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ABSTRACT

The main objectives of our research are to present a self-contained

overview of fuzzy sets and fuzzy logic, develop a methodology for control

system design using fuzzy logic controllers, and to design and implement a

fuzzy logic controller for a real system. In this thesis we first present the

fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic

fuzzy operations are defined. In addition, for control systems, it is important

to understand the concepts of linguistic variables, linguistic values, term sets,

fuzzy rule base, inference methods, and defuzzification methods. Second, we

introduce a four-step fuzzy logic control system design procedure. The

design procedure is illustrated via four examples, showing the capabilities

and robustness of fuzzy logic control systems. This is followed by a tuning

procedure that we developed from our design experience. Third, we present

two Lyapunov based techniques for stability analysis. Finally, we present

our design and implementation of a fuzzy logic controller for a linear

actuator to be used to control the direction of the Free Flight Rotorcraft

Research Vehicle at NASA Langley Research Center.



TABLE OF CONTENTS

LIST OF TABLES .............................................................................................. vi

LIST OF FIGURES ........................................................................................... vii

INTRODUCTION ............................................................................................ 1

1.1 Introduction ................................................................................................ 1

1.2 Overview of Fuzzy Controls .................................................................... 2
1.3 Thesis Structure ........................................................................................ 3

FUZZY SETS AND FUZZY LOGIC IN CONTROL SYSTEMS ................... 6
2.1 Introduction ..................................................................................... 6

2.2 Fuzzy Sets ........................................................................................ 8

2.2.1 Definition of Fuzzy Sets ...................................................... 8

2.2.2 Fuzzy Set Operations ......................................................... 11

2.2.3 Linguistic Variables ......................................................... 20

2.3 Fuzzy Logic ................................................................................... 23
2.3.1 Fuzzy Rule Base ................................................................. 23
2.3.2 InferenceMethods .............................................................. 25

2.4 Fuzzy Systems in Control Systems .............................................. 29
2.4.1 Defuzzification .................................................................... 29

2.4.2 Defuzzification Method ..................................................... 31

2.4.3 Center of Gravity Method .................................................. 32

2.5 Example ......................................................................................... 35
2.6 Conclusions .................................................................................... 41

FUZZY LOGIC CONTROLLERS (FLCs) ....................................................... 42
3.1 Introduction .................................................................................... 42

3.2 Fuzzy Logic Control System Design ........................................... 44

3.2.1 Step One. Acquire Plant Information ................................ 47

3.2.2 Step Two. Select Term Sets For the Linguistic Variable.48

3.2.2.1 Example ................................................................. 52

iv



3.2.3 Step Three. Form the Fuzzy Rule Base ........................... 56

3.2.4 Step Four. Tune the Fuzzy Controller ............................... 59

3.3 Design Example One ..................................................................... 60

3.4 Design Example Two .................................................................... 76

3.5 Design Example Three .................................... _............................ 87

3.6 Design Example Four ................................................................... 91
3.7 Conclusions ................................................................................... 93

Appendices 3A, 3B, 3C ........................................................................... 94

OVERVIEW OF STABILITY ANALYSIS OF FLC's ................................. 109

4.1 Introduction ................................................................................. 109

4.2 Stability Analysis Using Lyapunov's Direct Method ............... 110

4.2.1 Example ............................................................................. 115
4.2.2 Conclusions ..................................................................... 120

4.3 Another Approach Using Lyapunov's Direct Method .............. 120

4.3.1 StabilityCriterion ............................................................. 121

4.3.2 Example ............................................................................ 123
4.3.3 Conclusions .................................................................... 126

Appendix 4A ................................................................................ 128

ACTUATOR DESIGN FOR THE FREE FLIGHT ROTORCRAFT

RESEARCH VEHICLE ................................................................................... 131

5.1 Introduction ............................................................................... 131

5.2 System Description and Specifications ..................................... 133

5.2.1 Physical Characteristics ................................................... 133
5.2.2 Mechanical Characteristics .............................................. 134

5.2.3 Electrical Characteristics .................................................. 134

5.3 Design Procedure ....................................................................... 135

5.4 Testing Results ........................................................................... 138
5.5 Conclusions ................................................................................. 142

Appendix ................................................................................................ 148

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH .... 154

6.1 Conclusions ................................................................................. 156

6.2 Suggestions For Further Research ............................................. 158

BIBLIOGRAPHY ........................................................................................ 158

APPENDIX A ................................................................................................. 162

V



LIST OF TABLES

Table 2.1.

Table 3.1.

Table 3.2.

Table 3.3.

Table 3.4.

Table 3.5.

Table 3.6.

Table 3.7.

Table 3.8.

Table 3.9.

Table 4.1.

Sample look up table .................................................................... 37

Range of signals ............................................................................ 48

Example of a rule base ................................................................. 57

Rule base for the example ........................................................... 63

Results of varying the command input ........................................ 74

Results of varying the pole locations by 20% ............................ 74

Results of varying the dc gain by 20% ....................................... 75

Results of varying the command input ........................................ 86

Results of varying the pole locations by 20% ............................ 86

Results of varying the dc gain by 20% ....................................... 87

Partitioned state space ................................................................. 124

vi



LIST OF FIGURES

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5.

Figure 2.6.

Figure 2.7.

Figure 2.8.

Figure 2.9.

The membership functions WARM and HOT ............................ 10

Membership functions for two valued logic ............................... 12

Membership functions for WARM union HOT .......................... 14

Membership functions for WARM intersection HOT ................. 15

Membership functions for the complement of WARM and
HOT ................................................................................................ 16

Membership functions for WARM union NOT WARM ........... 21

Membership functions for WARM intersection NOT WARM...22

Max-min inference method .......................................................... 28

Max-dot inference method .......................................................... 29

Figure 2.10. Graphical representation of control rules ................................... 39

Figure 2.11.

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Determination of the control input by means of center of

gravity method .............................................................................. 40

A basic block diagram for fuzzy controlled system .................... 45

Block diagram of the filter in Figure 3.1 ..................................... 46

Example of membership functions .............................................. 51

Graphical representation of two rules with overlapping sets ..... 53

vii



w

Figure 3.5.

Figure 3.6.

Figure 3.7.

Figure 3.8.

Figure 3.9.

Figure 3.10.

Figure 3.11.

Figure 3.12.

Figure 3.13.

Figure 3.14.

Figure 3.15.

Figure 3.16.

Figure 3.17.

Figure 3.18.

Figure 3.19.

Figure 3.20.

Figure 3.21.

Figure 3.22.

Graphical representation of two roles with non overlapping
sets ............................................................................................. 54

Membership functions of fuzzy sets error, change of error, and

control input .................................................... ._............................ 65

Stages of fuzzy logic controllers ................................................. 68

Step response before tuning the controUer, control input
included ..................................................................................... 69

Step response after the first tuning, control input included ....... 70

Step response after the second tuning, control input included.71

Step response to different command inputs ............................... 71

Step response to variation in pole locations .............................. 72

Step response to variation in dc gain ....... . ................................. 73

Step response before tuning, control input included ................. 78

Step response to different command inputs ............................... 79

Step response to variation in pole locations .............................. 80

Step response to variation in dc gain ......................................... 81

Ramp response ............................................................................. 82

Step response to disturbance at the input ................................... 83

Step response to disturbance at the output ................................. 84

Step response to disturbance at the input and output ................ 85

Step response to variation in pole locations ................................ 89

oo_

VIII



Figure 3.23. Step response to variation in dc gain ......................................... 90

Figure 3.24. Step response of unstable plant .................................................. 92

Figure 3.25. Fuzzy sets for example one, before tuning...._ ........................... 96

Figure 3.26. Fuzzy sets for example one, after first tuning ........................... 97

Figure 3.27. Fuzzy sets for example one, after second tuning ...................... 98

Figure 3.28. Fuzzy sets for example two ...................................................... 101

Figure 3.29. Fuzzy sets for example four ..................................................... 102

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 5.1.

Figure 5.2.

Figure 5.3.

Figure 5.4.

Figure 5.5.

Figure 5.6.

Figure 5.7.

Figure 5.8.

No P-region ................................................................................. 117

CriticalP-region .......................................................................... 118

P-region appears ......................................................................... 19

Step response of example ........................................................... 127

Closed loop step response before tuning ................................... 140

Closed loop step response after tuning ...................................... 143

Closed loop step response due to horizontal loading ................ 144

Closed loop step response due to vertical loading .................... 145

Closed loop step response of different controllers .................... 146

Closed loop step response of different controllers under load. 147

Fuzzy sets for the linear actuator before tuning ........................ 150

Fuzzy sets for the linear actuator after first tuning .................. 151

ix



Figure 5.9. Fuzzy sets for the linear actuator after second tuning ............ 152

X



CHAPTER ONE

INTRODUCTION

1.1 Introduction

Fuzzy logic controllers (FLCs) are used in control system design for

processes that do not admit a mathematical model or where the data is

imprecise. FLCs are fuzzy expert systems that can model the human

operator of a process. They are based on a linguistic description of the

process variables. We first present the fundamental concepts of fuzzy sets

and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In

addition, for control systems, it is important to understand the concepts of

linguistic variables, linguistic values, term sets, fuzzy rule bases, inference

methods, and defuzzification methods. Second, we introduce a basic four

step fuzzy logic control system design procedure. The design procedure is

illustrated via four examples showing the capabilities and robustness of fuzzy

logic control systems. This is followed by a procedure to tune fuzzy logic

controllers. Third, for completeness we present two Lyapunov-based
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techniques for stability analysis. This is an important area for future

research, since these techniques cannot currently be applied to our control

designs. Finally, we present the design and implementation of a fuzzy logic

controller for a linear actuator to be used to control the direction of the Free

Flight Rotorcraft Research Vehicle in NASA Langley Research Center.

1.2 Overview of Fuzzy Controls

Since the development of fuzzy set theory by Lofti Zadeh (Zadeh,

1965), it was found that it is well suited for control applications. In 1974

the first fuzzy controller was developed by Mamdani to control a small

laboratory steam engine (Mamdani, 1974). The purpose was to regulate

engine speed and boiler steam pressure by using heat applied to the boiler

and the throttle setting on the engine. Because of the successes of these

experiments conducted by Mamdani and co-workers, an interest in fuzzy

logic control was generated. Since that first application of fuzzy set theory

many others have been developed and tested to prove the worthiness of those

controllers.

Fuzzy control generated a lot of enthusiasm because it can be applied

to processes where other control techniques were not efficiem or simply
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failed to do the job. Moreover, fuzzy logic controllers require no

mathematical model but rather a linguistic description of the process. The
Q

control task is achieved through the use of fuzzy sets and a series of

IF..THEN rules that capture human expertise. Those rules when applied to

a control process would, in turn, give the desired control input to the process.

One drawback of fuzzy control is the lack of systematic techniques to

fine tune the controller to attain best results. This tuning process is

sometimes difficult and time consuming. In this thesis we introduce a

procedure to achieve the desired response when tuning fuzzy controllers.

The tuning procedure includes reshaping of the membership functions to

achieve the desired response.

1.3 Thesis Structure

The organization of the chapters in the thesis follows.

The theory of fuzzy sets and fuzzy logic as it directly relates to the design

of fuzzy logic controllers is presented in Chapter Two. This includes a

comparison between two-valued logic and fuzzy logic to help the reader

understand and appreciate the theory of fuzzy sets. Moreover, terms that

relate to fuzzy control are defined and illustrated graphically. An example
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is presented to help in understanding the application of fuzzy sets and fuzzy

logic.
t

Chapter Three is an introduction to the design of fuzzy logic

controllers. In this chapter, a procedure for the design of fuzzy logic

controllers is presented followed by examples. In the examples, a fuzzy

logic control system is designed for single-input, single-output, linear, time

invariant, and continuous plants. Second-order type 0 and 1 systems are

considered, as well as a non-minimum phase plant. The design of a

controller for these examples and the way to approach them is explained.

Moreover, techniques for tuning fuzzy controllers are also presented along

with experimental data to test the robustness of the controllers.

Chapter Four is an overview of the stability analysis of fuzzy

controllers. In this chapter, two approaches to stability analysis are discussed

briefly. However, these approaches are all aimed at specific classes of

problems. This implies that until now there has been no general method for

analyzing the stability of fuzzy logic controllers.

