nonsingular, the variable reduction technique eliminates 0%, and the constraints

from the problem. The vector dx, is replaced by its constrained value:

8%, = - A;' [A8%, +¢ (5)

Substitution of Eq. (5) into Eq. (4b) leaves a cost that depends only upon d%.,, and the constraint
in Eq. (4c) is satisfied for all values of dx, by virtue of Eq. (5). Therefore, unconstrained
minimization of the resulting cost function can be performed with respect to 8x.,.

2.2. Sequential Variable Reduction/Partial Solution to Generate the Matrix-
Riccati Equation. The time-varying matrix Riccati Equation of discrete-time LQR theory is the
result of a QP solution procedure that is akin to the variable reduction technique. An appropriate

name would be the sequential variable reduction/partial solution technique. [t allows exploitation

A8

of the special structure of the cost and constraints in Egs. (2a)-(2¢). [t involves repeated
application of a two-stage process. First, it uses some of the constraints to eliminate some of the
variables, as in the variable reduction technique. Second, it optimizes any variables that become
unconstrained after the first stage. This optimization process involves writing down the gradients
of the cost with respect to the unconstrained variables and solving the resulting equations for the
unconstrained variables. These unconstrained variables are expressed in terms of the remaining
problem variables. Substitution of this expression for the unconstrained variables back into the
cost eliminates these variables.

Assuming no control variable at the terminal stage and no auxiliary equality constraints [no
Eq. (2e)] the matrix-Riccati technique performs a variable reduction by using the stage N-1

difference equation to eliminate dxy from the problem. This results in the stage N-1/stage N cost

expression:

ife.T & T
NN = E[SKN-l’allN-l

T T
(HxxN_1+FN-1HxxNFN-1) (quN_l"’FN.lexNGN-I) SXN.1
Bun.1

T T
(quN_1+FN.1HxxNGN-1)T (HuuN_l"'GN-lexNGN-l)

T T T T SLN'l
+[{ng<1 +FN-1(gXN+HXXN-Z-N)} v{guN_l +G N_l(ng+H’(XN-Z-N)} } 6u
2N-1

1T T
+ T INHaog@N T Sx BN (6)

The stage N-1 control no longer appears in any of the constraints, and it only appears in the

portion of the cost expressed in Eq. (6). Therefore, Suy.; can be optimized out of the problem.

Optimization of Eq. (6) with respect to duy.q yields:

T T T
dun.; = ‘(HuuN_l*'GN-lexNGN-l)'l{(quN,l*'FN-]HxxNGN-l) SxN.1

+ Zupy * OntBxptHaepa)) 7)

Equation (7) is then used to eliminate duy_, from Eq. (6). This results in a stage N-1/stage N cost

that depends only on 8xy;. The resulting formula for the Hessian of that cost is just the discrete-

time matrix Riccati equation.

3. Parallel Stage-Halving Algorithm

The principle of variable reduction followed by partial optimization is also used in the parailel
factorization algorithms of this paper. The algorithms also include the auxiliary equality
constraints, Eq. (2¢). Two algorithms will be described. The first, described below and in section
3.2, is for the situation where the number of processors equals the number of stages. Section 3.3
describes a hybrid between section 3.2's stage halving algorithm and a serial backwards sweep
algorithm. It is useful when the number of problem stages exceeds the number of processors.

Three main differences distinguish the stage-halving algorithm from the backwards sweeping
method. First, the auxiliary constraints are used to reduce the number of control variables, if
possible. Second, QR factorization is used, when possible, to free control variables from
dependence on difference equation constraints. This allows partial optimization of control
variables at early stages. Both of these operations can be carried out in parallel. Neither of these
operations changes the number of stages or the number of state variables at each stage, but they
both can reduce the number of controls at each stage, and the first operation can reduce the number
of auxiliary constraints at each stage.

The third main deviation from the backwards sweep algorithm is that this algorithm follows
its control vector/constraint reduction with a halving of the number ot stages. This is accomplished
by a standard variable reduction. State vectors dx;, 0x3, -... Oxn (assume N is odd) are eliminated
by substitution of state difference equations 0,2,...,N-1 into the cost and the remaining auxiliary
constraints. This is done in parallel and yields a problem of the same form as Egs. (2a)-(2e), but
with half as many stages; each stage corresponds to a doubled discrete-time interval. The sizes of
the state vectors at the remaining stages are unchanged. The number of control vectors and the

number of auxiliary constraints per stage both grow, but are bounded -- recall that the operations

AlOQ

just prior to stage halving both serve to reduce the number of constraints and controls. In both
cases, the bound equals twice the dimension of the state vector.

The algorithm then repeats its cycle of reducing the number of control vector elements and
constraints followed by a halving of the number of stages. This goes on until only one stage 1s
left. That stage is completely solved, and the result is back-substituted into the preceding 2-stage
problem and so forth until the entire solution is generated. The time to perform these operations on
N processors goes as n3log2(N), where n is the (average) number of state vector elements.

The only message passing of the above-outlined algorithm occurs during the stage-halving
cycle and during the backwards substitution. The ideal architecture for such operations is a binary
tree. Such a tree can be implemented on a generic hypercube architecture. The algorithm has been
implemented on a 32-node hypercube, the INTEL iPSC/2 at the Comnell Theory Center.

Figure | displays the binary tree and the initial distribution of problem stages on 16
processors (nodes of the tree) for a 16-stage problem. The arrows indicate the message passing
that occurs during the first stage-number halving. The bottom plot indicates the processor
locations of the remains of the problem stages after this halving process.

3.1. Stage-Having Algorithm on an Example Problem. In this section, a simple
4-stage QP problem is solved using the above algorithmic idea. This should help understand the
detailed algorithm that is described in the next section.

The example problem to be solved here is:

find: [Ug.X .Uy XaUg.X3]T (8a)
2
to minimize: Jzz Lz-(xi + ui) (8b)
k=0
subject to: xg =1 (8¢c)
Xal = Xx + U fork =0,1,2 (8d)
X3 =4 (8e)

where all of the variables are scalar quantities. Table 1 shows this problem in a stagewise manner.

All

Table 1. Stages of original example problem.

Stage Dynamic equations(D/E) Auxiliary constraints(A/C) Cost
0 Xy =1+uq none %(1 +u§)
1 Xq = Xy + U none é—(xf + uf)
2 X3 =Xy + Uy none %(xz2 + u%)
3 none X3 =4 none

The first step in this example is to halve the number of stages by joining stages in pairs using

the dynamic equations, i.e., X, is eliminated from the problem using the dynamic equation for

stage 0, and X, is eliminated from the problem using the dynamic equation for stage 2. Table 2

shows what the problem becomes after this operation. Stage 0' in Table 2 represents the {0,1)
stage pair of the original problem and stage 1' represents the {2,3) pair. The new variables in

Table 2 are defined as follows:

Uo
Up={ | Xp=Xa up=un 9)

Table 2. Example problem after stage halving.

Stage DE A/C Cost
: 1 7{20
0 xp=1+[1, 1] yy none TUy| g 1 uy + {1, 0] uy + 1
1 none Xpo+up =4 %(xf. +uy)

Al2

The next step is to remove u,- from the problem using the auxiliary equation, x- + u- = 4,

which yields u;. = 4 - x,.. This expression is used to eliminate u, from the cost at stage 1'. Table

3 shows the resulting problem.

Table 3. Example problem after elimination of auxiliary constraints.

Stage DE A/C Cost
20
0' xp=1+(1,1]uy none %gg-[o 1].‘10'+[1v0]!0'+1
1 none none xlz. -4 x;-+ 8

The next step is to QR factorize the [1, 1] matrix in the dynamic equation of stage 0'. This

right QR factorization transforms y so that one of the transformed control vector elements does

not enter the dynamic equaton.

1
[1,11Q=(¥2,0] whereQ= \'—2_[i R }, an orthogonal matrix. (10a)
Us .,
Q{udﬂ =uy (10b)

where u3 , and ug, are the elements of the transformed control vector. Table 4 shows the resulting

problem.

Table 4. Example problem after orthogonal transformation of control vector.

S[age DE A/C Cost
. _ 1 3 17%0, g
0 Xp=1+ V2 U3, none 3[U3g Hagr][13 :l[u‘,OJ +»7_2_[1’ 11[“4(). *l
1 none none SRS

Al3

The next step eliminates Ug,, from the problem. Since it does not enter the constraints, the
cost can be optimized with respect to Uy By setting to zero the partial derivative of the cost with

Tespect to Uy, , one can derive the formula

Z
3

W

Us ., -

gy = - TU3, (11)

Equation (11) can be used to eliminate Ugpy from the problem. The resulting problem appears in

Table 5.
Table 5. Example problem after partial optimization of controls.
Stage D/E A/C Cost
' 2 2 2 5
0 Xp=1+ V2 us,, none Tt -\3—u30, +z
' none none xf. -4 %+ 8

The next step joins stage 0’ and 1', eliminating x;- from the problem using the dynamic

equation from stage 0'. At this point, the original constrained 4-stage problem has been reduced to

the following unconstrained 1-stage problem:

. L _8 2 5V2 35
find: u, tominimize J=Su3 - 5Tu3 + 3 (12)
. . . 5V2
The solution is easily found. and it is us o= Te

Back Substitusi

Once us, is known, the optimal values of the original variables in (8a) are found by back

substitution. For example, ug is found as follows: first, Ug,, is computed by Eq. (11), and Ug,,

Al4

together with us, yields uy by Eq. (10b), ug is just the first entry of uy from Eq. (9). It is ug =

-1/8 in this case. Other variables are found in a similar way.

3.2. Details of General Algorithm.

Steps an i] tons for One Stage-Halving Cycle

Step 1. Completely QR factorize the By auxiliary constraint matrix (in parallel):

Ry, 0
QB =] 0%,] (13
where Q, « and sz are orthogonal and R, ‘ is square and upper triangular.

This effectively transforms the control coordinates and the constraint equations, splitting the
controls into those that are in the auxiliary constraints and those that are not, and splitting the
constraints into those that involve controls and those that do not. Note, the matrix on the right may
not always take the most general form shown above. The factorization effort can be reduced by
taking advantage of any rows and columns of B, that are already zero.

This factorization necessitates a reformulation of other problem matrices to account for the

reformulated control variables and constraints:

Sgl

k =Q§k89k (142
Lsy'zk
A, 5

k k
_A2J =Q1, Ap LZJ =Qq Lk [01 k,sz] =GQa, (14b)
rHyy, Hiz

k12 T g,) |

L H11.2k Hoy :' =Q Hun Qe [HaaoHe] = Hu Q2 L%} =Q gy (140)

Al5

The subscripts 1 and 2 on the new A matrices and ¢ vectors refer to the transformed constraints; the
1 subscript corresponds to constraints that depend on controls, and the 2 subscript refers to
constraints that are independent of controls. The 1 and 2 subscripts on the H and G matrices and
on the g vectors refer to the index of the transtormed control vector that gets multiplied by these

matrices and vectors in the cost and in the state difference equations.

Step 2. Use the first auxiliary constraint to solve for Sglk in terms of dx,, and

eliminate the first auxiliary constraint and Bglk from the problem (in

parallel):

-1
501k=-R1k[A1k6§k+glk] (15)

This takes the form of a feedback control law. This is the necessary feedback to stay on the

(), transformed constraint. After elimination of du 1, and the (); auxiliary constraint, the

problem takes the form

T Te T T T T
find: 6&:{8%0,851,5%],553,.. ,SQQN_I,SLL,BQL,N-E (16a)
N
o { o T Hxxk Hx2k 6& 1
to minimize: J = {5 {5&,(,5&7 ~T
- k) Hyp Hap, Suy, |
k=0
dx
T Xy
+ ka‘ggk} 5 + constant | (16b)
Q'Zk
subject to: dxg given (16c)
8Xyyy = B Oxy + Gy, Buy, +Z fork=0..N-1 (16d)
2k+1 2k k k
Az, Bz(_k+g2k=0 fork=0..N (16e)

Al6

which has the same form as the problem in Egs. (2a)-(2¢). The matrices and vectors with the (~)

overstrike are derived by substitution of equations (14a)-(14c) and (15) into problem (2a)-(2¢).

They are
-1 -1 T -1 T -1
Hix, = Hyx, - Hxp Ry Avy - (Hy Ry Al + [Ry Ay Hyp Ry A (17a)
-1 T

He, =Hyp, - [Ry Ay,) Hyg, (17b)
5 -1 T -1 -1 T

~ T -1

&, =82, -Hip Ry g1, (17d)

-1 - -1
‘P‘k=Fk-G,kR,kA1k, Zc=z- G Ry ¢, (17e)

Step 3. Right QR factorize sz to eliminate extra controls from the state difference

equation (in parallel).

szQ3k = [L3k’ O] (18)

where Q3k 1s orthogonal and L3k is square and lower triangular.

This step can be done only if ng has more columns than rows. Such may not be the case

inidally, but after several halvings of the number of stages, this will generally be true. Again, this
factorization necessitates a reformulation of other problem matrices to account for the reformulated

control variables:

-5113
k T
L k
rH H

QT Hy Qs [B] =R, Qs |2t = Qh B, (199
_H34k H44k 3 1223y [X3 x4k] X2y <30 g4k 332k

Al7

The 3 and 4 subscripts on the H matrices and on the g vectors refer to the index of the ransformed

control vector that gets multiplied by these matrices and vectors in the cost.

This step is one of the most costly parts of the whole algorithm due to the large size of the Q;

matrix -- it is usually 2n x 2n where n is the state space dimension. The operation time can be

reduced by exploiting the special structure of the G, matrix -- after several stage-halvings, the
rightmost part of G, is already lower-triangular -- and by working with individual Householder

vectors rather than explicitly forming the Q; matrix.

Step 4. Partially optimize by computing the optimal 8g4k as a function of 8u3k and
dxy (in parailel for all stages where step 3 has been carried out). Solve the

equation

T T
H44k5g4k = -[H34k8g3k + Hx4k55k + g4k] (20)

then eliminate ug, from the cost function by substituting this solution for it.

This equation can be solved using a Cholesky factorization of H"*‘k = RZkR4k and back
substitution; R4k is upper triangular. This implies that the H44k matrix is positive definite.
If H44k is not positive derinite, then the search-step problem [Egs. (2a)-(2e)] is ill-defined: it has
an infinite minimum.

An important feature of this algorithm is that it can be used to detect whether or not the

projected Hessian is indefinite. This is done during the Cholesky factorization of H44k. In the
event of an indefinite H44k, the Cholesky factorization procedure can be modified to determine a

diagonal modification to H44k which ensures that the solution of the (modified) Eqs. (2a)-(2¢) is a

descent direction of the original problem in Eqs. (1a)-(le). Alternatively, the modified Cholesky

Al8

factorization procedure can be used to determine a direction of negative curvature (Ref. 14, pp.

108-111), which could be used as a search direction.

The solution of Eq. (20) looks somewhat like a feedback control law. in that 8941(depends

on 8x,, but the "control law" is peculiar in that duy, also depends on u3 . Upon substitution of
k p 3k

the solution into the cost, the problem becomes

find: (5] s oul el oul o]
ind: O =| dug ,0%,0U3 0K, 0U3 . 1,OXN (21a)
-]
N | Mo Te T Fae By [Oxy
to minimize: J = {5 {5&;(,523}(1 T -
2 | HX3k H33k L8g3k
k=0 -
T T 8% |
+ [gxk,&k} 5 + constant } (21b)
u3, |
subject to: dxg given (21c)
Skyar = B Oxy +L3, Bu3 +Z, fork=0..N-1 (21d)
Azk oxy + ¢y, = 0 fork=0..N (21le)

which has the same form as the problem in Egs. (2a)-(2e). Note that there is no longer a control at .

the terminal stage -- 6!,13N is a vector of zero dimension. The matrices and vectors with the (-)

overstrike are derived by substitution of the solution of Eq. (20) and Egs. (19a)-(19b) into problem

(16a)-(16e). They are

= ~ y 1T
HXXk = HXXk - [HX4kR4k][HX4kR4k] (223)

= -1 1T
HX3k = HX3k - [HX4kR4k][H34kR4k] (22b)

Al9

- 1 AT
Ha3, =H33, - [H3g Ry 1[H34 Ry] (22¢)

- ~ -1 -T
gxk = gxk - [Hx4kR4k][R4kg4k] (22d)

- -1 -T :
83, = 83, - [H3q,Rq 1[R4 g4,] (22¢)

Step 5. Halve the number of stages by using the difference equations [Eq. (21d)]

for stages k = 0, 2, 4,...,, N-1 to eliminate state vectors 8x;, 6X3, 8Xs,...,
dxy from the cost and from the auxiliary constraints. Assume that N is odd
(N = 2M+1). This is done in parallel and includes parallel message passing

between M+1 pairs of processors.

This is the concluding step in the process of halving the number of problem stages. After
this step the problem is back in the form of Egs. (2a)-(2e) only with half as many stages -- M+1

stages instead of N+1:

find: 5, =[0,88 80 .6R7.....80 1, .08 1,60 L] (23a)
M
Hy, A [a A
xxg Cixuy fOX, T T 7 Xk
C 1 AT /\‘[‘] A A
to minimize: J = {—[65 ,0u AT A + I-" 2
2 X k_] H‘(Uk Huuk Sﬁk !‘_GXk =tk Sﬁk
k=0
+ constant} (23b)
subject to: 8% given (23¢)
5% % s AR A . _
Xy+1 = Fi OXy + Gy By + Z), fork =0 ... M-1 (23d)
A A
Ay 8%, + B, 80, + &, =0 fork=0..M (23e)

where the vectors and matrices with the (*) overstrike are derived from substitution ot alternate

difference equations into Egs. (21a)-(21e):

A20

51]_3
= | fork=0..M1, 30y=03uy,, B8 =0xy fork=0..M

5g3 2k+1

A ~ ~ A ~ A ~ - -
Fy = FoppiFoe G = [F2k+lL3 o’ 13 2k+lj|’ 2y = FoaZox + Zocal

for k = 0,...,.M-1 (24b)

[F A Top +C
I e A 2““} for k = 0,....M (24c)
Azzk gz?.k
A —Az L32 0 A A22M 1L32M
B, = _ 2‘“01 k ol fork= 0,...M-1, By = 6 (24d)
A — ~T = —~
Hyx, = Huxg + Fay Haxgy, Fax fork=0..M (24e)

A = =T 5 =Tz _ ‘
Hyu, =[[Hx32k + Fy Hewgp, L3y)y [Fyy Hx32kﬂ]} for k = 0,...,M-1 (24f)

- -1 -
Heuy = Hxagy + Fam Hxxgy b3y (24g)
— LT i L LT i |
A [H33 2k T F 3 M oka 32kJ [3k X32k+1
Hyy, = fork = 0,..,.M-1 (24h)
T T —
Ly Hxdopn) His, o

A - T - |
Huuy = (33500 + L3y Hexoma Mou! (24i)

- ~T .- - ~ .
gxk = ngk + F2k [gX2k+1 + Hxx2k+l‘z'2k] fork =0,..M (24,])

e —

. T .- ~
By + L3y [Bxg + Hug, 2
A

B, = for k = 0,...,.M-1 (24K)

g + z
B Haagn L

- T - = ~
ﬁuM = g32M + L32M[gX2M+1 + HXX2M+1_Z.2M] (24m)

A2l

This step is the only step in the entire stage-number halving cycle that involves message
passing. The quantities that get computed in equations (24b)-(24m) must all reside on a single
processor at the end of this step, one processor for each index k. At the beginning of this step,
however, the information associated with index 2k resides on one processor, while the information
associated with index 2k+1 resides on another processor. The binary tree structure of Fig. 1
ensures that all such pairs of processors will have a direct connection. Thus, the M+1 messages
that must get passed can get passed in parallel. Repeated application of this 5-step stage-number
halving procedure results in information fan-in on the binary tree -- information moves up the tree
in Fig. 1.

Nesting and Back Substitution

The foregoing S-step process can be repeated until the entire problem is solved: the halved
problem is again halved in a nested cycle. Thus, the hatted vectors and matrices at the end of a
cycle become the un-hatted vectors and matrices at the beginning of the next cycle -- note the exact
replication of the problem (2a)-(2e) form in problem (23a)-(23¢). Suppose that, initially, N = 2)-1.
That is, suppose the problem starts with 2J stages. After j times through the halving cycle, the
problem will have only one stage, stage 0. During subsequent application, the cycle will terminate
at step 4. The dimension of dus will be zero, and the state, 8xy, is known: so, 8uy is completely
determined.

Back substitution is used to reconstruct the entire state and control time history after the
problem halving sequence has yielded a problem with a single stage. The back substitution
process is the reverse of the problem halving process, it is a stage-number doubling process. It

involves repeated application of a two-step process.

Given a certain level of problem halving, and given the 8x, and du3,vectors at each stage

corresponding to that level, the first step is to determine the du, vector at each stage for that level.

This can be done in parallel by successive application of Egs. (20) [to determine SQAKJ, (192) [to

determine Sy_zk], (15) [to determine Sy, kJ, and (14a) [to determine 8y, |. Knowledge of the duy

vector at each stage for the current level of halving translates into knowledge of the

A22

du3 % and Syu3 gy VECIOTS 2L each pair of stages for the next previous level, the level with twice as

many stages [see Eq. (24a)].

The second step is to determine the 8x, vector at each stage for the next previous level of
halving. The state time history at the current level already contains half of the desired vectors [Eq.
(24a)]. The unknown state vectors at the alternate stages are determined in parallel from the state
difference equations at alternate stages of the previous problem level [Eq. (21d) fork =0, 2, 4, ...,
N-1]. This can be done because each stage's 8g3k vector at this previous level has already been
determined.

Message passing occurs during this back substitution procedure. The pattern of the

information flow is a fan-out along a binary tree (traveling downward on Fig. 1). After each duy

has been calculated at a given level -- each stage on a different processor, it is broken into its two
components, du3 " dus oisp» A0d OnE of the components is sent to a neighboring processor. The
other component remains on the current processor, which will handle the corresponding stage at
the next level of doubling.

3.3. Hybrid Muiti-Stage-per-Processor Parallel QP Algorithm. The algorithm
in the foregoing section requires as many processors as the number of problem stages. A small
additional procedure enables the algorithm to handle problems with more stages than the given
number of processors. Two benefits come from the improvement. First. it allows solution of a
greater range of problems on a given hypercube, a 32-node hypercube in this research. Second,
for typical problems, significant problem speed-up can be achieved even with more than one
problem stage per processor. For a given number of processors, the speed-up over the best
known one-processor algorithm grows with the number of stages in the problem.

The working of the muiti-stage-per-processor algorithm is slightly more complex than the
single-stage-per-processor algorithm. When a single processor has more than one stage, the
algorithm starts by working only with the last stage of this set of stages -- it must have a
contiguous set of problem stages. It starts by performing steps 1-4 of section 3.2 on this last

stage. Then it performs step 5 to join the last stage on the processor to the second-to-last stage. At

A23

the end of this cycle, each processor has one less stage. Figure 2 shows how a 24-stage problem
on 8 processors becomes a 16-stage problem on these same 8 processors. This goes on unal each
processor has only one stage. At this point, the algorithm can do stage halving in the manner
presented in section 3.2. Effectively, a backwards sweep is performed on each processor before
the stage halving process begins. Thus, this algorithm is termed a hybrid algorithm.

The back substitution process described in the foregoing section undergoes a similar
modification. It starts with the algorithm's original stage-doubling back substitution process. This
terminates when each processor has received a control vector and a state vector corresponding to
the first of its set of stages. A forward sweep of the state equation and the "feedback" control
equations is then performed. This sweep extends to all of the stages on the given processor.

3.4. Bench-Mark (Best Known) Serial QP Algorithm. In order to determine the
benefits due to parallelism, a good serial algorithm is needed for comparison purposes. To make
an honest comparison, the bench-mark algorithm has to solve the same problem as the parallel
algorithm in the fastest possible serial way. The fastest known serial QP algorithms for Dynamic
Quadratic programs are those based upon the backwards sweep -- their serial execution time is
O(N), where N is the number of discrete-time problem stages. Unfortunately, the standard
backwards-sweep algorithm. the discrete-time matrix Riccati equation. does not handle auxiliary
equality constraints.

The principles in section 3.2 have been used to develop a backwards sweeping algorithm
that overcomes these difficuities. The algorithm starts with the last problem stage. It applies steps
1, 2, and 4 of section 3.2 to this stage. Step 3 need not be performed because there 1s no state
difference equation for propagation to a next stage. Step 5 is then performed to just the last two
stages. The result is a problem with just one less stage. This process is repeated until the first
problem stage is reached. The resulting one-stage problem is completely solved. The entire state
and control time histories are then reconstructed using a forward sweep.

As a further complication, assume that derivatives are calculated in parallel as in Ref. 12.

Then this bench-mark serial algorithm must operate with gradients, Hessians, and Jacobians that

A24

are distributed on different processors. If this serial algorithm runs on a single processor, the
communication time to transfer the distributed QP information onto the single processor would
greatly slow the algorithm.

A better way to use the serial algorithm is to have the backwards sweep transferred from one
processor to the next as it needs information for a different stage. For the case when there are
more stages than the number of available processors, each processor deals with a set of contiguous
stages whose gradients, Hessians, and Jacobian have been calculated on it. Figure 3 depicts this
backwards sweep as it transfers between processors that have derivative information about
different sets of problem stages. In this case, there are more problem stages than nodes. Ona
given node, the serial algorithm sweeps backwards through all of the stages (arrows between
numbers). After sweeping through all of the stages on a given node, it transfers to the node with

the next previous stage (arrows between nodes).

4. Computational Test and Resuits

4.1. Aeromaneuvering Test Problem. In order to test the algorithm, a specific
nonlinear trajectory optimization problem and a linear-quadraticization of the problem about a
guessed solution are needed. An aeromaneuvering problem from Miele and Lee (Ref. 15) has been
used.

The maneuver involves transfer from a geosynchronous Earth orbit (GEO) of 0° inclination
to a circular low Earth orbit of + 289 inclination (LEO) (see Fig. 4). The maneuver that Miele and
Lee call type 2 has been used: three propulsive impulses with plane changes and one atmospheric
maneuvering arc. The first impulse (point 1 in Fig. 4) is nontangential; it changes the inclination,
and it puts the spacecraft (S/C) into an elliptical transfer orbit that takes it toward the Earth. Next,
the S/C enters the upper atmosphere* (point 2) and performs a deceleration and further plane

change using aerodynamic drag and lift. No thrusting is used during this phase. Next, it exits the

4 Atmospheric entry and exit are defined as occurring at an altitude of 120 km.

A25

atmosphere (point 3), simultaneously performing its second nontangenual propulsive burn. The
maneuver ends when the S/C reaches the correct LEO altitude (point 4) and pertorms its final
nontangential burn to circularize the orbit and achieve the correct final inclination. The LEO
altitude is set at 300 km.

State propagation has been performed in two ways. Outside of the atmosphere, the state has
been propagated using Kepler's laws coupled with the transformations between Kepler's elements
and the state vector elements. Inside the atmosphere, Miele and Lee's simple models of the lift and
drag have been used along with a table look-up of the atmospheric density (Ref. 16, p.820) to get
the aerodynamic forces. The gravitational force is based on the spherical Earth model. The
resulting system involves six coupled scalar ordinary differential equations -- three dynamics

equations and three kinematics equations. Inside the atmosphere, 6th-order Runge-Kutta

numerical integration of these ordinary differential equations from time t, to time t, ,, effectively
defines the function f(x,,u,.k) on the right hand side of the system's nonlinear difference equation

(Eq. (1d), the discrete-time system dynamics]. The control is held fixed at u, during this

integration, which gives a zero-order hold. The state vector at all stages is:

— V=
v

X = M (25)

r

¢
o

where V is inertial speed, v is flight path angle, v is heading angle (0° = east, +90° = north), r is
radial distance to Earth's center, ¢ is latitude (positive north), and 6 is longitude (positive east).

This is the same state vector as in Miele and Lee (Ref. 15), where the equations of motion are

presented.
The definitions and lengths of the control vector and constraint vector vary with different

problem discrete-time steps. The cost function also varies with time step. This is necessary for

A26

efficient modeling of the problem. Suppose the problem is modeled by 2) (= N+1) steps, labeled
0, ... N. Table 6 defines the steps, the controls, the constraints, and the cost. Note that the time
duration of step zero has been automatically adjusted to ensure that the S/C altitude is 120 km at the
end of the step. Similarly, V. and Y¢ have been eliminated from step N by requiring them to yield a
circular orbit. The contols during the atmospheric portion are Cy, the lift coefficient, o the bank
angle, and T, the actual time duration of the discrete-time step. The control Av after the second

impulsive burn is the change in the true anomaly until the third burn (the coast distance).

A27

Table 6.

Activities, controls, constraints, and cost modeling at different time

steps of the aeromaneuvering example.