A real-world problem is solved and its controller design is presented

in Chapter Five. The design of a fuzzy logic controller to control a linear

actuator to be used on the Free Flight Rotorcraft Research Vehicle (FFRRV)
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is included with the specifications and system requirements. This is followed

by testing the controller under various load conditions to show its robusmess.

The conclusion of the thesis and topics for further research are

presented in Chapter Six.

Fuzzy sets and the rule base used in the design of the controllers in

Chapters Two, Three, and Five are included before and after tuning along

with the C code listings that were written for the simulation of the closed-

loop systems in appendices at the end of each chapter.



CHAPTER TWO

FUZZY SETS AND FUZZY LOGIC IN CONTROL

SYSTEMS

2.1 Introduction

The theory of fuzzy sets was developed in 1965 by Lofii Zadeh of the

University of California at Berkeley (Zadeh, 1965). It represents a

generalization of conventional set theory, making it more applicable in the

solution of real-world problems. In particular, fuzzy sets and fuzzy logic

may be used to make decisions with uncertain data. In addition to its real

world applicability, fuzzy set theory is now an important area of research in

mathematics (Dubois and Prade, 1980; Kandel and Lee, 1979). In this

chapter, the main concepts of fuzzy sets and fuzzy logic that are used in

control system design are presented.

In order to introduce and appreciate fuzzy sets, consider first the

conventional sets which are based on two-valued logic. In conventional set

theory, the objects of the universal set belong to or do not belong to specific

6
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sets. This is due to the fact that two-valued logic imposes or dictates that

we assign an object to one of two categories, for example, 0-1, good-bad,

odd-even, black-white, etc. This type of classification can be easily

performed on processes that are precise and well def'med. Such a process is

the classification of numbers as odd or even. However, many engineering

categories are ill-defined, for example, warm, hot, fast, turbulent, near, tall,

etc. Notice that the terms in the above example are all relative. For instance

what one person might consider tall, another person might consider medium

height or what is considered warm by an individual could be classified as

very warm by another individual.

A historical example of fuzzy notation comes from an ancient Greek

sophism and can best illustrate the classification dilemma (Pedrycz, 1989),

"...one seed does not constitute a pile nor two nor

three .. from the other side everybody agrees that a 100

million seeds constitute a pile. What therefore is the

appropriate limit? Can we say that 325,647 seeds don't

constitute a pile but 325,648 do?"

From the above discussion we see the need to assign to an object some

degree of belonging to a set. The concept of a fuzzy set formulated by

Zadeh did just that and is introduced in the next section.



2.2 Fuzzy Sets

2.2.1 Definition of Fuzzy Sets

8

Fuzzy set theory generalizes the original concept of a set to allow the

grade of belonging to the set, which varies from full exclusion (0) up to

complete membership (1). The higher the value of the membership of a

certain object x to the fuzzy set A, R^(x), the stronger the link of x to the

category described by A. For example, defining the fuzzy notion of warm

expressed in degrees we can say that a temperature of 80 degrees belongs to

the set warm with a grade of 1.0 while the temperature of 70 degrees

belongs to the set warm with a grade of 0.50, and the temperature of 50

degrees belongs to the set warm with a grade of 0.0. From the above

example, the set of all possible temperatures forms a universal set or a

universe of discourse X. The universe of discourse can be discrete or

continuous. In this example X=[40 °, 100°], the closed interval on the real

line, denoting temperature in degrees Fahrenheit.

Formally, a fuzzy set A on a universe of discourse X is characterized

by a membership function RA(X) which maps elements of X into the closed

real interval [0,1] as follows:

PA:X --_ [0, 1],
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where pA(X) expresses the degree that x belongs to some category A. For

simplicity if there is no confusion, the membership function pA will be

simply denoted by A. A fuzzy set A can be represented by an ordered pair

A = {(x,IaA(X))lx e X}.

Hence, a fuzzy setcan be viewed by plottingx vcrsus laA(X). Inaddition,for

discreteX, a tablecan alsobe used torepresenta fuzzy set.In conventional

set theory,there is also a membership functioncalledthe characteristic

functionwhich can only take two values 0 or I, dcnoting exclusionor

inclusion,respectively,of an objectin a set.

For cxarnplc,considertheuniverseof discourseX of temperaturesin

[40°,100°].Wc can definetwo fuzzy setsWARM and HOT on X which are

characterizedby theirrespectivemembership functions.Figure 2.1 shows

the membership functionsforWARM and HOT. Additionalmembership

functionsareleftout,such as VERY HOT. Given thatx=65 ° wc determine

the degree x belongs to cach fuzzy setby findingthe point at which x

intersectsthc membership function,thatis,findingthe value of WARM(x)

and HOT(x). In thiscase a temperatureof 65° belongs to the fuzzy set

WARM with a dcgrcc of 0.75 and to HOT with a degree of 0.25. In

conventionalsets,the characteristicfunctionleadsto sharpboundaries as



I0
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85

Warm Hot

Figure 2.1. The membership functions WARM and HOT.
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seen in Figure 2.2. In this example a triangular membership function was

used. Triangular and trapezoidal membership functions are commonly used
ql,

in fuzzy control applications.

membership functions and

functions.

Other membership functions include gaussian

monotonically increasing and decreasing

2.2.2 Fuzzy Set Operations

All conventional set operations have been generalized to fuzzy sets.

In fact, when a fuzzy set operation is performed on a conventional set, the

conventional set result is obtained (Zadeh, 1965; Kandel and Lee, 1979).

In this section we present three basic operations including some of their

properties.

In set theory the operations of union, intersection, and complement are

denoted by Ac'_B, AuB , and NOT A, respectively.

defined as follows:

AUB = {xeXlxeA oz xeB},

The operations are

(2.1)

AQB = {x6X IxeA and x6B}, (2.2)
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Figure 2.2.

_) _) _) 1_)

Membership function for two valued logic.



and

--{x6Xl xfA}.
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(2.3)

Operations in fuzzy sets are defined in terms of their fuzzy membership

functions (Zadeh, 1965). In particular, for fuzzy sets A and B on X the

above operations in (2.1), (2.2), and (2.3) become

(AUB) (x) = max(A(x),B(x)) xeX, (2.4)

(AnB) (x) --min(A(x),B (x)) xeX, (2.5)

and

A(x) = 1 - A(x) xeX, (2.6)

where the union operator corresponds to the OR function, the intersection

operator corresponds to the AND function, and the complement operator

corresponds to the NOT function. Notice that the result of the three fuzzy

set operations in (2.4) - (2.6) is a new fuzzy set. The three fuzzy operations

in (2.4) - (2.6) are illustrated in Figures 2.3 - 2.5 for the fuzzy sets WARM
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Figure 2.3. The membership function of WARM union HOT.
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Figure 2.4. The membership function of WARM

intersection HOT.
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Figure 2.5. The membership functions of the complements
of WARM and HOT.
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and HOT defined in Section 2.2.1. To aid in the interpretations of Figures

2.3 - 2.5 consider the following subset of temperatures

T = {60 °, 65 °, 70 °, 75 °, 80°}.

The degrees of the membership of these temperatures to the fuzzy sets

WARM and HOT are given by

WARM (T) = {I,0.75,0.5,0.25,0}

and

HOT (T) = { 0,0.25,0.5,0.75,I}.

The fuzzy operationsin (2.4)- (2.6)must be satisfiedfor allx _ X. In

particular,they must be satisfiedfor x _ T. The degree of membership of

temperaturesinT to the fuzzy setsthatresultfrom (2.4)- (2.6)isgiven by

(WARM u HOT)(T) =

{max(l,0),max(0.75,0.25),max(0.5,0.5),max(0.25,0.75),max(0, I)}

= { 1, 0.75, 0.5, 0.75, 1 };

(WARM n HOT)(T) -

{min(1,0), min(0.75,0.25), min(0.5,0.5), min(0.25, 0.75), min(0, 1)}

= { 0, 0.25, 0.5, 0.25, 0};

(NOT WARM)(T) = {0, 0.25, 0.5, 0.75, 1 };

and
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(NOT HOT) (T) --- {1, 0.75, 0.5, 0.25, 0}.

For completeness, some fuzzy set properties in the form of theorems

are stated below. For further information see Zadeh, (1965) or Pedrycz,

(1989). First, two fuzzy sets are equal if and only if their membership

functions are identical for all x _ X. De Morgan's Laws are given by

(ANa) (x) = _(x)U _(x) (2.7)

and

(AUB) (x) A(X) NB(x) . (2.8)

De Morgan's laws can be easily proven using the basic operations in (2.4)-

(2.6). The first, becomes

1 - Max{A(x), B(x)} = Min{ 1 - A(x), 1 - B(x)}.

In order to verify the equality, the two possible cases: A(x) > B(x) and A(x)

< B(x) need to be tested. If A(x) > B(x) we have,

1 - A(x)-- 1 - A(x);

while if A(x) < B(x) we have,

1 - B(x) = 1 - B(x).

The distributive laws are given by



A _ (BUC) = (A/_B) U (AnC)
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(2.9)

and °

A U (B_C) = (AUB) n (AUC) . (2.10)

The properties of absorption and idempotency also hold:

(AnB) U A : A, (2.11)

(AUB) n A = A, (2.12)

AUA = A, (2.13)

and

AnA: A. (2.14)

However, the following laws are not satisfied,

AUX, X (2.15)

and

ANA ¢' O. (2.16)

This is expected since fuzzy sets do not impose that an object take on one

of two values. To illustrate why the laws are not satisfied consider the fuzzy
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set WARM. The membership functions of WARM u NOT WARM and

WARM n NOT WARM are given in Figures 2.6 and 2.7. In order for a

fuzzy set to be universal, that is, be equal to its universe of discourse, its

membership function should be unity on X. In addition, a fuzzy set is empty

if and only if its membership function is zero on X.

Before we move on to the application of the above statements we need

to define the concept of linguistic variables which is the comer stone of

fuzzy logic control.

2.2.3 Linguistic Variables

A linguistic variable is a variable whose value is represented with

words rather than with numbers. In control applications, the measured

variables are considered to be linguistic variables. For example, in a

statement such as the temperature is hot, we are saying that the linguistic

variable temperature has the linguistic value hot. The linguistic value hot

is a fuzzy set in the universe of discourse of temperatures. In general, a

linguistic variable with universe of discourse X may take on several

linguistic values. The set of linguistic values is referred to as the term set

of the linguistic variable. Since each linguistic value is a fuzzy set on X, the
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Figure 2.6. The membership function for WARM
intersection NOT WARM.
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Figure 2.7. The membership function for WARM union NOT

WARM.
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term set represents a fuzzy partitioning of X, where the membership

functions of the linguistic values are made to overlap. An example of some

linguistic values are:

PB: positive big,

PS: positive small,

Z: zero,

NS: negative small,

and

NB: negative big.

A finer granularity can be obtained by considering more linguistic values.

2.3 Fuzzy Logic

2.3.1 Fuzzy Rule Base

In order to apply fuzzy sets, a fuzzy rule base needs to be specified.

This rule base can be provided to the system, for example, by a human

expert or learned by an artificial neural network. Some of the methods used

to derive a fuzzy rule base for control system applications are presented in

Lee (1990) and Kosko (1992). The fuzzy control or production rules in the

rule base are of the form (Hill, Horstkotte, and Teichrow, 1990):



24

IF premise THEN consequence, (2.17)

where the premise is a set of conditions to be specified and the consequence
Q

is a set of actions to be taken. The premise and the consequence are fuzzy

relations represented by linguistic variables and their linguistic values. For

example, let L1, L2, and L 3 be three linguistic variables defined on Xl, x2, and

x3, respectively. Let x 1, x 2, and x 3 be samples of L l, L 2, and L3,

respectively, where x I and x 2 are known, and x 3 is to be determined. In

addition, let the term sets for L1, _, and L3 be given by {A1,..., A_I}, {BI,...,

B,2}, and {C1,..., Cn3}, respectively. Then the i th fuzzy rule is of the form

Ri: IF L I is A i AND L2 is B i THEN L3 is Ci (2.18)

Additional linguistic variables in the premise and consequence can be

easily taken into account. The premise of _ is a fuzzy relation defined on

the cartesian product XI×X 2. This fuzzy relation is a fuzzy set and it can be

represented by

Premise = {((xl,x2), Premise(xl,x2)) [ (xl,x2)e X1xX2},

where we can take

Premise(x 1, x2) = min (Ai(xl), Bi(x2)).

(2.19)

(2.20)

In this case, it is assumed that the fuzzy sets in the premise are combined

conjunctively with the AND operation. It is also possible to use, for
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example, the OR operation to combine the fuzzy sets. The operation

depends on the inference method chosen. This is discussed further in the
III

next section.

An example of a rule to control a linear actuator is

R1: IF E is PB AND AE is PS

THEN control input is PB.

Here E, AE, and control input are the linguistic variables and PB, PS, and

PB linguistic values in the term sets of each linguistic variable.

2.3.2 Inference Methods

The process of applying the degree of membership computed for a

production rule premise to the rule's conclusion to determine the action to

be taken is called performing an inference. One is inferring the action to be

taken from the premise. In the example in the previous section, each fuzzy

rule R can be considered to be a fuzzy implication

Ai. xBi---_C k , (2.21)

which is a fuzzy set. This fuzzy implication is a fuzzy set in X_xX2xX 3 with

membership function

R(x l, x 2, x 1) = Ll(xl)*L2(x2)*La(x3), (2.22)
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where the most commonly used operations for * are product and union (Lee,

1990).
I,

The two main inference methods that are used in applying fuzzy logic

are the max-min inference method and the max-dot inference method (Hill,

Horstkotte, and Teichrow, 1990). In Kosko (1992) these two inference

methods are referred to as correlation-minimum and correlation-product

encoding, respectively. In either inference method, the basic concept is that

the value to be assigned to the output is either scaled (max-dot) or clipped

(max-min) to the degree of membership for the premise. All the clipped or

scaled sets for all the rules that set this output are then combined together

to form the final output membership function. In reality, both methods give

very similar results. However, when it comes to computer implementation

the max-dot method is preferred because it is much faster computationally

than the max-min method. Both inference methods are illustrated in Figures

2.8 and 2.9 (Hill, Horstkotte, and Teichrow, 1990). In Figures 2.8 and 2.9

the output can be computed by taking the samples Temperature and Pressure

and observing to which sets they belong. From the appropriate rules will fire

and we can find the degree of fulfillment of each rule by applying the AND

(min) or the OR (max) operations. The output fuzzy set is then scaled or



clipped by the result of the min or max operation.

both the AND (min) and

methods.
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Figures 2.8 and 2.9 show

the OR (max) operations on both inference
Q

The following comments apply to the max-dot inference method. The

membership function of the i th fuzzy implication is given by

Ri.(xl,x2,x3) = rain(Ai(xl), Bi(x2))xC i, (2.23)

which is the membership function of the consequence scaled by the weight

W i = min(Ai(xl), Bi(x2)). If there are n fuzzy rules, then there are n fuzzy

sets _. A method is needed to determine a combined fuzzy set for the rule

base which will be called the output fuzzy set. One approach is to let

o = R1.UR2U... URn. (2.24)

A better approach (Kosko, 1992) is to add the membership functions as

follows

n

"o -- _ wxci" (2.25)
t-1.

The latter approach is preferred, in particular, as the number of fuzzy rules

in the rule base grows. Note that the universe of discourse of the output

fuzzy set is X 3.
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rule : if Temperatureis Low or PressureIs Low thenthrottleisI_edlum

P isLowT isLow Throttle ls I_1

rule ' if Tenl)eratureis Low and Pressureis Low thenthrottmeis radium

P is Low Throttle is l_d

Figure 2.8. Max-Min Inference Method.
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rule : if Temperatureis Low or PressureIs Low thenthrottleisMedium

T i5 Low P is Low

rule : if Te_erature is Lowand PressureIsLow then throttleismedlum

,/xx
T is Low P is Low Throttleis Med

Figure 2.9. Max-Dot Inference Method.
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2.4 Fuzzy Systems in Control Systems

2.4.1 Defuzzification

The previous section has described the main components of fuzzy

systems. A fuzzy system consists of a fuzzy rule base and an inference

engine. The fuzzy system maps a given set of fuzzy inputs, represented by

linguistic values, into an output fuzzy set O. More inputs can be handled

one at a time by forming several multi-input, single-output (MISO) fuzzy

systems. Fuzzy logic is used to determine which rules fire and together with

the inference method chosen, determine the output fuzzy set.

In control system applications, the crisp vector of measured variables

needs to be fuzzified first. This is accomplished by considering each

measured variable to be a linguistic variable with an appropriate term set.

The fuzzification process consists in f'lnding the degree of membership of

each measured variable to the fuzzy sets in the corresponding term sets.

Continuing with the example of the previous section, we may find that

x_ is A_, x_ is A2, X2 is B5, and x 2 is B 6.

The fuzzy sets for which the degree of membership is non-zero are used as

inputs to the fuzzy system. The output of the fuzzy system is a fuzzy set

which corresponds, for example, to the degree of membership of the control
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inputs. In control systems applications, the output fuzzy set needs to be

converted into a crisp munerical value. This process is called defuzzification

and it is described in the next section. A more detailed description of fuzzy

logic controllers is given in the next chapter.

2.4.2 Defuzzification Method

The output of the fuzzy controller obtained using one of the inference

methods described above is a fuzzy set of controls. However, a process

requires a nonfuzzy value. This establishes the need for a defuzzification

stage. In order to arrive at a crisp output value, a method is needed to pick

a value that best represents the membership function. There are several

methods for performing defuzzification. Two of the methods that are used

are the center of gravity method and the max-procedure defuzzification

method. The former method is discussed below. It yields, in general, better

steady-state performance than the latter method (Lee, 1990). The max-

procedure is hardly used because it does not consider the shape of the

membership function (Hill, Horstkotte, and Teichrow, 1990).
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2.4.3 Center Of Gravity Method

The center of gravity method picks the output value corresponding to
el,

the center of gravity of the output membership function as the crisp value for

an output. In other words, in this method the action is given by the center

of the summed area, which is contributed by the inputs (the premise part of

the IF_THEN rule).

The output of the fuzzy system is the control input u. If the output

fuzzy set is denoted by O then the control input u, determined by projecting

the centroid to the axis corresponding to the universe of discourse of the

control input, is given by

44J

f xO(z)dz

-- , (2 26)

fo(_) dx

whenever

foc _r) d'r , 0, (2.27)
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These integrals are well defined in our applications since the output fuzzy

membership function is non zero only over a f'lnite range of values. The

numerical evaluation of the integrals makes the center of gravity method

more complex than the max method. Fommately, it is not necessary to

evaluate the integrals at all.

As described in the previous section, the membership function of the

output fuzzy set is given by

n n

(2.28)

where C corresponds to one of the fuzzy values in the term set {C1, ..., Cn3 }

of the control input linguistic variable (denoted by I_,3 in the previous

sections). It is possible to show that the centroid of the output fuzzy set is

directly related to the centroids of C i. The control input can be evaluated

using (Kosko, 1992)

n

E w:t c:t I i

u-- i--I (2.29)
n
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where n is the number of fuzzy rules that have fired, and for the ith fuzzy

rule that has fired, wi = min(Ai(xl), Bi(x2)), ci is the control input

corresponding to the centroid of C, and _ is the area under C i. If the fuzzy

sets are symmetric with respect to a vertical line passing through it, then ci

is simply the value of the control input on the axis of symmetry. This value

is easily computed. In addition, if the area under each fuzzy set Ci is the

same then I = _ for all i and it can be canceled from the equation.

Therefore, the control input is simply given by

wl Ci
u - (2.30)

n

If the fuzzy sets Ci are unimodal with peak belief values over its centroid (as

in triangular or trapezoidal membership functions) and the area under each

fuzzy set is the same, then the control input is also given by

n

ciO (c±)
u = i=I (2.31)

rl

_. O(c±)



2.5 Example

Suppose we have a system with two inputs and one output.
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The two

inputs are error and derror (the change-of-error) and the output is the control

input of the plant. The fuzzy sets for both inputs and the output are all

normalized with the universe of discourse [-6, 6]. In addition, the term sets

for inputs and output are identical in this case.

In order to illustrate how to obtain a crisp output, consider an error of

-1 and a change-of-error of 1.75. In addition, suppose that the rules that get

fired are the following ones:

R 1 : IF error is Z AND derror change is PS

THEN control input is NS;

R 2 : IF error is Z AND derror change is Z

THEN control input is Z;

R 3 : IF error is NS AND derror change is NS

THEN control input is PS;

and

R4 : IF error is NS AND derror change is Z

THEN control input is PB.

Figures 2.10 and 2.11 illustrate the fuzzification of the controller inputs, the
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max-dot inference method, and the center of gravity defuzzification method.

Figure 2.10 show the fuzzy sets Z and NS for error, PS, Z, and NS for error
t

change, and the fuzzy sets NS, Z, PS, and PB for the control input. The

additional lines illustrate how to fred the scaling used in the max-dot

inference method. The scaling factors for the four rules are given by w_ =

0.5, w 2 = 0.25, w 3 -- 0, and w4 = 0.25, respectively. Figure 2.11 shows the

resulting scaled membership functions contributed by the rules. The

combined output membership function can be obtained using Equation

(2.25). The resulting crisp value for the control input corresponds to the

centroid of the combined output membership function. It can be easily

solved using Equation (2.30):.

I= [0.5x(-2)+O.25xO+OxO+O.25x4] =0.0,
(0.5+0.25+0+0.25)

(2.32)

where the centroids of the NS, Z, PS, and PB membership functions are

given by ci = -2, c2 = 0, c3 = 2, and c4 = 4, respectively.

These calculations can be implemented on a computer. After each

calculation, each error and error change will give a corresponding control

input. These results can then be stored in the form of a look-up table in

such a way that given an error and error change we can then look up the



control input. An example of a look up-table is given in Table 2.1.

37

Error Error change

-4 I -3 -2 ]-1 ] 0 ] 1 2 I 3 I 4

-4 5 4 4 3 3 2 1 1 -1

-3 5 4 3 2 2 1 0 0 -2

-2 4 3 3 2 1 1 0 -1 -3

-I 4 3 2 1 1 0 1 -2 -3

0 3 3 2 1 0 -1 -2 -3 -3

1 3 2 1 0 -1 -1 -2 -3 -4

2 3 1 0 -1 -1 -2 -3 -4 -4

3 2 0 0 -1 -2 -2 -3 -4 -5

4 1 -1 -1 -1 -2 -3 -4 -4 -5

Table 2.1. Sample look-up table.

The following procedure shows how a control input is determined from the

look up table.

• Suppose the set point = 1.

• Output of system at t_ = 4.

• Output of system at t2 = 2.

• Erroratt_=4- 1=3.

• Erroratt 2=2-1 = 1.
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• Error change = 1 - 3 -- -2.

From the look-up table we can find the control input to the process at time

t2 to be 1. For errors and error changes that do not appear in the table, linear

interpolation will be necessary to find the control input. This example shows

the simplicity of determining the control input to a process. Moreover, the

use of a computer makes the calculation process simple and easy to

implement in real time.
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2.10. Graphical representation of control rules.
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Figure 2.11. Determination of the control input by
means of center of gravity method.
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2.6 Conclusions

In this chapter, we presented an overview of fuzzy sets and fuzzy logic
Q

as they apply to control systems design. Moreover, we illustrated the

operations on fuzzy sets analytically and graphically. Fuzzy logic was

introduced and the concepts of a rule base, inference methods, and

defuzzification were illustrated.

In conclusion, this chapter served as an introduction to fuzzy sets,

fuzzy logic and how they can be applied to design fuzzy logic controllers.

It is expected to be a useful research guide, together with the references, to

researchers new to the field.