Step No. Portion of Flight Control vector Constraints Cost
0 First burn and coast to (Ve YoWe)? Perigee altitude of ~ Magniwde
upper atmosphere transter orbit less of AV
than atmosphere impulseb
height.
1 Nonthrusting atmos- (CL,0,7) 12 0.25 sec; 0
pheric flight with control- -0.9<CL <09,
led lift and drag. Heating rate <
1x100 watts/m=.
N—2 t
N-1 Second burn at atmos- (Ve Ye,We,AV) r = atmosphere Magnitude
phere exit and coast to edge of AV
LEQ altitude =rg + 120km; impulse
v20:
Ye 2 0.
N Third burn to circular- We r = LEO radius Magniude
ize and correct inclina- = rg + 300km: of AV
tion at LEO altitude. Inclination = 28°. impulse

5 Defines the velocity vector after the impulsive burn.

6 This definition is used by Miele and Lee and retlects fuel use. Total fuel use is a monotonic

function of the sum over all stages of the impulsive velocity changes.

A28

A guessed optimal solution is needed in order to obtain a linear-quadratic problem for
solution by the parallel QP solver. This guessed solution has been generated as follows. The
guessed solution makes a first burn to achieve the correct inclination and to reduce the perigee
altitude to 60 km. The guess then follows this transfer orbit to perigee neglecting atmospheric
effects. It lumps all of the aerodynamic forces into an assumed velocity reduction at perigee that
lowers the apogee altitude to 300 km. It then propagates this orbit to apogee where it circularizes it
with a burn. It does no burn at atmospheric exit. All but stages 0, N-1, and N have been assumed
to occur within the atmosphere during later linear-quadraticization.

The controls for the burn/coast arcs are well defined in the first-guess procedure. The
controls for the atmospheric portions have been guessed to be C. = .05, 0 = 45° and T = ume to
traverse a fixed change in true anomaly along the guessed trajectory.

The guessed active constraints include those inequalities that are violated by the guessed
solution. All of the equality constraints -- both the auxiliary constraints listed in the above table
and the state difference equation equality constraints -- have been considered active. The
multipliers associated with each active constraint have been guessed to be a positive constant times
the signed constraint violation: this is akin to the penaity function approach.

The cost gradients, Hessians of the Hamiltonians, and Jacobians of the active constraints are
needed by the parallel QP solver. All of these have been generated numerically by finite
differencing. In addition, a positive muitiple of the identity matrix has been added to the Hessian
before QP soluton. This assures a positive definite problem for the QP procedure as would occur
if this search step procedure were part of a nonlinear programming algorithm that used the L trust-
region method. The authors do not intend to use the L,-trust region method when they eventually
develop the full nonlinear optimization algorithm. Rather. the addition of a multiple of the identty
matrix to the Hessian has been done because the Hessian modification capability, to which section
3.2 alludes, has not been implemented vet.

All of the calculations that produced the necessary QP have been done off-line on a serial

processor, an IBM PC-XT. The resuits have been loaded onto the iPSC/2 nodes to test the parallel

A29

QP algorithm. The timing resuits presented below do not retlect the times tor otf-line generation
and node loading. In the future, these operations will also be done in parallel on the 1PSC/2 nodes,
but such complexity has not been necessary to the testing of the parallel QP algorithm.

4.2. Computational Timing Results. The parallel and seral QP algorithms have been
used to solve 8, 16, 32, 64, 128, 256. 512 and 1024 stage cases of the aero-maneuvering test
problem. With the parallel algorithm, different numbers of processors (8, 16 and 32) have been
used to solve the same problem. The serial algorithm of section 3.4 has been swept over 8
processors for the 8 stage problem, 16 processors for the 16 stage problem, and 32 processors for
all problems with 32 or more stages. Figure 5 gives timing results for both algorithms with the
various combinations of processors and numbers of problem stages mentioned above.

For the parallel algorithm, although the difference is minute, the 16 stage problem is solved
faster with 8 processors than with 16 processors; the 32 stage problem is solved faster with 16
processors than with 32 processors. This means that having 2 stages per node initially and one
less overall stage-halving cycle is better than starting with a single stage per node. Although this
improvement might not occur for different problems, a saving of half as many nodes as the number
of stages could be a significant economy for problems with many stages.

The speed-up of the parallel algonthm with 32 processors over the serial algorithm 1s shown
in Fig. 6. For the senal algorithm, a problem with twice as many stages takes twice the time (see
Fig. 5). For the parallel algorithm, as the number of stages becomes large, the early work of
backwards sweeping through multiple stages on a single processor dominates the computation
time; the amount of work doubles as the number of stages doubles. Thus, the curve in Fig. 6 will
eventually level out as the number of problem stages increases. The slope of the curve is already
decreasing after 256 stages. Note that the speed-up reported on Fig. 6 would be slightly less if the
serial algorithm could work with information that was already concentrated on a single processor.

The achieved algorithm speed-up is significant. Figure 6 shows an 3-fold speed increase for
a 1024-stage problem when solved on 32 processors. In considering this speed-up, recall that the

parallel algorithm is being compared to the best known serial algorithm. This is the most

A30

conservative way of determining speed-up. A less conservative measure of speed-up due to
parallelism would compare the parallel algorithm executed in parailel with itself executed serially.
In this case, the speed-up factor would be 29, a 91% efficiency, on the 1024-stage problem.

Efficiency aside, an important characteristic of this algorithm is its ability to reduce wall-
clock time for problems with a large number of stages. The lowest curve on Fig. 5 illustrates this
ability to maintain low wall-clock time by increasing the number of processors as the number of
problem stages grows.

The only other known parallel algorithm for similar problems is that developed by Wright
(Ref. 13). Wright's algorithm scales with problem size the same way that the present algorithm
scales with problem size. Wright's algorithm probably is faster than the present algorithm by a
scale factor that is independent of problem size. This is because it is a simpler algorithm: it
"divides" in the same way, but it "conquers” each sub-problem more efficiently. Wright's
algorithm is probably about 4 times faster than the present algorithm on problems that can be
solved by both algorithms. Unfortunately, Wright's algorithm cannot handle auxiliary state
constraints; therefore, it could not be used to solve this example problem to provide a comparison
between the two parallel aigorithms.

5. Additional Discussion of Algorithm

5.1. Relationship of Stage-Halving to Control Concepts. The stage-halving
algorithm of section 3.2 can be further illuminated by considering it in the control context.
Suppose that the states at certain points of time before the end time are totally prescribed. In this
case, the original optimal control problem divides neatly into independent sub-problems, which can
be solved in parallel. After these are solved, the original cost of the total problem can be
computed. This cost will depend on the values prescribed for the states at the interim points where
the states are fixed. These states can then be varied to optimize the total cost. The resulting
solution will solve the original problem. This idea, coupled with the idea of algorithm nesting,

yields the approach of section 3.2. This concept is also found in Ret. 11.

A3l

5.2. Bottleneck Performance. In general. a parallel algorithm can be subject to
bottlenecks. For instance, suppose one stage has more auxiliary constraints to ractorize than does
another stage. This will delay the other stage at some point by making it wait to combine (step 5)
with a slower executing stage. One might conjecture that such effects get compounded to slow the
overall stage-halving algonthm.

This issue has been investigated. The time to execute each step of the algorithm on each
processor has been determined for example problems. These results show that delays occur, but
they do not get compounded. The total execution time of the algorithm is no slower than the sum
over all of the stage halvings of the execution time of the slowest stage at each level of stage
halving.

5.3. Compatibility with Parallel Gradient, Jacobian, and Hessian
Calculations. The algorithm of section 3 brings an additional benefit (beyond its real-time
speed-up factor) to the solution of nonlinear trajectory optimization problems. It is well suited for
use in conjunction with parallel gradient and Jacobian caiculation. References 12 and 13 both point
out the possible advantage of calculating the gradients of the cost function and the Jacobians of the
constraints in parallel. This also turns out to be a stage-wise parallelization. After calculation,
these matrices and vectors get used by the current algorithm in the same distributed manner as the
manner in which they are generated -- no additional message passing is needed. This is the reason
that the bench-mark serial algorithm has been constrained to use distributed derivative information.

5.4. Numerical Stability. One point of caution concerns the numerical stability of the
algorithm. If the Fy matrices for k =0, 1, 2, ..., N-1 are large compared to 1 (if the open-loop
system is wildly unstable), then numerical problems can occur. The algorithm includes repeated
muitiplication by these matrices. Other trajectory optimization algorithms seem to suffer from this
same drawback. The authors do not know of any examples where this becomes a problem.

Alternatively, if Alk in Eq. (13) is very large compared to R; o then numerical instability can

occur. This can happen when the overall nonlinear programming algorithm, of which this

A32

algorithm is a part, allows constraint violations in the form of slack variables that later get penalized
in the cost.

If either of these problems occur, then steps 1. 2, and 5 can be altered to vield a parallel
version of the standard null space method. Such an algorithm would be guaranteed to have

numerical stability. This alteration would result in a slower algorithm, but its execution time would

still scale as n3log,N on N processors.

6. Conclusions

An algorithm has been presented that can solve an equality-constrained time-varying discrete-
time LQR problem. It uses a hypercube message-passing parallel processor to solve the problem
in O(n3log,N) operations on N processors, where N is the number of problem stages and n is the
number of state vector elements. It can also solve problems with more stages than the number of
processors -- it solves an N stage problem on p processors in O(n3([N/p]+logyp}) operations. It
uses a stage-wise parallelization, divide and conquer approach. It is a specialized form of a
technique known as domain decomposition. [t can handle auxiliary equality constraints. Such
auxiliary constraints would arise from state or control equality or inequality constraints if the
present algorithm were used to calcuiate the search direction as part of an active-set nonlinear
trajectory optimization algorithm.

In order to test the algorithm, an acromaneuvering problem has been solved. The problem,
being nonlinear, has been linearized about a guessed solution. A good seral algorithm that can
handle auxiliary equality constraints also has been developed for fair evaluation of the parallel
algorithm's speed. A significant speed-up of the parallel algorithm over the serial algorithm has
been achieved -- a factor of 8 for a 1024-stage problem on 32 processors. With more processors
available, a higher speed-up should be possible.

The algorithm has been developed as part of an approach to the problem of doing nonlinear
trajectory optimization on line. It reduces the wall clock time that a trajectory optimization

algorithm must spend to solve for a search direction.

A33

(]

10.

References

POLAK, E., An Historical Survey of Computation Methods in Optimal Control, SIAM
Review, Vol. 15, pp. 553-584. 1973.

BREAKWELL, J.V., The Optimization of Trajecrories, SIAM Journal on Applied
Mathematics, Vol. 7, pp. 215-247, 1959.

BRYSON, A.E. and HO, Y.C., Applied Optimal Control, Hemisphere Publishing,
Washington, DC, 1975.

KELLEY, H.J., Method of Gradients, Optimization Techniques. Edited by G. Leitmann,
Academic Press, New York, New York, pp. 206-254. 1962.

MIELE, A., PRITCHARD, R.E., and DAMOULAKIS, J.N.. Sequential Gradient-
Restoration Algorithm for Optimal Control Problems. Journal of Optimization Theory and
Applications, Vol. 5, pp. 235-282, 1970.

YAKOWITZ, S.J., The Stagewise Kuhn-Tucker Condition and Differential Dynamic
Programming, IEEE Transactions on Automatic Control, Vol. AC-31, pp. 25-30, 1986.
HARGRAVES, C.R., and PARIS, S.W., Direct Trajectory Optimization Using Nonlinear
Programming and Collocation. Journal of Guidance, Controi. and Dynamics, Vol. 10, pp.
338-342, 1987.

LARSON, R.E., and TSE, E., Paralilel Processing Algorithms jor the Optimal Control of
Nonlinear Dynamic Systems, IEEE Transactions on Computers. Vol. C-22, pp. 777-786,
1973.

MENON, P.K.A., and LEHMAN, L.L., A Parallel Quasilinearization Algorithm for Air
Vehicle Trajectory Optimization, Journal of Guidance, Control, and Dynamics, Vol. 9, pp.
119-121, 1986.

TRAVASSOS, R., and KAUFMAN, H., Parallel Algorithms for Solving Nonlinear Two-
Point Boundary-Value Problems Which Arise in Optimal Control. Journal of Optimization

Theory and Applications, Vol. 30, pp. 53-71, 1980.

A34

11.

12.

13.

14.

15.

16.

CHANG, S.C.. CHANG, T.S., and LUH, P.B., A Hierarchical Decomposition for Large-
scale Optimal Control Problems with Parallel Processing Structure, Automatica, Vol. 25, pp.
77-86, 1989.

BETTS, J.T., and HUFFMAN, W.P., Trajectory Optimization on a FParallel Processor,
Journal of Guidance, Control, and Dynamics, Vol. 14, pp. 431-439, 1991.

WRIGHT, S.J., Solution of Discrete-Time Optimal Control Problems on Parallel Compusers,
Report No. MCS-P89-0789, Argonne National Laboratory, Chicago, Illinois, 1989.

GILL, P.E., MURRAY, W., and WRIGHT, M.H., Practical Optimization, Academic Press,
New York, New York, 1981.

MIELE, A., and LEE, W.Y., Optimal Trajectories for Hypervelocity Flight, Proceedings of
the 1989 American Control Conference, Pittsburgh, Vol. 3, pp. 2017-2023, 1989.

WERTZ, J.R., Editor, Spacecraft Attitude Determination and Control, D. Reidel Publishing

Company, Boston, Massachusetts, 1978.

A35

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

o

(UV]

List of Figures

Mapping of trajectory optimization problem stages to processor nodes on a binary tree

message passing machine.

Stage locations during part of the multi-stage-per-processor parallel QP algorithm.

Stage locations and message passing during a serial backwards sweep with distributed

derivative information, a 24-stage problem on & processors.

Orbit transfer of an aeromaneuvering spacecratt (not to scale).

Time to solve the test problem on the INTEL iPSC/2 as a function of the number of

problem stages.

Speed-up of the (32-processor) parallel algorithm compared to the serial algorithm as a

function of the number of problem stages.

A36

Stage Locations at Nodes
Before Stage Number Halving

Combined-Stage Locations at Nodes

After Stage Number Halving
0,1
8,9
4,5 12,13
6,7 2,3 10,11 14,15

Ft'j. 1. Fsiaki /éP‘"/" A37

Stage Locations at Nodes Before
Elimination of Last Stage at Each Node

0,1,2

12,13,14

18,19,20

9,10,11 3,4,5 15,16,17 21,22,23

Stage Locations at Nodes After
Elimination of Last Stage at Each Node
(Parentheses indicate two stages that

have been joined into a single stage)

0,(1,2)

12,(13,14)

18,(19,20)

9,(10,11) 3,(4,5) 15,(16,17) 21,(22,23)

F«'j. 2. Psiak; %‘P‘*"A

A38

18 « 19 « 20 21 22 < 23

17 -

11 - 10— 9

2 51-0

A39

-1

Fl'j. . Friaks é fark

A40

8 -+
Serial
7 -
§ 61 Parallel (8 nodes)
3 5
T Parallel (16 nodes)
a
= 4+
2
o 3 - Parallel (32 nodes)
8
3
— 27
N Stages on N Nodes
19 (Extrapolated)
o |
100 104

N+1

Fig S Psiaki € fark A4l

Faj 6

Tserial / Tparallel

Ps[qfci /é’ an/c)

102

N+1

A42

103

104

A Parallel Orthogonal Factorization Null-Space Method for Dynamic Quadratic
Programming!

M. L. PSIAKI 2 and K. PARK3

1 This research was supported in part by the National Aeronautics and Space Administration
under Grant No. NAG-1-1009.

2 Assistant Professor, Mechanical and Aerospace Engineering, Cornell University,
Ithaca, NY, 14853-7501.

3 Graduate Research Assistant, Mechanical and Aerospace Engineering, Comnell University,
Ithaca, NY, 14853-7501.

A43

Abstract. An algorithm has been developed to solve quadratic programs that have a dynamic
programming structure. It is being developed for use as part of a parallel trajectory optimization
algorithm. The dynamic quadratic programming algorithm has been developed to achieve
significant speed without sacrificing numerical stability. The algorithm makes use of the dynamic
programming problem structure and the domain decomposition approach. It parallelizes the
orthogonal factorization null-space method of quadratic programming by developing a parallel
orthogonal factorization and a parallel Cholesky factorization. Tests of the algorithm on a 32-node

INTEL iPSC/2 hypercube demonstrate speed-up factors as large as 10 in comparison to the fastest

known equivalent serial algorithm.

Key Words. Quadratic programming, dynamic programming, orthogonal factorization, parallel

algorithms, domain decomposition.

A44

1. Introduction

The objective of this paper is to develop and test a parallel algorithm for solving equality-
constrained quadratic programs that have a dynamic programming problem structure. The
algorithm must be rapid, it must have good numerical stability, and it must be able to detect an
indefinite projected Hessian. Also, the algorithm must be able to determine a feasible direction of
negative curvature when the projected Hessian is indefinite.

This algorithm has been designed to be part of a sequential quadratic programming-type
nonlinear trajectory optimization algorithm (Refs. 1 and 2). The dynamic quadratic programming
(DQP) algorithm must execute very rapidly because the parent nonlinear trajectory optimization
algorithm may be used to provide real-time guidance commands to an aerospace vehicle.

The nonlinear programming (NP) core of the parent trajectory optimization algorithm requires
the solution of an equality-constrained quadratic program (QP) each time it generates a search
direction (Ref. 2). The characteristics of the core NP algorithm dictate the required good numerical
stability of this paper's QP algorithm. A general variable reduction null-space method may lead to
extreme ill-conditioning when used in conjunction with the core NP algorithm of Ref. 2, but an
orthogonal factorization null-space method will have satisfactory numerical stability. The NP core
also dictates the required ability to detect and determine feasible directions of negative curvature
when they exist.

A general form of a dynamic quadratic program is

T
find: X = [xg,xf,x;,...,xg] (1a)
N
to minimize: J = 2 (S Hix . + 21%k) (1b)
k=0
Sl.'lbjCCt to: E X + €+ Frel Xk+1 + fis1 = 0 fork=0.. N-1 (1¢)
Dkxk+dk=0 fork=0..N (1d)

The index k refers to the stage or time-step number. There are a total of N stages. The large

solution vector, %, is a composition of components from each stage, Xg, X1, X2, --» and XN.

A45

.he dimension of the solution vector % at a given stage is nx. This dimension may vary from
stage to stage. In an optimal control problem, the vector % will be a composite of the “state” and
"control” vectors at time-step k.

The cost function J in Eq. (1b) is a summation of stage-wise costs, each of which includes
both linear and quadratic terms. The cost is de-coupled: the cost at any given stage depends only
the solution vector at that stage. The nixny matrix Hy is the cost Hessian for stage k and the nyx1
vector gy is the cost gradient for stage k when %y = 0.

Two types of linear constraints enter the problem, constraints that link neighboring stages,
Eq. (Ic), and constraints that involve only the solution vector of a given stage, Eq. (1d). The
former constraints usually arise from dynamic models, and they provide the only coupling between
the stages. The matrices Ey and Fi4; are the Jacobian matrices of the dynamic constraints. The
Dy matrices are the Jacobians of the single-stage constraints. The fixed vectors dy, ey,
and fy.; are the nonhomogeneous constraint terms. The vectors ex and fi+1 could be added to
form a single nonhomogeneous term for each dynamic constraint, but the more general form in Eq.
(1c) has been chosen to facilitate bookkeeping for the parallel domain decomposition algorithm that
is developed in this paper. The number of constraint equations may vary from stage to stage, but
the total number of constraints will normally be less than the dimension of & (the total number of
unknowns).

The cost function in Eq. (1b) can be aggregated into two large terms. one quadratic and one
linear:
- Hp -
H, 0
Lag T Ha
J=3% , %X +[goT.giT.g2 . gn1TanT] K (2)

0 Hn.1
L HN

where cost de-coupling is reflected in the block-diagonal sparsity structure of the Hessian.

Similarly, the constraints in Egs. (1¢) and (1d) can be formed into one large vector of equalities:

A46

- Do . - do
Ey Fy 0 eot+fy
D, d,
Ei F, X +| €th | -0 3)
0 Ena Fn en-1+fN
L Dy J | dy

The sparsity structure of this matrix is called a staircase structure for obvious reasons. Much
research has already been done on how best to exploit this structure, especially for the linear
programming case (e.g., Refs. 3 and 4).

Wright (Ref. 5) and Psiaki and Park (Ref. 6) have both developed parallel algorithms for
solving time-varying Linear Quadratic Regulator-type control problems. They are applicable to a
special form of problem (la)-(1d) where Fy = (1, 0] for k = 1, ..., N and where the solution
vector consists of a state and control vector, Xy = [ka,ukT]T. When run on a distributed memory
parallel processor, these algorithms offer significant savings in wall clock time in comparison to
the fastest known serial algorithms. Wright's algorithms, although faster than the algorithm of
Psiaki and Park, have the further restriction that they cannot handle single-stage state constraints:
they are restricted to single-stage constraints of the form Dy = {0, Dy, J. Also, none of Wright's
algorithms can detect an indefinite projected Hessian, and they may yield a cost ascent direction
when the Hessian is indefinite.

Unfortunately, the previously-developed algorithms are unsuitable for use with the core NP
algorithm in Ref. 2. Wright's algorithms' inability to deal with general Dy matrices and their
inability to guarantee descent make them unsuitable. Psiaki and Park's algorithm does not have
good enough numerical stability because parts of it use the variable-reduction null-space method.
Therefore, a new parallel algorithm is needed.

The parallel algorithm developed in this paper is based on the domain decomposition
approach developed by Psiaki and Park (Ref. 6). Itis designed to run on a distributed-memory,

message-passing parallel computer. The new algorithm is very similar in spirit to the algorithm of

A47

Ref. 6. The main difference is in the exclusive use of the orthogonal factorization version of the
null-space method. This provides the requisite numerical stability, but makes the algorithm use
more memory. Additionally, this paper defines a method of determining directions of negative
curvature when the projected Hessian is indefinite.

The remainder of this paper is divided into two sections plus conclusions. Section 2
develops the new DQP algorithm. It starts by developing an algorithm for the case where the
number of processors equals the number of stages, N. Later, it generalizes to the case of fewer
processors than problem stages. Section 3 presents a test problem and computational timing
results using an INTEL iPSC/2 32-node hypercube. These results demonstrate the scaling of the

wall clock execution ime with the problem size.

2. Algorithm Design
2.1 Review of Orthogonal Factorization Null-Space Method. The algorithm to
~ solve problem (1a)-(1d) is a special parallel form of the orthogonal factorization null-space method
described in Ref. 7. When solving dense problems on a serial processor, this method begins by

performing a right (or LQ) orthogonal factorization of the large constraint matrix in Eq. (3):

Ey Fy 0
D,
El F2 Q = [L,O] (4)
0 En.g Fn
= Dn

where Q is an orthogonal matrix and L is a square lower-triangular mawrix. This is done using
Householder transformations, and the form in Eq. (4) can always be achieved when the dimension
of & exceeds the number of problem constraints. The Q matrix transforms X into two

componcnts:

Z,
=QTX (5)
Z)

A48

where 25 is in the null space of the constraints.

After transformation, the original problem takes the form

find: Zyand 27 (6a)
H, H z Z
to minimize: J=‘§[21T,22T]{ n T 2 [g179,7] (6b)
Hi' Hay |22 Z)
— dO
eot+fy
d;
subjectto: L 2 + ‘ =0 (6¢)
en-1+fN
. dny

where the transformed Hessian and gradient are

R, H; 0
{ lfr 12} - QT Q (7a)
H, H 0 Hy.,
B Hy
— 80 7
g1
{91} _QT| (7b)
92 8N-1
L gN ~

If the constraints are non-degenerate, then the transformed problem in Eqgs (6a)-(6¢) is easy
to solve. L is nonsingular in this case, and 21 is determined uniquely by the constraints:
€0+f1

d,
Z = L _ ®)

eN_1+fN

A49

The null-space coordinate 27, which does not enter the constraints, can be optimized by setting
dJ/0Z, = 0. Solution of this expression for 27 yields

z; = -Hy'! [anTzl +92] 9
where 5, must be positive definite for the original problem to have a unique local minimum. In
this case, 2! can be computed using the Cholesky factorization of $H ,,. The final problem
solution 2& can be computed from Z; and Z; by inverting the orthogonal transformation in Eq.
(5).

The technique just described does not account for the sparsity or special structure of the
problem matrices in Egs. (2) and (3). A straight-forward application of this technique is likely to
result in the generation of dense matrices @, L, H,;, H 12, and 3. This would lead to O(N2)
storage requirements, and the orthogonal and Cholesky factorizations would require O(N3)
operations. As N, the number of problem stages, becomes large, a standard technique becomes
inefficient or even infeasible.

2.2 Overview of New Algorithm. The technique of this paper uses the domain
decomposition principle to develop a sparse, parallel orthogonal factorization technique for solving
problem (1a)-(1d). It's memory requirements and operation count are both O(N) for an N-stage
problem. When run on p (<N) processors with distributed memory and message passing
capabilities, the wall clock time to execute the algorithm is O[(N/p) + loga(p)].

The general idea of the algorithm is to perform the steps of the standard LQ null-space
method in a piecemeal, stage-wise manner, where possible, to avoid creating fill in the resulting
matrix factors. Different processors deal with different stages at the same time. First, it LQ
factorizes all of the single-stage constraints, Eq (1d) for k = 0,...,N. This can be done in parallel
and results in a transformation of the %, at each stage. Part of the transformed % is completely
determined by the constraints, and the single-stage constraints along with some of the unknowns
are eliminated from the problem. At this point the only remaining constraints are those that link
neighboring stages. These can be LQ factorized at each stage to further transform the remaining

unknowns. Some of the ransformed unknowns do not enter any constraints. All of the preceding

AS0

operations can be done without disturbing the block-diagonal structure of the large Hessian matrix
in Eq. (2).

The next operation optimizes the unconstrained variables. The partial derivatives of the cost
with respect to these variables are taken. These partial derivatives are set equal to zero, and the
resulting equations are solved for the unconstrained variables in terms of the remaining constrained
variables. This solution is substituted back into the cost expression to eliminate the unconstrained
variables from the problem. This can be done at each stage in parallel. At the end of this operation
the dynamic QP has been transformed into one that has the same number of stages as the original
QP, but it has no single-stage constraints, and it has fewer unknowns at each stage.

One final operation is performed; then, the above steps are repeated. The final operation is to
reduce the number of stages by a factor of 2 by combining adjacent stages into a single larger
stage. This operation increases the number of variables per stage and makes some of the remaining
constraints into single-stage constraints. Message passing must occur between pairs of processors
at this point. The resulting problem is in the form of Egs. (1a)-(1d), and the algorithm can be re-
applied in a nested fashion. The resulting flow of data between processors in the nested
application of the algorithm is a fan-in along a binary tree, with a processor at each node (Ref. 6).

As in Ref. 6, the problem eventually boils down to a single-stage problem, which gets
completely solved. The solution of the single-stage problem then gets back-substituted into a
double stage problem and so on in a stage-doubling operation. This back substitution process
completes the determination of the variables that have been eliminated during parallel, stage-wise
partial optimization. This process includes message passing in a fan-out along a binary tree of
Processors.

2.3 Algorithm for Solving N-Stage Problem on N Processors. The following
algorithm solves problem (1a)-(1d), and it also determines the Lagrange multipliers for the
constraints in Egs. (1c) and (1d). The algorithm assumes that the constraints are not degenerate

and that the projected Hessian is positive definite. Section 2.4 describes modifications that allow

ASl1

determination of feasible directions of negative curvature when the projected Hessian is indefinite.

The necessary modifications to handle degenerate constraints are discussed in Section 2.5.

Steps and Detailed Operations for One Stage Halving

Step 1. LQ factorize the Dy constraint matrices (in parallel):
Dk Q1k= [le 0] fork = O,...,N (10)
where Q;, is orthogonal and Ly, is square, lower triangular, and

nonsingular.

This effectively transforms the %X vectors, splitting them into components that are in the

single-stage constraints, call these %, and components that are not, call these X2, :

g
[k} = Q1 %« for k = 0,....N (11)

This factorization necessitates a transformation of other problem matrices and vectors consistent

with the stage-wise variable transformations:

[Flk sz] =FQ, for k = 1,..., N (12a)
[E, E2]=EQi, for k = 0,...N-1 (12b)
Hyy Hygy g1
T k T
= H , = for k = 0....N (12¢)
{HJR H22J QuiHiQu {gzj Qi

The 1 and 2 subscripts on the F, E, and H matrices and on the g vectors refer to the index of the
transformed % vector that gets multiplied by these matrices and vectors in the cost and in the

constraint equations. In large sparse matrix form, the transformed constraint J acobian matrix

becomes

AS52

Elo EZ() Fll F21 0
Ly, 0
E, Eg, Fy, Fa, (13)
0 Eing Eang Fiy Foy
_ Liy 0 -
which still has staircase structure. The transformed Hessian becomes
— Hy1g Hizg 7
HIIO H220 0
Hyy, Hygy
H121 H221 (14)
0 HllN HIZN
L HJN Haoy

which still has the block-diagonal structure.