CHAPTER 3

FUZZY LOGIC CONTROLLERS

3.1 Introduction

A fuzzy logic controller is a fuzzy expert system which is a

generalization of the expert systems widely used in artificial intelligence (AI)

applications. The main difference between fuzzy expert systems and AI

expert systems is in the way they handle uncertainty. In an AI expert

system, uncertainty is handled using a probabilistic approach. A fuzzy

expert system attempts to handle uncertainty in the way humans do, using

linguistic variables and fuzzy sets. In fact, one interpretation of a fuzzy

logic controller is that it models a human operator of a control process. The

knowledge of the human operator is embedded in the fuzzy rule base. The

inference engine and the defuzzifier approximate the response of the human

operator to a given set of inputs.

Initially fuzzy logic controllers were

applications characterized by slow time

applied in process control

constants and lacking the

mathematical models of the process, but reasonably controlled by a human

42
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operator. More recently, fuzzy logic controllers have been applied to more

typical electrical engineering control problems such as motor control (Li and
Q

Lau, 1989), the inverted pendulum problem (Kosko, 1992), roll control of

aircraft (Chiu and Chand, 1989) and many more applications. All of the

mentioned applications show that fuzzy logic controllers can be used with

faster time constant systems. In addition to single-input, single-output

(SISO) processes, fuzzy logic controllers have been applied to multivariable

problems such as a turbo fan engine (Heisemer, 1992). Furthermore, all of

these applications offered comparisons between fuzzy logic controllers

(FLCs), and proportional integral (PI), proportional integral derivative

(PID), proportional derivative (PD), model reference adaptive control

(MRAC) and other classical control techniques to prove that FLCs are as

good or in many cases better than classical control techniques.

The goal of this chapter is to present our design procedure which

includes new general guidelines for the tuning of fuzzy logic controllers.

This will be followed up with examples to illustrate the capabilities and

robustness of fuzzy logic controllers.
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3.2 Fuzzy Logic Control System Design

A basic block diagram for fuzzy logic control is given in Figure 3.1
Q

where r(kT) is a sequence of command requests, e(kT) = r(kT) - y(kT) is a

sequence of tracking errors, u(t) is the control input signal, and y(t) is the

output of the plant. This is a typical sampled-data implementation of fuzzy

control systems that is useful for analysis and comparison to other control

techniques. The controller consists of two main blocks. First, a filter is used

to construct the change of error sequence Ae(kT) = e(kT) - e((k-1)T), which

is a rough first order approximation of the rate of change of error. A block

diagram implementation of the filter is shown in Figure 3.2. Other filters are

also possible (Langari and Berenji, 1992). The fuzzy logic controller (FLC)

consists of four blocks illustrated in Figure 3.7; their design is described

next.

A Design Procedure

Suppose that the control configuration in Figure 3.1 is chosen and that

an appropriate sampling period T is chosen. The following main steps are

typically used to design fuzzy logic controllers.
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F L C _ Plant

\

yC_D

Figure 3.1. A basic block diagram for a fuzzy

controlled system.

<t
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eCk"r3- _Ck-_

Figure 3.2. Block diagram of the filter in Figure 3.1.



Step 1.

Step 2.

Step 3.

Step 4.

Acquire plant information.

Select term sets for the linguistic variables.
qlp

Form a fuzzy rule base.

Tune the fuzzy controller.

These steps are described in more detail next.
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3.2.1 Step 1. Acquire Plant Information.

The design of fuzzy logic controllers begins by obtaining the range of

operation of the process. This is done by defining the numerical ranges of

the signals r(kT), u(t), and y(t) using appropriate units. These ranges must

be valid from startup to shutdown of the process. Knowledge of a range for

r(kt) defines a range for y(kT) and y(t) at steady-state. Since it is possible

for the system to experience overshoot or undershoot during the transient

behavior, the range for y(t) could be bigger than for r(kT). If these

situations are not possible, then both ranges can be the same. The range for

u(t) can be determined by considering limitations on the actuators and on

power availability. These ranges are simple to obtain with the help of an

expert operator of the system. In the absence of such an expert, system

identification techniques can be used. For example, suppose that the range
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of command inputs, r(kT), is [0, 100] units. The following table explains

how to set up the ranges for the other signals where A is the expected

maximum percent overshoot and Y_t, is the negative minimum expected

undershoot such that lY,_nI < 100.

Signal Conservative Range Usual Range

Output: y(t) [Ymt_, (I+A)100] [0, 100]

Error: e(KT) [-(1+4)100, (l+_x)100] [-100, 100]

Derror:Ae(kT) [-2(1+4)100, 2(1+4)100] [-200, 200]

Table 3.1. Range of signals

In addition, in this step it is important to acquire additional plant

information such as the presence of nonlinearities, for example, dead zones.

This information is useful in determining the term sets and the rule base.

3.2.2 Step 2. Select Term Sets For The Linguistic Variables.

For the control problems of interest in this study, the linguistic

variables are the error samples, e(kT), the approximation of the rate of

change of error samples, Ae(kT), and the output of the fuzzy logic controller,
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u(kT). The role of the first stage of the fuzzy controller is to convert the

crisp numerical data for the first two signals into linguistic values. This

stage is called fuzzification. The set of possible linguistic values for each

linguistic variable constitutes a term set or fuzzy partitioning of the universe

of discourse. The universe of discourse was obtained in Step 1.

There are two main design steps in the fuzzification stage. The first

step is to decide on the number of values which are fuzzy. Recall that fuzzy

values are fuzzy sets. A good rule of thumb is to start with three fuzzy sets

in their term sets; for example, low, medium, and high. If the system

performance is not as desired, such as large steady state error, then the

number of membership functions is increased as necessary. Figure 3.3

shows examples of three and five membership function sets. In all the

examples in this thesis, we have used five membership function sets.

In order to evaluate the system performance, the second design step

needs to be accomplished. The second design step is to determine the shape

of the membership functions for each linguistic value. Choosing the shape

of the membership functions of the fuzzy sets is based on heuristics and

depends entirely on the designer and the expert. The lack of an expert opens

the door for experimentation on the shape of these fuzzy sets and on their
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degree of overlap. In the literature, triangular shapes for the fuzzy sets have

been advocated. Moreover, the triangular shapes have been shown to
ql,

provide good control action provided that the sets overlap adequately (Kosko,

1992). The designer must decide what shape works best for the problem at

hand. Regarding the overlapping of the sets, a good rule of thumb is that

adjacent membership functions should overlap approximately 25 percent

(Kosko, 1992). Different problems might require more or less overlap. The

overlapping of the fuzzy sets is essential because it provides continuous

control action since it guarantees that more than one rule will fire at one

time. On the other hand, non-overlapping sets do not provide very good

control since only one rule can be applied at any time instant.

The following rules of thumb can be used in the absence of a real

human expert. As a starting point the membership functions for a particular

input or output should be symmetrical triangles of the same width peaking

at belief values of one, except for one coveting the lowest values of the input

or output and one covering the highest value of the input and output (Hill,

Horstkotte, and Teichrow, 1990); see Figure 3.3. These two membership

functions should be shouldered ramps with peak belief value of one.
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Lov Medium High

NS Zero PS PB

Figure 3.3. Examples of term sets.
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Furthermore, the membership function width should initially be chosen so

that each value of the input or output is contained in at least two

membership functions. This helps ensure that more than one rule applies to

each value of the input or the output. The overlapping of the membership

functions will make the control of the system smoother. This is illustrated

in the next example.

3.2.2.1 Example.

Consider the two rules:

1) IF error is Zero AND derror is Negative Small

THEN output is Positive Small

and

2) IF error is Negative Small AND derror is Negative Big

THEN output is Positive Big.

Figure 3.4 shows that an error of -1 and derror of -2.5 will fire both rules

provided that the fuzzy sets associated with the linguistic variables overlap.

On the other hand, the second rule will not fire in the case of the non-

overlapping rules as in Figure 3.5. In the case of Figure 3.4, we calculate

the control input by using the center of gravity method as follows. The -1
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Error c_rror output
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Figure 3.4.

2

Graphical representation of the two rules

with overlapping sets.
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-2

-I
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-4

/

-2
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0u_

2

Figure 3.5. Graphical representation of the two non

overlapping rules.
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input belongs to the fuzzy set Zero with degree of 0.5 and to the fuzzy set

Negative Small with a degree of 0.5. On the other hand, the rate of change
ql,

of error belongs to the set Negative Small with a degree of 0.75 and to the

set Negative Big with a degree of 0.25. By using Equations (2.4) -(2.8) we

can find the control input or the output value of the controller. We do that

by first finding the scaling of the output membership functions, wi, and the

control inputs that correspond to the centroids of the output membership

functions, c i.

w I = min(0.5,0.75) = 0.5,

w 2 = min(0.5,0.25) = 0.25,

C 1 = 2,

and

C 2 _ 4.

Using Equation (2.30),

Output- 0.5x2+O.25x4 = 2.666.
0.5+0.25

On the other hand, in Figure 3.5 we see that the second rule does not get

fired by the inputs of -1 and -2.5. Similarly, we can calculate the control

input as we did for Figure 3.4. The resulting control input will be 2.
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3.2.3 Step 3. Form The Fuzzy Rule Base

The main source of knowledge in the construction of fuzzy controllers
t

comes from the human operator. This knowledge is represented in terms of

sentences that describe the situation at hand and the action to be taken in

light of this information. These sentences consist of a set of conditional

IF..THEN statements where the first part of each contains the condition

(premise) and the second part deals with the conclusion (action). To build

the linguistic protocol, two main types of questions are relevant in the

construction of fuzzy logic controllers (Pedrycz, 1989):

• questions about the operators own behavior;, for example, what

would you do in such and such situation?

and

• questions about the behavior of the process; for example, why does

such and such situation occur?

From these type of questions the designer will be able to construct the rule

base for the fuzzy controller. At times, one will find that not all the rules

in the rule base are needed and thus will delete those unused rules. This

improves the efficiency of the controller at nan time since it has less rules

to search.
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The following is an example of a rule base that represents the entire

process for a second-order system controller. From the table we can find
qlr

what the control input will be, given the error and change of error. For

example, entry 1,1 is rule 1:

RI: IF error is PB AND derror is NB THEN control input is PS.

Error

PB

PS

Z

NS

NB

Change of Error

NB NS Z PS PB

PS PS PB PB PB

NS Z PS PS PB

NS NS Z PS PS

NB NS NS Z PS

NB NB NB NS NS

Table 3.2. Example of a rule base.

The acronyms used above are defined as follows:

PB: Positive Big,
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PS: Positive Small,

Z : Zero,

NS: Negative Small,

58

NB: Negative Big.

A physical interpretation of the fuzzy values is explained next.

Consider the statement "near the set point from the positive direction." This

statement can be represented by the linguistic value Positive Small (PS).

The statement "still moving towards the set point" can be represented by the

linguistic value Negative Small (NS) and

represented by the linguistic value Zero (Z).

the comrol input (u) can be

The above description of what

the controller is to do in this situation can be expressed by the following

rule:

IF error is PS AND derror is NS THEN u is Z.

The rule base need not be symmetric unless the process is symmetric.

For example, if one expects the setpoint to have positive and negative values,

then this dictates that the rule base be symmetric. Otherwise, symmetry is

not required. Moreover, symmetry makes sense when the term sets have

equal numbers of partitions.



59

3.2.4 Step 4. Tune the Fuzzy Controller

The issue of tuning a fuzzy logic controller is important and is an
l

essential part of the design process of fuzzy logic controllers. Tuning of

fuzzy logic controllers is required to achieve the desired control

specifications. Tuning the controller consists, in general, in re-executing

design steps 1 - 3. In practice, the controller is first tuned by modifying the

term sets of the linguistic variables and the fuzzy rule base. Systematic

techniques to perform tuning is an area of research. Through our design

experience we have arrived at the following set of guidelines to modify the

membership functions of the term sets and their relation to control

specifications. These guidelines are:

• Making the Negative Big and Positive Big sets dominant will

provide faster control action and may result in overshoot.

• Making the Negative Small and Positive Small sets dominant will

provide for faster settling time with little or no overshoot.

• Making the Zero set dominant will insure that no overshoot will

occur, but this may result in some steady state error.

In order to meet the control specifications of a particular application, the

membership functions of the term sets should be modified using the above
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guidelines. In addition, the fuzzy rule base may also be modified.

The methodology for fuzzy logic control system design introduced in

this first two sections is applied to four examples.