Step 2. Use the single-stage constraints to solve for the constrained %, and
eliminate the single-stage constraints and the %, from the problem (in

parallel):
%1, = - Li,dg for k = 0.....N (15)

After elimination of the %, and the single-stage constraints, the problem takes the form

find: R K25 X2 o0 X2y (16a)
N
tominimize: J= ¥ (Sx.H o 16b
: 5 %2 Hag Xy + 823%2,) (16b)
k=0
subject to: Ey, X2, + €k + Fa %2, +fis = 0 fork=0..N-1 (16¢c)

which is similar in form to the problem in Egs. (1a)-(1d) only without any single-stage constraints.
The new problem is derived by substitution of Egs. (10), (11), (12a)-(12¢), and (15) into problem

(1a)-(1d). The vectors with the (~) overstrike are

g2, = 82, - HiJ, Lildy for k = 0,...,.N (172)

AS53

ex=ex-E; Litde, Tuer = finr - Fip Lijh 0k for k = 0,0 N-1 (17b)
Step 2 eliminates all of the rows and columns that contain an L;, matrix from the constraints
in Eq. (13). Also, it eliminates all of the rows and columns that contain an Hy;, matrix from the
Hessian in Eq. (14). In large sparse matrix form, the new constraint Jacobian and Hessian for the

problem in Eqgs. (16a)-(16c¢) are, respectively,
0

Ey, F2, 182
a
- 0 Eang Fay
H22() 0 T
Ho2,
Haa, (18b)
| 0 Hoay _

Fa
Step 3. LQ factorize [Ezk] to eliminate variables from the remaining constraints by
k

forming zero columns in the transformed Jacobian matrix:

E2¢Q2=[L40 0] (19a)
Fa, Ly, 0 0 ‘

[EZJsz =[E3k La, 0:] tor k = 1,....,N-1 (19b)
F2\Qay=[L3n 0] (19¢)

where the sz are orthogonal and the L3k and L4k are square and lower

triangular (in parallel).

This step can be done only if the matrix to be factorized has more columns than rows. For
general dynamic QPs this may not be true initially, but this factorization will become possible after

several halvings of the number of stages.

Step 3 effectively transforms each %, vector and splits it into three components. One

component enters two constraints, the constraint that couples the current stage (k) to the preceding

A54

— stage (k-1) and the constraint that couples the current stage (k) to the following stage (k+1); call

this component %3,. Itisa "state”-type component in the terminology of control theory. Another

component enters only the constraint that couples the current stage (k) to the following stage (k+1);
call this component %4,. It is a "control”-type component. The third component, Xs,, enters

none of the constraints. One might call it an "ineffective control". The transformations are

_‘X.40
:l = Qéron() (20a)

x4y |=QF %2, for k = 1,...,.N-1 (20b)

}EQQ;@QN (20c)
XSN

Again, this step necessitates a transformation of other problem matrices and vectors to account for

the transformed % variables:
~ [Haag Hasg g4
- nT 0 T =~
= H s = (2la
LH‘J‘O HSSQ] Q2o 220Q20 [gSO] Q20g20)
" Hi33, Higy Hisy g3,
T ~
Hij, Hasy Has, |=QLH2, Q2 | 84k [=Q4 82, fork = L..N-1 (21b)
LHB’g‘k H4Ik HSSk 85
Hjszy Hasy g3
-nT N T~ ,
= H , = (21¢)
[H3}N HSSN] Q2yH22Q2n {gsN] Q2n82n

The 3, 4, and 5 subscripts on the H matrices and on the g vectors refer to the index of the
transformed % vector that gets multiplied by these matrices and vectors in the cost. After the step-3

orthogonal transformations, the large sparse form of the Jacobian becomes more sparse, but it

retains its staircase form:

AS5

~Lsg 0 L3, 0 0
E3; Lgy 0 L3, 0 0 0
Liy, 0O 0

L 0
Esn,g Lan,g 0

and the transformed Hessian retains its block-diagonal form
— Haag Hasg

H,J, Hss
0 % Hjj, Hag, Has,

H3I] H441 H451
HBg.l Hd’;l H551

Hssy; Haan, Hasy
T
Haay, Haan,y Hasy,

T T
Hisy Hasy, Hssy,

H33N I'13.")]\1

Hng Hssy

(22)

(23)

Step 4. Partially optimize by computing the optimal %5, as a function of X3, and

%4, (in parallel for all stages where step 3 has been carried out). Solve the

equation

u.T T
Hss x5, = -(H35, %3, + Ha5, %4, + 85,]

(24)

then eliminate %5, from the cost function by substituting this solution for it.

This equation can be solved using a Cholesky factorization, Hss, = Ls ka,Tk, and back

substitution; Ls, is square and lower triangular. The Hss, matrix constitutes a block on the

diagonal of the projection of the Hessian of the original problem onto the null space of the
constraints. It must be positive definite for the original QP to have a finite, unique solution. Given

the assumption of a positive definite projected Hessian for the overall problem, the Cholesky factor

Ls, exists and is nonsingular, and Eq. (24) has a unique solution. (Section 2.4 explains useful

A56

calculations that can be performed in the case of an indefinite or semi-definite Hssy) Upon
substitution of the solution Xsy into the cost, the problem becomes
find: Rag K3 ps Xdpy X3 Xdor o K41 204 X3N (253)

e 1. Tq - T
to minimize: J = -2-X40H440x40 + 84¢%40

N-1
Hia, Haay | | X3 - - X3y
* :>- {12'[3 x;k] : Tk o y [g;k’g}k])
Hak, Haay | L% Xax
k=1
+ '}Exi;rNﬁBBNX3N + -g3TNx3N (25b)
subjectto: Lag%4o* eg+ L3, X3, + f,=0 (25¢)
E3 X3+ Lgy %4y + e + L3, %3k +?k+1 =0 fork =1 ..N-1
(25d)

This problem is derived by first applying the transformations in Egs. (19a) through (21¢) t0 the
problem in Egs. (16a)-(16¢c) followed by substitution of the solution of Eq. (24) into the resulting

QP. The resulting matrices and vectors with the (-) overstrike are

His, = Hasy - H35kL§T(L51kH3§k for k = 1,..N (262)
Hia, = Haay - Has LiLL3 Had, for k = 1,..N-1 (26b)
Hasy = Haay - Has, L3LL3Hady for k = 0...N-1 (26¢)
25, = g3y - Has, LiL3iEs for k = 1...N (26d)
é4k =84y - H45kL§{L§‘kg5k for k = 0,....N-1 (26€)

Step 4 eliminates from the constraint Jacobian in Eq. (22) all those columns that contain only

zeros. Also, it eliminates all of the corresponding rows and columns from the Hessian matrix in

Eq. (23), which are the rows and columns that contain an Hssy matrix. Additionally, the

remaining nonzero blocks of the large sparse Hessian get modified. The new large sparse forms of

the constraint J acobian and cost Hessian for the problem in Eqgs. (25a)-(25d) are, respectivcly,

AS7

— L40 L31 -
E31 L41 L32 0
E3, L4
2 (27a)
0 L3N,
= Esng Lang L3y -
l:[331 I:1341
l:13}.1 l'-1441
(27b)
ﬁ33N-l ﬁ34N-l
l'-!34?[;_1 ﬁ44N_1
- 0 H33N_

The Jacobian is still a staircase matrix, and the Hessian is still a biock diagonal matrix. Steps
1 through 4 do not involve any calculations which require data to be passed between stages, nor do

they create any new coupling in the problem matrices.

Step 5. Halve the number of stages by joining each even-numbered stage, stages
0,2,4,....N-1, to the odd numbered stage that follows it. Assume that N is
odd (N = 2M+1). This is done in parallel and includes parallel message

passing between M+1 pairs of processors.

This aggregation of adjoining stages amounts to a re-definition of the boundaries between
stages in the large sparse problem matrices. Stages 2k and 2k+1 get joined together into a
"hyperstage”. The dashed vertical lines in the following large sparse Jacobian show how step 5
super-imposes on the Jacobian of Eq. (27a) boundaries between a new "hyperstage” and its

neighboring "hyperstages".

AS8

N L40 L31 }

t

(

| |

' f

l

L42k-l‘ L32k :

(E3ax Lagy Lageyy | (28)
|

' E32ke1 Lageer Lagen

(.

| 1

! |

| {

L3N-1

- E3y, Lan,g Lay

Similar boundaries between new "hyperstages" can be drawn to split up the Hessian matrix of Eq.

(27b):

Haag

[

I

'l l:l‘3r42k (29)
|

|

]
L ! ! ﬂ33N _

Step S is the concluding step in the process of halving the number of problem stages. After
this step the problem is back in the form of Eqs. (1a)-(1d) only with half as many stages, M+1

stages instead of N+1:

find: ;\co, 7/2,1, 7/2.2, .., and &M (30a)
M
A
to minimize: J = (gﬁznk,%k + 8T (30b)
k=0

AS9

. A A A A A A
subject to: Ex X+ + Froi Xye1 + k41 = 0 fork=0..M-1 (30c)
A
Dy Xy +dy =0 fork =0 .. M (30d)

The vectors and matrices with the (%) overstrike are derived by grouping of neighboring pairs of

stages:
x X392k T
40 x x32M
4
&05 %3, |» ‘Q.ka- 2k fork =1,..,.M-1, ;\CME Rdom (31a)
R32k+1
X4,y X37M+1
X42k+1
A A
Fc=[L35,0,0,0] fork=1..M-1, Fy= [L3am- 0. 0] (31b)
A A
Do = [Lag, L3, 0], Dic= [Esgy, Lugg Lagy,y 0] for k= LM-L,
Dy = [E32M'L42M’ L3om+1] (le)
Eq= [0.E3;. L], Ek_[O 0, Eagy, s Lagysy] fork = 1..M-1 (31d)
dk =eqy +f2k+1 fork =0,...M, ek =exns1 fork =0,..,M-1,
A ~
fy=fy fork=1,..M (31e)
Hyoy 0 O
A - -
Hg = 0 Hss, Hay, (315
0 l'-13‘4{‘1 I:1441
—ﬁ332k Higp, O 0]
A Hi,,, H
Hy = Yoo Haay v 0 for k = 1,..,M-1 (3lg)
0 0 Hszge Hiagy
L 0 0 ﬂ3zzk+1 ﬁ442k+1—
. Hyjppy Hasgy 0
HME ﬁ34£M I'-14425,1 0 (31h)
0 0 Hizpmy,
- B é32k 7] -
840 5 g32m
A . A 4 A - .
go=| g3, | g=| | fork=1,..M-1, BM=| apy (310)
- B32k+1 -
84, - 832M+1
—847K+1—

A60

As in the algorithm of Ref. 6, this step is the only step in the entire stage-number halving
process that involves message passing. The quantities that get computed in Eqgs. (31b)-(311) must
all reside on a single processor at the end of this step, one processor for each index k. At the
beginning of this step, however, the information on the right-hand side of the equations associated
with index 2k resides on one processor, while the information associated with index 2k+1 resides
on another processor. A binary tree structure of inter-processor connections ensures that all such
pairs of processors will have a direct connection, and the M+1 messages can get passed in parallel
(Ref. 6). A binary tree can be imbedded in any hypercube processor.

Nesting. The foregoing 5-step process can be repeated until the entire problem is solved: the
halved problem is again halved in a nested cycle. Thus, the hatted vectors and matrices at the end
of a cycle become the un-hatted vectors and matrices at the beginning of the next cycle -- note the
exact replication of the problem (1a)-(1d) form in problem (30a)-(30d). Suppose that, initally, N
= 2)-1. That is, suppose the problem starts with 2) stages. After j times through the halving cycle,
the problem will have only one stage, stage 0. Data will have fanned in to a single processor along
a binary tree with j levels of branches (Ref. 6).

The final single-stage problem can be solved by a similar technique. Steps 1, 2, and 4 of the

above cycle can be applied. There is no need for step 3 because there cannot be any multi-stage

constraints. The vectors X, and %s are equivalent, and the vectors X34 and X4, have zero
dimension. The vector X5, can be determined from Eq. (24), and the vector %X, can be
determined from Eq. (15). Finally, the vector % can be determined from Eq. (1D).

After the first stage-halving cycle, further computational efficiency can be realized if attention
is paid to the structure of Il\"‘k in Eq. (31b) and of IA)k in Eq. (31¢). They both contain zeros, and
these zeros can translate into savings during the LQ factorizations of steps 1 and 3 in the above
cycle. The timing results reported in Section 3 are for an algorithm that includes this time-saving

feature.
Back Substitution and Stage Doubling. Back substitution is used to reconstruct the entire

solution history after the nested problem-halving sequence has yielded a problem with a single

A6l

stage and after that single-stage problem has been solved. The back substitution process is the
reverse of the problem-halving process, it is a stage-number doubling process. Given a certain
level of problem halving, and given the %3, and %4, time histories corresponding to that level, the
first step is to determine the % time history for that level -- recall that Xk denotes the solution at

stage k prior to the two orthogonal transformations and partitionings that occur in steps 1 and 3.
The vector %k can be determined in parallel by successive application of Eq. (24) {to determine

%5,], Eq. (20) [to determine X2,], and Eq. (11) [to determine %X -- %1, has already been
determined during the stage-halving process via Eq. (15)]. Knowledge of the %, time history for
the current level of problem halving transiates into knowledge of the
RK3ops Xdops X39410 and X4, time histories for the next previous level -- the level with twice
as many stages -- [see Eq. (31a)]. The stage-doubling algorithm can then repeat itself.

Message passing occurs during this back substitution procedure. The pattern of the

information flow is a fan-out along a binary tree. After each Xy has been calculated at a given level

-- each stage on a different processor, it is broken into it two pairs, (%3,,,%4,,) and
(%3941:%49541)- One of the pairs is sent to a neighboring processor. The other pair remains on
the current processor, which will perform computations for the corresponding stage at the next
level of doubling.

Multiplier Computation. One often needs to determine Lagrange multipliers for the original
problem constraints in Egs. (1c) and (1d). The nonlinear programming algorithm of Ref. 2
sometimes requires these multipliers. Alternatively, an active-set algorithm for solving inequality-
constrained QPs needs to determine multipliers in order to decide which constraints to drop from
the active set.

The multipliers can be calculated during the same stage-doubling process that calculates the
x4 vectors. Suppose that the multiplier vectors associated with Eq. (1¢) are g for k =0,...,N-1
and that the multipliers associated with Eq. (1d) are f for k =0,...,N. Given all of the Q vectors
at a given level of stage doubling, the following process determines the i vectors. First, adjoin

the constraints to the cost in Eqgs. (1a)-(1d) using the g and x multipliers. Second, perform the

A62

Q;, transformations defined in Egs. (11)-(12¢). Third, set the partial derivative with respect to
%, of the resulting expression equal to zero. Last, solve the resultant equation for f§x by back
substitution with the L?; matrix.

Knowledge of the g and B time histories at a given level of stage doubling translates into
knowledge of the g time history at the next higher level of stage doubling. Thus, the process can
be repeated. The single-stage problem that terminates the stage-halving process has no constraints
like Eq. (1d); therefore, it has no g vector that needs to be known ahead of time. This fact
allows the multiplier computation algorithm to initialize at the beginning of the stage-doubling
process.

2.4 Procedures for an Indefinite or Positive Semi-Definite Projected
Hessian. Section 2.3's equality-constrained QP solution procedure breaks down when the
projected Hessian is indefinite or positive semi-definite. Step 4 fails for some stage number and
level of problem halving. This situation is signaled by a break-down in the Cholesky factorization
process. Either a negative square root or a divide-by-zero occurs, and the real Cholesky factor Ls
cannot be computed. In the indefinite case, the equality-constrained QP cost function has an
infinite minimum at infinity. In the positive semi-definite case, the QP has a non-unique minimum.

Two useful pieces of information can be derived in the indefinite and semi-definite cases if
this algorithm is used as part of an SQP-type NP algorithm or as part of an active-set inequality-
constrained QP algorithm. First, the parent algorithm usually will want to know whether the
equality-constrained QP's projected Hessian is positive definite, positive semi-definite, or
indefinite4. Second, the parent algorithm may want to know a feasible direction of negative (zero)
curvature in the indefinite (positive semi-definite) case.

The method of determining these things is based on the modified Cholesky factorization
process presented on pp. 108-110 of Ref. 7. When Cholesky factorizing a matrix that is not

sufficiently positive definite, this procedure adds positive values to some of the matrix's diagonal

4 Negative definite and negative semi-definite are considered to be synonymous with indefinite for
purposes of this paper.

A63

elements during factorization. This modification ensures that the matrix is sufficiently positive

definite. For stage i, whose matrix Hss, is not sufficiently positive definite, the modified process

would compute Cholesky factors of Hss, + E:
L5iL;ri = Hss; +E; (32)
where E; is a positive semi-definite diagonal matrix that gets generated during the modified

Cholesky factorization process. Nonzero diagonal elements of E; get generated if a diagonal

clement of Ls; would otherwise be imaginary, zero, or too small or if any off-diagonal elements of
Ls, would be too large. All of these situations correspond to an Hss, matrix that is either
indefinite, positive semi-definite, or positive definite but poorly conditioned. The latter two cases
are effectively equivalent.

The stage-halving and stage-doubling processes of Section 2.3 can still be carried to

completion by using the modified Ls, Cholesky factor where necessary in Egs. (26a)-(26¢) and by
replacing Hss, in the corresponding Eq. (24) with Hss ~+E;. If the constraints are homogeneous,
then this technique is guaranteed to produce a feasible descent direction for the original problem.

If the £; matrix has any nonzero elements, then some of these elements correspond to
directions of zero or negative curvature. When the modified Cholesky factorization process
produces a nonzero diagonal element of E; to avert an imaginary diagonal element of Ls;, this
corresponds to a direction of negative curvature. A nonzero diagonal element of E; that has been
produced to avert a zero (or small) diagonal element of Ls, corresponds to a direction of zero (or
low) curvature. If, on the other hand, a nonzero diagonal element of E; gets produced to keep the
off-diagonal terms of Ls, from becoming too large, then another nonzero diagonal element of of
£; will get produced later in the process. This latter element will correspond to a direction of
negative Or zero curvature.

The modified Cholesky factor Ls; can be used to compute an actual direction of negative,

zero, or low curvature. Suppose that the jth diagonal element of E; is nonzero and that this

element was produced to avoid an imaginary diagonal element of Ls;. The calculation of a

negative curvature direction begins with solution of the equation

A64

L pj= e (33)
for p;, where @; is a unit vector with a 1 in the jth row and zeros elsewhere. By referring to Ref.
7, it is easy to prove that pjTH55 ipj/pijj < 0. The vector pj is a direction of negative curvature
for the %5, vector. Similarly, if the jth diagonal element of E; had been produced to avoid a smail
or zero diagonal element of Ls;, then pjTH5 5ipj/pijj would be small or zero.
Additional calculations are needed in order to determine the corresponding direction of
negative curvature for the original problem in Egs. (1a)-(1d). These calculations are similar to the

stage-doubling back substitution process defined in the Section 2.3. The process starts by setting

%5, = pj and %5, = 0 for all k # i at the current level of stage halving. It also sets all of the %,
%3y and %4, VECtors to zero at this level of stage halving. The feasible direction of negative
curvature is calculated under the assumption that all of the constraints are homogeneous (i.e., dx =
ex = fic = 0 for all k); it is a feasible direction in the null space of the constraints.

Next, the process determines the negative-curvature X time history for the current level of

problem halving. This time history can be determined in parallel by application of Eq. (20) [to

determine the X,] followed by application of Eq. (11) [to determine the X]. Knowledge of the
%, time history for the current level translates into knowledge of the X35, X449
X3941» AN X4y, time histories for the next previous level, and the stage-doubling back-
substitution algorithm of Section 2.3 can be applied. During the ensuing stage-doubling cycles,
the homogeneous constraints assumption is maintained, i.e. Xy, = dk = 0.

When the projected Hessian matrix of the original problem in Egs. (1a)-(1d) is sufficiently
positive definite, then all of the Ey will be identically zero for all of the levels of stage halving. If
any of the £y matrices have a nonzero diagonal element, then the projected Hessian is either
indefinite, positive semi-definite, or positive definite but almost positive semi-definite. In the latter
case, the projected Hessian is treated as being positive semi-definite to within the precision of the
calculation.

The indefinite case can be distinguished from the positive semi-definite case. If not one of

the nonzero elements of the £, matrices was needed to avert an imaginary element of the

A65

corresponding Ls, matrix, then the projected Hessian of the entire original problem is positive
semi-definite. Otherwise, it is indefinite.

In the indefinite case, several directions of negative curvature may be calculable by the Eq.-
(33) technique. These may correspond to different stages and to different levels of problem
halving. A parent algorithm that uses this QP algorithm may want to calculate all of these
directions in order to do something like pick the one with the most negative curvature as a search
direction. Note that none of these directions is guaranteed to be the direction of most negative
curvature for the projected Hessian. This should not be a problem for most parent algorithms, so
long as at least one direction of negative curvature can be calculated.

The use of a parallel algorithm can compromise numerical stability when calculating
directions of negative curvature. The modified Cholesky algorithm of Ref. 7 enforces a maximum
limit on off-diagonal elements of the Cholesky factors. This maximum limits the size of the Ex
matrices and ensures numerical stability when the Hessian is indefinite.

The parallel algorithm uses the modified Cholesky procedure to ensure that the off-diagonal

elements of all of the Ls, matrices remain small, but elements of matrices such as Lg‘kﬂg.}"k and

L§LH4} , which are used in Egs. (26a)-(26e), can grow without bound. Numerical experiments

indicate that this growth causes no problem when the original problem's projected Hessian is
positive definite, but it can lead to round-off error problems in the indefinite case. The ultimate
result of this instability is that calculated directions of negative curvature may not have as much
negative curvature as they would have had if growth in matrices such as LgLH;;gk and LgLHA,Ik
could have been limited in a sensible way. Unfortunately, there seems to be no obvious way to
limit this growth without incurring adverse side effects in the positive-definite case.

2.5 Modifications to Deal with Degenerate Constraints. If the constraints in Egs.
(1c) and (1d) are degenerate, then the algorithm of Section 2.3 breaks down at step 2 for some
level of stage halving. One of the L;, matrices will be singular.

When the constraints are degenerate, they may or may not admit a feasible solution. If they

do not admit a feasible solution, then a sensible approach is to find the optimal Xy time history that

A66

also minimizes the mean square error in Eqs. (1c) and (1d). Whether or not the residual mean
square error is zero, the approach to solving this modified problem is the same. It is a variation to
the method in Section 2.3. The algorithm must be modified at steps 1 and 2 in order to handle
degenerate constraints.

In the modified step 1, the LQ factorization of the single-stage constraint Jacobian gets
replaced by a complete LQ factorization; equation (10) gets replaced by

L, 0
Q3 D Qi =[Ok 0} for k = 0,...,.N (34)

where Q1 and Q3, are orthogonal and Ly, is square, lower triangular, and nonsingular. Any

matrix Dy can always be factored in this manner. The new orthogonal matrix Q3 transforms the

single-stage constraints, splitting them into two types:

Ly, 0 7] %1 diy
= = Q3k dk for k = O,...,N (35)
0 0 X2y d'Zk

where %1, and X7, have been defined in Eq. (11). The first row of the transformed constraints in

Eq. (35) is non-degenerate. The second row in Eq. (35) is a set of degenerate constraints. In the

degenerate case, Egs. (1c) and (1d) of the original problem can be exactly satisfied if and only if

d, = 0 for all k and for all levels of stage halving.
In the modified step 2, the solution for %, from the single-stage constraints gets replaced by

a least-square solution of the single-stage constraints. In other words, Eq. (15) gets replaced by
%1, =-Lildi, for k = 0....,N (36)
Except for multiplier determination, all of the other parts of the algorithm remain the same,
including the stage-doubling back-substitution process. The multiplier vector is under-determined
when the constraints are degenerate. A sensible thing to do is to determine the minimum-norm
multiplier vector. Suppose. as in Section 2.3, that Bx for k = 0, ..., N are the multipliers
associated with the constraints in Eq. (1d) at a given level of stage halving. These multipliers can

be transformed and split to correspond to the transformed and split constraints in Eq. (35):

A67

B.lk

= Q3 B« for k = 0,...,N 3D
Bo|

The minimum-norm multipliers can be determined by a procedure similar to the multiplier
determination procedure of Section 2.3. The cost is augmented by adjoining the transformed

constraints using the transformed multipliers, and the partial derivative of the augmented stage-

wise cost with respect to the %1, vector is set equal to zero. This yields an equation for By
which can be solved by back substitution with the L;[;(matrix. The 2, vector does not affect any
such partial derivatives. It is set equal to 0. The By vector is then determined by inverting Eq.
(37).

2.6 Modifications to Handle Multiple Stages per Processor. A modified
algorithm can solve problems that have more stages than the number of available processors. Itis
similar in spirit to the multi-stage-per-processor algorithm described in Ref. 6. When a single
processor has more than one stage, the algorithm starts by working only with the last stage of this
set of stages -- it must have a contiguous set of problem stages. It starts by performing steps 1-4
of Section 2.3 on this last stage. Next, it performs a modified version of step 5 to join the last
stage on the processor to the second-to-last stage. Step 5 gets modified to account for the fact that
the second-to-last stage may have some single-stage constraints. At the end of these steps, each
processor has one less stage. This sequence of steps is repeated until each processor has only one
stage.

The modified algorithm performs a sort of backwards sweep through the stages on a given
processor. After the sweep reaches the first stage on the processor. the algorithm can continue in
the stage-halving manner described in Section 2.3.

This backwards sweep is related to but different from the martrix Riccati backward sweep of
LQR theory. First, the current backwards sweep operates on a more general problem form.
Second, it uses LQ factorization rather than variable reduction to eliminate the constraints that join

stages. Third, this sweep can handle arbitrary single-stage constraints such as "state” constraints.

A68

Figure 1, borrowed from Ref. 6, shows how a 24-stage problem would be mapped onto an
8-processor binary tree (which can be formed on an 8-processor hypercube). The upper graph
shows the original 24 stages (0 to 23). The lower graph shows how 16 stages remain after one
stage-joining cycle has been executed on each node. Eight of the remaining stages are original
problem stages, 0, 3, 6, 9, 12, 15, 18, and 21. Each of the other eight stages is the remains of
two of the original problem's stages that have been joined, (1,2), 4,5), (7,8), (10,11), (13,14),
(16,17), (19,20), and (22,23).

The back substitution process described in Section 2.3 undergoes a similar modification. It

starts with the algorithm's original stage-doubling back substitution process. This terminates when

each processor has received an X vector corresponding to the first of its set of stages. A forward
sweep is then made through the remaining stages to determine the remaining % vectors.

2.7 Expected Scaling of Wall Clock Time. The expensive operations of Section
2.3's algorithm are the orthogonal matrix factorizations and matrix multiplications in steps 1 and 3
and the Cholesky factorizations and matrix multiplications of step 4. If n is the average number of
elements of an %, vector, then each of these operations requires O(n3) flops or less. The actual
number of operations depends upon the number of constraints in Egs. (1¢) and (1d), and this

number is limited if the constraints are not degenerate. At later levels of stage halving, the average

number of elements of %, may increase, possibly becoming as large as 4n. The expensive steps
then require O(64n3) flops or less, which is still On3d).

Step 2 and the back-substitution steps are relatively inexpensive. Both require O(n?) flops
because they only involve matrix-vector multiplications and back substitution solutions of
triangular linear systems. Step 5 is also inexpensive. It involves only message passing between
processors and movement of data within the local memory of some processors.

Analysis of the stage-halving procedure of Section 2.3 indicates that its wall-clock time is
O[n3logy(N)] for an N stage problem executing on N processors. The time is O(n3) per stage-

halving cycle, and the entire process requires loga(N) stage-halving cycles.

A69

When the number of stages, N, is greater than the number of processors, p, then additional
time is required for the initial backwards sweep that simultaneously occurs on each processor. If
each processor has N/p stages, then this time is O[n3(N/p)]. The entire solution procedure, which
includes the backwards sweep followed by the stage-halving process, requires O{n3[(N/p) +
loga(p)]l} This scales just as the algorithm in Ref. 6, although the constant in front of the scaling
law differs between the two algorithms.

The INTEL iPSC/2 is the machine on which this algorithm has been tested. It has a vector
processor attached to each node. The vector processor time for doing such things as an inner
product is approximately independent of n when n is small. The presence of a vector processor at
each node affects the actual scaling of the wall clock time as a function of n when n is small: the
algorithm's wall clock time is O{n2[(N/p) + log2(p)]} when solving an N-stage problem on p
processors in this case.

3. Performance Evaluation on a Test Problem

3.1 Aero-maneuvering Test Problem. An aero-maneuvering problem described in
Refs. 6 and 8 has been used to test the algorithm. It is a linear-quadraticization about a guessed
solution of a nonlinear trajectory optimization problem. The problem has a 6-element state vector

and a 3- or 4-element control vector, depending on the problem stage. The linear-quadratic

problem form from Ref. 6 is

find: uo, Mb} uj, X2, UN.1, XN, and un (38a)

to minimize: J = 2 {%[XE,UE] l:z:%: :::t] [:ﬂ + [g"Tk’gUTk]Rj] (38b)
k=0

subject to: X given (38¢c)

Xk+1 = Ay X + By ug + ¢y fork =0 ... N-1 (38d)

R X + Sy ug +tx =0 fork=0..N (38e)

where Xy is the state vector at stage k and uy is the control vector.

A70

Equation (38d) is a linearized dynamic system model, linearized about a guessed trajectory.
It is the linearization of a model based upon Newtons laws for 3-degree-of-freedom translational
motion of a point mass subject to gravity, and thrust or aero-maneuvering forces. A zero-order-
hold assumption for the control inputs yields a discrete-time model. The presence of the
nonhomogeneous ¢ vector in the linearized dynamic model indicates that the guessed solution is
infeasible; it does not obey the dynamic model. This situation is allowed at intermediate solution
guesses by the NP algorithm of Ref. 2.

The auxiliary single-stage constraints in Eq. (38e) are present only for some stages. The
matrices Ry and Sy form the Jacobian for each stage's constraints, and the vector ty is the
nonhomogeneous term. Constraints of this form are used at intermediate stages to define entry and
exit of the atmosphere. For k = N, the Eq. (38e) constraints ensure that the desired terminal orbit
is achieved. At stages where the peak allowable heating rate is exceeded by the guessed solution,
additional Eq. (38e) constraints are included to enforce the maximum heating rate limit.

Slack variables have been added to the problem before testing the algorithm. Slack variables
are not necessary. They have been added in order to put the QP into the form that would be used
by the NP algorithm of Ref. 2 if that algorithm were being used to solve the nonlinear optimal
trajectory. In that situation, the QP algorithm of this paper would be calculating an NP search
direction. Slack variables can be added 1o each of the constraints to penalize violations. Then the

QP becomes

find: U0, Y0, Z0» X1» U1, ¥1» Z1» X2, -y UN-1, YN-1» ZN-1, XN, UN, and zn (392)
N
Hxxy Hxup 7 rxx Xk
to minimize: J = E T uf [}+ I ol []
(= [xiuf] [Hx;rk HUUJ Uy [gxk guk] Uy)

k=0

[32 N Lo
z |

-1

h — —
+ e 5[Yk+\/%¢k}T{Yk+ % i)

+
TTMZ
[«

%{Zk‘*'\/% tk}T{Zk‘*'\/‘E ti) (39b)

A7l

subject to: X given (39¢)

Xk+l = Ag Xk + B ug - 4 ’ - Yk fork =0...N-1 (394d)
p

kak+Skuk-—\’—zk=O fork=0..N (39e)
p

The QP in Egs. (392)-(3%¢) can be restated in the form of Egs. (1a)-(1d), given the following

definitions of the solution vector at each stage:

- Wo
%Ko = YO‘J (40a)
L Zo

- xi]
Uy
¥x
Zy

Xy

for k = 1,...,N-1 (40b)

XN
XN =| UN (400)
ZN |

The corresponding constraint Jacobians, constraint nonhomogeneous vectors, cost Hessians, and

cost gradients are easy to determine. For example,

DkE[Rk, Sk, 0, - —\/ :—')- I] for k = 1,...,N-1 (41a)

EkE[Ah By, - \/ by, 0} for k = 1,...,N-1 (41b)
p

Fy=(-1,0,0, 0] for k = 1,....N-1 (41c)

Hyxy Hxy 0 O

H, = Hxd, Hyy 0 O
0 0 Kl 0
0 0 0 hI

for k = 1,...,N-1 (41d)

For the sake of brevity, the remaining definitions of the equivalent problem (1a)-(1d) matrices and
vectors have been omitted.

3.2 Computational Timing Resuits. Different size versions of this problem have been
solved ranging from 8 to 128 stages. The storage requirements of the 128 stage problem take up
more than half of the available 4 Mbytes of memory per node on a 32-node INTEL iPSC/2.

A serial version of this algorithm has also been tested in order to determine the speed-up due

to parallelism. The serial version solves the same problem, Egs. (1a)-(1d), but it does it using the

A72

best known serial technique: a single backwards sweep, which is similar to the serial algorithm of
Ref. 6.

The timing results for these runs are reported on Fig. 2. The horizontal axis gives the
number of problem stages on a log scale. The vertical axis gives the wall clock time on the INTEL
iPSC/2. Each curve corresponds to a particular algorithm running on a particular number of
nodes. As can be seen, all of the parallel algorithms are significantly faster than the serial
algorithm. Figure 3 displays the speed-up due to parallelism by plotting the ratio of the serial
algorithm time to the parallel algorithm time for the different cases.

These graphs clearly display the benefits of parallelism. For the 128-stage problem, the new
parallel algorithm running on 32 nodes is more than 10 times faster than the serial algorithm (the
serial algorithm takes 12.4 sec in this case, which puts it well off of the scale of Fig. 2). This
speed-up increases with increased problem size and vice versa. The efficiency of the parallel
algorithm is not great, a speed-up of 10 for 32 processors translates into a 32 % efficiency.

Note that this comparison is between the parallel algorithm and the best known serial
algorithm of equivalent numerical stability. If the parallel algorithm were run on a single
processor, it would be slower than the serial algorithm used in this study. Some authors in the
parallel computation field use the latter type of "serial” algorithm as the benchmark to determine
their speed-up due to parallelism. In that case, the parallel algorithm's speed-up would be about a
factor of 16 for a 50% efficiency. This is a measure of the average busy time of each node during
the execution of the parallel algorithm. This efficiency rises with (N/p), the number of problem
stages per node.

Though neither efficiency is impressive, efficiency is not the ultimate goal of this work. The
ultimate goal is a reduced wall clock time so that real-time applications will be feasible. The
extrapolated "N-stages-on-N-nodes" line on Fig. 2 shows that a problem with many stages can be
solved in a reasonably small amount of wall clock time if enough processors are available.

For comparison purposes, results from the earlier study of Psiaki and Park are included on

Fig. 2 (Ref. 6). These are the two lowest curves on the graph; they do not apply to the algorithm

A73

presented in this paper. These curves are the timing curves for the algorithm of Ref. 6 applied to
aero-maneuvering problems in the form of Egs. (38a)-(38¢). This is lower-dimensional problem
because it does not include the slack variables yy and zi. The new parallel algorithm takes
between 2.5 and 3 times longer to solve the Eqgs. (39a)-(39¢) version of a given problem as
compared to the parallel algorithm of Ref. 6 operating on the Egs. (38a)-(38¢) version of the same
problem.

In order to make a sensible comparison between the two algorithms, the scaling results of
section 2.7 must be used. The average number of unknowns at a given stage is 9 in the smaller
problem, Egs. (38a)-(38e), and it is 15 in the larger problem, Egs. (39a)-(3%). One would expect
the algorithm of this paper to execute about (15/9)2 = 2.8 times faster when solving the smaller
problem because the wall clock time scales as n2. Thus, scaling analysis predicts that the new
algorithm's speed on the smaller problem would be about equal to the speed achieved on that
problem by the algorithm of Ref. 6. No comparison has been made with any of Wright's

algorithms because they cannot solve the state-constrained aero-maneuvering problem.

4. Conclusions

This paper has presented an algorithm for the solution of dynamic quadratic programming
problems on a parallel computer. The algorithm is an adaptation of the orthogonal
factorization/null-space method to the parallel/dynamic programming framework. It takes
advantage of the sparse "staircase" structure, and it uses domain decomposition techniques to
achieve efficiency and parallelism. The use of a structured orthogonal factorization to determine
the null space of the constraints ensures numerical stability of the null space determination. A
structured block Cholesky factorization of the projected Hessian ensures numerical stability of the
null-space optimization procedure when the projected Hessian is positive definite.

Solution time scales as n3[(N/p) + loga(p)] for an N-stage problem on p processors with an
average of n unknowns per stage. On a 32-node INTEL iPSC/2, the algorithm achieves solution

times as low as 1.2 sec for a 128 stage problem with 6 state vector elements, 3 control vector

A74

31

elements, and 6 slack variables. It is faster than the best known equivalent serial algorithm by a

factor of 10 or more when solving large problems.

References

1. PSIAKI, M.L. and PARK, K., A Parallel Trajectory Optimization Tool for Aerospace Plane
Guidance, AIAA Paper No. 91-5069, presented at the AIAA Third International Aerospace
Planes Conf., Orlando, FL, 1991.

2. PSIAKI, M.L. and PARK, K., An Augmented Lagrangian Nonlinear Programming Algorithm
that uses SQP and Trust Region Techniques, submitted to the Journal of Optmization Theory
and Applications, in review.

3. FOURER, R., Solving Staircase Linear Programs by the Simplex Method, Proceedings of the
IIASA Workshop on Large-Scale Linear Programming, Laxenburg, Austria, pp. 179-259,
1981.

4. PSIAKI, M.L., An Algorithm for the Solution of Dynamic Linear Programs, Proceedings of
the 3rd Annual Conference on Aerospace Computational Control, Oxnard, California, pp.
327-341, 1989.

5. WRIGHT, S.J., Partitioned Dvnamic Programming for Optimal Control, SIAM Journal on
Optimization, Vol. 1, pp. 620-642, 1991.

6. PSIAKI, M.L. and PARK, K., A Parallel Solver for Trajectory Optimization Search Directions,
Journal of Optimization Theory and Applications, Vol. 73, pp. 533-560, 1992.

7. GILL, P.E., MURRAY, W., and WRIGHT, M.H., Practical Optimization, Academic Press,
New York, New York, 1981.

8. MIELE, A., and LEE, W.Y., Optimal Trajectories for Hypervelocity Flight, Proceedings of the
1989 American Control Conference, Pittsburgh, Pennsylvania, Vol. 3, pp. 2017-2023, 1989.

AT5

List of Figures

Fig. 1. Stage locations for a 24-stage problem on an 8-processor binary tree before (top) and

after (bottom) one step of the backwards sweep (Ref. 6).

Fig. 2. Wall-clock solution time on the INTEL iPSC/2 as a function of the number of problem

stages.

Fig. 3. Speed-up of parallel algorithm solutions compared to serial solutions as a function of the

number of problem stages.

A76

Stage Locations at Nodes Before
Elimination of Last Stage at Each Node

0,1,2

12,13,14

18,19,20

9,10,11 3.4,5 15,16,17 21,22,23

Stage Locations at Nodes After
Elimination of Last Stage at Each Node
(Parentheses indicate two stages that

have been joined into a single stage)

0,(1,2)

12,(13,14)

18,(19,20)

9,(10,11) 3,(4,5) 15,(16,17) 21,(22,23)

VF;S 1 Psia ki /é Fark

AT

F(‘j. 2

T (sec.)

419

Serial

16 nodes
32 nodes

\

8 nodes

N stages on N nodes
(extrapolated)

32 nodes {Ref. 6]

// N stages on N nodes
(extrapolated [Ref.6))

0 e
100 10! 102
N+1

PS'I‘CL/C(/é /DQ"/<

A78

T YTy

103

mw 32 nodes
o
©
9
Q 16 nodes
| g
=
o
o 8 nodes
0 ——r—r—rrrrY —r—rrrrrr ——rrrrrn
100 10! 102 103

N+1

- Fr‘ﬁ‘ 3 Pk /‘é fark

A79

Appendix B

A paper describing a static
nonlinear programming algorithm.

B1

An Augmented Lagrangian Nonlinear Programming Algorithm that uses SQP and

Trust Region Techniques!

M. L. PSIAKI 2 and K. PARK3

1 This research was supported in part by the National Aeronautics and Space Administration
under Grant No. NAG-1-1009.

2 Assistant Professor, Mechanical and Aerospace Engineering, Cornell University,
Ithaca, NY, 14853-7501.

3 Graduate Research Assistant, Mechanical and Aerospace Engineering, Comell University,
Ithaca, NY, 14853-7501.

B2

Abstract. An augmented Lagrangian nonlinear programming algorithm has been developed. Its
goals are to achieve robust global convergence and fast local convergence. Several unique
strategies help the algorithm achieve these dual goals. The algorithm consists of three nested
loops. The outer-loop estimates the Kuhn-Tucker multipliers at a rapid linear rate of convergence.
The middle-loop minimizes the augmented Lagrangian function for fixed multipliers. This loop
uses the sequential quadratic programming technique with a box trust region step-size restriction.
The inner-loop solves a single quadratic program. Slack variables and a constrained form of the
fixed-multiplier middle-loop problem work together with curved "line" searches in the inner-loop
problem to allow large penalty weights for rapid outer-loop convergence. The inner-loop quadratic
programs include quadratic constraint terms, which complicate the inner-loop, but speed the

middle-loop's progress when the constraint curvature is large.

The new algorithm compares favorably with a commercial sequential quadratic programming
algorithm on five low-order test problems. Its convergence is more robust, and its speed is not

much slower.

Key Words. Nonlinear programming, sequential quadratic programming, augmented

Lagrangian, trust region, constraint curvature.

B3

1. Introduction

An algorithm that solves a typical nonlinear programming problem is presented in this paper.
It is a variant of the augmented Lagrangian algorithm proposed by Hestenes (Ref. 1) and by
Powell (Ref. 2) and described by Fletcher (Ref. 3). This paper adds several special features to the
basic augmented Lagrangian algorithm to make it faster and more likely to converge. One such
feature is the solution of a constrained problem that includes slack variables for each estimate of the
multipliers. Another feature is the use of a sub-problem that has quadratic terms in the constraints
in addition to the usual quadratic cost terms. The algorithm solves a sequence of such sub-
problems, each subjected to box trust region constraints.

This algorithm has been developed to serve as the core of a new nonlinear trajectory
optimization algorithm (Ref. 4). The algorithm might be used to do real-time guidance of
aerospace vehicles. This creates the need for a high degree of convergence reliability and speed.

The algorithm of this paper has been designed to solve nonlinear programs of the form

find: X (1a)
to minimize: J(x) (1b)
subject to: ci(x)=0 fori=1, .., me (1¢)

ci(x) <0 for i = (me+1), ..., m (1d)

where X is the n-dimensional vector of quantities to be optimized, J(x) is the scalar cost function,
and the ci(x) fori = 1, ..., m are the scalar constraint functions with the first me constraints being
equality constraints and the last m; (=m-me) constraints being inequalities. The functions J(x) and
ci(x) for i = 1, ..., m are assumed to be continuous and to have continuous first and second
derivatives.

The remainder of this paper is divided into 2 sections plus conclusions. Section 2 describes
the algorithm, which consists of 3 nested iterative loops. Section 3 describes some test problems

and compares the performance of the algorithm on these problems to that of NPSOL (Ref. 5).

B4

2. Nonlinear Programming Algorithm Description*

2.1. Outer-Loop Augmented Lagrangian Algorithm. The basic outer-loop
algorithm for applying the augmented Lagrangian method to problem (1a)-(1d) is given by Fletcher
(Ref. 3). Reference 3 also gives a proof of global convergence when a feasible point exists and
when the global minimum of each fixed-multiplier problem can be determined. The algorithm is
repeated with minor modifications here. The method works with guessed values for the optimal
Kuhn-Tucker multipliers, A; fori = 1, ..., m, and penalty parameters, pj fori=1, ..., m, to define

the augmented Lagrangian function:

Me m
. . 2 . X 2
Laug(x:A.@) = J(x) + E B {citn) + %} + .;. %{[Ci(x) + p—'_]+})
1 1

where p; >0fori=1, .., mandA; 20 fori = (me+l), ..., m, where the operation []* returns
the quantity in the brackets if it is non-negative and zero otherwise, and where the vectors A and p

refer to [Aq, Am]T and [p1, ..., Pm]T, respectively.

1. Start with guesses Aj, and pj fori =1, ..., m. Set lcleld))_ = oo, Be sure A; 2 O for

i = (me+1), ..., m. Define constraint violation limits, ¢;Ma* (> O)fori=1,..,m.

2. Minimize Layg(x;A.p) with respect to X to find x*(A.@). Increase p; if necessary to
ensure that Ic;(x™)l < ¢jM2x fori = 1, ..., me and that c¢;(x™) < ¢i™aX for i = (me+1),
..., m to keep intermediate guesses within reasonable limits.

3.Let ¢ = {x"Q.p) fori=1,.., me

and

. MT N .
i =|cix A} +— | -— for i = (me+1), ..., m.
Pi Pi

4 Reference 6 gives many algorithmic details that have been omitted from this section for the sake
of brevity.

BS

4.If all Ig;l for i = 1, ..., m are small enough, then terminate.

5. If il > 5= el for any i = 1, ..., m, then set pj = 100p; for all such i and go
to step 2.
6. Set c©d) = [¢q, ..., cm]T

7. Set Aj = Aj + pici fori =1, ..., m and go to step 2.

The quantities c; fori = 1, ..., m are, nominally, the constraint violations.

Step 5 of the above algorithm is different from the algorithm given by Powell (Ref. 2) and
repeated in Fletcher (Ref. 3). It raises penalty weights more rapidly to -nforce a faster linear rate
of convergence of the multiplier estimates, 1/100 rather than 1/4 as in Ref. 2. The enforcement of
ciMax limits in step 2 is an added feature that precludes the possibility that extreme descent of the
J(x) function would cause the algorithm to diverge in a nonfeasible region.

2.2. Transformation and Quadratic Approximation of Augmented Lagrangian
Sub-Problem. An equivalent constrained form of the fixed-multiplier sub-problem in step 2 can

be developed, one that remains numerically well-conditioned even as the pj — o=

find: x and y (= [y1, ..., Ym]T) (3a)
Me m

ominimize: J(xy) = I + $YyE + % 3 (il*)2 (3b)
i=l i=me+1

subject to: ci(x) - ‘\jh/pi yvi + ilpp =0 fori=1, .., m (3¢c)

where J, is the transformed cost function, the vj fori = 1, ..., m are added slack variables, and h is
an arbitrary positive constant that allows adjustment of scaling. The slack variables are added to
equality constraints and inequality constraints to penalize constraint violations.

A quadratic problem (QP) that approximates problem (3a)-(3c) is
find: Ax and Ay (4a)

B6

to minimize: AJ{(Ax,Ay) = 1EAXTHU)AM + gWTAx

me
h - _ ¢
+2{§Ay12 + pih &9 Ayi)
=1

m
o > B 1ayi+ Vorh a9 - § (189141) (@b)

i=me+1

subjectto: 0TAx + LAxTB{PAx - Vwpi Ayi=0 fori=1,..m (4c)

-d9 < Ax < dO (4d)

where Ax and Ay are, respectively, deviations of x and y from current guesses, x@ and yU):
Ax = x - x¥ (5a)
Ayi = yi - yi¥ = yi - M {cix® + Qifpi)} fori=1,..,m (5b)

and where H® is the cost function Hessian evaluated at x(j), Bi(j) is the Hessian of constraint 1,
g(j) is the cost function gradient, a;¥ is the gradient of constraint i, and

G0 = ax® + Afp) = Vipiy® fori=1, .., m (©)
The quantities d9 (> 0) are box trust region bounds. The algorithm assumes that the Hessians of
the cost and constraint functions are available either analytically or via finite-difference
approximation.

QP (4a)-(4c) is similar to the QP of an SQP technique in both form and function; the middle-
loop solves a sequence of such problems in order to perform step-2 of the outer-loop. However,
the inclusion of quadratic constraint terms in the problem, the AxTBiG)Ax terms in Eq. (4c), is a
significant deviation from the standard SQP technique. They make the approximate problem valid
over a larger region, but complicate the solution procedure for Egs. (4a)-(4d). The box trust
region bounds in Eq. (4d) ensure that a solution to the approximate problem produces a decrease of
the original augmented Lagrangian function.

2.3. Middle-Loop SQP/Trust Region Algorithm for Minimizing the Fixed p/A
Augmented Lagrangian Function. This section defines the middle-loop algorithm to

accomplish step 2 of the outer-loop augmented Lagrangian algorithm.

B7

2.1. Start with a guess of the solution to problem (3a)-(3c), x© and a guess of the

box trust region bounds, d@ (> 0). Setj=0. Compute L{3; = Lang(x¥;0.0).
2.2. Calculate y@, HO, B{®, 3,9, and & fori = 1, ..., m.
2.3. (Approximately) solve problem (4a)-(4d) to determine Ax, Ay, and AJ®.
2.4. Compute L(Jg:é‘ = Laug(x(j)+Ax;L,Q_), compute 1 = (L(J;‘,)l‘{'é3 - LQg)/AJ;(j), and
compute ¥ = { T IAin/d({).
2.5 Ifr<0.25, then set dG*D) =025 « y« 40,
Ifr >0.75 and y = 1, then set d0*) = min(2.d®P,d®).
Otherwise, set d+1) = d0).
2.6 Ifr<0,setxi*V =xWand LGP =LY,
Otherwise, set xU*D = x0+ Ax and L%é) = L(;)JgA.
2.7 Test termination conditions for xX0*1 and terminate successfully if they are
satisfied.
2.8 Setj=j+ 1. Ifr>0, go to step 2.2; otherwise, go to step 2.3.

This algorithm adopts the SQP philosophy of solving a quadratic approximation to the
original problem to determine the next solution iterate. The use of quadratic terms in both the
constraints and the cost makes the quadratic sub-problem a very accurate approximation of the
problem in Egs. (3a)-(3c) when near a local minimum of the latter problem that satisfies second-

order sufficient conditions. Steps 2.5 and 2.6 of the algorithm implement the trust region ideas

found in Ref. 3 (p. 96).

2.4 Inner-Loop Solution of the Quadratically-Constrained QP
The quadratic constraint terms make problem (4a)-(4d) much more difficult than a standard

QP. An iterative Newton-type procedure is used to solve this sub-problem. This inner-loop

generates a sequence of solution estimates Ax®) and associated slack variables

B8

Ay® = oy {aiTAx(k) + %Ax(k)TBiAx(k)} fori=1,..,m 7

where the superscripts (j) that appear in Egs. (4a)-(4d) have been dropped for the sake of
convenience. Equation (7) guarantees feasibility of Eq. (4¢).
Each successive iterate of Ax®) is generated by a line search along a search direction ox.

Search directions are determined by solving a linear-equality-constrained QP of the form

find ox and dy, (8a)
H o ox 5x

to minimize: SJ(8x,8ya) = = [6xT.5 T[}[j+ T T][j 8b

0 (8x,9ya) 2[Ya'l 0 hr ILoy (gx " :8ya Sy (8b)

where 8y, is a vector of increments to the slack variables associated with the active subset of the

problem constraints in Eq. (4c), [A(k) D(k)] is the Jacobian of these active constraints evaluated at

Ax®. E®) is the Jacobian of the active box trust region constraints, [ng,gYaT] is the gradient of

the Eq.-(4b) cost at Ax®), Ay,®), and #{ is a Hessian matrix of the form
f =H+ Y PBiB; 9

ie Active Set
Given a positive definite projected Hessian, the QP in Egs. (8a)-(8¢c) remains well-conditioned as
penalty weights approach infinity. The corresponding elements of D&) approach 0 in this case.

When the projected Hessian is indefinite, the algorithm detects this condition and toggles back and
forth in its choice of 8x between choosing a feasible direction of negative curvature and a projected

steepest descent direction.
The algorithm chooses one of two alternate updates for Ax® . One update makes a straight-
line search in the 8x direction:
Ax&+D = Ax®) + o 8x (10a)
where a is the step length. The other update makes a curved search
Ax®+D) = Ax®) + o 8x + SX(ov) (10b)
where 8X(ct) corrects for the curvature in the active problem constraints. A similar correction has

been used by Coleman and Conn (Ref. 7), Fletcher (Ref. 8 and Ref. 3, pp. 393-396), and Betts

B9

and Huffman (Ref. 9). It helps the algorithm take larger steps when high penalty weights would

limit o in Eq. (10a)-type steps. The curvature correction is a solution of

find 5% (11a)
to minimize 38X 5% (11b)
[(08x)" Bj, (adx) |
|| @80)"Biadx)
subject to AK 5 + 5 =0 (11c)
| (@d%) By (adx) _

where iy, ..., ig are the indices of the active subset of the Eq.-(4c) constraints.
The B; multipliers used to form the Hessian in Eq. (9) are calculated in two different ways,

depending on which type of line search is to be performed. They must make the cost in Eq. (8b) a
valid approximation, to second-order in & 8x, of the cost in Eq. (4b). If the straight-line search of

Eq. (10a) is used, then the correct multipliers are

Bi = pici + Vpih Ayi fori=iy, . i (12)

If the curved search of Eq. (10b) is to be used, then the correct multiplier vector is the solution of
find B = [Biy - BiglT (13a)
ominimize 5(A®T B+ g0" (AT B+ gy) (13b)

The step length o is determined by a univariate minimization. When the straight-line step in
Eq. (10a) is used, the cost function in Eq. (4b) is used as the step-length merit function, subject to
the box trust region bounds in Eq. (4d). Equation (7) determines feasible values of Ay&+D) a5 a
function of Ax(k*D) for use in this merit function. The merit function is piecewise-quartic in c.
Exact univariate minimization can be performed in a finite number of operations. When the curved
step in Eq. (10b) is used, a local approximation of the Eq.-(4b) cost is used as the merit function.

It yields a piecewise-quadratic univariate minimization problem that also can be solved exactly (6].

B10

Sub-problem:

2.3.2

2.33

2.3.4

2.3.5
2.3.6

2.3.7
2.3.8

2.3.9

2.3.10

Start with the solution guess Ax =0 and Ay® =0. Setk= 0, and initialize
the active set of problem constraints and the active set of box trust region
constraints.

Solve the linear-cquality-constrained QP of Egs. (8a)-(8¢c) for the search
direction, [5x,8yal. Use Eas. (13a)-(13b) to determine the B multipliers for
the Hessian.

Determine o by performing a line search. Use the merit function associated
with the curved step. Update the active set of problem constraints and the
active set of box trust region constraints.

Test termination conditions for Az = Ax® + adx+ 8%(ax) and stop with
solution Ax&*D if conditions are satisfied. Otherwise, set AxED = Ax® +
abx and setk =k +1

Test stationary point conditions. If they are satisfied, then go to step 2311
Ifk=7and AT(Ax®,Ay") 2 0, then set Ax® =0, Ay® =0, and re-
nitialize the active set of problem constraints and the active set of box trust
region constraints.

If k = 15, then terminate before reaching the optimal solution.

Solve the linear-equality-constrained QP of Eqgs. (8a)-(8c) for the search
direction, [0x,8yal. Use Egs. (12) to determine the Bi multipliers for the
Hessian.

Determine o by performing a line search. Use the merit function associated
with the straight-line step. Update the active set of problem constraints and the
active set of box trust region constraints.

Set Ax) = Ax® +adx, setk =k +1, and go to step 2.3.5.

B11

Steps that drop active trust region bounds if non-optimal.

23.11 If AJt(Ax(k),Ay(k)) can be reduced by moving off of some active trust region
bounds, then determine a feasible descent direction dx that moves away from
the non-optimal bounds, drop these bounds from the active set, and go to step
2.3.9.

2.3.12 If AT(Ax®,Ay®) > 0, then set Ax® =0, Ay® = 0, re-initialize the active
set of problem constraints and the active set of box trust region constraints, and
go to step 2.3.8.

2.3.13 Terminate successfully.

This algorithm should terminate after just one execution of steps 2.3.1-2.3.4 when the
middle-loop algorithm is near its optimum. The active set will have been correctly identified, and
the 8x direction calculated in this case will be the Newton direction for the middle-loop. Figure 1
depicts a typical scenario for termination at step 2.3.4.

When the algorithm enters the loop in steps 2.3.5-2.3.10, it searches for the optimum via a
series of steps that use straight-line searches. Figure 2 depicts such a scenario. The heavy arrow
marked adx(® is the step-2.3.3 increment. The curvature correction 8X(t) is rejected in step
2.3.4 because it does not come near enough to the optimal solution or to the constraint. The two
increments adx() and a8x(are the search steps taken in the two subsequent iterations of steps
2.3.5-2.3.10. The reason for trying the curvature correction dx(a) before resorting to the straight-
line searches adx(D and adx(? is that 5X(cv) is relatively inexpensive lto calculate.

One danger of this technique is that a cost increase may occur during the adx(® step. The
approximate nature of the merit function used in step 2.3.3 could allow this to happen. Steps
2.3.6 and 2.3.12 provide logic for recovering from such a problem.

The inner-loop terminates after 15 iterations at step 2.3.7 even if problem (4a)-(4d) has not
been completely solved. It is unwise to take too many inner-loop search steps per middle-loop

search step because each inner-loop iteration involves a significant amount of linear algebra.

B12

Changes to the active constraint sets can occur in two places. Problem inequality constraints,
which are enforced via penalty terms, can be added or dropped during the line searches of steps
2.3.3 and 2.3.9. Box trust region constraints can be added to the active set in these same steps,
but step 2.3.11 is the only place where box trust region bounds can be dropped from the active set.

2.5. Phase-I Constraint Satisfaction Algorithm. The convergence proof of the
outer-loop algorithm assumes that the middle-loop can find a global minimum (Ref. 3), which is
not guaranteed for this paper's algorithm. This limitation could cause the algorithm to converge to
a point near an infeasible local minimum of the norm of the constraint violations. The algorithm
tries to avoid this situation by using a Phase-I procedure to move from an arbitrary first guess to an
almost-feasible first guess, one that does not violate any problem constraint, i, by more than
0.01cjmax. Phase-I executes the middle- and inner-loops with a multiplier guess A =0, with very
large penalty weights, and with the assumption that J(x) = 0. In order to make the inner-loop QP
problem well posed, Phase-I uses HO = eI and g® = 0 in Eq. (4b).

2.6. Discussion of Algorithm. The algorithm has several advantages as compared to
other nonlinear programming techniques. It has a strong likelihood of global convergence because
the augmented Lagrangian outer-loop has good global convergence. Even with highly-curved
constraints, the algorithm has reasonably fast global convergence because of the explicit use of
quadratic constraint approximations in the QP sub-problem. Rapid local convergence is assured
because the inner- and middle-loops converge quadratically under "normal” conditions, and the
outer-loop has a very rapid linear convergence rate of .01.