3.3 Design Example One

Consider the plant modeled

transfer function

by the following Laplace transform

G(s) - 5
(5s+l) (4s+l) "

It is seen that the plant is open-loop stable, but it has a slow settling time

of 25 seconds. This plant was used in an example in Pedrycz (1989). In the

design in Pedrycz (1989), the fuzzy logic controller has three inputs: error,

change-of-error, and sum-of-errors. The third input was added to

approximate integral action in the fuzzy logic controller. This was required

because, without it, there was a steady-state error in the response. We will

show that our guidelines to tune the controller can be used to yield zero

steady-state error when the controller has only two inputs: error and change-

of-error. In addition, we will speed up the response of the system and set

the D.C. gain of the closed-loop system to one. The knowledge of the plant
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transfer function is used only for simulation purposes.

The first step in the design process is to acquire plant information. In

this step the linguistic variables are chosen and universes of discourse are

obtained. The main linguistic variables are the inputs and outputs of the

controller. The inputs are the error and change-of-error. The latter is found

by first order approximation of the derivative of error (Franklin, Powell, and

Workman, 1990). The output is the control input which is dictated by the

command request signal.

In order to determine the universes of discourse, a range or universe

of discourse for the command inputs needs to be determined. For example,

to compare the response with the open-loop response unit step response,

consider a step input of amplitude equal to five. Thus, the range for the

output should be [0, 5] if the closed loop system response has no overshoot

or undershoot. This range is only important, in so far as it is used to

determine the range of the error linguistic variable. From this output

information we can deduce the universe of discourse for the error linguistic

variable to be [-5, +5]. For example, if the output is 0 and the reference

input is 5 then the error will be

e=5 -0=5.
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On the other extreme, if the output is +5 and the reference input is 0 then

the error will be

e=0-5--5.

The second step is to determine the term sets for the linguistic

variables. The first issue is to decide the number of membership functions

that will best represent the inputs (error, derror), and the output (u) of the

controller. A good role of thumb is to start with three and see if the

controller behaves in satisfactory way. If a large steady state error occurs

then increasing membership functions from three to five or seven will

reduce the steady state error and provide better control. In the case of this

example we choose to represent both inputs and the output (the control

input) as in Pedrycz (1989) with five membership functions each. These

membership functions are then branded with a linguistic value that defines

it. The linguistic values are the same ones used in Table 3.2. The fuzzy

sets for the error (e), change-of-error (de), and the control input (u) are

chosen as explained in the design procedure. They are given in Appendix

3A at the end of this chapter. These membership functions are different

from the ones used by Pedrycz (1989).
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The third step is to form the rule base. In order to be able to compare

our results to those in Pedrycz (1989), we used his same rule base as given

in Table 3.3.

Error

PB

PS

Z

NS

NB

Change of Error

NB NS Z PS

NB NB NB NS

NB NB NS PS

NB NS Z PS

NB NS PS PB

NB PS PB PB

PB

PB

PB

PB

PB

PB

Table 3.3. Rule base for example.

The rules are applied in the following manner. The controller takes two

numerical inputs, mainly the error and the change of error. The inference

engine then determines to how many membership functions the two inputs

belong to. If it is found that they belong to four membership function sets
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then those four sets will apply and the corresponding rules contribute to the

control input. This is done through the use of the max-rain or the max-dot

inference methods and consequently through the use of a defuzzification

stage to produce the crisp output. This process is repeated until the output

has reached the desired set-point with minimum steady state error. Figure

3.6 shows the stages of a fuzzy controller.

In order to simulate the closed-loop control system, we need to make

a continuous to discrete conversion of the plant using a zero-order hold. The

resulting difference equation for the plant becomes

y[i+2] = 1.9955y[i+1] - 0.9955y[i] + 0.0000148u[i+1] + 0.00001246u[i].

The sampling period for this process was arbitrarily chosen to be 0.01

seconds. The fuzzy sets and the rule base for this example are included in

Appendix 3A. The C code listing used for the simulation is also included.

The controller we obtained for the second order plant worked very

well in speeding the response of the system. The responses we obtained

depended on the choices for the error and the control input sets. From the

guidelines of Step Four, manipulation of the membership functions was done

to achieve different responses. In this particular example, we found that the

system response was fast at the expense of having a 34% overshoot. To
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Figure 3.7. Stages of fuzzy logic controllers.
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reduce the overshoot, we follow the outlined guidelines by making the

membership functions for the NB and PB smaller and not dominant.
II,

However, this implies that the PS and NS will be dominant if no changes

are made to the zero set. After making these changes the overshoot dropped

to 21%. However, the system response slowed down slightly. Further

manipulation of the shape of the membership function sets can result in no

overshoot. This is also accomplished at the expense of the time response.

In all three cases the overall performance of the system was improved.

The fuzzy controller that we designed after the second tuning appears to

have faster response time than the one designed by Pedrycz (1989) with

three controller inputs. In addition, all three of our designs had zero steady-

state errors for the nominal plant. Our control inputs are bigger initially but

they all go to zero. The control input in Pedrycz's design (1989) appears to

settle to a steady-state value of one. Figures 3.7 through 3.9 show the

response of the system to a step input of 5 before and after the first and

second modifications of the sets. Note that all three responses are valid

responses and it is entirely up to the designer to choose which is best for the

application at hand.
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To test the robustness of the controller, variation of the command

input, variation of the dc gain, and the location of the poles was done. The

poles, the dc gain, and the set points were varied by plus and minus 20% for

the controller after the first tuning. The results are presented in Tables 3.4

through 3.6. Table 3.4 illustrates the responses to variation of the command

input. Table 3.5 illustrates the responses to variation on the location of the

poles and Table 3.6 illustrates the response to variation of the dc gain.

Furthermore, these responses are illustrated graphically in Figures 3.10

through 3.12.

From these results it is seen that variations of plant parameters

produced some steady-state error. There are currently no analytical tools to

explain these responses. Variation in plant parameters were modeled by

shifting the poles of the transfer function to +20% and to -20% and

increasing and decreasing the dc gain of the plant by 20%. It is shown that

variation of plant parameters by 20%, created a steady state error of less than

5% and had very little effect on the time response of the plant and controller.
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G(S) -
0.25

(s+0.25) (s+0.2

Command Input r = 5

Command Input r = 4

Command Input r = 6

%O.S

26.4

27

25

e u

0.0

0.12

0.14

t,(sec)

11.89

12.29

13.47

Table 3.4. Results of varying the command input.

0.25

1.81

1.91

1.87

G(s) % O.S e,, t, (sec) t_ (sec)

26.4 0.0 11.8 1.81

(S+0.25) (S+0.2)

28.8

24

0.25

0.15

14.7

11.24

0.25

(S+0.2) (S+0.2)

0.25

(S+0.25) (S+0.25)

1.76

1.86

Table 3.5. Results of varying the pole locations by 20%.
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G(s)

0.25

(S+0.25) (S+0.2)

0.20

(s+0.25) (s+0.2)

0.30

(S+0.25) (S+0.2)

%0.S

26

24

27

ellB

0.0

0.1

0.15

t, (see)

11.89

12.91

12.91

(sec)

1.81

2.33

1.79

Table 3.6. Results of varying the dc gain by 20%.
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3.5 Design Example Two

In this example a fuzzy controller for a type-one plant was designed
tl,

and simulated. Unlike the first plant which was stable, this type-one system

is not stable, it is marginally stable. This implies that we need a controller

that will bring the plant under control and improve the response time.

In this example we tuned the controller three times to reduce the

overshoot. The results after first and second tuning are presented here. The

rule base and membership functions are given in Appendix 3B.

The final controller produced an overshoot of less than 10% with a rise time

of 0.5 seconds and zero steady-state error. If no overshoot is desired this

can also be accomplished by tuning the controller some more. The controller

was tuned by following the guidelines presented in this chapter. The

controller was also tested for robustness by varying the location of the left-

half plane pole. Moreover, the dc gain was varied as well as the command

input to the plant. Responses to these variations are listed in Tables 3.7

through 3.9.

The graphical response of the plant and controller are also given.

Figure 3.13 shows the response of the system after first tuning the controller.

Figures 3.14 through 3.16 show the response of the controller to variations
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in the plant parameters. These responses show that variation in plant

parameters in only one direction produced some steady-state error. This
t

steady-state error could not be explained and should be investigated in future

research. Figure 3.17 shows the response of the system to a ramp command.

Notice the apparent lack of a transient response which cannot be explained

at this point.

To test the controller robustness, disturbances at the input and output

were simulated. To simulate a disturbance at the input, a unit step response

disturbance was added at the input to the plant after it had reached steady

state error at approximately t = 1.75 seconds. Similarly, a step disturbance

was simulated at the output and then at both the input and output. Figure

3.18 shows the response to a step disturbance at the input, Figure 3.19 shows

the response to a step disturbance at the output, and Figure 3.20 shows the

response to disturbances at the input and output simultaneously. These

responses show that the controller has good disturbance rejection capability.
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G(S) -
I0

s(s+l)

Command Input r = 5

Command Input r = 3

Command Input r = 1

%O.S

10.0

10.0

10.0

elul

0.0

0.0

0.0

t,(sec)

11,

3.4

3.4

3.4

Table 3.7. Results of varying the command input.

10

s(s+l)

i0

s(s+O .8)

I0

S(S+I.2)

t (sec)

0.5

0.5

0.5

G(s) 1% O.S e, t, (sec) tr (sec)

0.0

0.56

3.4

4.6

3.4

10.0

10.6

10 0.0

0.5

0.5

0.5

Table 3.8. Results of varying the pole locations by 20%.
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10

s(s+l)

8

s(s+l)

12

s(s+l)

G(s) %0.S

10.0

14.4

9.4

ell

0.0

0.21

0.27

t. (see)

3.4

4.6

3.9

(see)

0.5

0.5

0.5

Table 3.9. Results of varying the dc gain by 20%.

3.6 Design Example Three

In this example integral action is added to the loop gain of Design

Example One by putting an integrator in series with the plant. This cascade

connection yields a new third order type one system

0.25
G(s) =

s(s+0.2) (s+0.25)

The transfer function of this plant is the same as of that of Example
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One except it has an additional pole at zero. The reason for this is to

investigate whether an integrator will yield zero steady-state errors as the

plant parameters vary. This is the classical linear control approach. This

approach can also be compared to the way Pedrycz (1989) introduced

integral action. This was done by adding a third input to the controller: a

sequence of sum of errors. For this example, we show that changing the

pole locations by plus or minus 20% has no effect on the response of the

system. In fact, the response of the system will not change at all. Only

insignificant variation in the transient response of the system is noticeable,

everything else is almost identical.

Figures 3.21 and 3.22 show the step response of the closed-loop

system to variations in pole location and variations in dc gain. The sampling

period for this system was T = 0.1 seconds. On the other hand, these

responses are significantly slower than the open-loop system. The approach

in Pedrycz seems to yield better responses, but they did not test the

robustness properties.
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3.7 Design Example Four

Until now we have shown that fuzzy logic controllers work well for

stable plants regardless of the order and the type. In addition, we established

that fuzzy controllers are robust with regard to uncertainties in plant

parameters and to disturbances at the input, output, or both. In this example

we will show that fuzzy controllers can do more than control stable plants.

In particular, we will show that fuzzy controllers can handle non-minimum

phase plants as effectively as they do stable plants. In this example, the

plant is given by its transfer function

(s-l)G(s) :
(S-2) (S+I) "

This transfer function has a right-half plane zero and a right-half plane pole.

Moreover, this type of plant is hard to

techniques. The plant was discretized at a

control using classical

sampling period of 0.001.

control

Using

a fuzzy controller, this plant was brought under control fairly quickly.

Figure 3.23 shows the step response of the controlled unstable plant. Notice

the complete absence of undershoot in the response. Such undershoot would

be present if any stabilizing linear controller had been used.
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3.8 Conclusions

In this chapter we introduced a basic fuzzy logic control system design
Ik

procedure. The procedure includes new tuning rules. Four examples are

given that illustrate the application of the design procedure. These examples

also show the capabilities and robustness of fuzzy logic control systems.

The lack of analytical tools kept us from further analysis of the results.