The algorithm also has several significant disadvantages. It must re-do full matrix
factorizations for each iteration of the inner-loop. In a general context this is a serious deficiency,
but in the intended application, trajectory optimization problems, a parallel factorization algorithm
is available (Ref. 10), which decreases the impact of this weakness. Another disadvantage is the
algorithm's reliance on analytic or finite-difference Hessians. The algorithm requires many more

gradient-type evaluations per search step than a quasi-Newton method. Again, this weakness 1S

B13

not serious in the context of trajectory optimization, where the Hessian is sparse but the quasi-

Newton approximation is not, and where Hessian calculations are highly parallelizable (Ref. 11).

3. Performance Evaluation on 5 Test Problems
This section reports the results of tests of the algorithm's speed and convergence robustness,
and it compares the algorithm with NPSOL version 4.02 (Ref. 5). Each NPSOL iteration is one in
which it calculates a gradient, does a BFGS quasi-Newton update to the projected Hessian, solves
a QP, and performs a line search. For comparison purposes, each iteration of the augmented
Lagrangian algorithm's middle-loop is defined as one "iteration". Five test problems are described

in the appendix. Table 1 compares the performance of the two algorithms on the five problems.

Table 1.

Iteration Count Comparison of New Algorithm with NPSOL on 5 Test Problems.

Problem NPSOL New Algorithm Loops --
Middle Middle Outer Inner Middle
Total Phase-I Total Total Optimality

1 6 6 1 3 15 5
2 Quits at 34 73 46 4 285 27
3 Quits at 1 15 3 5 71 12

4A Quits Quits - - - -

4B Quits at 7 14 3 6 89 11
5 9 13 2 5 70 11

Obviously, the new algorithm is more robust. It converged in all but one of the cases listed,
but NPSOL converged in only two of the cases. (Note that NPSOL's poorer robustness should

not be construed as evidence that all SQP techniques are inherently less robust.) When NPSOL

Bl4

does converge, it is as fast or slightly faster in terms of the number of QPs that get solved; compare
the second and third columns in Table 1 for problems 1 and 5. For static problems on a serial
processor, NPSOL's speed advantage is more pronounced than indicated by the iteration counts
because its QP sub-problems are cheaper to derive and cheaper to solve.

A comparison of the last two columns in Table 1 shows that the average number of inner-
loop iterations per middle-loop iteration ranges from 3 to 10.5 for the new algorithm. For each
successful run, the early middle-loop iterations require multiple inner-loop iterations, and the latter
middle-loop iterations each require only one inner-loop iteration, consistent with the second-order
nature of the inner-loop.

Variations in the choice of initial penalty weights can affect the performance of the new
algorithm. Another solution run for problem 5 has been tried in which the initial penalty weights
pi are set at 100 (they are 1000 for the run listed in Table 5). This latter run is slower, requiring a

total of 22 middle-loop iterations to solve the problem.

4. Conclusions

An augmented Lagrangian nonlinear programming algorithm has been developed. It consists
of 3 nested loops. The outer-loop is an augmented Lagrangian algorithm with a first-order
muitiplier update and a rapid rate of linear convergence. The middle-loop algorithm is an SQP-type
minimization of the augmented Lagrangian function. To alleviate ill-conditioning, the middle-loop
problem is recast into a constrained form with slack variables that get penalized. The inner-loop
algorithm solves a quadratically-constrained piecewise quadratic program with box trust region
bounds. The algorithm has been compared with NPSOL on 5 low-order test problems. The

algorithm has much more robust convergence than NPSOL, and its speed is comparable to

NPSOL.

B15

Test problem 1:
find:

to minimize:

subject to:

First guess:

Optimum:

Appendix, 5 Test Problems

x = [x1, x2] T
JX) = -x1-x2
x%+x§-ls0

(x1+1)2+x§-4$0

2x1+x2-2<0
x =[2,0]T
x = [.7071,.7071]T

Test problem 2 (very difficult constraint curvature case):

find:

to minimize:

subject to:

First guess:

Optimum:

x =[x, x2]T

I(x) = x2
(x] - 1)2+x§+ 10000 (x12 + x92 - 1)2- .0625 <0

x = {0,.99]T
x = [.9688,-.2480]T

Test problem 3 [Ref. 3, p. 330]:

find:

to minimize:

subject to:

First guess:

Optimum:

x = [x1, X2, X3, x4]T

I(x) =x1x2
2
X1X3 + X9X
(13 224) -xg-xi+1=0
x1+x2

-Xx1+x3+1<0
-Xx2+x4 +1<0
-x3+x4 £0
-x4+1<0

x =[1,1,1,1]T

x = [3.41,3.41,2.41,1]T

B16

Test problem 4:
find: X = [X1, X2, X3, X4, X5, X, X7]T
o minimize: J(x) = (x4 - x2)(x3 - X1)
subject to: (x6 - X4)(x3 - X1) - (x5 - x1)(x2 - x4) =0
X5 - x7(x4 - x2) =0
X6 - x7(x3 - x1) =0
- xg - xg +1<0
xj+1<0 forj=1.2
-xj<0 for j = 3,4,5,6,7
First guess 4A: x = [-2, -3, 6, 6, 6, 6, 6]T
First guess 4B: x =[-2, -3, 6, 6, 6,6, 71T
Optimum: x = [-1, -1, 2.41, 2.41, .71, .71, 21T
Test problem 5: Minimum-fuel 2-burn impulsive orbit transfer from equatorial geosynchronous
Earth orbit to 289-inclination low Earth orbit. This problem is described in Ref. 6. It has 8

elements in its x decision vector, a linear cost, and 9 nonlinear inequality constraints.

References

1. HESTENES, M.R., Multiplier and Gradient Methods, Journal of Optimization Theory and
Applications, Vol. 4, pp. 303-320, 1969.

2. POWELL, M.I.D., A Method for Nonlinear Constraints in Minimization Problems, in
Optimization, Edited by R. Fletcher, Academic Press, London, pp. 283-298, 1969.

3. FLETCHER, R., Practical Methods of Optimization, 2nd Ed.,] Wiley & Sons, New York,
New York, 1987.

4. PSIAKI, M.L. and PARK, K., A Parallel Trajectory Optimization Tool for Aerospace Plane
Guidance, AIAA Paper No. 91-5069, presented at the AIAA Third International Aerospace
Planes Conf., Orlando, FL, 1991.

B17

10.

11.

GILL, P.E., MURRAY, W., SAUNDERS, M.A., and WRIGHT, M.H., User’s Guide for
NPSOL (Version 4.0): A FORTRAN Package for Nonlinear Programming, Stanford
University, Systems Optimization Laboratory Report No. SOL 86-2, 1986.

PSIAKI, M.L. and PARK, K., Detailed Description of an Augmented Lagrangian Nonlinear
Programming Algorithm that uses SQP and Trust Region Techniques, Mechanical and
Aerospace Engineering Report No. MSD-92-02, 1992.

COLEMAN, T.F. and CONN, A.R., Nonlinear Programming via an Exact Penalty Function:
Asymptotic Analysis, Mathematical Programming, Vol. 24, pp. 123-136, 1982.

FLETCHER, R., Second Order Corrections for Non-differentiable Optimization, Numerical
Analysis, Dundee 1981, Lecture Notes in Mathematics 912, Edited by G.A. Watson,
Springer-Verlag, New York, New York, pp. 85-114, 1982.

BETTS, J.T., AND HUFFMAN, W.P., Application of Sparse Nonlinear Programming to
Trajectory Optimization, Journal of Guidance, Control, and Dynamics, Vol. 15, pp. 198-206,
1992.

PSIAKI, M.L. and PARK, K., A Parallel Orthogonal Factorization Null-Space Method for
Dynamic Quadratic Programming, submitted to the Journal of Optimization Theory and
Applications, in review.

BETTS, J.T., AND HUFFMAN, W.P., Trajectory Optimization on a Parallel Processor, Journal

of Guidance, Control, and Dynamics, Vol. 14, pp. 431-439, 1991.

B18

List of Figures

Fig. 1. Rapid termination of the inner-loop after one optimization step and one curvature-

correction step.

Fig. 2. Search steps taken by the inner-loop when it fails to terminate in one iteration.

B19

Contours of Actual
constant cost constraint

rocorbonnd.
P PP Y SO 9

oo,
...........
von,,
..

PSIIQ/<I‘ %: /%"“/‘

B20

1st-order approximation

of constraint

>
*
.
*
.
.
L
.
.
£ d
*
.
>
.
Ld
.
.
-
.
.
.
*»,
e
. .,
.
. Current
¢
hY
-.. guesso
.
.'b. . 't.
: .
.. solution ™.,
*e s ‘e "
e *e ALY L}
Teae ., ‘-‘
. g
..... .
. .,)
- *
- . .l.
. -
.
. " l' ' "
X !
. % . H E E
.' t. 0' l‘ '. '.
. A T T
, .
X ., " " % 1 Y [
g " A 1 " % 4 Y
' s " '} % [’]
% % 4 ‘. A B . ‘
M + . . . Y ’]
[} ‘ .
] H ’ ’ H ¢ » !

Contours of Actual 1st-order approximation

constant cost constraint of constraint

......... * S, ._:Current
.................... = ... guessof
..... . -.__._---.- 0 '._.. . ‘.....
...... MR - AT solution ™.,
...... x(a) —. A ""--.__.' - (1)
____________ e OLOX
--------- - :..,_-_-_._‘"" ..-..""'--., e -

e
e,
-,
.......
.
»,
*.,
e,
.
*e

. F/j 2 PS,‘&L,' /é Par.é

B21

Appendix C

A paper about the integration of
component algorithms into a parallel
trajectory optimization algorithm.

Cl1

A PARALLEL TRAJECTORY OPTIMIZATION TOOL FOR AEROSPACE PLANE GUIDANCE

Mark L. Psiaki* and Kihong Park**
Cornell University
Ithaca, N.Y. 14853-7501

Abstract

A paraliel trajectory optimization algorithm is being
developed. One possible mission is to provide real-time,
on-line guidance for the National Aerospace Plane. The
algorithm solves a discrete-time problem via the augmented
Lagrangian nonlinear programming algorithm. The
algorithm exploits the dynamic programming structure of
the problem to achieve parallelism in calculating cost
functions, gradients, constraints, Jacobians, Hessian
approximations, search directions, and merit functions.
Special additions to the augmented Lagrangian algorithm
achieve robust convergence, achieve (almost) superlinear
local convergence, and deal with constraint curvature
efficiendy. The algorithm can handle control and state
inequality constraints such as angle-of-attack and dynamic
pressure constraints. Portions of the algorithm have been
tested. The nonlinear programming core algorithm
performs well on a variety of static test problems and on an
orbit transfer problem. The parallel search direction
algorithm can reduce wall clock time by a factor of 10 for
this part of the computation task.

1. Introduction

1.1. Objectives.

This effort aims to develop a fast trajectory
optimization algorithm that converges with high retiability.
One possible application of such a ool is for real-time
guidance of an aerospace vehicle such as an aerospace plane.
Other applications would be to off-line trajectory planning
or to off-line vehicle/design studies.

The algorithm is designed to solve a fixed-time Bolza-
type optimal control problem. Other problem types can be
stated in this form, e.g., the minimax problem can be
approximated by a Bolza problem, and the free-end-time
problem can be transformed into a fixed-end-time problem.
The problem under consideration is

find: u(t) and x(t) fortg<t <ty (1a)
¥

to minimize: J = j'L[x(l),u(t),l] dt + V({x(1p)] (1b)
Lo

* Assistant Prof., Mech. and Aero. Eng.; Member, A[AA.
** Graduate Student.

Copyright © 1991 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved.

C2

subject to: x(tp) given (1c)
x = flx(®),u(t).1) (19)
aefx(®)u®,t) =0 (le)
ai[x(t)u()t] <0 19
aedx(1f)] =0 (1g)
ailx(t)] < 0 (1h)

where x(t) and u(t) are the state and control time histories,
respectively. Equation (Ib) is a Bolza type cost, and Eq.
(1d) defines the system's dynamics. Equations (l¢) and (1f)
are auxiliary constraints and may be pure control
constraints, such as maximum angle of attack, pure state
constraints, such as heating rate of an aerospace plane, or
mixed control and state constraints, such as normal load
factor. Equations (1g) and (lh) are terminal state
constraints.

Use For real-Time Guidance. A block diagram of how
a trajectory optimization algorithm might be used for real-
time control is shown in Fig. 1. It approximates u(t) by a
sequence u4(ty), ..., #(tN-1) [ty = tf). The algorithm takes a
sensor-based estimate of the initial state, fi(tk). It uses that
state as the initial condition in a trajectory optimization
problem to compute the entire optimal control and state
time histories, u(ty), ..., #(tN-1) and x(tx+1), ..., X(tN), and
it sends the control for the current time, u(tg), to the
controlled system.

The proposed guidance system uses feedback by
discarding its prediction of x(tx4]) at time tx 4 in favor of

the sensor-based estimate £(tx,1). Any discrepancy
between these values forces the algorithm to re-optimize the
trajectory. Such a system should be more robust than
programmed optimal control. A similar system has been
used successfully on the Boeing Inertial Upper Stage {1].

Use for Off-line Studies. A faster algorithm with more
robust convergence would also be helpful to off-line
trajectory optimization. When used for traditional mission
planning, increased speed and robustness would reduce the
amount of engineering time required to do a job. The
increased speed might make exotic design studies more
practical. For example, robust trajectory optimization, in
which the sensitivity of the solution to poorly known
parameters is also constrained or penalized, could be made
more practical.

The present algorithm uses parallelism to achieve faster
solution speeds. It is compatible with a new parallel
supercomputer that NASA and a consortium of other
agencies have purchased. This machine is a 500+ node

- ®m mmEmEme e eEmeaem®waeneeeaoa=a

4

Objective, Wt o Flight y(t)
Constraints K _+ o Vehicle —>
—»| Real-Time —# y(t k+1): Dynamics
v |Trajectory E Wt) X
+ | Optimizer —> TN
' —> x(ty))
: >ty o)
5 RN
. v X
: < N k State |e—
: X Estimator
T E
Clock E

Fig. 1. Block Diagram of a Guidance System that uses a Trajectory Optimization Algorithm in the
Loop.

—

INTEL touchstone machine. Each node is rated at 18
Mflops or more. Thus, this algorithm could take advantage
of a highly parallel machine with about 9 Gflops of speed.

1.2. Related Research.

Many algorithms have been developed for off-line
trajectory optimization, e.g. see Refs. 2-7. These are
numerical gradient-based search algorithms. Generally, such
algorithms are unsuited for on-line applications because
they are too slow or because they do not converge reliably
enough.

Another approach to real-time optimization is the
perturbation technique. It expands the problem in terms of
a small parameter in such a way that the zeroth-order
solution has a closed-form solution or one that is easily
computed numerically. The higher-order terms are
computed by solving a series of linear, nonhomogeneous
problems [8]. Such designs may be very effective for a
given application, but they will only work when a natural
perturbation parameter exists and when the zeroth-order
problem is easy to solve. Furthermore, each new
application requires a new perturbation analysis to design
the approximate optimal controller.

Several researchers have explored the possibility of
__.sing parallelism to speed up numerical search trajectory
optimization. Betts and Huffman were the first to

C3

implement a complete numerical trajectory optimization
algorithm that makes use of parallelism [9]. Their work
concentrated on parallelizing the calculation of cost
derivatives and constraint Jacobians. Their algorithm
realizes significant improvements until the problem size
becomes too large, at which point their serial nonlinear
programming algorithm becomes a significant bottleneck.

Wright [10] and Psiaki and Park [11,12] have both
worked on algorithms for parallelizing the linear aigebra in
the nonlinear programming portion of a trajectory
optimization algorithm. Both approaches use a divide-and-
conquer approach that does a stage-wise domain
decomposition of the linear algebra. Both algorithms are
faster than serial backwards sweep algorithms. Wright's
algorithm is faster than that of Psiaki and Park, but it
cannot handle auxiliary state constraints or an indefinite
Hessian.

The present algorithm uses the numerical search
trajectory optimization approach. It defines a
transformation to a discrete-time problem in order to make
use of ideas from the field of general nonlinear
programming (parameter optimization), but it retains the
structure and benefits of the dynamic programming form.
The parallel linear aigebra and the augmented Lagrangian
nonlinear programming algorithm developed in previous
work are used [12]. Parallel gradient and Jacobian
calculations are used, similar to Betts and Huffman [9].

Parallel discrete-Newton Hessian approximation is used
also.

1.3. Outline of Paper.

Section 2 describes the trajectory optimization
algorithm. It gives transformations to a discrete-time
problem form and then to a parameter optimization problem
form. The section defines and discusses the nonlinear
programming algorithm in the parameter optimization
form. Section 2 finishes with explanations of how
parallelism is used to speed up the calculation of
derivatives, to perform matrix factorizations, and to evaluate
a merit function. Section 3 describes the performance of
sections of the code on test problems, the general nonlinear
programming algorithm and the parallel linear algebra
algorithm --- the entire algorithm is not yet running.
Section 4 explains the planned development sequence for
completion of the entire algorithm, and section 5 gives
conclusions about the algorithm's design and about the
performance of some algorithm components.

2. Algorithm Design.
2.1. Transformation to Discrete Time.

The problem in Egs. (1a)-(1h) will be solved on a
digital computer via a numerical technique. Some form of
problem discretization must be used simply to represent the
solution. A number of researchers have developed
algorithms directly for the continuous-time problem, which
they implement approximately. Our approach is to first
approximate the problem in Eqs. (1a)-(1h) by a finite-
dimensional numerical optimization technique. Then we
develop an algorithm for the finite problem that can be
exactly implemented (neglecting round-off error). Such a
problem becomes a parameter optimization problem.

Approximation of a continuous-time problem by a
parameter optimization problem has several advantages. A
parameter optimization algorithm can use many of the
sophisticated techniques that have been developed by
researchers in the general field of nonlinear programming.
For example, the continuous-time problem of determining
switching times and transversality conditions for state
inequality constraints is conceptually simpler in discrete-
time: it reduces to a matter of determining the active set of
inequality constraints. With a good linear algebra package
there is no need to differentiate the state constraints in order
to get the controls to appear in them.

The parameter optimization technique sometimes gets
criticized because it can destroy problem structure and cause
the resuiting algorithm to be very slow. The particular
form of parameter optimization problem used in this paper
is a discrete-time optimal control probiem. This preserves
the dynamic programming structure.

A special-purpose algorithm has been designed to solve
the resulting nonlinear program (NP). General-purpose NP
algorithms can be used [7,9], but they take no advantage of
the dynamic programming problem structure. Such

C4

algorithms run very slowly for a large number of discrete-
time steps’. The special algorithms of this paper exploit
the sparsity and structure of the dynamic programming
form.

The zero-order-hold discretization of the control time
history splits the interval [tg,ts] into N intervals [ty,tx+1]

fork=0, ..., N-1, with tN = tz. The control is modeled as
being constant at the value ug for each interval {tg,tg1):

(.
k-1 for tg.; St <tg
4 ug forty St <ty
u(t) = @
uk+l fortge) St<tky2
\.

Then, the problem in Egs. (1a)-(1h) may be transformed
into the discrete-time form

T T T T T TqT
find: x=[UO.Xl.U),Xz,...,uN.l,XN] (33)
10 minimize:
N1
J= Z L (x,,u,) + V[xN] (3b)
k=0
subject to: x, given 3¢)
Xpop = fi(x.u) fork=0 .. N-1 (3d)
e, (X,,8,) = 0 fork=0..N-1 (Be)
aj, (x,,up) < 0 fork=0..N-1 3
Ag\(xy) =0 (g
aj(xy) <0 (3h)

where the correspondence between the discrete-time control
time history, ug, u,, u,, ..., Uy, and the continuous-time

u(t) has been defined in Eq. (2). The discrete-time state
time history, X, X, X,, ..., Xy, corresponds (o a sampling

of the continuous-time state time history, x(ty), x(t,), X(1,),
wer X(ty).

The difference equation in the discrete-time problem,
Eq. (3d), models the system's dynamics. The function
f.(x,,u,) on the right-hand side is defined by the solution of
an initial value problem using the continuous-time system's

t The terms step and stage are used interchangeably to refer
to one discrete-time interval.

———

‘fferential equation, Eq. (1d). Defining x k(1) to be the
.ate between sample times t, and L, ,, it is the solution of

the following initial value problem,

xk = fxk(),u, 1)
k() = x,

(4a)
(4b)

with the control held fixed at u, for the interval. Given that

Eqgs. (4a) and (4b) define xX(t), the discrete-time dynamics
function is defined as

f(xouy) = xk(t'hl) ®

A consistent definition can also be made of the
summand in the discrete-time cost, Eq (3b). Given the

definition of x(t) in Egs. (4a) and (4b), the summand is

Lot

L (x.u,) = JL[xk(l),uk,t] dt ©)
LY

Equations (4a)-(6) ensure that the discrete-lime cost in
Eq. (3b) and the discrete-time dynamics in Eq. (3d) exactly
model their continuous-time counterparts, Egs. (1b) and
(1d). Equations (3b) and (3d) accurately model the effect of
the zero-order hold on Egs. (1b) and (1d). This modeling
‘achnique is borrowed from Ref. 13.

Note that the definitions in Egs. (4a), (4b) and (6)
involve integration. The computer subroutines that
evaluate the f,(x,,u,) and L,(x,,u,) functions use numerical
integration and user-supplied continuous-time functions,
STx(),u(t),t] and L{x(1),u(1),t]. Section 2.5 explains how to
transform partial derivatives from continuous-time to

discrete-time in a way that is consistent with these
definitions.

The auxiliary continuous-time constraints in the
original continuous-time problem are sampled to produce
the auxiliary constraints of the discrete-time problem:

fork=0..N-1
fork=0..N-1

(7a)
(7b)

3¢, (%,.u,) = aelX, Uy ly)
a, (x,u,) = ai(X,,u,.)
Care must be taken so that the sample interval does not get
too long. Otherwise, the continuous-time constraints in

Egs. (1e) and (1f) may get violated by significant amounts
in the interval between sample times.

The terminal constraints of the continuous-time
problem carry over directly to the discrete-time problem:

(8a)
(8b)

Ay (Xy) = @edXy)

ajn(xn) = aifxy)

C5

2.2. Transformation to Static Parameter

Optimization Problem Form.

The problem in Egs. (3a)-(3h) is in a dynamic
programming form. It has a special structure that can be
used to develop an efficient algorithm. Nevertheless, this
section transforms the problem into a general static
parameter optimization form. This is done to simplify
notation during the subsequent discussion of the overall
nonlinear programming solution procedure, sections 2.3 and
24. Later, in sections 2.5-2.7, the special structure will be
discussed to show how efficiency and parallelism can be
achieved.

In static form, the problem becomes

find: % (%a)
to minimize: J(%) (9b)
subject 10: Ce(%)=0 %)

ci(x)<0 &d)

where the parameter vector X is defined in Eq. 3a. Itisa
long vector that contains the entire discrete-time control and
state time histories. The cost in Eq. 9b is defined by the
cost in Eq. 3b.

The equality constraint in Eq. (9c) has many rows. It
includes the state difference equations and the auxiliary
equality constraints for stages 0 through N-1, Egs. (3d) and
(3e), and the terminal equality constraint, Eq. (3g):

-

aeo(xo,uo)
fo(xgoug) - X,

ael(xpul)

Ce(X) = (10)
Bep. (Xn.plin.y)

. (XN - Xy

aeN(xN)

The inequality constraint in Eq. (9d) also has many
rows. It includes the auxiliary inequality constraints for
stages O through N-1, Eq. (3f), and the terminal inequality
constraint, Eq. (3h):

aio(xo,uo) -
aj,(x,u,)
Ci(x) = (11)
Qi (X liny)
L aj(xy)
2.3. An Augmented Lagrangian Nonlinear

Programming Algorithm.

The augmented Lagrangian algorithm is a standard
nonlinear programming algorithm for dealing with
nonlinear constraints [14,15). Normally, the augmented
Lagrangian method solves a series of unconstrained
minimizations. Each unconstrained minimization works on
a penalty function that includes linear and quadratic penalties
of the constraint violations. The linear terms arise from
guesses of the constraint multipliers, and they allow the
algorithm to achieve exact constraint satisfaction with finite
penalty weights on the quadratic terms. After each
unconstrained minimization, the algorithm corrects its
guesses of the constraint multipliers in order to improve the
degree of constraint satisfaction.

The augmented Lagrangian algorithm used in this paper
formulates the problem in terms of slack variables, which
get penalized. The slack-variable augmented Lagrangian
algorithm solves a series of sub-problems of the form

find: %, 0., and §; (12a)
h, T, h L

o minimize:) +78,8. +3[&] [&] aw

subject 10: Ce(%)-Vhip Qe+ () A, =0 (120)

i) -Vhip G+ (p) A =0 (12d)

where the parameter vector %, the cost function J(x), and
the constraint functions c.(%) and c;(x) have been defined
in section 2.2. The vector . conlains the slack vanables

for the equality constraints, and §; contains the slack
variables for the inequality constraints. The scalar constant
h is arbitrary and is included to enhance numerical stability.
The scalar p is a penalty weight. The vectors A.* and A;*

constitute the guesses of the multipliers for the equality and
the inequality constraints, respectively.

The []* symbol in Eq. (12b) is an operator that takes a
vector input and produces a vector result in which all of the
nonpositive elements have been replaced by zeros. This

Cé6

operator allows the inequality constraints’ slack variable
penalty terms to penalize only positive constraint
violations.

A more traditional augmented Lagrangian algorithm
arises when Eqgs. (12¢) and (12d) are used to eliminate the
slack variables from the cost. The resulting cost function is
called the augmented Lagrangian function:

Taug(id s) = 1(%)
P_ *\T *
+5 (ce(X) + (1/p)Ac) (ce(x) + (l/p)Ae)

e - +T =+
oo ama; | [ci(x) o] 0y

The traditional augmented Lagrangian algorithm performs a
series of unconstrained minimizations of the this function
with respect to %x. Our reasons for preferring the
formulation in Egs. (12a)-(12d) to this formulation centers
around algorithm numerical stability issues for large p,
which are discussed in Ref. 12.

The solution to the augmented Lagrangian sub-problem
is the solution of the original problem when the multiplier
guesses are correct. More specifically, if the multiplier
guesses in Eqs. (12c) and (12d) are the Kuhn-Tucker
multipliers associated with a local minimum of Egs. (9a)-
(9d), and if p is large enough, then a corresponding local
minimum occurs in Eqs. (12a)-(12d). One can see this by
comparing the first-order necessary conditions for the two
problems.

The multiplier guesses act as biases on the constraints
in Egs. (12¢) and (12d). They cause the slack variables to
be nonzero when the constraint functions are zero. In effect,
they bias the penalties associated with the slack variables so
that a nonzero penalty can occur when a constraint is
exactly satisfied. This feature allows the minimum of the
augmented Lagrangian function to occur at a value of % that
yields zero constraint violation. This is true even for a
finite penaity weighting, p.

The main difficulty of the augmented Lagrangian
algorithm is to determine the correct muitipliers. The
following algorithm has been proved to be globally
convergent under appropriate assumptions [15]:

A n i -

1. Start with guesses Ae”, Aj*, and p. Set k = 0 and
IO, = oo. Be sure A;* 2 0.

2. Minimize Jayg(%:Ae".Ai",p) with respect to x to find
x(Ae A P)-

ce(x(Ae*'Ai'op))
T 3.Letc= +
[eilx@e A) + (ipA] - (/p)A

4. If lich,, > ﬁ)-llc(k)lloo set p = 100p and go to step 2.

S.Sctk=k+landc(k)=c.

6. Set [:,] = [:,] + pc and go to step 2.

The critical steps of this algorithm are steps 2, 3, 5,
and 6. They form an iteration that feeds back constraint
errors from step 3 to update multiplier estimates in step 6,
which, in tumn, affect the constraint violations that will
result after the next minimization in step 2. This
"feedback" has been proved to be stable for large enough p,

and its rate of convergence is adjustable through p, which is
why step 4 appears in the algorithm. The algorithm starts
with initial multiplier guesses of O and successfully
estimates the correct multipliers via this technique.

The most expensive part of the algorithm is step 2.
The algorithm completely solves the sub-problem in Egs.
(12a)-(12d) for each iteration of step 2. A technique akin to
sequential quadratic programming is used to solve this sub-
problem. Fortunately, after the first iteration of the main
augmented Lagrangian outer-loop, a good first guess to the
sub-problem of step 2 is usually available. In this case the
algorithm used in step 2 requires very few iterations,
sometimes just one.

Another important point about step 2 is that the sub-
problem can be ill-posed if p is not large enough. The
problem may have an infinite minimum or it may have a
minimum at % = . Reference 12 describes a method of

detecting difficulties and increasing p when necessary.

An initial feasibility portion of the algorithm has been
included as a further precaution to help ensure convergence.
The algorithm performs an initial step-2 minimization with
only the norm of the constraint violations for a cost
function. The original cost function, J{(%), is not
considered. This step-2 minimization iterates until the
maximum constraint violation is brought down below some
user-specified tolerance. The Newton search directions
during these iterations may be under-determined because
there are fewer constraints than problem variables. The
feasibility algorithm uses the minimum-norm search
direction to resolve any such ambiguity. After this
feasibility portion has been carried out, the algorithm
initializes muitiplier guesses at 0 and proceeds to step 1.