However, some peculiarities of fuzzy logic control systems are noted. For

example, variations of plant parameters in one direction caused no steady-

state errors, but variations in the opposite direction did introduce steady-state

errors. Also, the ramp response showed no transients at all. Finally, the

control design for the non-minimum phase plant shows that fuzzy logic

controllers are not bounded by the limitations of linear controllers. These

examples highlight the importance of developing analytical tools to analyze

fuzzy logic control systems and demonstrate their limitations.

The examples showed that the closed-loop system satisfied both

properties of scaling and adaptivity, that is, superposition over the range

considered.



Appendix 3A

Rule Base and Fuzzy Sets For Example One

G(s)
5

(5s÷l) (4s÷l)

Rule Base

IF (error IS PB) AND (derror IS NB) THEN output=PB

IF (error IS PB) AND (derror IS NS) THEN output=PB

IF (error IS PB) AND (derror IS Z) THEN output=PB

IF (error IS PB) AND (derror IS PS) THEN output=PS

IF (error IS PB) AND (derror IS PB) THEN output=PB

IF (error IS PS) AND (derror IS NB) THEN output=Z

IF (error IS PS) AND (derror IS NS) THEN output=PS

IF (error IS PS) AND (derror IS Z) THEN output=PB

IF (error IS PS) AND (derror IS PS) THEN output=PB

IF (error IS PS) AND (derror IS PB) THEN output=PB

IF (error IS Z) AND (derror IS NB) THEN output=NS

IF (error IS Z) AND (derror IS NS) THEN output=NS
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IF (error IS Z) AND (derror IS Z) THEN output=Z

IF (error IS Z) AND (derror IS PS) THEN output=PS
Q

IF (error IS Z) AND (derror IS PB) THEN output=PB

IF (error IS NS) AND (derror IS NB) THEN output=PB

IF (error IS NS) AND (den'or IS NS) THEN output=PS

IF (error IS NS) AND (derror IS Z) THEN output=NS

IF (error IS NS) AND (derror IS PS) THEN output=NB

IF (error IS NS) AND (derror IS PB) THEN output=NB

IF (error IS NB) AND (derror IS NB) THEN output=NB

IF (error IS NB) AND (derror IS NS) THEN output=NS

IF (error IS NB) AND (derror IS Z) THEN output=NB

IF (error IS NB) AND (den'or IS PS) THEN output=NB

IF (error IS NB) AND (den'or IS PB) THEN output=NB

95
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tuning.



Appendix 3B

The Rule Base and The Fuzzy Sets For Example Two

G(s) I0
m

s (s+l)

Rule Base

IF (error IS PB) AND (derror IS NB) THEN output=PS

IF (error IS PB) AND (derror IS NS) THEN output=PS

IF (error IS PB) AND (derror IS Z) THEN output=PB

IF (error IS PB) AND (derror IS PS) THEN output=PB

IF (error IS PB) AND (derror IS PB) THEN output=PB

IF (error IS PS) AND (derror IS NB) THEN output=Z

IF (error IS PS) AND (derror IS NS) THEN output=Z

IF (error IS PS) AND (derror IS Z) THEN output=PS

IF (error IS PS) AND (derror IS PS) THEN output=PB

IF (error IS PS) AND (derror IS PB) THEN output=PB

IF (error IS Z) AND (derror IS NB) THEN output=NS

IF (error IS Z) AND (derror IS NS) THEN output=NS
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IF (error IS Z) AND (derror IS Z) THEN output=Z

IF (error IS Z) AND (derror IS PS) THEN output=PS

IF (error IS Z) AND (derror IS PB) THEN output=PB

IF (error IS NS) AND (derror IS NB) THEN output=NB

IF (error IS NS) AND (derror IS NS) THEN output=NB

IF (error IS NS) AND (derror IS Z) THEN output=NS

IF (error IS NS) AND (derror IS PS) THEN output=Z

IF (error IS NS) AND (derror IS PB) THEN output=PS

IF (error IS NB) AND (den'or IS NB) THEN output=NB

IF (error IS NB) AND (den'or IS NS) THEN output=NB

IF (error IS NB) AND (derror IS Z) THEN output=NB

IF (error IS NB) AND (den'or IS PS) THEN output=NS

IF (error IS NB) AND (derror IS PB) THEN output=NS
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Figure 3.27. Fuzzy sets for Example Two.
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tuning.



Appendix 3C

The Rule Base and The Fuzzy Sets For Example Four

G(s) = (s-l)
(s+1) (s-2)

IF (error IS PB) AND (derror IS NB) THEN output=Z

IF (error IS PB) AND (derror IS NS) THEN output=PS

IF (error IS PB) AND (derror IS Z) THEN output=PB

IF (error IS PB) AND (derror IS PS) THEN output=PB

IF (error IS PB) AND (derror IS PB) THEN output=PB

IF (error IS PS) AND (derror IS NB) THEN output=Z

IF (error IS PS) AND (derror IS NS) THEN output=Z

IF (error IS PS) AND (derror IS Z) THEN output=PS

IF (error IS PS) AND (derror IS PS) THEN output=PS

IF (error IS PS) AND (derror IS PB) THEN output-PB

IF (error IS Z) AND (derror IS NB) THEN output=NB

IF (error IS Z) AND (derror IS NS) THEN output=NS

IF (error IS Z) AND (derror IS Z) THEN output=Z
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IF (error IS Z) AND (derror IS PS) THEN output=PS

IF (error IS Z) AND (derror IS PB) THEN output=PB
¢k

IF (error IS NS) AND (derror IS NB) THEN output=NB

IF (error IS NS) AND (derror IS NS) THEN output=NS

IF (error IS NS) AND (derror IS Z) THEN output=NS

IF (error IS NS) AND (derror IS PS) THEN output=Z

IF (error IS NS) AND (derror IS PB) THEN output=Z

IF (error IS NB) AND (derror IS NB) THEN output=NB

IF (error IS NB) AND (derror IS NS) THEN output=NB

IF (error IS NB) AND (derror IS Z) THEN output=NB

IF (error IS NB) AND (derror IS PS) THEN output=NS

IF (error IS NB) AND (derror IS PB) THEN output=Z
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Appendix 3D

C code used for simulation for all examples

static void Dummy_main 0

{

}

void main()

{

int i;

double derror,old_error,error;

double y[3000];

int u[3000];

int setpoint;

double output;

FILE *fout;

FILE *fopen0;

fout = fopenCuns.m", "w");
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for (i--O;i<3000;i++){

y[i]--O;

u[i]--O;

y[O]--O;

y[1]=O;

u[O]--O;

u[1]=O;

i=O;

setpoint=5;

y[i+2] = 2.001*y[i+1] - 1.001*y[i] + 0.001*u[i+l] - 0.001*u[i];

old_error = setpoint - y[i+2];

printf("i ERROR dERROR u Y ha");

for(i=l ;i<3000;i++) {

y[i+2] = 2.001*y[i+l] - 1.001*y[i] + 0.001*u[i+l] - 0.001*u[i];

error = setpoint - y[i+2];

if (error >= 5) error=5;

if (error <=-5) error=--5;

derror = (error- old_error)/0.01;
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if (derror >= 5) derror=5;

if (derror <=-5) derror=-5;

fuzzrule(derror, error, &output);

u[i+2]= output;

prinff(" %d_t%21Nt%2_%6d_%2_'xn",i,error, derror,u[i+2] ,y[i+2]);

fprinff(fout,"%2f_",y[i+2]);

old_error = error;

}

}
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CHAPTER FOUR

STABILITY ANALYSIS OF FUZZY LOGIC CONTROLLERS

4.1 Introduction

The issue of stability of fuzzy control systems is of a great deal of

importance as with that of any other control design technique. Nevertheless,

stability analysis is the least addressed issue in connection with the design

and implementation of fuzzy control systems. The reason is that tools that

are used in classical control analysis simply do not lead to any results in the

area of fuzzy control. This is due to the nature of the controller which is not

described by dynamical equations but rather by linguistic statements that

describe the inputs and evaluates the output accordingly using a nonlinear

defuzzification method, for example, the center of gravity method.

However, stability results are starting to emerge giving the designer of fuzzy

control systems tools to aid in the analysis and design of fuzzy controllers.

Some of the analysis tools, however, are based on assumptions that are

impractical. In this chapter we will discuss some of these stability analysis
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tools and point out their limitations and advantages. In particular, we will

discuss two Lyapunov approaches to establish stability in a fuzzy control

system

4.2 Stability Analysis Using Lyapunov's Direct Method

The stability of fuzzy control systems can be studied using Lyapunov's

direct method (Kowamato, Tada, Ishigame, and Taniguchi, 1992). The fuzzy

model for the system is assumed to be a linear combination of its inputs and

has the following form (Tanaka and Sugeno 1985):

g i : IF X(k) is Air AND ... AND X(k-n+m) is Ain

THEN X_(k+l) = ai_ X(k) + ... +ain X(k-n+m),

where _, i=1,2, .... m, denotes the i_h implication, m is the number of fuzzy

implications, Xi(k+l) is the output from the ith implication, i 'ap s, p--0,1,2,..,n,

are the consequent parameters, x(k) through x(k-n+m) are state variables, and

the Aip's are fuzzy sets. The linear subsystem in the consequent part of the

ith implication can be written in matrix form

& X(k),

where

X(k) = [X(k), X(k-1), ..., X(k-n+m)] r



and

h i

a i

1

= 0

0

i2 i a ia ... a n-I n

0 ... 0 0

1 ... 0 .

eee • •

0 ... 1 0

The output of the fuzzy system is inferred as follows.

X(k+l) --

I

EW i A i Xi(k)
i-1

l

i,,1
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where the Wi's are the weights of each rule that has been applied. For

example, weights are used to emphasize the effect of some rules.

state Lyapunov's stability theorem.

Theorem 4.1 (Franklin, Powell, and Workman, 1990)

V(x) is a Lyapunov function for the system

X(k+l) = f(x), f(0)=0, (4.1)

if the following conditions hold (V(x) is a scalar function):

Next we
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1. V(0) = 0, and V(x) is continuous in x.

2. V(x) is positive definite; that is V(x) _<0 with V(x) = 0 only if

x=0.

3. AV(x) - V(f(x)) - V(x) is negative definite; that is

V(f(x)) - V(x) < 0 with AV(x) = 0 only if x = 0.

4. V(x) approaches infinity as | x(k)l ---> -0.

The solution X(k)---0 for the system given by (4.1) is globally asymptotically

stable if there exists a Lyapunov function in x; that is, if V(x) is a Lyapunov

function that satisfies conditions 1, 2, 3, and 4.

Theorem 4.2 (Tanaka and Sugeno, 1990)

The equilibrium of a fuzzy system is asymptotically stable in the large

if there exists a common positive definite matrix P such that

ATi P Ai -P<0

for i=l, 2,..., m; that is, for all subsystems.

Definition 4.1

A fuzzy system such that all the _'s are stable matrices is said to be

locally stable. A fuzzy system is globally stable if there exists a common

positive definite matrix P for all subsystems such that _ is stable and

nonsingular and (4.2) is satisfied.



113

To find P consider the following relations (Kowamato, Tada, Ishigarne,

and Taniguchi, 1992)

A1r P A1 - P = - QI < 0,

A2 T P A2 - P = " Q2 < 0,

AmT P Am - P = - Qm < 0, (4.2)

where Q_, Q2, ..., Qm > 0. In this approach it is assumed that the common

positive definite matrix P is 2x2 with real entries, that is

=IPl_ Pl2]

P [P21 P22J

P can be modified for computational ease, as follows:

where Pl = P,,/IPnl and P2 = P_JlPl_I.

Since P is 2x2, A and Q are also 2x2 and of the form

A

and



Substituting these forms in equation (4.2) yields

ql = - { (al 2- 1)Pt + a32p2 + 2ala3},

q2 = - { ala2Pl +a3a4p2 + (ala4 + a2a3 -1)},

and

q3 = - { a22P1 + (a42 - 1)p2 + 2a2a4}.