2.4. Sub-Sub-Problems in the
Lagrangian Algorithm.

Augmented

The second step of the outer-loop of the augmented
Lagrangian algorithm is solved by a method that is like the

method of successive quadratic programs (SQP). The basic
SQP method guesses a solution and then expands the cost
and constraints about the guessed solution in a Taylor series
10 create a quadratic program (QP) sub-problem. The cost
gets expanded out to quadratic terms, and the constraints get
expanded out to linear terms. This sub-problem then gets
solved via a quadratic programming technique.

In this paper the SQP-like technique is being applied to
a sub-problem; therefore, each successive QP is a sub-sub-
problem of the overall augmented Lagrangian algorithm.
The sub-sub-problem solved here uses quadratic
approximations of both the cost and the constraints in Egs.
(12a)-(12d). In addition, it includes box trust region
bounds. The sub-sub-problem is

find: A%, AD., and AQ; (14a)
to minimize:
Jsub = -;-AxTHAx. +gTAx
T
2 {ag. + Vomee} {ag.+Vome.}
T

.
+2[ag+ Vomei] [agi+ Vo 6] aab)

subject 10: AeAX + %AxTBeAx - Vhip ABe=0 (14c)

Aiax + =AxTBiAx - Vhp A8 =0 (140
- A%pox £ A% £ AXpox (14¢)

where A%, Afe, and A@; are increments to the corresponding
quantities in Eqs. (12a)-(12d). The matrix H is the Hessian
of the cost function J(x), and g is the gradient of J(x). The
matrices A and A; are the Jacobians of ce(%) and €i(X),
respectively, and the 3-index tensors B, and B; are the

second derivatives of ce(%) and €j(x), respectively. The
vector €e = Ce + (1/p)Ae’, and the vector €; = €; + V)
The vector AXpox Conlains the box trust region limits on

the increments Ax. The guesses of 9, and ; are selected so
that Egs. (12c) and (12d) are satisfied. That is why Eqgs.
(14c) and (14d) are satisfied for Ax = AQe = Af;=0.

In order to solve the sub-problem in step 2 of the outer-
loop augmented Lagrangian algorithm, a sequence of sub-
sub-problems of the form in Egs. (14a)-(14e) must be
solved until A% — 0. For a well-posed sub-problem, this
sequence of sub-sub-problems can be made globally
convergent by adaptive selection of the box trust region size

A%box [15].

The sub-sub-problem in Egs. (14a) - (14e) is, itself,
difficult to solve. If the quadratic terms in the constraints
were not included, i.e., if Be = Bj =0, then the problem
would be a piecewise quadratic program with continuous
first derivatives. It would be soivable in a finite number of
operations by a QP-type technique. The addition of the
constraint curvature terms makes the problem piecewise
quartic, and no algorithm exists that can exactly solve it in
a fintie number of steps. It must get solved iteratively.

The complication of constraint curvature has been added
1o this sub-sub-problem in order to reduce the number of
sub-sub-problem solutions [Egs. (14a)-(14¢e)] needed for a
sub-problem solution [Egs. (12a)-(12d)]. This happens
because the sub-sub-problem provides an accurate model of
the sub-problem for a larger range of A%, which speeds the
convergence rate remote from the solution. This reduces the
number of times that first and second derivatives need to get
calculated to set up the sub-sub-problem, which is
important because these derivatives are computationally
expensive. They involve numerical integration to do
transformations from continuous-time to discrete-time, and
the number of derivatives is large, on the order of the
number of discrete-time steps.

The solution procedure for the sub-sub-problem in Eqs.
(14a)-(14e) is, itself, an iterative technique. It guesses a
solution Ax.g, calculates a search direction, and does a line
search. The line searches use a piecewise-quartic merit
function with continuous-first derivatives. The
discontinuous-changes in the higher derivatives occur when
inequality constraints change from active to inactive or vice
versa. Constraint activity changes occur when an element

of the vector in the expression []* changes sign.

The search direction calculations for this sub-sub-
problem involve solution of an equality-constrained
quadratic program. This is accomplished by some matrix
factorizations that are used to implement the null space
method of quadratic programming [14]. First, a right QR
factorization is performed on a constraint facobian matrix of
the form

Ae. -Nh/pl 0
A, 0 -Vnpl (15)
Epox 0 0

The matrix Aj, is the Jacobian of the active inequality
constraints, the constraints corresponding to nonnegative
values of AQ; + \fp_/h G;. The matrix Epgx corresponds to
active box trust region constraints. For a trajectory

optimization problem all of these matrices are large, but
they are also sparse and structured.

The algorithm must then determine the projected
Hessian and factorize it. The orthogonal transformation

C8

from the QR factorization is used to transform the original
Hessian matrix to determine the projected Hessian. The
original Hessian takes the form

HO O
0 hI 0
0 0 hI
Each of the matrices will be large, and H will be block
diagonal for a trajectory optimization problem. After

transformation, the last factorization is a Cholesky
factorization of the projected Hessian.

(16)

These factorizations are used to calculate a search
direction, and a line search is performed. The merit function
used in the line search is the augmented Lagrangian function
associated with the sub-sub-problem in Eqgs. (14a)-(14¢):

Jaug = ;—AxTHAx +glAx
T
+£ { Get AeAX + ;-AxTBeAx}

{ Cet AcAX + %AxTBeAx }
P 1 *
+3 [é;+ A A% + EAxTBiAx]

+
[6i+ Aidx + %AxTBiAx] an
The foregoing discussion has been in terms of a general
parameter optimization framework. This has been done for
the sake of notational convenience, but the actual algorithm
has been specialized to the dynamic programming problem
structure in Egs. (3a)-(3h). This is necessary for efficiency
and parallelism., The most time-consuming parts of this
algorithm are the calculation of derivatives to set up the
sub-sub-problem, the factorization of matrices at each search
step of the sub-sub-problem, and the caiculation of the
augmented Lagrangian function during line searches for the
sub-sub-problem. The next three sub-sections explain how
parailelism and the special dynamic programming problem
structure can both be exploited to speed the algorithm steps
described in this sub-section.

2.5. Derivative Calculations.

The sub-sub-problem in Egs. (14a)-(14€) has various
vectors and matrices that are first or second partial
derivatives of functions from the problem in Egs. (12a)-
(12d): g,H,A., B, Aj, and B;. For trajectory
optimization, the problem functions in Eqs. (12a)-(12d) are
defined in terms of discrete-time problem functions from
Egs. (3a)-(3h). This sub-section shows how the discrete-
time problem functions’ derivatives can be determined from
the continuous-time problem functions’ derivatives, and it
presents an efficient means of parallelizing these derivative
calculations. The parallel derivatives scheme is almost
identical to that developed by Betts and Huffman (9], except

that it operates on a different discretization of the
ntinuous-time problem. Their idea is extended to include
—second derivative calculations via finite differencing.

- V -
Derivatives. The algorithm assumes that first partial
derivatives with respect to x and u of the continuous-time
problem functions in Egs. (1a)-(1h) are available. Second
partial derivatives may also be available, or they may be
estimated by finite differencing of the first derivauves.
Given this information, the partial derivatives of most of
the discrete-time problem functions in Egs. (3a)-(3h) are
known. The only two functions whose partial derivatives
are difficult to calculate are f,(x,,u,) and L, (x,,u,).

Reference 13 explains how to differentiate these two
functions with respect to their arguments. First, one
differentiates Eqs. (4a) and (4b) with respect to the argument
to get an initial value problem for the partial derivative of
x¥(t) with respect to the argument. Suppose one wants the
derivative with respect to u,. Then the partial derivatives of

Egs. (4a) and (4b) yield

i axk!l! __aLI aka +_@L|

dt| du, | ox [FMua]] ou, du [x(),uy.t]
(18a)

axk(tk)

du,

=0 (18b)

~which is a nonhomogeneous linear time-varying matrix
initial value problem for axk(l)/auk, the control

effectiveness matrix. To finish determining the partial
derivative of f (x,,u,), one differentiates Eq. (5):

of, oxK(t,)
Fraaliar (19)

The partial derivative of Eq. (6) finishes the calculation for

L (x,.1):

el
ai= .a_l.‘.l _(..laxk[+8L| d
5u, =) 19x | ow, | aw o @
Y

(20)

First partial derivatives with respect to x, are calculated in a
similar manner.

If Eqs. (4a), (6), (18a), and (20) are all integrated
simultaneously with a Runge-Kutta algorithm, then
truncation errors enter the calculations in a consistent way.
This translates into the following fact: the derivatives
calculated numerically in Eqgs. (19) and (20) are the exact
derivatives, neglecting round-off error, of the numericai-

integration approximations of the functions in Eqgs. (5) and
(6). In other words, the computed derivatives are consistent
with the computed functions. This is important to
numerical optimization. It guarantees that, in the
computer, the sub-sub-problem in Eqs. (14a)-(14e) is
locally an accurate approximation of the sub-problem in
Eqgs. (12a)-(12d).

Second derivatives are calculated in a similar way [13].
Equations (18a)-(20) (or their d/dx, equivalents) are

differentiated once more. This results in a nonhomogeneous
linear tensor initial value problem, which can be solved
numerically.

Parallel Differentiation. For each iteration in step 2 of
the main augmented Lagrangian algorithm, a sub-sub-
problem of the form in Eqgs. (14a)-(14¢) must be set up and
solved. Sub-sub-problem set-up requires derivatives of all
of the functions at each stage of the discrete-time problem
(Egs. (3a)-(3h)]. The cost gradient g in Eq. (14b) is
composed of the gradients of L,(x,,u,) for k=0, ..., N-1
and the gradient of V(xy). The cost Hessian H in Eq. (14b)
is composed of the Hessians of L (x,,u,) fork =0, ..., N-1
and the Hessian of V(xy). The equality constraints’
Jacobian matrix A, in Eq. (14c¢) is composed of identity
matrices, the Jacobians of f,(x,,u,) and a, (x,.u,) for k =0,
..., N-1, and the Jacobian of a,N(xN). The equality
constraints' second derivative tensor B, in Eq. (14¢) is
composed of the second derivative tensors of fi(x;,u,) and
ag (x,,u,) for k =0, ..., N-1, and the second derivative
tensor of a.y(xy). The inequality constraints' Jacobian
matrix A; in Eq. (14d) is composed of the Jacobians of
a, (Xuy) for k = 0, ..., N-1, and the Jacobian of a;(xy).
The inequality constraints’ second derivative tensor B, in Eq.
(14d) is composed of the second derivative tensors of
ai,‘(xk,uk) for k = 0, ..., N-1, and the second derivative

tensor of a;y(Xy)-

Thus, first and second partial derivatives of the
following functions must be calculated for each stage:

L, (x.u,), f(Xuy), 3g (%,,8,), and a;, (X0,). This is a

time-consuming operation because of the numerical
integration required to transform from continuous-time to
discrete-time and because of the numerical differentiation
required to calculate second derivatives.

The derivative calculations that get carried out at one
stage are independent of the derivative calculations that get
carried out at any other stage. Therefore, these operations
can be done in parallel for different stages. If the number of
stages equals the number of processors, then each stage's
derivatives can be computed on a separale processor. If the
number of processors is fewer than the number of stages,
then each processor can compute the derivatives for several

stages. A speed-up factor of p can be obtained on p
processors for this part of the aigorithm if the number of
problem stages, N, is an integer multiple of p and if each
stage requires an identical amount of derivative calculation
time.

No message passing needs to occur during this process;
therefore, no bottlenecks can occur. Nevertheless, one must
be careful about which processors calculate derivatives for
which stages. The resuits of the derivative calculations are
used by a special parallel matrix factorization algorithm.
That algorithm requires that the derivative information be
distributed over the nodes of a binary tree in a particular way
in order to expedite its message passing. The parallel
factorization algorithm is described in Ref. 12.

For a 24 stage problem (N = 23) running on an 8-node
processor each processor could calculate the derivatives for 3
stages. Figure 2 shows the 8 processors with a binary tree
connection topology. The numbers next to the processor
nodes show a distribution of problem stages for parallel
derivative calculation. This distribution is consistent with
the factorization aigorithm of Ref 12.

0,1,2

12,13,14

18,19,20

9.10,11

3.4.5

15.16,17 21,22,23

Fig 2. Node Locations of Derivative
Caiculations for Each Stage of a 24-Stage
Problem Run on 8 Processors.

2.6. Parallel Linear Algebra.

The current algorithm uses matrix factorization to
determine a search direction. This is equivalent to solving
the linearized state/adjoint boundary value problem that
arises in calculus-of-variations-based numerical trajectory
optimization algorithms [11]. The matrix
factorizations/linear algebra associated with Eqs. (15) and
(16) can be time consuming because the matrices are large.
Furthermore, these factorizations may get carried out one
hundred or more times during one trajectory optimization;
one complete factorization is performed for each search step
in a sub-sub-problem. Therefore, the algorithm makes use
of parallelism and the special dynamic programming
problem structure to expedite these factorizations.

All of the matrices in Eqgs. (15) and (16) are sparse
(have many zero entries), and their nonzero elements fall
into a block structure. Their structures are

X
X 0
H = X 21
0
- X -
X X 0
X
Ae = X X 22)
X
- 0 ——
x =
X 0
Ai, = X @)
0 i
X
X 0
Epox = X 24)
0

where the X's indicate nonzero blocks. The blocks are not
necessarily square, except for the blocks of the H matrix.
Each column of the above block structures corresponds (o a
different discrete-time stage. The A, matrix is the only one
with coupling between the stages. This is known as the
"staircase” structure of dynamic programing, and it arises
from the linearizations of the difference equations [Eq. (3d)].

The special matrix factorizations used by this algorithm
are described in Ref. 12, and related factorizations are
described in Ref. 11. The factorizations amount to a special
domain-decomposition? of the null space quadratic
programming technique. They can factorize the matrices in
wall clock time that is order O{n3[(N/p) + Logsp]} for an

N -stage problem running on p processors with a block size

n. The factorizations have additional beneficial
properties. They can check the 2nd-order sufficiency
conditions for optimality, they can detect directions of
negative curvature, and they can ensure that the search
direction is a descent direction for the augmented Lagrangian
function.

2.7. Parallel
Evaluations.

Constraint and Merit Function

The functions (%) and c;() must be evaluated to set
up the sub-sub-problem in Egs. (14a)-(14e). Furthermore,

* Domain decomposition is a parallelization technique that
divides the problem into smaller problems, solves them,
and then aggregates the problems.

C10

augmented Lagrangian functions must be evaluated at two
sints in the algorithm. The augmented Lagrangian
—unction in Eq. (17) is used as a merit function during the
line searches that seek a solution to the sub-sub-problem in
Egs. (14a)-(14e). The augmented Lagrangian function in
Eq. (13) is used as a merit function to evaluate and adapt the
L, trust region size. Some of these function evaluations

involve numerical integration. All involve a number of
operations that goes as the number of discrete-time problem
stages.

These operations can be expedited by a stage-wise
splitting of the evaluation of components. The calculation

of ce(x) and ci(x) parallelizes in the same manner as the
derivative calculations parallelize (see section 2.5).
Evaluation of f,(x,,u,), 3¢, (X,,u,), and a; (x,,u,) for all of
the stages constitutes evaluation of Ce(%) and Cj(x) [see

Egs. (10) and (11)], and these functions can be evaluated for
different stages simultaneously on different processors.

The augmented Lagrangian function in Eq. (13) can be
rewritten as a sum over all of the discrete-time problem
stages of a stage-wise augmented Lagrangian function.

* * N
Jaug(®:Ae A P) = 2 Jaugy (25a)
kel

where

~——

Jaugk = L (x,.u,)

*\T
+ %(Tk(xk,uk) - X+ (l/p)Lk)
(fk("k'“k) Xy t (”P)L;)
p *\T
+ E(aek(xk,uk) + (llp)u.ek)
(aek(xk'uk) + (1/P)uek)
J T
+) [aik(xk,uk) + (llp)uik:]

« I+
[aik(xk,uk) + (1/P)U4k] fork =0, ..., N-1
(25b)
JaugN = V(XN)

p. Y
+£ (aeN<xN) + (1/p>ueNj

(et + (l/p)u;N)

C11

J i
+5 [aiN(xN) + (1/p)uiN]
-« I+
[aiN(xN) ‘ (llp)u.iN] @50)

Equations (10) and (11) have been used to replace Ce(%) and
c;(%) by their discrete-time problem component functions.
The multiplier guess vectors Ag*, A1*, A2®, ... and Meg®,

uel", uez‘. ... are the components of the large equality-

constraint multiplier guess vector A", and the multiplier
guess vectors Wig*, Wiy*, Wip”, ... are the components of

the large inequality-constraint multiplier guess vector A
A similar breakdown can be made for the discrete-time form
of Eq. (17).

The parallel computation of the augmented Lagrangian
function in Eq. (25a) first computes the component
functions, Jaugy. in parallel. Each component function can

be computed on a separate node, or if there are fewer nodes
than problem stages, each node can compute the augmented
Lagrangian components for several stages. Figure 2 shows
a sensible distribution of component function calculations
when solving a 24-stage problem in 8 processors. The only
message passing that will be required during this first part
of the calculation will be to send the value of x,,, to the
node that is calculating Jaygy for those values of k where

this is necessary (for k = 2, 5, 8, 11, 14, 17, and 20 on Fig.
2). The computation of the component functions is the
most time-consuming part of the calculation, and it is
completely parallelizable.

The augmented Lagrangian calculation finishes by
summing the component functions in what is called a "fan-
in" on the binary tree. This can be illustrated in Figure 2
for the 24-stage problem. First, each node sums the
component functions for its three stages. Next, the 4 nodes
at the bottom of the figure send their sums to the node
above them in the tree. The four receiving nodes then sum
their 3-stage result with the received 3-stage result to
produce a 6-stage result. The process then repeats itself; the
2 nodes that are one row up from the bottom of the figure
send their sums to the node above them in the tree. This
process leaves some nodes idle for a fraction of the time,
but it constitutes a very small fraction of the time required
10 calculate the augmented Lagrangian function. Therefore,
the augmented Lagrangian calculation is almost 100%

parallelizable.

During solution of the sub-sub-problem in Eqgs. (14a)-
(14e) the algorithm does line searches to a univariate
minimum of the function in Eq. (17). This function is
piecewise quartic, and the univariate minimization procedure
needs o know the exact quartic function for a given line
search direction and interval of search length. This

calculation can be performed in a manner similar to the
calculation of the augmented Lagrangian function. In this
case, there is a binary fan-in to calculate each of the 5 terms
in the 4th-order polynomial.

The solution procedure for the sub-sub-problem in Egs.
(14a)-(14e) also calculates quadratic approximations of

fo(x,uy), 2, (x,,0,), and a; (x,,u,). Parallel evaluation of

the quadratic approximations is performed in the same way
as parallel evaluation of the functions themselves (see
above). The solution procedure also needs to know when

the quadratic approximation of aj (x,.u,) + (llp)mk‘

changes sign during a line search. This signals a
discontinuity in the second derivative of the piecewise
quartic merit function and triggers caiculation of new
coefficients of a 4th-order polynomial. The solutions of a
quadratic equation give the search step lengths at which the
inequality constraints change activity. These quadratic
equation solutions can be distributed over different
processors in the same stage-wise manner as depicted in
Fig. 2.

2.8. Review and Unification of Algorithm
Parallelism.

Sections 2.5-2.7 explain how to parallelize portions of
the trajectory optimization algorithm presented in sections
2.3 and 2.4. The paralle]l calculations have a recurrent
theme: split the calculations by stages. Figure 2 shows
how a 24-stage problem can be mapped onto 8 processors
for parallelization of the derivative calculations, the linear
algebra, the function evaluations, and the merit function
evaluation.

Information for a given stage resides on a single node,
as in Fig. 2, in the over-all algorithm. That node stores the

current guesses of X,, Uy, Ak", ley ", and L, *. It evaluates
the functions f, (x,,u,), L (x,,uy), 2¢, (x,,u,), a; (x,,u,), and
Jaugy- It stores the search directions Ax, and Au,, and it

updates the solution guesses of x,, u,, Ak", le; "> and Wiy .

Each node communicates with other nodes only during
certain operations; matrix factorizations to determine the
search step, merit function calculations to check the box
trust region size, and line search calculations in the sub-sub-
problem of Eqs. (14a)-(14e). The algorithm uses one
"master” node. The master node does things like determine
the final line search length, and it synchronizes the other
processors so that each major and minor iteration of the
algorithm happens simuitaneously on all processors. The
master node communicates with the other nodes in a "fan-
out" along the binary tree. In the example of Fig. 2, the
master node is the node at the top of the figure.

3. Performance of Algorithm Components.

The algorithm described in section 2 is still under
development. Two key components have been developed

C12

and tested. One component is the augmented Lagrangian
nonlinear programming algorithm described in sections 2.3
and 2.4. The other component is the algorithm that does
parallel matrix factorizations to solve a QP for the search
direction, which is briefly described in section 2.6 and fully
described in Ref. 12. The performance of these components
is described in this section.

3.1. Augmented Lagrangian

Algorithm
Performance in Test Problems.

A serial parameter optimization form of the augmented
Lagrangian algorithm has been encoded and tested. It has
been encoded in matlab and tested on an IBM PC-AT. This
section compares its performance to that of NPSOL version
4,02. Two questions are to be answered: is the algorithm
more likely to converge than NPSOL, and does the
algorithm converge in fewer iterations than NPSOL?

Each NPSOL iteration is one in which it calculates a
gradient, does a BFGS quasi-Newton update to the projected
Hessian, solves a QP, and performs a line search. Each
augmented Lagrangian iteration is one in which it calculates
dertvatives and solves the sub-sub-problem in Egs. (14a)-
(14e). For dense parameter optimization on a serial
processor, an augmented Lagrangian iteration is more
expensive than an NPSOL iteration. The augmented
Lagrangian requires more gradients per iteration (to do a
discrete-Newton Hessian evaluation), it does multiple
matrix factorizations per iteration, and it does multiple line
searches per iteration. Nevertheless, iterations of the two
algorithms are compared on a one-to-one basis because the
augmented Lagrangian algorithm's iterations will be greatly
sped up when put into the trajectory optimization/parallel
processor framework.

The performance of the two algorithms is discussed on
a problem-by-problem basis for § different test problems.

Test problem 1:

find: X1, X2 (26a)

1o minimize: J = - xy - X2 (26b)

subject to: x% + x% -1<0 (26¢c)
2 2

(X} + 1) +x,-4<0 (26d)

2x1+x2-250 (26¢)

Both algorithms have been started from the same first
guess: (x1, x2) = (2,0). This is an infeasible first guess,
and the Jacobians of constraints (26c) and (26d) are
degenerate at this point: they have linearly dependent rows.
The optimum is (.7071,.7071). NPSOL reaches it in 6
iterations, and the present algorithm reaches it in 1
feasibility and 5 optimality iterations. The two algorithms
are about equally fast on this problem.

T I m2:

‘nd: X1, X2 27a)
~'to minimize: J = - x2 (27)
subject to:

(x1 - 12 + x5 + 10000 (x + x5 - D? - 0625 <0 270)

Both algorithms have been started from the same first
guess: (x1, x2) = (0,.99). This is an infeasible first guess.
The constraint function has a deep curved valley whose
bottom also has a gentle slope. Only a narrow section at
the very bottom of a part of the valley is feasible. The first
guess is slightly up the wall of the valley and remote from
the feasible part. The optimum is (.9688,-.2480). NPSOL
quits without reaching the solution. It is not able to
achieve feasibility in 34 iterations, and it stops making
progress. The present algorithm reaches the solution after
52 feasibility and 25 optimality iterations. This test
problem was designed to have particularly difficult
constraint curvature. The curvature was enough 10 cause
NPSOL to fail. The present algorithm was slowed down,
but it eventually reached the optimum.

Test problem 3: find the minimum-area right triangle
that circumscribes a given circle [15].

find: X1, X2, X3, X4 (28a)
to minimize: J = x1x2 (28b)
2
—swbjectto: ZESTXEAT 202 0o g
X] + X,

-x1+x3+1<0 (28d)

-Xx2+x4 +150 (28e)

-x3+x4 <0 (28f)

-x4+1<0 (28g)

Both algorithms have been started from the same first
guess: (x1, X2, X3, x4) = (1,1,1,1). This is an infeasible
first guess. The optimum is (3.41,3.41,2.41,1). NPSOL
quits without reaching the solution. The present algorithm
reaches it after 3 feasibility and 16 optimality iterations.

Test problem 4: find the minimum-area right triangle
that circumscribes a given circle. Problem modeling differs
from test problem 3.

find: X1, X2, X3, X4, X5, X6, X7 (29a)
to minimize: J = ;—(xtg - x2)(x3 - x1) (29b)
subject 10 (x4-Xg)(X3-X1) - (x5-x1)(x2-x4) =0 (2%¢)
x5 - x7(x4 - x2) =0 (29d)
x6 - x7(x3 - x1) =0 (29)
—xg-x§+150 (290
x1+1<0 (29g)

x2+1<0
-xj<0

(29h)
(291)

Both algorithms have been started from the same first
guess: (xi, X2, X3, X4, X5, X6, X7) = (-2, -3, 6, 6, 6, 6, 6).
This is an infeasible first guess. The optimum is (-1, -1,
2.41, 2.41, .71, .71, .21). NPSOL quits without reaching
the solution. The present algorithm reaches it after 4
feasibility and 9 optimality iterations.

Test problem 5. find the minimum-fuel 2-bumn
impulsive orbit transfer to go from equatorial
geosynchronous Earth orbit (GEO) to low Earth orbit with
a 280 inclination (LEO). This could be used by a space taxi
10 plan a rendezvous with the National Aerospace Plane in
LEQ after having ferried an astronaut out to GEO to fix a
communications satellite.

for j = 3,4,5,6,7

find: mg, AV, Av, AV, (30a)
10 minimize: =my (30b)
subject to: Newton's faws for a spherical Earth (30c)
Finite specific impulse of fuel (30d)
TLEO-&r S If < TLEO + & (30e)
Veire. - &v £ V§ < Viire. + &y (306)
-Ey S Y S +&y (30g)
280 .¢; < if < 28% + € (30h)
Mempty < Mf (30i)

where the usual terminal equality constraints on the final
orbital elements have been replaced by the upper and lower
bounds on the terminal quantities r¢ (geocentric radius), V¢
(inertial speed) , yf (flight path angle), and if (inclination) in
Egs. (30¢)-(30h). This has been done to make the problem
harder. The quantities mg and m¢ are the initial and
terminal masses; their difference is the mass of the fuel
burned during the two impulses. The quantities AV, and

AV are the vector velocity changes during the two

impulses. The angle Av is the coast arc length between the
burns.

The effects of the decision quantities in Eq. 30a on the
terminal quantities in Eqs. (30e)-(30h) are calculated by
numerical integration of 6 coupled scalar equations of
motion of the system. These equations can be found in
Ref. 16. The formula for the mass change due to impulsive
thrusting is

p[- HAV Il - IlAVzII]
mf = mQ €x
f 0 7

€y

where Vi is the nozzle exit velocity of the fuel. Note that
V¢ = gl, where g is the acceleration of gravity at the Earth's
surface and 1 is the specific impuise of the fuel.

Both algorithms have been started from the same first
guess, which satisfies all of the constraints except Eq.

C13

(30i). NPSOL reaches the solution in 9 iterations. The
present algorithm solves the problem in 6 feasibility
iterations followed by 22 optimality iterations. It is about
3 times slower than NPSOL. It gets near the solution
fairly quickly, in about 6 feasibility iterations and 9
optimality iterations, but it takes time to converge to the
correct muitipliers and to determine a high enough value of

the penalty parameter, p.

NPSOL is about 3 times faster on this problem for the
given first guess, but it has trouble for a different first
guess. If the first guess value of mg is increased to make

the first guess entirely feasible, then NPSOL fails to solve
the problem, which seems counter-intuitive. Failure occurs
because the cost has no curvature of its own [Eq. (30b)].
When none of the constraints are active, the Lagrangian
function also has no curvatre; its Hessian is zero. NPSOL
attempts to do a BFGS quasi-Newton update of a Hessian
approximation. This results in a divide-by-zero, and the
algorithm fails. Thus, NPSOL cannot handle linear
programs. The algorithm presented in this paper has no
such problems.

The forgoing results indicate that NPSOL is more
likely to have convergence problems than the algorithm of
this paper. We believe that the main reason for this is
because our algorithm first achieves feasibility. NPSOL
could be modified to do the same. It would probably be
slower, but its convergence would probably be more robust.
Another problem with NPSOL could be its merit function.
NPSOL is an SQP procedure. It is difficult to design a
merit function to ensure global convergence for an SQP
procedure when applying it to problems with nonlinear
constraints. This may explain NPSOL's failure on test
problem 2.

The present algorithm can also fail to converge. This
will happen if, during the feasibility phase, it reaches a
nonzero local minimum of the norm of the constraint
violations. Most algorithms would have difficulty in such
a situation. The way to avoid such situations is to make a
more reasonable first guess. Of course, a better first guess
would help NPSOL as well, but NPSOL's ability to
converge seems 10 be more sensitive (0 the choice of first
guess.