Since we need P > O, we have

Pl>O

and
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(4.3)

PiP2 > 1. (4.4)

The condition QI > 0 implies ql > 0 by rewriting it as

(al 2 - 1)Pl + a32p2 + 2ala3 < 0. (4.5)

The condition qlq3 - q22 > 0 gives us

a22pl 2 + a32p22 - {(ala4 - a2a3)2 - (al 2 + a42) + 1 }PIP2 + 2a2(a4 - al)Pl +

2a3(al - a4)P2 + {(ala4 - a2a3)2 - 2(ata4 + a2a3) + 1 } < 0. (4.6)

Now we can construct the P - region that satisfies equations (4.3) - (4.6).



4.2.1 Example

Suppose we have two systems described by

System 1: Xt(k+l) = At Xt(k)

and

where

System 2: X2(k+l) - A2 X_(k)

A t
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and

A 1

By applying Equations (4.3) - (4.6) we can plot those equations to find if a

common positive definite P matrix exists. The plots for the A matrices are

given in Figure 4.1. Since the curves do not intersect, there exists no P

region that is common to both A's.

Suppose that the A matrices are changed to
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and

A 1

A 1

_[099990 9949]
L-0.01989 0.9899 J

=[0.9997 0.009949]

L-0.05969 0.9898 J

Q

The plot for these systems is given in Figure 4.2. In this case, there exists

a critical P region, since the curves are tangent to each other.

Finally, if

A 1
F099990 99491

[-0.01989 0.9899 J

and

A 1
[099980 9949]

L-0.02985 0.9898 J

There exists a P region that is common to both A's. This is shown in Figure

4.3.
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4.2.2 Conclusions

The stability analysis tools that were presented in this section make

stability analysis using Lyapunov's method simple and easy to compute.

However, there are disadvantages to this method. The main disadvantage

is that it is assumed that the output of the system is a linear combination of

the inputs. This is the most important reason for not using this method for

stability analysis. In actual fuzzy control system design, the defuzzification

algorithm is nonlinear and prohibits the use of this method. Another reason

is system order. Once the system order is greater than two, then the

calculations to find a positive definite matrix P become too computationally

involved.

4.3 Another Approach Using Lyapunov's Method

The method of analysis presented in this section relies on having an

accurate mathematical description of the system under control along with the

control parameters. This method of stability analysis of fuzzy control

systems is based on a partitioning of the state space and applying

Lyapunov's criterion to each partition. This approach utilizes only the

minimum and maximum bounds on the control output within the partitioned
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regions of the state space (Chiu and Chand, 1991). Moreover, this method

does not impose any constraints on the rule structure. The fuzzy control

system is comprised of the input and output sets and the fuzzy rules. The

control rules are of the following form:

IF X 1 is Ai.,1AND X 2 is Ai.2 THEN Y is B i,

where XI and X 2 are the inputs to the controller and Y is the output, the A's

and B's are membership functions, and the subscript i denotes the rule

number. Therefore, given the inputs X_ and X2, we can find the degree of

fulfillment w i of the ith rule which is given by

wi = min [Ai,l(Xl), Ai,_(x2)].

The output can be computed using the center of gravity method.

4.3.1 Stability criterion

Consider the linear discrete time model of a controlled plant described

by

X(k+l) = A x(k) + B u(k).

Define a Lyapunov function candidate V(x) of the form

V(x) = Xr P X,

where P is a positive def'mite matrix. Then
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AV = V(k+l) - V(k) --Xr(k+l) P X(k+1)- Xr(k) P X(k)

= Xr(k) [ ATPA - P ] X(k) + 2uT(k)BTpAX(k) +

UT(k)BTPBu(k).

For global asymptotic stability, the following condition must be satisfied:

XT(-ATpA + P)X > (2uTBrPAX) + (uTBrpBU).
xTx XTX

This implies

_i.(-ATpA + P)>
(2uTBTpAX) + (uTBTpBu)

[xl 2
(4.7)

where ATpA - P = -Q.

Equation 4.7 simplifies to

_.mi,,(-ATpA+ P) > ]u]----_2 ( 2BTpAX + B TpB ).
Ixl_ u

(4.8)

If the condition given by Equations (4.7) - (4.8) holds in every region of the

state space, then the system is asymptotically stable. It is possible that this

method will give inconclusive results in some cells. In particular, in the
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following example, this method holds for all the regions of the state space

except those near the origin. To account for those cells near the origin,

further partitioning of the states near the origin is necessary. If we assume

that the controller provides a simple proportional plus derivative control

(Mizumoto, 1992),

In continuous time the control law is

u = kl(x,_)x + k2(x,)t))t. (4.9)

4.3.2 Example

To illustrate the application of stability to fuzzy logic controllers,

consider a first order system given by its state space representation

)_ -- -X + U.

The discrete form at a sampling period of 0.01 becomes

x[k÷l] -- 0.99x[k] ÷ 0.01u[k].

In terms of the error and the rate of change of error, (4.12) becomes
e[k] = x[k]

and

de[k] = x[k] - x[k-1].

(4.10)
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The state space representation of the discrete system in terms of error and

it rate of change becomes

e(k+l)J

To verify the stability of the controller we will need the fuzzy sets of

error, rate of change of error, and the control input. Table 4.1 gives the

maximum and minimum output condition for each cell. The top horizontal

line is the error and the left vertical line gives the rate of change.

II 5 0.1 -5

-5 6 0.37 -6

0.37 -6 -6

-1

0

6

0.37

6

2.94

0 -0.1

-6 -6

-6 -6

-2.65 -2.9

-2.9 -2.6
i!!!!i!iii!_!ii_i!!i!!i!!!i!:i_i!!!!!ii_!!iii!i!iiiiilEiiiiiiiiiiiiiiiii iii iiii

 ii!i i ii!ii i i i iiiii i iii i i iii!iiiiiii  Qii!ii ii iiiii   i   ii ii iiiii  i iiiiiiiiiii
.................................................. iiii!!!iiiii!ii! iiiiiii!iiiiiiii_::_:_:_::..-::::. , . :_:_:_:.......................
.......:....::..:.............. ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

1 6 2.9 2.66 -0.37 -6

2.94 2.65 -0.37 -2.65 -0.37

5 6 6 6 -0.37 -6

6 6 -0.37 -6 -0.37

Table 4.1. Partitioned state space.

The stability of the controller is verified for all cells except the ones

that are shaded. The conservative bounds given by (4.12) fail to establish
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stability for that region. However, it has been established that a fuzzy

controller behaves as a proportional plus derivative controller near the
t

equilibrium point (Mizumoto, 1992). Using this result and the continuous

time state-space equation for the system and substituting the control law

given by equation (4.11) we have

= (-I + kl)x + k2:_

or

-1 +k l
- X.

Using a Lyapunov function of the form V=xrx, it can be shown that the

system is asymptotically stable if

(-I + ki)
<0.

(1 - k2)

This implies that both k_ and k 2 are either larger or less than one. Figure 4.4

shows the step response of the system. The fuzzy sets and the complete rule



base for this example are given at the end of this chapter.
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4.4 Conclusion

This

limitations.

second method of stability analysis also has significant

The first and major limitation of this method is the importance

of an accurate model to do the analysis. Second, we have shown that to do

stability analysis on a controller that takes the error and its rate of change as

input, requires us to take the rate of change of the system equations as we

have done in the example. This implies that the system order will double.

As we go to systems greater than one the computational difficulties would

be immense.

These approaches to stability analysis are only meant as an overview.

More work needs to be done in this area.
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Appendix 4B

The Rule Base And The Fuzzy Sets For Example

1
G(s) =

(s+l)"

RULE BASE

IF (error IS PB) AND (derror IS ANY) THEN output=PB

IF (error IS PS) AND (derror IS NB) THEN output=Z

IF (error IS PS) AND (derror IS NS) THEN output=Z

IF (error IS PS) AND (derror IS Z) THEN output=PS

IF (error IS PS) AND (derror IS PS) THEN output=PS

IF (error IS PS) AND (derror IS PB) THEN output=PB

IF (error IS Z) AND (derror IS NB) THEN output=NB

IF (error IS Z) AND (derror IS NS) THEN output=NS

IF (error IS Z) AND (derror IS Z) THEN output=Z

IF (error IS Z) AND (derror IS PS) THEN output=PS

IF (error IS Z) AND (derror IS PB) THEN output=PB
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IF (error IS NS) AND (derror IS NB) THEN output=NB

IF (error IS NS) AND (derror IS NS) THEN output=NS
tk

IF (error IS NS) AND (derror IS Z) THEN output=NS

IF (error IS NS) AND (derror IS PS) THEN output=Z

IF (error IS NS) AND (derror IS PB) THEN output=Z

IF (error IS NB) AND (derror IS ANY) THEN output=NB
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Figure 4.5. Fuzzy sets for example of Chapter Four.



CHAPTER FIVE

ACTUATOR DESIGN FOR THE FREE FLIGHT

ROTORCRAFT RESEARCH VEHICLE

5.1 Introduction

The

currently

Research

National Aeronautics and Space Administration

developing a tele-operated unmanned

Center. The purpose of the rotorcraft

(NASA) is

rotorcraft at Langley

is to allow testing of

dynamic stability, maneuverability, and agility in a wind tunnel environment.

Before, these tests could not be conducted due to the limitations that are both

technical and economical (Phelps and Walker 1992).

Part of our research objectives were to investigate the use of fuzzy

logic controllers to control the linear actuators and the throttle governor on

the helicopter. The linear actuators are used to control the direction of the

helicopter. These directions are left-right movement, forward-backward

movement, up-down movement, and the nose direction of the helicopter.

The rotor control mechanism consists of a swash plate, connecting links, and
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blades which rotate in their sockets (Gessow and Myers, 1985). The swash

plate consists of a central non rotating disk and an outer disk which rotates

with the rotor. The central and the outer disks are connected by a ball

bearing. The inner swash plate is universally mounted and connected to a

linkage which allows it to move up and down and tilt in any direction.

Blades are connected to the swash plate by links so that the pitch of the

blades is determined by the plane of the swashplate. The three linear

actuators are mounted on the inner non-rotating swash plate 120 degrees

apart. Therefore, tilting the inner swash plate in any direction will force the

outer swashplate to tilt in the same direction and the rotor blade to be in

such configuration as to make the rotorcraft move in that direction; that is,

if the plate is tilted to the right, then the swashplate will follow and the

helicopter will move to the right.

The task before us is to design a fuzzy controller for one of the three

actuators and test it extensively. Once one of the fuzzy controllers has been

tested and proved to be good, the control algorithm can be duplicated for the

rest of the actuators in a similar manner and the final control task can be

solved geometrically. Another approach is to treat it as a multivariable

control problem and therefore design a universal controller that controls all



three actuators.
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The underlying reason for having a fuzzy controller instead of another

type of digital controller is the ease of modification of the controller

parameters. This will allow modifications of the physical characteristics of

the swashplates without having to have an accurate model to perform these

modifications as one would with a conventional digital controller.

5.2 System Description and Specifications

As discussed in Chapter Three, the first step to design a fuzzy

controller is to acquire plant information. In addition, it is essential that we

understand how the controller behaves under different conditions; these

conditions being the maximum and minimum inputs to the controller and the

maximum and minimum outputs of the controller. To arrive at these results,

one needs to know the physical as well as the mechanical and electrical

aspects and characteristics of the plant.

5.2.1 Physical Characteristics

The electric linear actuators that are to be used on the FFRRV are 4"

to 6" inches in length with a rectangular cross section of 1.75" by 3.25" and



weigh no more than 40 oz.
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5.2.2 Mechanical Characteristics

The actuator has a minimum

q_

linear displacement of 1.5" with a

maximum speed of 10" per second. It has an output force of 50 lbs when

moving at lO"/sec. Its static or stall force is 75 lbs.

5.2.3 Electrical Characteristics

The actuator is driven by an internal power amplifier. This amplifier

is an H-bridge circuit that takes inputs that are TI'L and CMOS compatible.

Its output is the appropriate current to drive the motor in a chosen direction.

The signal to the H-bridge is a single variable duty cycle signal in which is

encoded both direction and amplitude information. A 50% duty cycle

represents zero drive, since the net value of the voltage integrated over one

period is zero. The voltage supply to the H-bridge is 28 volts.