3.2. Performance of Parallel Algorithm for
Matrix Factorizations and QP Solution.

The algorithm that performs parailel calculation of
search directions has been described in Ref. 12, where it is
tested on a problem that is like test problem 5 in section
3.1 above. The test problem in Ref. 12 performs the same
orbit transfer, but it uses aeromaneuvering and three
impulsive burns. A dynamic programming problem form
is set up similar to the form described in Egs. (3a)-(3h).
The problem has 6 state vector elements and 3 or 4 control
vector elements at each stage. The search direction
algorithm has been tested on a linear-quadratic expanston of
the nonlinear problem about a guessed solution. Figure 3,

borrowed from Ref. 12, shows how the wall-clock time of
the algorithm varies with the number of processors and the
number of problem stages. It also shows results for a
backwards-sweep serial algorithm that solves the same
problem. The parallel algorithm executes 10 time faster
than the serial algorithm when solving a 128-stage problem
on 32 nodes of an INTEL iPSC/2 hypercube.

g 4- |
Q Q
O ® g
& T P
- 2_8
z 5%
] . 5%
5 2 5 28
2 g 8 & &%
= 8 £ 83
5] 1 8 S o W
a. c © 9 2z
< @®
[
2 p
[e]
[75]
e
g 0 —r—rrvree T Tr—————rrrry
= 100 10 102 103

Number of Problem Stages

Fig. 3. Wall Clock Time to Solve for the
Search Direction as it Varies with Problem Size
and with Number of Processors.

4. Planned Developments (the LORD willing!).

The full algorithm is being developed to run on the
INTEL iPSC/2 hypercube. Currently, the serial code for
augmented Lagrangian parameter optimization is being
translated from matab code into FORTRAN code. We plan
first to implement the algorithm serially on one processor
of the hypercube. Afterwards we plan to replace the time-
consuming serial parts with the parallel algorithms
described in sections 2.5-2.7. Code that is borrowed from
Ref. 13 will be used, with minor modifications, to do the
parallel derivative calculations. The parallel linear search
solver is already running. The only part of the parallel code
that needs significant development is the parallel augmented
Lagrangian calculation portion, described in section 2.7.

The current plan is to develop the code to work with
generic problem function forms. This would allow a user
to rapidly change system models, cost functions, and
constraints. The specification of these functions would be
through user-written subroutines. The hope is that this
code will be accessible to a wide variety of applications
from different disciplines.

C14

S. Conclusions

A nonlinear trajectory optimization algorithm has been
developed. It has been formulated to run on a message-
passing parallel processor. Special care has been taken to
ensure convergence robustness. The algorithm solves a
discrete-time trajectory optimization problem, which results
from a continuous-time problem after a zero-order-hold
discretization of the control time history. Numerical
integration is used to complete the continuous-time to
discrete-time transformation. It has been designed to handle
both state and control constraints. The entire algorithm has
not, as yet, been fully encoded, but the most complex
portions have been encoded and tested.

The algorithm uses the nonlinear programming
technique known as the augmented Lagrangian algorithm.
The discrete-time problem form can be directly solved by
the augmented Lagrangian algorithm. The particular
augmented Lagrangian algorithm of this paper has been
specially tailored to increase the terminal convergence speed
and to handle extreme constraint curvature.

A serial parameter optimization form of the algorithm
compares favorably with NPSOL version 4.02. It has a
higher likelihood of converging from a given initial guess
than NPSOL: NPSOL failed to work on more than half of
the test problems, but the present algorithm worked on all
of them. The present algorithm converges as quickly as
NPSOL on one test problem, but has run as much as 3
times slower on another.

The algorithm has been designed to parallelize its most
time-consuming parts. Function and derivative
calculations, search direction calculations, and merit
function calculations can all be parallelized on a stage-wise
basis. Information about a particular problem stage always
resides on a single node. The solutions for stages on
different nodes affect each other only in two ways: through a
special parallel routine that calculaies a global search
direction and through the limit to the search length as
determined by a global merit function. The global search
direction routine operating on 32 processors has achieved a
speed-up factor as large as 10 over the best known serial
algorithm. The other parallel portions should have speed-up
factors approaching the number of processors.

Acknowledgement

This research was supported in part by the National
Aeronautics and Space Administration under grant no.
NAG-1-1009.

References
1. Hardtla, J.W., "Gamma Guidance for the Inertial Upper

Stage”, Proceedings of the AIAA Guidance and
Control Conf., Aug. 7-9, 1978, Palo Alto, CA, pp.
357-362.

C15

10.

11,

13.

14.

15.

16.

Breakwell, J.V.. "The Optimization of Trajectories,” J.
Soc. Indust. Appl. Math., Vol. 7, 1959, pp. 215-
247.

Bryson, A.E. and Ho., Y.C., Applied Optimal
Control, Hemisphere Publishing, (Washington, D.C,,
1975).

Kelley, H.J., "Method of Gradients,” Optimization
Techniques, G. Leitmann, ed., Academic Press, (New
York, 1962), Chap. 6. pp. 206-254.

Miele, A., Pritchard, R.E., and Damoulakis, I.N.,
"Sequential Gradient-Restoration Algorithm for Optimal
Control Problems,” Journal of Optimization
Theory and Applications, Vol. 5, 1970, pp. 235-
282.

Yakowitz, S.J., "The Stagewise Kuhn-Tucker Condition
and Differential Dynamic Programming,” IEEE Trans.
Auto. Cont., Vol. AC-31, 1986, pp. 25-30.

Hargraves, C.R., and Paris, S.W., "Direct Trajectory
Optimization Using Noniinear Programming and
Collocation,” Journal of Guidance, Control, and
Dynamics, Vol. 10, No. 4, July-Aug. 1987, pp. 338-
342.

Feeley, T. and Speyer, J., “Techniques for Developing
Approximate Optimal Advanced Launch System
Guidance”, Proceedings of the 1991 American
Control Conf., June 26-28, 1991, Boston, pp. 2238-
2243.

Betts, J.T. and Huffman, W.P., "Trajectory Optimization
on a Parallel Processor,” Journal of Guidance,
Control, and Dynamics, Vol. 14, No. 2, March-
April 1991, pp. 431-439.

Wright, S.J.,, "Solution of Discrete-Time Optimai
Control Problems on Parallel Computers,” Report No.

MCS-P89-0789, Argonne National Lab., Chicago,
Minois, July, 1989. (To appear in Parallel
Computing.)

Psiaki, M.L. and Park, K., “A Parallel Solver for

Trajectory Optimization Search Directions”, Nov. 1990.
(to appear in the Journal of Optimization Theory
and Applications).

. Psiaki. M.L. and Park, K., “Trajectory Optimization on a

Hypercube via Step-Wise Parallelism”, Presented and
distributed at the 1991 American Control Conf., June
26-28, 1991, Boston, MA.

Psiaki, M.L., "Control of Flight Through Microburst
Wind Shear Using Deterministic Trajectory
Optimization,” Ph.D. Thesis. Princeton University,
October, 1987.

Gill, P.E.., Murray, W., and Wright, M.H., Practical
Optimization, Academic Press, (New York, 1981).

Fletcher, R., Practical Methods of Optimization,
2nd Ed.,]. Wiley and Sons, (New York, 1987).

Miele, A., and Lee, W.Y., "Optimal Trajectories for
Hypervelocity Flight”, Proceedings of the 1989
American Control Conference, June 21-23, 1989,
Pittsburgh, pp. 2017-2023.

Appendix D

Specifications for problem model encoding

Example code for the minimum-time proglem.

D1

User-Defined Input Arguments to the Host Machine Multi-Processor

Trajectory Qptimization Program (MTOP)

Note: All arguments must be dimensioned and typed in the FORTRAN 77 calling program

exactly as dimensioned and typed in the definitions below.

1. Problem size/dimension specifications:

N

NUVEC(0:N)

NXVEC(0:N)

The INTEGER*4 SCALAR stage number of the terminal
stage. The initial stage is number O; so, there are N+1 stages

in total.

The INTEGER*4 ARRAY that specifies the number of
controls at each stage (e.g., NUVEC(K) is the number of
controls at stage K). It is permissible for this number to be

zero for some stages.

The INTEGER*4 ARRAY that specifies the number of
states at each stage (e.g., NXVEC(K) is the number of states
at stage K). It is not permissible for this number to be zero
for any stage except stage 0. Such a problem would better
be solved as two seperate trajectory optimization problems.
If NXVEC(K) # NXVEC(K+1), then the dynamic transition
from stage K to stage K+1 must be defined by an algebraic
discrete-time function (see the discussion of the FLENCT
function in section 5). An algebraic discrete-time state
transition function will be signalled by setting IDT(K)=1, as

discussed in section 3.

D2

NECVEC(0:N)

NICVEC(O:N)

NUMAX

NXMAX

NCMAX

2. Initial guess of solution:

UO(1:NUMAX,0:N)

The INTEGER*4 ARRAY that specifies the number of

auxiliary equality constraints of the form cy(xy,uk,tx) = 0 at

each stage. It is permissible for this number to be zero for

some stages.

The INTEGER*4 ARRAY that specifies the number of

auxiliary inequality constraints of the form c(xk,uk,tk) < 0

at each stage. It is permissible for this number to be zero for

some stages.

An INTEGER*4 SCALAR that is used in dimensioning
arrays that store control vectors. It must be true that

NUMAX 2 NUVEC(K) forall K =0, ..., N.

An INTEGER*4 SCALAR that is used in dimensioning
arrays that store state vectors. It must be true that NXMAX

> NXVECK) forall K =0, ..., N.

An INTEGER*4 SCALAR that is used in dimensioning
arrays that store auxiliary equality and inequality constraint
vectors. It must be true that NCMAX 2

NECVEC(K)+NICVEC(K) forall K =0, ..., N.

The REAL*8 ARRAY that contains the initial guess of the
optimal control time history. Note that U0O(J,K) will be

ignored for J > NUVEC(K).

D3

X0(1:NXMAX,0:N)

3. Problem modelling:

IDT(0:N)

The REAL*8 ARRAY that contains the initial guess of the
optimal state time history. Note that X0(J,K) will be
ignored for J > NXVEC(K). The initial state guess need not
satisfy the dynamic equations defined in the subroutine
FLFNCT of section 5 of this document, nor must the initial
guess satisfy the auxiliary constraints defined in the
subroutine CFNCT of section 6 of this document. The
optimization process will force the final solution trajectory to

obey the dynamic equations and the auxiliary constraints.

Note that X0(1:NXVEC(0),0) constitutes the state vector
initial condition of the trajectory optimization problem. It

will not be altered by the trajectory optimization algorithm.

This INTEGER*4 ARRAY tells the algorithm whether the
user-supplied FLFNCT function, defined below and in
section 5, returns continuous-time functions that define the
right-hand-side of the state differential equation and the cost
integrand for stage K, or discrete-time state transition and

cost functions for stage K.

IDT(K) = 0 implies continuous-time stage-K dynamics and

cost of the form:

Dynamics: x = fi(x,u,t)
k+1

Stage cost: I Ly(x,u,t) dt
ti

D4

T(O:N)

IDT(K) = 1 (or any nonzero integer) implies discrete-time

stage-K dynamics of the form
Dynamics: Xk+1 = Fr(xXkUk,tk)
Stage cost: Lk(Xk,uk,tk)

The algorithm ignores IDT(N), the stage N value, and
assumes that a value of 1 applies. This lets it call FLFNCT
to determine the terminal cost. No state transition function
or differential equation function is needed at the terminal

stage.

This REAL*8 ARRAY gives the values of the problem's
independent variable (normally called time) at the different
stages, i.e., X0(:,K) is the state vector initial guess for time
T(K). For free end time problems, one must model the real
time as a function of an artificial problem time whose end
value is fixed. The vector T(0:N) stores the artificial
problem time values. In this case, the rate of change of real
time with respect to problem time will usually be a function
of the controls and, perhaps, the states as well. The real
time may need to get modelled as an extra state. The
elements T(0:N) must not decrease as K increases. If a stage
is modelled as a discrete-time process, if IDT(K) = 1 (or
anything other than 0), then T(K+1) = T(K) is permissible.
Otherwise, if the stage is modelled by a continuous-time

process [IDT(K) = 0], then T(K+1) > T(K) is required. In

D5

FLFNCT

CFNCT

this latter case, T(K+1)-T(K) is the time interval used for

numerical integration.

The name of 2 user-supplied SUBROUTINE that calculates
the functions fie(x,u,b) and Ly(x,u,1), which define the
dynamics and cost at stage K. This subroutine also must
calculate the first partial derivatives of these functions with
respect to the staté vector, X, and the control vector, u.
Section 5 gives detailed specifications for the correct design

of this subroutine.

The name of 2 user-supplied SUBROUTINE that calculates
the function Cx(X,u,), which defines the auxiliary equality
and inequality constraints at stage K. Regardless of whether
the stage is a continuous-time stage or a discrete-ume Stage,
these constraints are enforced only at the beginning of the

stage
ck-‘(xk,uk,tk) =0 fori=1, .. NECVEC(K)
and

Cki(xk,uk,tk) <(Q fori= [NECVEC(K)+1], ves

[NECVEC(K) +NICVEC(K)]

The first NECVEC(K) elements of the ¢cx constraint vector
are equality constraints, and the last NICVEC(K) elements

are inequality constraints.

D6

4. Algorithm control:

KRK(1:2,0:(N-1))

ISECGR(O:N)

The CENCT subroutine also must calculate the first partial
derivatives of the cx(x,u,t) function with respect to the state
vector, X, and the control vector, u. Section 6 gives detailed

specifications for the correct design of this subroutine.

This INTEGER*4 ARRAY contains quantities that control
the algorithm and number of steps used for numerical
integration of the continuous-time segments, the segments
for which IDT(K) = 0. If KRK(1,K) = 1, then the standard
4th-order Runge-Kutta algorithm is used on step K to do
numerical integration. If KRK(1,K) = 2 (or any integer
other than 1), then a 7-step, 6th-order Runge-Kutta method
is used. In either case, KRK(2,K) gives the number of
Runge-Kutta steps used to integrate from time T(K) to time

T(K+1).

This INTEGER*4 ARRAY specifies whether the FLFNCT
and CFNCT subroutines have been programmed to calculate
analytic second derivatives. If ISEECGR(K) =0, then all of
the required analytic second derivatives at stage K are
calculated by the FLFNCT and CFNCT subroutines. If
ISECGR(K) = 1, then the optimization algorithm will
approximate these second derivatives via one-sided finite-
differencing of the first derivatives provided by the FLFNCT

and CENCT subroutines. For example, an element of the

D7

second derivative of f(x,u,t) with respect to x is

approximated by
of of
a2 a‘i?l(x+eijj) " 9x;)
oxioxj AX;

where ¢; is a unit vector with a 1 onrow j. If ISECGR(K) =
2 (or any larger integer), then the optimization algorithm will
approximate the second derivatives via central-differencing
of FLFNCT's and CFNCT's first derivatives. For example,
an element of the second derivative of f(x,u,t) with respect
to x is approximated by

of of
a2f 5 ax_il(x+ejAXj) - Xi (x-eijj)
OX0X; 20x

Additionally, symmetrization of the finite difference second
derivatives is performed by averaging each Hessian (of a
scalar) with its transpose. This symmetrization is performed

in both the one-sided and central difference cases.

Note that ISECGR(K) = 2 will execute more slowly than
ISECRG(K) = 1, but the second derivatives will be more
accurate. The numerical differentiation steps used are

contained in the user-supplied arrays DELTU and DELTX.

DELTU(1:NUMAX,0:N) This REAL*8 ARRAY contains the finite-difference values
used for calculating numerical second derivatives when

analytic second derivatives have not been supplied. If

ISECGR(K) =# 0, then the values in

D8

DELTU(1;:NUVEC(K),K) are used as described above in

the section on the ISECGR flag array.

DELTX(1:NXMAX,0:N) This REAL*8 ARRAY contains the finite-difference values
used for calculating numerical second derivatives when
analytic second derivatives have not been supplied. When
ISECGR(K) =# 0, then the values in
DELTX(1:NXVEC(K),K) are used as described above in

the section on the ISECGR flag array.

5. Detailed specifications for the FLFNCT SUBROUTINE

This is the dummy name of the subroutine that determines the dynamics and the cost
function at each stage. The user uses this subroutine to model the problem. The user
has the option of modelling any given stage as a continuous-time process or as a

discrete-time process.

If stage k is modelled as a continuous-time process, if IDT(K) = 0, then a zero-order-
hold will be assumed for the control inputs, and FLFNCT's output functions fi(x,u,t)
and Li(x,u,t) model a state differential equation and a cost integrand, respectively, for
stage k. They are used as follows. Given

t

x© = xk + [flx(D.ug,1] dt
tk

the state at the next stage and the cost for the stage are

Xk+1 = X(tk+1)

tk+1

(Costik = [Lilx(t),uk,7] dt
Lk

D9

where ug and xy are, respectively, the control and state vectors at stage k.

If, on the other hand, stage k is modelled as a discrete-time process, if IDT(K) = 1 or
some other nonzero integer, then FLFNCT's output functions fx(x,u,t) and Li(x,u,t)

define, respectively, the discrete-time state difference equation transition function and the

discrete-time cost:
Xk+1 = f(Xg,uk,tx)
(Cost)x = Ly(xk,uk.tk)

In this case, it is permissible that dim(xk4+1) # dim(xg) (i.e., NXVEC(K+1) #

NXVEC(K)).

Regardless of whether stage k is a continuous-time stage or a discrete-time stage, the
FLFNCT subroutine must also calculate the first partial derivatives of fx(x,u,t) and
Li(x,u,t) with respect to x and u when an input flag calls for these to be calculated.

Optionally, the user can program the function to calculate the second partial derivatives
of fx(x,u,t) and Li(x,u,t) with respect to x and u upon request as signalled by an input

flag.

If FLENCT has not been programmed to calculate second derivatives for stage k, then
the user must set ISECGR(K) to some other value than 0 so that the optimization
algorithm will estimate the second derivatives via finite differencing. Also, values must
specified for DELTU(1:NUVEC(K),K) and DELTX(1:NXVEC(K),K) if FLFNCT

does not calculate second denivatives for stage k.

The user is responsible for programming FLENCT correctly so that it accurately models
each stage k. The current stage number is provided as an input argument so that

FLFNCT can perform the necessary branching to change models for stages that require

D10

such changes. Note that, at stage N, FLFNCT must not return a value for the fn(x,u,t)
function because there is no next stage to which a transition must occur. Any fy value

calculated for stage N will be ignored by the optimization algorithm.

The FLENCT program must have the following argument list and dimensioning and data

typing information:

SUBROUTINE FLFNCT(X,U,T,K,IFLAG,NX,NU,NF,F,L,.DFDX,DLDX,
1 DFDU,DLDU,D2FDX2,D2LDX2,D2FDXU,D2LDXU,D2FDU2,
2 D2LDU2)
INTEGER*4 K,IFLAG,NX,NU,NF
REAL*8 X(NX),U(NU),T,F(NF),L,.DFDX(NF,NX),DLDX(NX),
1 DFDU(NF,NU),DLDU(NU), D2FDX2(NF,NX,NX),
2 D2LDX2(NX,NX),D2FDXU(NF,NX,NU),D2LDXU(NX,NU),
3 D2FDU2(NF,NU,NU),D2LDU2(NU,NU)

Note that all of the above arrays must be adjustable-sized arrays in order for the program

to work properly.

The input arguments for the subroutine are:
X REAL*8 ARRAY containing the state vector where X(I) = x;, the ith
element of x.
U REAL*8 ARRAY containing the control vector where U(I) = uj, the 1th

element of u.

T REAL*8 SCALAR containing the problem time, t. It is expressed in
the same units and with the same origin as the T(0:N) input array
defined in section 3 above.

K INTEGER*4 SCALAR specifying the current stage number.

IFLAG INTEGER*4 SCALAR flag specifying which outputs are needed:

[FLAG =0: Only the functions, outputs F(:) and L, need be
calculated on this call.

D11

I[FLAG = 1:

IFLAG =2:

Only the functions and their first partial
derivatives, outputs F(:), L, DFDX(:,:),
DLDX(:), DFDU(:,:), and DLDU(:), need be
calculated on this call.

The functions, their first partial derivatives, and
their second partial derivatives, F(:), L,
DFDX(:,:), DLDX(:), DFDUC(:,:), DLDUC(:),
D2FDX2(:,:,:), D2LDX2(:,:), D2FDXU(:,:,:),
D2LDXU(:,:), D2FDU2(:,::), and
D2LDU2(:,:), need to be calculated on this
call. Note that, if ISECGR(K) # 0, then the
subroutine FLFNCT will always be called with
IFLAG =0 or [FLAG = 1.

NX INTEGER*4 SCALAR used to define the size of adjustable-sized

dummy argument arrays.

NU INTEGER*4 SCALAR used to define the size of adjustable-sized

dummy argument arrays.

NF INTEGER*4 SCALAR used to define the size of adjustable-sized

dummy argument arrays. This must be allowed to be different than

NX because of the possibility of having explicit discrete-time steps in

which the dimension of the state vector changes during a state

transition.
The output arguments for the subroutine are:
F REAL*8 ARRAY containing the fy(x,u,t) function where F(I) = fx,,

the ith element of fx(x,u,t).

L REAL*8 SCALAR containing Li(x,u,t).

D12

DFDX

DLDX

DFDU

DLDU

REAL*8 ARRAY containing ofx(x,u,t)/o0x where DFDX(LJ) =
of/ox;. This output needs to be computed only when IFLAG # 0.
REAL*8 ARRAY containing dLy(x,u,t)/0x where DLDX(J) = dL/dx;j.

This output needs to be computed only when IFLAG = 0.
REAL*8 ARRAY containing ofi(x,u,t)/du where DFDU(LJ) =

of/ou;. This output needs to be computed only when IFLAG = 0.
REAL*8 ARRAY containing dLk(x,u,t)/ou where DLDU(J) = dL/du;.

This output needs to be computed only when IFLAG # 0.

The following 6 optional output arguments need not be calculated if the user specifies the

use of finite differencing to compute second gradients -- by setting ISECGR(K) #0. In

all cases, however, the names of these optional arguments must appear in the argument

list.

D2FDX?2

D2LDX2

D2FDXU

D21.DXU

REAL*8 ARRAY containing 92y (x,u,1)/9x2 where D2FDX2(1,J,M)
= 02fy,/0xj0xm. This output needs to be computed only when IFLAG
is neither O nor 1.

REAL*8 ARRAY containing 92Li(x,u,t)/0x2 where D2LDX2(J,M) =
02Lk/0x;0xm. This output needs to be computed only when I[FLAG is
neither O nor 1.

REAL*8 ARRAY containing 92fg(x,u,t)/dx0u where
D2FDXU(LJ,M) = 92fy,/0x;jdum. This output needs to be computed
only when IFLAG is neither O nor 1.

REAL*8 ARRAY containing 92L(x,u,t)/oxdu where D2LDXU(J,M)
= 92Ly/dx;0um. This output needs to be computed only when [FLAG

is neither O nor 1.

D13

D2FDU2 REAL*8 ARRAY containing 92fi(x,u,t)/0u? where D2FDU2(1,J,M)
= 92f}./dujoum. This output needs to be computed only when IFLAG
is neither O nor 1.

D2LDU2 REAL*8 ARRAY containing 92Ly(x,u,t)/0u? where DL2DU2(J, M) =
92Ly/dujoum. This output needs to be computed only when IFLAG is

neither O nor 1.

WARNINGS:

a)

b)

)

d)

Never write to one of the input arguments. The optimization program that calls this
subroutine assumes that FLFNCT does not change the value of any of the input
arguments.

Never write to an adjustable-sized output array if it has any zero dimension, NU =
0 or NF =0. The quantity NU will be equal to the value that the user has input to
the main optimization routine as NUVEC(K). The quantity NF will be equal to the
value that the user has input to the main optimization routine as NXVEC(K+1)
except for stage N, in which case NF will be zero. As an example, if NU is zero,
then the output arrays DFDU, DLDU, D2FDU2, D2LDU2, D2FDXU and
D2LDXU will have no elements because one of their adjustable dimensions is zero.
The main optimization program will not work in this case if FLFNCT tries to write
to any of these arrays.

Never write to any of the partial derivative output arrays if IFLAG has not been set
to call for that quantity to be output. That is, do not write to DFDX, DLDX,
DFDU, or DLDU unless IFLAG 2 1, and do not write to D2FDX2, D2LDX2,
D2FDXU, D2LDXU, D2FDU2, or D2LDU2 uniess IFLAG 2 2.

The output value of L must be defined for every problem stage K. If stage K does
not contribute to the cost, then the assignment statement L = 0 must be included in

FLFNCT. Likewise, for the terminal stage where NF = 0, a value must be

D14

assigned to the L output argument despite the fact that no values will be assigned to

the output array F.
6. Specifications for the CFNCT SUBROUTINE

This is the dummy name of the subroutine that determines the auxiliary constraints at
each stage. The user uses this subroutine to further model the problem. The constraints
defined in this subroutine are always enforced at the initial time of the interval. The

constraints are specified in terms of the elements of the cx(x,u,t) vector function:

Ck;(Xk,Ukstk) = 0 fori=1,.., NECVEC(K)
Ck;(XKUk,tk) < 0 ' for i = [NECVEC(K)+1], ..., [NECVEC(K)+NICVEC(K)]

Note that CENCT must be correctly programmed so that the first NECVEC(K) elements
of ck(x,u,t) define the equality constraint functions for stage k, and the last NICVEC(K)

elements of cx(x,u,t) define the inequality constraint functions for stage k.

The CENCT subroutine must also calculate the first partial derivatives of cx(x,u,t) with

respect to x and u when an input flag calls for these to be calculated. Optionally, the

user can program the function to calculate the second partial derivatives of cx(x,u,t) with

respect to X and u upon request as signalled by an input flag.

If CFNCT has not been programmed to calculate second derivatives for stage k, then the
user must set ISECGR(K) to some other value than 0 so that the optimization algorithm
will estimate the second derivatives via finite differencing. Also, values must specified
for DELTU(1:NUVEC(K),K) and DELTX(1:NXVEC(K),K) if CFNCT does not

calculate second derivatives for stage k.

The user is responsible for programming CFNCT correctly so that it correctly models

each stage k. There may be stages where the length of the equality part of the constraint

D15

vector is zero or where the length of the inequality part of the constraint vector is zero.
The current stage number is provided as an input argument so that CFNCT can perform
the necessary branching to change constraints if the constraints are different at different

stages.

The CFNCT program must have the following argument list and dimensioning and data
typing information:
SUBROUTINE CFNCT(X,U,T,K,IFLAG,NX,NU,NC,C,.DCDX,DCDU,
1 D2CDX2,D2CDXU,D2CDU2)
INTEGER*4 K, IFLAG,NX,NU,NC

REAL*8 X(NX),U(NU),T,C(NC),DCDX(NC,NX),DCDU(NC,NU),
1 D2CDX2(NC,NX,NX),D2CDXU(NC,NX,NU),D2CDU2(NC,NU,NU)

Note, all argument arrays must be adjustable-sized arrays with the dimensions as defined

above in order for the calling program to function properly.

The input arguments for the subroutine are:
X REAL*8 ARRAY containing the state vector where X(I) = x;, the ith

element of x.

U REAL*8 ARRAY containing the control vector where U(I) = u;, the ith
element of u.
T REAL*8 SCALAR containing the problem time, t. It is expressed in

the same units and with the same origin as the T(0:N) input array
defined in section 3 above.
K INTEGER*4 SCALAR specifying the current stage number.
[FLAG INTEGER*4 SCALAR flag specifying which outputs are needed:
[FLAG =0: Only the function C(:) needs to be calculated on
this call.

D16

NX

NU

NC

IFLAG = 1: Only the function and its first partial
derivatives, outputs C(:), DCDX(:,:), and
DCDU(:,:), need be caiculated on this call.
IFLAG = 2: The function, its first partial derivatives, and its
second partial derivatives, outputs C(:),
DCDX(:,:), DCDU(:,:), D2CDX2(.,:,:),
D2CDXUC(:,:,:), and D2CDU2(:,:,:), need to be
calculated on this call. Note that, if
ISECGR(K) # 0, then the subroutine CFNCT
will always be called with IFLAG = 0 or
IFLAG = 1.
INTEGER*4 SCALAR used to define the size of adjustable-sized
dummy argument arrays.
INTEGER*4 SCALAR used to define the size of adjustable-sized
dummy argument arrays.
INTEGER*4 SCALAR used to define the size of adjustable-sized

dummy argument arrays.

The output arguments for the subroutine are:

C

DCDX

DCDU

REAL*8 ARRAY containing the cx(x,u,t) function where C(I) = ck;,
the ith element of ck(x,u,t).

REAL*8 ARRAY containing dck(x,u,t)/ox where DCDX(1,J) =
dck/ax;. This output needs to be computed only when IFLAG = 0.
REAL*8 ARRAY containing dck(x,u,t)/ou where DCDU(L]) =

dek;/ouj. This output needs to be computed only when IFLAG # 0.

The following 3 optional output arguments need not be calculated if the user specifies the

use of finite differencing to compute second gradients -- by setting ISECGR(K) # 0. In

D17

all cases, however, the names of these optional arguments must appear in the argument

list.

D2CDX2 REAL*8 ARRAY containing d2¢cy(x,u,t)/0x? where D2CDX2(1J,M)

= d2cx;/0xj0xm. This output needs to be computed only when IFLAG

is neither O nor 1.

D2CDXU REAL*8 ARRAY containing 9d2cg(x,u,t)/oxdu where

D2CDXU(IJ M) = 82cki/8xjaum. This output needs to be computed

only when IFLAG is neither O nor 1.

D2CDU2 REAL*8 ARRAY containing 02cx(x,u,t)/0u? where D2CDU2(1,J,M)

= a2cki/au,-aum. This output needs to be computed only when IFLAG

is neither O nor 1.

WARNINGS:

a)

b)

c)

Never write to one of the input arguments. The optimization program that calls this
subroutine assumes that CFNCT does not change the value of any of the input
arguments.

Never write to an adjustable-sized output array if any of its dimensions is NU and
NU = 0 for the current call of CFNCT. (CFNCT will not be called if NC is zero.)
The quantity NU will be equal to the value that the user has input to the main
optimization routine as NUVEC(K). The quantity NC will be equal to the sum of
two values that the user has input to the main optimization routine:
NECVEC(K)+NICVEC(K). If NU is zero, then the output arrays DCDU,
D2CDXU and D2CDU2 will have no elements because one of their adjustable
dimensions is zero. The main optimization program will not work in this case if
CFNCT tries to write to any of these arrays.

Never write to any of the partial derivative output arrays if [FLAG has not been set

to call for that quantity to be output. That is, do not write to DCDX or DCDU

D18

unless IFLAG 2 1, and do not write to D2CDX2, D2CDXU, or D2CDU?2 unless
[FLAG 2 2.

D19

SR

LM

[y

ey oy ey 0 m

MO ey

Ao On AN TNl tnGn0nin g Ne!

il s Sl i S i Lt bl X R

THESE SUGRG T HE THRAMITT L 0BT . AHE
CONSTRAIANTE & ACCELERmTI0N-LIIITED
MINTMO=T I~ 0= THE ~OR 16 2 H~1H=THE =F | _AHE

FROBLEM, WHIC I3 v ZTANDARD FROULESY IF THE
LITERSTURE . THE LOLL I% THE FAMEQUS L
CONTRGL LA, THIZ VERSIQM OF THE FRORBLEM ‘_UN;F.HL
COMNTROQL [+t TJ8DES TO GET v FIZCE-WISE L IMEAR COHTROL .

& DISCRETE-TIHE STAGE THAT T NECERDsEY IM ORDER To ZET LM THE
THE TOQHTROL 11 TTal CJONDITION. St EYTRAe CONTROL YARITAELD T2 CDDED

TG STARGE: . T o=t IM ORDER 7O ALLGW FROBLEM TIM:Z 70 Bz FJT:FEFFEH
FROM FEAL TIMD THE ACCELER=TION MaspITun . I LIMITED T 2

THIC CODY HaE FPEEN WRITTER FOF

= LTH THE FOFALLE. TRATEITORG 0T THIZATION
FROGREM THLT -, FARt MBS DEVELCE e

Fre I FSLT

THESE SUpETT e T WIERE UWRTTTER T Moo . FZIAFT If MaECs 128 E,

SUBRRDUTINE F o _MHTM 2t T W

1 DFDULDLD \J~D
= b2Lbuz)
IMFLICIT FREAL*#8(A-H.0-I:
IMFLICIT INTEGER#*#4 (I-N?
FARAMETER (N=31)
FEAL+*8 L
DIFMENSTON oo L CUONMUDY G F I NF S,
1 DEDX v ME MY JDLDY (Nx s JOFDLCHNE MU S DUDIENU .
2 DEFD X2 ONF MR e JD2LDYEINX Ny JDEFDXUCF e ol
=z CRLDEUMNY JNUL CDEFDUZ M G HAGNUY DELDUZ oL NLD

ZAVE

MOTE THE FOLLOWING DEFIMITIONZ AFFLs 70 STAGEE | THROUGH N-1

Coo= s FOSITION
ERTIER
Siaao= Y3 OUELOCITY
(=, = 51 ACCELERATICH «USU&LLy CALLE
Y. w2 ACCELERATION JUSUALLY CALLE

vo= EATE OF FASSHEE TF REAL TIME WITH FPECSFECT

EREODLEM TIME STAGES i1t

1 = FATE OF CHAMEE OF 11 ACCELERATION

i TE OF CHANGE OF Y& ACCELERATION

oy = RATE OF FASSAGE OF FEAL TIME (SEC: UITH RESFECT
ThOPROBLEM TIME (STRGE 0 ONLY .

NOTE THAT THE FROBLEM TIME HAS & TERMINAL YALUE OF 1.

STEUME MF o= 7. RY = o0 SHD N = T THIS UISCRETE~-TIME STAGE
THE FIY :‘DSITIWZ‘. D VELOTTTY THITIAL ZONDITIGNS. aAnND IT
THE CTIMITSTION ROUTINE T7 SET WP OFTIMAL INITI. L ACCELERATIMM
AND O THT TIEM INAL t TIHE.

g
s
=

1S
ORIGINAL PAGE

;’lj ra

[sRENe!
g}
n
-
o
A
L

-
WAL e L

roe 2 I =

[RIPRLE A S A
oo Iz

COMT THUE
CrT IHUE
DEDUCS.E =
DEDU &, 80 =

)
=

DS LG T+

NTRSIL D4TEEED

THEH

-

= 0, D400

=), D+00

1.D+00

1.04+00
1L DN

1T IFLAG.EC.E) THEN
FoE - {2
R ez
IIT = .z
2tuzc 7311 = ISR

OTIT I
ComITINLE
EMNT TR

THR LG

Th=1

DEOUSOMMLTTLTTE = o D
IMUE
g

SETUME BFE o= My o= T OAND N = 2.

THEM

FELEC I 2 B

= rlhwE {7
ECI SN L IR N
= Y iSYEY(T)
= byl iex 7Y

st PRy e T
FErmy o o DeO0
=

10

14

THEM

= 1.7

= O, D+

DFDA0IT.JI0 =
T ITMUE
110 11 =
OGFDI(IILNITY =

CONTINUE
COMTINIE
™ tan 1T 1.

DLOUYTITY =
TOMTIMNUE
W DY Ty =

Sy, DO

H
38}

Oy, D0

il

i

[NI KR BTN

—_

LD+00
DFDH 1.3 {7
CFDY {1,737 = {32}
NEDY 2, a X(7)

T R T

2,7 = x4

il

LEo= N
- o ;4 E
“« = 5 (%

SRS oRIGINA
of PO

PAG
(IUPAJTY

E\S

DFDYX (&7 = Uvz:
IF (IFLAG.EB.Z: THEN
Do 250 I = 1,7
0O 2o JIT = 1.7
21T = . Lt
S0 MM 0T
DEFDyE - I1.03.m = 0 [+
2370 COMTINUE
DO Z2T M o= 1, E
DIFDXUCTITI LT MMy = i, Deuns
225 COMNT INUE
240 CONTIMUE
DO 2ZaS I3 = 1
DELDXUCTITI Iy = & D+0Ow
DO 242 MM = 1,3
DEFDUZ TIT,IT, MMy = O.D+G0
24 COMNTINUE
245 CONTINUE
250 CONTINUE
DOZTH 11 = 1.2
0o 260 I7 = 1,2
DRLDUZ I, 30y = .D+00
240 CONTINUE
270
! =] el
D= = 1.D+0
DEFDX2(2.7 41 = 1.D+0Q0
DIFDX2{(R,5,7 = 1.,.D+00
DEFDX2(3,7,5) = 1.D+G0
D2FDX2{4.:46,7 = 1 .D+0O0D
DEFDX2(4,7.6) = 1.D+00
DEFDXU(S,7.1) = L1.D+O0
DEFDYU(A&, 721 = 1.D+00C
EnD IF
END IF
c
C DO STAGE M. AISUME RF = . MY = 7, AND KU =
c
ELESE IF ‘FL.ED.HY THEM
o= o0, D00
IF (IFLAG.GE.1}Y THEM
Doz Ilo= 1,7
OLEX (1D = O D+O0
=2 DONITINUE
7 IFLAG.EC.Z2 THEN
DS I o= 1.7
DO ged 23 = 1.7
DELDYZ- T Iy = O.D+0n
Qe COMTIMNUE
G50 CONTINUE
gnp Iy
EHp IR
EMD T
RETHIRM
END
C
C
C JE DEFINES THE AUYILIARY COMETRAINTS FO= THE
C MIMIMUM-TINE-TO-THE-ORIGIN SROELEM.
C

SURFOUTINE CMUTHO S U T, L IFLAGLG MY G NULGNCLC

OO .

pua -

! DCD.
THEL

=C

TIT OFEAL¥ER-H L

IMTEGER *41 L
M=3210

D22

Dt
I

(
nOn0n

110
120

EEN

[t e

MBS T THDE

STHREET
T

SPQUNT OF RESL TIME IN

RS X5 PR WU 3 I3 TN A D91 S

D CME G s WDEDRU AT N 20D X2 chiT Ty

DECDYL P KL U JRECDUE O HEE N

-

S E

THE TEPGTH STALGE -

FE o e S B .
s R IR =

WHICH

SILTERD

T v

IMER

THEM
R SR R R L
+ L 01D+00
LEL Y THEN

= (RENIRE IR KNS]
= 2, D+0nell!
= O, D+00

O T 3 4 T

L
1

DCDUO L,

1y
Y

=E

= O, D+OC
= —1.0+00
LW ED. 2y THER

L

IR]E RIS

T 7.
a R N
=
™

COMTINnUE
CONTIMNUE
ZOMT IMUE
= 2., 0+
2.0+

THROUGH «N-1:. «5SUME
TS OLIMITING T

HE
THE ERTIRE TRAJECTORY

NT = MY = T

=
SCCELERATION MAGMITUDE. |

D NY = 2.
IMIT THE
TO NGO LEST THAN .01 SEC.
b WL E L IN=1

= S ewZ +

THEN
L&) eel —
L1 D+00

o LL.D4+00
= STy +
.GE. 1) THEM
11 = 1.2
o1 IT o=
LiZGs e
TONTINUE

I s 1.2

1
3
T o= 0, D40

T
P |

DO
oepuee1ILIIT =
COMTINUE
CORTINUE
oDz 1. = 2
DCD¥ (1.0 = Z.0+00%*x (&)
LChsdz " -
Irm P IFLAG.
D 200

oo o2

i, D400

RIS S A AT

1.0D+00

THEM

1.7
= 1,7
D2CDX2¢I11,JIJ.MM: =
CONTINUE
OO 225 MM = 1.8
DECDMIT.IT MMy =
CIMT TiNUE
TOtITINUE

L D+00

L, D

TONTINUE

D23

e RENSRERS

.~,ﬂmﬂ(‘]ﬂr‘]ﬂnnmﬂnﬂmﬂr'}

e g

i

1

250 CONTINUE

DECDE2 1. 5.5y = 2.0+

DECDAE (L - = 2, D+

e IF
Erly IF

DO ZTAGE . E MNO = LoMEom TL ARD MY = Ol
MOTE THaT THIS 13 THE OMLY ITLEE WITH ECUALITY COHETHAINTS.
THE FIRGT CONSTRAINTS ARE EOUALITY CONZTRAINTS.

ELSE IF (L LEDL Y THEN
Citoo= ¥t
CeFy = ¥i2:
Crzoowm iR

Clar o= Xig
TS n YIS REEZ 4+ X iao) wsz -] L0
TF TFLAG.GE. LY THEN

Coo3R0 11 o= 1.8

.
DO 200 I = 1.7

DODXCITLITY = 0, D00
200 COMT INUE
320 TINTINUE

DODX L. 41 = 1.D+00

= 1.0+

= 1 LDl

DChX (G ea = 1,.0L+00
CIDX{S,.5) = Z,D+00%x (5
DCOX{S.61 = Z.0+00sX (50

IF {IFLAG.EG.2) THEM
Lo 20 IT = 1,9
DO 240 JI = 1.7
LO 320 MM = 1,7
DECDY2(IIL T MMy = 0 D00

330 CONTINUE
240 COMT IMUE
350 CONTINUE

[RCEYE 5.8, = 2.D+0O0G
D2CDYXR Sabaz) = 2.0+00

END IF
EMD TF

END IF

FETURM

eMD

THIZ SUBRQUTING INITIALIZES VECTORS MWEEDED FOR FARICZ 1IN QETIMIZTATION

LLGORITHM. MOTE THAT THIS 13 FOR & 32-2TAGE PROBLEM. STAGES 1 THROUGH
IH OTHER WORTS no= 21 12 AZSUMED.

e

OME Cafl ESSILY SHITCOH THESE THREE SLEROUTINES TO USE «- DIFFERENT NUMRBEFR
OF CARAMETERS EY SIMPLY CHAMGING N IN THE THREE PARAMETER STATEMENTS
TuaT GCCUR NEAR THE BEGINMINMG OF EACH OF THE THREE SUBROUTINES .

THIS SUBROUTINE SHOULD SET CALLED EY THE MAIN FROGHAM BEFORE 17
CALLE THE CRTIMITZATION ALGORITHM. THE MALN FROGRA™M MUST BE
SURE T MATEH TDIMENSIONS WITH THE SIXED-DIMENSITHING ITNEORMATION
OF THIS SUBRQUTINE'S ARRAY ARGUMENTES. ALL OF THE ARGUMENTS OF
THIS SUBRQUTINE ARE QUTFUT ARGUMENTS.

MITE THAT THE MAIN FROGRAM WILL HAVE TO INCLUDE THE STATEMENT
ExTERMAL FLMHTHM CHATH
It AFDER TGO REFEF T THE ABOVE TWO FROBLEM MODELLING FURCTIONS.,

THEST T SUMNCTIONS FEFLACE THE DUMMY FUNCTIQNS FLENCT AND CFRCT
A THFUTS FROM THE MAIN FROGRAI T2 THE MATIH OFTIM TATION SURROUTINE.

AGE IS
D24 ORIGINAL P
OF POOR QUALITY

Ty T

siaEa it AN SR Ne NN

SUSROUTINE MuTMINCNUIVED .NV eC . HECY (RS R G
! Wi, 30, IDT V7K I'I WIS

b =T

B FOY JHAVEC UM WMECYEL v O CHITIVETZ S Dzl
;".Hi;.r;x.\‘,Hu'-"l'l.,-'w_l'N!.IuT—...w‘ K

(Bt SECE E E crefd

PTOTMFORMET ION AMD OTHER FROELER HO

INITIALIZE DIMENSITON
K T h
{ !

MDY CONTROL i Cird.
THEJEC | = 2
ST =
MHECWETZ ¢y = 1)
HICVEI O = 2
1
[RESRIA!
b0 DRLE CFLOET oM=L

SO+

il o= =

MYUOED Ty = 7
fF‘_"E‘—'I = 0
IC’CC = 2

DYyl = i
T(I yo= TDUM
ToUM = ToU + DELT
EREC 1.1 =t
FRE(2,.10 = ¢
ISECGRYL: = 0
10 COoNTINUE
MUUEC Ny =6
FUVECIMNY = 7
NEC»‘JE.C My = 4
HMICVED N = 1
IDT i =
Tl s ThUS
TEECGR hh =
MU =
MYMaY = 7
HEMesx = 5

NOTT. THERT T2 €EALLY NO NEED TO ZFECIFY THE STATE S IMITIAL J0ORDITIONS
MEVED e = THE ZUBROUTIME FLMHTH ESSENTIE-QLL"(‘ SFECIFIER THE STATE™S
IMITIAL COMTTTION.

INITIALIZE ®EUEET OF THE SCLUTIGH. THIG 18 A FOOR
FIRZT GUEES. IT OMLY ERINGE THE VELOCITY T4 ZERO,
1T DOES MOT BRIMG THE FOSITION TG ZERO,

LOSZEZTOI4ET22D+00
1254R61T421742D+00
17 = L9G501224028 147D+ 00

31347388 0+00

FOEE ARG UNEINE 3 S

WAL P
%‘:\%QOR QuA_\TY

D25

c
cC
c

noan

o T N -

Uorsaly o=

DTREmL =

TREAL

Do S ki
1F

Yifkar
FERRUTES Of S
EER R)

= 1"{",!-‘7"%151!:
PRSP R ot}

INITIALIZE

CELTX
Do &0
DO 40 IJ

DELTX(
CONTINUE
po S0 JJ

DELTL
S CONTIMUE
& CONT IMUE

MORMAL FPOINT OF F

FETURM
EMI

Fto= 0

= 20(8,
B RN
£ [I

Al DELTU

ITWEREY =

ETLIRM T

TH= [

+ TREML #Y0(2
xiveT o1

+ TREMALY

A TRESL G S, 1

+ TREmL e 0D e

FOf THE S@bE

LI D00

LSOO DD

LU IRG

D26

10 .

INTARES

4 VS0t ¥ TREML#®Z e

THEDH I

FROGRA .

e i TEDLL w2 s

TERT

wTiVED

Appendix E

A multi-dimensional cubic spline formlation.

El

A Multi-Dimensional Cubic Spline Formulation

This appendix describes a relatively simple way to generate a cubic spline interpolation of a
single dependent variable as a function of multiple independent variables. It works when the data
is laid out on a rectangular gird in the space of the independent variables. The grid spacing for any
one variable need not be uniform. This is useful to trajectory optimization because cubic splines
are continuous with continuous first and second partial derivatives. Continuity of a function and
its first and second partial derivatives is a must to ensure convergence of most second-order
optimization algorithms. The present spline procedure is intended to offer rapid on-line
computation of the spline function and its partial derivatives given that some off-line calculations of
spline coefficients have been performed.

The mathematical problem at hand is to generate a function y(x1,X2,X3, ..., Xp) given the
values of y at gird points. Suppose that the rectangular gird points are (xljl,xzjz,x3j3, ...,xnjn)
where ji = 1, ..., kj, forall i = 1, ..., n. Suppose, also, that Xij < Xijy foralli=1,..,nandj=
1, ..., (ki-1), and define Axij = Xijyp - Xije Note that the values of Axij may vary with the index j
for fixed i, but they will all be positive. Let the data for the function values at the grid points be
denoted as

Yilsi2eidseein = Y(X1j;5X2j3:X335 -oXnj) (E-1)

A cubic interpolation function can be developed that requires only the following data at the
grid points: y, dy/ox; for i = 1, ..., n, 02y/dxjoxj for i,j = 1,..., n, i # j, B3y/Ox;0x;0x for i,jk =
l,...,n,i#j#Kk, .., 0"y/0x10x20x3...0xn. In other words, the functions value is needed along
with all of the function's partial derivatives that differentiate at most one time with respect to any
given independent variable. For n = 1 independent variable, the required data is y and dy/dx; at
each grid point. For n = 2 independent variables, the required data is y, dy/dxy, dy/dx2, and
d2y/ox10x3 at each grid point. For n = 3 independent variables, the required data is y, dy/dx1,

dy/dxy, dy/ox3, 02y/dx10x7, 02y/0x10x3, 02y/0x20x3, and d3y/dx10x29x3 at each grid point, etc.

E2

The cubic interpolation function uses 4 special basis functions
g10) = -1)22x + 1)
g20x) = x2(-2x +3)
g3 = (12
ga(x) = (-1)x2

These functions have the special properties: g1(0) = 1 and g;(1) = dgi/dxlg = dgi/dxl; = 0;
g2(1) =1 and g2(0) = dga/dxly = dgo/dxly = 0; dgs/dxlg =1 and g3(0) = g3(1) = dgz/dxl; = 0;
dgs/dxly =1 and g4(0) = g4(1) = dga/dxly = 0. These special properties permit the writing of a
cubic interpolation directly as a weighted sum of products of these functions, and the weighting
factors are simply the function and its partial derivatives at the node points.

To see how the function y(x1,x2,X3, ..., Xp) is evaluated it is best to give the explicit formula
for the 2-dimensional cases because a general formula applicable to all dimensions gets very

complicated. After presenting the two-dimensional formula, the generalization to higher

dimensions can be discussed.

For the 2-dimensional case, suppose that point (x1,x2) falls in the gird box (j;,j2). That is,

suppose that Xij, S Xi < Xij fori=1,2. Also, define xj = (x; - xiji)/Axiji fori = 1,2. Then the

cubic interpolation formula is
¥(X1,X2) = ¥ijp,jp 81(x1)81(x2) + ¥j +1,j; 82(x1)g1(x2)

+ Yipiz+l 81(x1)82(x2) + ¥jp+1,jp+1 B2(x1)82(x2)
d 0
+ B-XLI j17j2 Axlj] g3(x1)gl(x2) + a‘% jl"’l,j’z

0 0
+ 3% jLipe1 A%1j 83(x1)g2(x2) + 3% j1+1,j2+1

J d
* 5)% iz 8%2j 81(x1)g3(x2) + a‘,é ip+1jg 8%2, 82(x1)83(x2)

Axy;, galx1)g1(x2)

(E-2a)
(E-2b)
(E-2¢)
(E-2d)

Axy;, ga(x1)g2(x2)

d)
+ 5% jlaj2+1 Ax2j2 g1(x1)ga(x2) + 5% j1+1,i2+1 Ax2j2 g22(x1)g4(x2)

2

0

+ Exlgxz
52

+ 3x1§x2

i A%1;,8%2;, 83(x1)g3(x2)

j1el,jp AX15,8%2, g4(x1)g3(x2)

0 ¥
¥ Ox1oxz | itiz+t Axy;,8x2;, g3(x1)g4(x2)

32
* 3X1§xz j1+1,ip+1 A%15,4%2;, 84(x1)g4(x2) (E-3)

Based on the properties of the gj(x) functions and the definition of x; fori = 1,2, it is straight-

forward to confirm that y(x1,x2) and its partial derivatives take on the values assigned to these
quantities at the grid points. It is also straight-forward to prove that the y(xj,x2) cubic
interpolation function and its first partial derivatives are continuous everywhere, even at the
boundaries between grid boxes.

To understand how the formula would generalize to n independent variables, consider the

individual terms in eq. (E-3). First notice that there are 16 terms. There are 4" terms in the general

expression for an n-dimensional spline. Each term is of the form
Cegiy (x1)*gip(x2)*giz(x3)*...2gi,(xn) for iy, i, 13, ..., in = 1,2,3,4. The constant C is a function of
the indices iy, i3, i3, ..., in. In general, if ix = 1 or 2, then the expression for C will not include

partial differentiation with respect to xk, but if ix = 3 or 4, then the expression for C will include

the operator (Axkjk 3?(—1() operating on y. Additionally, if ix = 1 or 3, then C will be a value
associated with a node with the index jyi, but if iy = 2 or 4, then C will be a value associated with a
node with the index jx+1. These rules completely determine the function.

The partial derivative data values at the grid points can be chosen arbitrarily and the function
and its first derivatives will be continuous, but the second derivatives will normally be
discontinuous at the gird box boundaries.

With care, the grid-point partial derivative values can be chosen to yield continuity of the

second derivatives also. A 2-dimensional example is convenient for understanding how to do this.
Suppose that dy/dx is assigned arbitrarily only at the extreme grid points in the x direction, at
grid points (X1y,X2y), (X11,X29), (X11,X23), oo (X11,X2y,) and at (X1,,X29), (X1y;>X2),
(X1X23)s +oos (X1y:X2y,). Suppose also that dy/oxy is assigned arbitrarily only at the extreme
grid points in the x2 direction, at grid points (X1;,X2), (X12,X21), (X13,X2¢)» +e0s (xlkl,le) and at

(X11,%21,) (X12X20), (X13.X24,), s (R1:X2y,)- Also assume that 92y/9x10x7 is arbitrarily

E4

defined only at the 4 extreme corner points of the 2-dimensional grid, (x1;,X2;), (X1 1,x21),

(xll,xzkz), and (xlkl,xzkz). This situation is illustrated in Fig. E-1.

These boundary partial derivatives can be used to define the interior point partial derivatives
through a sequence of 1-dimensional splines. Suppose that z(w) is a function of just one
independent variable, w. Suppose also that z is specified on a 1-dimensional w grid that consists
of k points: z1 = z(wy), z3 = z(W2), 23 = 2(W3), ..., zx = Z(Wg). Then, knowledge of dz/dwl; and
0z/owly is sufficient to uniquely determine a cubic spline that passes through all of the data points
and whose second derivatives are everywhere continuous. This is a standard result of 1-
dimensional spline theory [6]. This standard cubic spline has well-defined first derivatives at the
interior grid points, 0z/dwly, dz/owl3, 0z/dwls, ..., 02/dwlk-1. These are exactly the remaining data
that would be needed to implement the 1-dimensional counterpart to eq. (E-3).

For the 2-dimensional case this process is generalized to determine the required interior-
point partial derivatives. First, the values of dy/dx; at interior grid points can be determined by
applying the 1-dimensional technique for computing interior derivatives to each set of grid points

with a fixed value of x3. This is done kj times, once for each for x2 € {x2,, x2,, X253, ..., xgkz}.

In a similar fashion, the values of dy/dx2 at interior grid points can be determined by applying the
1-dimensional technique k) times, once for each xj € {x1;, X149, X13, «.0s Xlkl}- At the end of
these two sets of 1-dimensional spline operations, dy/dxi and dy/dx2 are available at every grid
point, but 92y/dx19x2 is still available only at the 4 corner grid points.

The first step in determining d2y/dx19x2 at the interior points is to determine it at the x1, and
X1y, extremities of the grid. This can be done by using z = dy/ox) and w = x in a 1-dimensional
spline operation. For the two cases, x1 = X1, and x1 = X1gp» Z is available at all of the w grid
points (W = X2, X2, X23, «-u» X2y,) and dz/dw is available at the w endpoints (w = x, and X24,)-
Therefore, the spline operation can be used to determine dz/ow at the interior w points (W = x2,,

X235 -+vs X2q,.1» DUL 0z/ow = d2y/dx10x7 according to the current definition of z; so, at the end of

this operation 92y/dx19x2 will be available at the points marked on Fig. E-2.

ES

The final step in determining 02y/9x10x at the interior points is to perform a series of 1-
dimensional splines of z = dy/dx3 in the w = x; direction, one for each grid value of x;. This can
be done because in each case, z is available at all of the interior points and 0z/ow is available at the
w end points. The resulting values of dz/dw at the interior points are just the interior values of
92y/0x10x that are needed in eq. (E-3) to compute y(x1,x2). Note that the roles of x; and x2 can
be reversed in the process of determining the interior-point values of 92y/dx10x2 without affecting
the final results.

All of the 1-dimensional spline operations that are needed to get the interior partial derivatives
can be computed off-line, and the resulting grid-point partial derivatives can be stored for rapid on-
line evaluation of y(xj,x2) via eq (E-3). The total number of off-line 1-dimensional splines
required to compute all of the interior-point partial derivatives is 2 + k1 + 2ka, which is relatively
inexpensive.

The boundary-point partial derivatives defined on Fig. E-1 are still arbitrarily selectable. In
practice, the function y(x1,x2) is insensitive to the selected boundary partial derivatives at points far
in the interior of the grid. In grid boxes near the boundary the function becomes sensitive to these
arbitrary quantities. A useful approach to selecting these quantities is to compute finite difference
approximations of these quantities near the boundary and extrapolate the required quantities to the
boundary. The required finite-difference approximations can be computed from the y data values
at the grid points. Figure E-3 illustrates the *nterior points at which various finite-difference partial
derivative approximations get computed in order to extrapolate a particular partial derivative to a
particular boundary point. This method of determining the arbitrary boundary partial derivatives
has been used in all the calculations of this report.

There is a straight-forward, but tedious generalization of this method to the problem of
computing interior-point partial derivatives for higher-dimensional splines. In the interests of

brevity, higher-dimensional generalizations have been omitted.

E6

X
1
Points at which -g—y is arbitrarily defined
X
® Points at which %’-’- is arbitrarily defined
2
. _dy D i .
@® Points at which = , = , and—-@—L are arbitrarily defined
axl ax2 axlax2

Fig. E-1. Boundary points on a 2-dimensional spline's grid at which

partial derivatives may be assigned arbitrarily.

E7

2
X / 1
4 2y / \ z
X
7\
X
21(2_2 / \ 9
_/ S e &
2, \ st
\\ (/
x22 \
le _
X X X X X X
1 2 3 k1-2 ki-1 ki
> 5
1
2
@ Points at which Iy is available after splining of 9y alon
X, 0X, ax; 8
X, =x, andalongx, =x

1 1

1 ki

Fig. E-2. Propagation of the second cross partial derivatives along two edges

of the grid from the four corners.

E8

4 4 2 m o @

k-2

L \U ||
™

> x

Example boundary point where ayfax1 is calculated by linear extrapolation from two
interior points

Corresponding interior points where finite-difference values of dy/dx, are available

Example boundary point where dy/ox, is calculated by linear extrapolation from two
interior points

Corresponding interior points where finite-difference values of aylax2 are available
Example boundary point where Bzy[c)xlax2 is calculated by bi-linear extrapolation from
four interior points

Corresponding interior points where finite-difference values of azy/axlax2 are available

Fig. E-3. Examples of how partial derivatives on the boundary are

extrapolated from finite-difference interior values.

E9