Feedback from the actuator to the controller is accomplished via a

Linear Variable Differential Transformer (LVDT) that is mounted on it. The

LVDT measures the actuator's absolute position. Mounted on the outside of

the actuator are two limiting switches that are located at the bottom and top
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of the actuator shaft. These switches are located in those positions in order

to sense when the actuator has reached the two extreme positions. When a
lit

situation is reached, such as the actuator shaft has extended or contracted to

one of those points, the sensors will output a high TTL signal that can be

used in conjunction with another logic circuit to prevent the two extreme

situations from occurring. The logic circuit and the sensors will only

interfere with the operation of the actuator when one of the two extremes

occur.

5.3 Design Procedure

The first step is to determine ranges of operation for the signals in the

closed-loop system. These ranges are used to form the universes of

discourse of the linguistic variables. In the actual implementation, the output

of the plant is the actual absolute position of the controller measured to the

nearest one thousandths of an inch. The actuator position as given by the

range of operation of the LVDT is between 0 and 1467, where 0 represent

a position of 0" and 1467 represents a position of 1.467". This is obtained

from converting the analog signal of the LVDT via an ac analog to digital

converter. Note that, the command input is also between 0 and 1467. This
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implies that the error is between -1467 and +1467. As a first guess, the rate

of change of error is estimated to be between -2000 and +2000. The control

input to the plant, i.e, the output of the controller, is given to be between 0

and +1024, 0 corresponds to 0% duty cycle at the H-bridge circuit which

means that the motor will be driven counter-clockwise at full speed (actuator

shaft is contracting). On the other hand, 1024 implies a signal of 100% duty

cycle that drives the motor in the other direction (actuator shaft extending).

In this problem the linguistic variables are the error (e), rate of change

of error (de), and the control input (u). Their universes of discourse have

been selected to be X, = [-1467, 1467], X_ = [-2000, 2000], and X u = [0,

1024], respectively.

The second step is to determine the term sets of each linguistic

variable. We assigned to each term set five linguistic values labeled as

PB: Positive Big,

PS: Positive Small,

Z: Zero,

NS: Negative Small,

and

NB: Negative Big.
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The membership functions are triangular and are equally spaced with equal

overlapping.
q

The third step is to determine a rule base. Some of the heuristics used

to develop it are given next. The specification of how the controller should

react to actuator position as measured by the LVDT can be described as

follows: If the command input to the closed loop system is 1 inch, then it is

desired that the plant follow that command input and have a position of 1

inch. Furthermore, if the plant is initially in a different position, then the

error measured in the closed loop system will be either in the negative or

positive direction where an error in the negative direction implies that the

output is at a position greater than that of the command input. On the other

hand, a positive error indicates that the output

command input.

Depending on what sign the error carries, we

output to have a value compatible with the error sign.

is less than that of the

want the controller

This implies that if

the error is negative then we need a negative output from the controller to

bring it down to the desired position, therefore reducing the error. In

particular, we need to cause the actuator shaft to contract by presenting 0%

duty cycle. More specifically, taking the rate of change of error into account
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we can describe the controller action to the output of the plant more

accurately as follows.
Qr

• If the error is big or small and it is moving still further from the set

point, then we want a big or small input to bring the actuator to the

desired position.

• If the error is small and it is being reduced then we need no input

(50% duty cycle) to the plant. This takes into account the momentum

that will bring the actuator into the desired position with little or no

overshoot.

• If the error is zero and it is not changing then do nothing. A

complete listing of the controller files, fuzzy sets,and rule base are

given at the end of the chapter.

5.4 Test Results

The controller was extensively tested under various loads and various

load conditions. The initial test of the controller without tuning the fuzzy

sets showed that the controller was performing with some steady state error

and was not as fast as desired. From the evaluation of the data, and in

particular from evaluating the control output we found that the maximum
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output we were getting from the controller is 892 instead of the 1024 we

designed for. In addition, the fuzzy sets PB and NB were not extended

enough to cover errors that we felt should be covered under the PB and NB

sets. Figures 5.1 show the response of the closed loop system.

Extending the range of the PB and NB error sets makes the controller react

faster. To make the maximum output of the controller 1024, the range of the

controller was extended such that the center value of the PB set of the output

was 1024. After data analysis, the controller was tuned to achieve a

maximum output of 1024 and to make the error sets of PB and NB have

wider ranges. This improved the response of the controller dramatically.

Specifically, the rise time, settling time, and steady state error were

noticeably much better. Under a no load condition, the controller responded

with 0.075 seconds of rise time, 0.0 steady-state error, and 9.6% overshoot.

Moreover, the control input also achieved its maximum value of 512.

Figures 5.2 shows the response of the closed loop system after tuning

with no load. Next we tested the controller with the plant loaded with

weights. These tests required the actuator to push and pull weights that were

attached to a box. The controller pushed and pulled the box and the

response was then evaluated to see if it accomplished the task without any
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Figure 5.1. Closed loop step response before tuning.
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significant change in the time response. An initial weight of 20 lbs was

experienced by the plant. The response was not changed significantly.

Figures 5.3 shows the closed loop response to horizontal loading and Figure

5.4 shows the response of the closed loop system under vertical loading.

Different controllers were designed and tested to observe the effect of

tightening the zero set and the extension of the big sets. The step response

of the three tuned control systems are given in Figures 5.5 through 5.6. In

Figure 5.5, the step response of the closed loop system under light load is

given. Figure 5.6 is the response of the dosed loop system when the plant

is heavily loaded to the same three controllers.

Notice that the closed-loop system under heavy load shows bigger

steady-state errors for the first two designs. We were able to reduce the

steady-state error of the third design by allowing larger steady-state error

under light loads. An interpretation of the variation in steady-state errors is

not available at this time. All modifications of the initial controllers are

given in Appendix 5A at the end of this chapter.



5.5 Conclusions

A fuzzy controller was designed and tested for the FFRRV.
Q
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This

section illustrated the simplicity of designing and tuning a fuzzy logic

controller for a real plant whose mathematical model was not known. The

results section showed that the fuzzy logic controlled system was able to

meet several of the design specifications. The fact that not all the

specifications could be met was due to plant limitations; the plant did not

meet specifications.
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APPENDIX 5A

The Rule Base and Fuzzy Sets For The Linear Actuator

IF (Error IS PB) AND (derror IS ANY) THEN output=Fast_Reverse

IF (Error IS PS) AND (derror IS PB) THEN output= Fast_Reverse

IF (Error IS PS) AND (derror IS PS) THEN output=Reverse

IF (Error IS PS) AND (derror IS Z) THEN output=Reverse

IF (Error IS PS) AND (derror IS NS) THEN output=IDLE

IF (Error IS PS) AND (derror IS NB) THEN output= Forward

IF (Error IS Z) AND (derror IS PB) THEN output=Reverse

IF (Error IS Z) AND (derror IS PS) THEN output=Reverse

IF (Error IS Z) AND (derror IS Z) THEN output=IDLE

IF (Error IS Z) AND (derror IS NS) THEN output=Forward

IF (Error IS Z) AND (derror IS NB) THEN output=Fast_Forward

IF (Error IS NS) AND (derror IS PB) THEN output=FastForward

IF (Error IS NS) AND (derror IS PS) THEN output=Forward

IF (Error IS NS) AND (derror IS Z) THEN output=Forward
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IF (Error IS NS) AND (derror IS NS) THEN output=Forward

IF (Error IS NS) AND (derror IS NB) THEN output=Fast_Forward

IF (Error IS NB) AND (derror IS ANY) THEN output=Fast_Forward
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Figure 5.7.
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CHAPTER SIX

CONCLUSIONS AND SUGGESTIONS FOR FURTHER

RESEARCH

6.1 Conclusions

In this thesis we first present a tutorial on fuzzy logic and fuzzy sets

as they relate to control system design. The concept of a fuzzy set and

operations on a fuzzy set are presented in comparison to conventional sets

to help the reader understand the concept more easily.

Second, we introduce a basic design procedure. New guidelines to

tune the fuzzy logic controllers are included in the procedure. This

procedure was derived from our experience in designing fuzzy logic

controllers.

Third, we present four design examples to illustrate the application of

the design procedure and to highlight some of the characteristics of fuzzy

logic control systems. The design approach is simple and was applied to
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four examples. Moreover, the examples illustrate the success of the tuning

guidelines in modifying both transient and steady state responses.

One of the characteristics of a fuzzy logic control system is that it

satisfies the superposition property over the range of operations. The scaling

property is demonstrated by varying the set points. The additive property is

demonstrated by finding the responses to two separate and simultaneous unit-

step disturbances. This was unexpected.

A second characteristic investigated was the robustness to plant

parameter variations. It is shown that some level of robustness is attained.

The fact that the responses are more affected by variations in one direction

versus the other one was unexpected. A third characteristic observed was

that the ramp response is instantaneous; that is no transient response was

observed. A fourth characteristic observed was that a fuzzy logic control

system can cancel the effect of right-half plane zeros, unlike a linear

controller. All these characteristics were unexpected. They point to the need

to develop analytical tools to study fuzzy logic control systems.

Fourth, an overview of stability analysis approaches were presented for

completeness. The analysis methods presented are not yet useful to practical



fuzzy logic control design.

research.

Finally, we solved a

introduced in this thesis.
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This overview may be used as a base for further

lit

real world problem using the methodology

Fuzzy logic controllers were designed and

implemented to control one of the linear actuators to be used in a research

helicopter. This chapter illustrates the ideal environment in which fuzzy

logic controllers may be used; that is, plants that do not have a mathematical

representation.

6.2 Suggestions For Further Research

This thesis serves as a foundation for understanding fuzzy logic control

systems. As presented in Section 6.1, our results highlight the need for

further research. Some of the suggestions are given next.

It is important to develop analysis tools with similar capabilities as

those available for linear and nonlinear controllers.

The stability analysis of fuzzy control systems is another area that

needs to be further researched. Presently, there are few methods of stability

analysis. These methods include assumptions that are impractical, making

it impossible to study the stability of practical fuzzy control systems. These
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analysis tools should explain the characteristics of fuzzy control systems as

explained in Section 6.1. For example, analysis tools to study the sensitivity

to plant parameter variations.

These analysis tools can then be translated into design tools. For

example, for robust control should an integrator be added in series with the

plant or should integral action be included in the fuzzy logic controller as in

Pedrycz (1989)?

Another important area of further research is to determine methods to

make fuzzy logic control systems adaptable. The adaptivity

controllers is extremely important for several reasons.

changes in the dynamics of the plant could be automatically accounted for

by an adaptive algorithm incorporated in the existing fuzzy control system.

The adaptive algorithm would also be used to achieve predeFmed goals in the

system. Such goals are the rise time, steady-state error, overshoot, and

settling time.

of fuzzy.

One reason is that
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APPENDIX A

TILShell and Fuzzy Programming Language (FPL)

TILShell is a software development tool which provides a way to

describe and design fuzzy expert systems and then compile this description

into the output code necessary to implement the system. It is designed to

run with Windows.

The major components of the TILSell are the object editors which consist of

• The Project Editor

° The Rule Editor

• The Membership Function Editor

° The Package Editor

• The Source/Fragment Editor

• The Var Editor

Once you log on to TILShell, you would see all the above editors listed in

icons on the left hand of the screen. To start with the design of fuzzy expert

system, one would need to define the input and output variables. This is
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accomplished by clicking on the variable icon. In the variable icon, you

would be able to define the universe of discourse for each variable and the

membership function sets. With regard to the membership functions

TILShell allows the user to specify the number of membership functions that

is needed. The default for the membership functions is three. Moreover, the

membership functions are equally space, equally overlapped triangles.

However, the spacing and the overlap can be easily modified to give best

results. Once the input and output variables are defined, the rule icon can

be invoked and the rules specified accordingly. The input variables are

connected to the rule base through the connect icon and in turn the rule base

is connected to the output variable also through the connect icon.

The user has the ability to define his own code in the source/fragment

editor. The source editor allows the user to write the code only in C.

Moreover, it allows the user to manipulate variables and do tasks that are not

included in the initial package. For example, the source editor allows the

user to write C code specific to the simulation of the controller. The

TILShell file can also be generated using a regular ASCII editor to modify

the variables, rule base, and the universe of discourse. To best illustrate the

use of TILShell consider the examples given in the previous chapters.


