
N93-3215,

SOFTWARE REENGINEERING

Ernest M. Fridge HI
Deputy Chief, Software Technology Branch/PT4

NASA/Johnson Space Center
Houston, Texas 77058

Co-Authors:

Jim Hiott
Senior Software Engineer

Paramax Systems Corporation
M/C U08A, 600 Gemini
Houston, Texas 77058

Jim Golej
Group Leader

The Mitre Corporation
1120 NASA Road 1

Houston, Texas, 77058

Allan Plumb

Project Engineer
Barrios Technology, Inc.

1331 Gemini
Houston, Texas 77058

• x

ABSTRACT

Today's software systems generally use obsolete

technology, are not integrated properly with other
software systems, and axe difficult and costly to
maintain. The discipline of reverse engineering is
becoming prominent as organizations try to move
their systems up to more modem and maintainable
technology in a cost effective manner. The
Johnson Space Center created a significant set of

tools to develop and maintain FORTRAN and C
code during development of the space shuttle. This
tool set forms the basis for an integrated
environment to reengineer existing code into
modem software engineering structures which are
then easier and less costly to maintain and which
allow a fairly straightforward translation into other
target languages. The environment will support
these structures and practices even in areas where
the language definition and compilers do not
enforce good software engineering. The
knowledge and data captured using the reverse
engineering tools is passed to standard forward
engineering tools to redesign or perform major

upgrades to software systems in a much more cost

effective manner than using older technologies.
The latest release of the environment was in

February 1992.

INTRODUCTION

Programs in use today generally have all of the
functional and information processing capabilities
required to do their specified job. However, older
programs usually use obsolete technology, are not
integrated properly with other programs, and are

difficult to maintain. Reengineering is becoming a
prominent discipline as organizations try to move
their systems to more modem and maintainable
technologies. Johnson Space Center's (JSC)
Software Technology Branch (STB) is researching
and developing a system to support reengineering
older FORTRAN programs into more maintainable
forms that can also be more readily translated to a
modem language such as FORTRAN 90, Ada, or
C. This activity has led to the development of
maintenance strategies for design recovery and

reengineering. These strategies include a set of
standards, methodologies, and the concepts for a

427

https://ntrs.nasa.gov/search.jsp?R=19930022965 2020-03-17T05:16:01+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42805547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

softwareenvironment to support design recovery

and reengineering.

This document provides a brief description of the

problem being addressed and the approach that is
being taken by the STB toward providing an
economic solution to the problem. A statement of
the maintenance problems,the benefits and
drawbacks of three alternative solutions, and a

brief history of the STB's experience in software
reengineering are followed by the STB's new
FORTRAN standards, methodology, and the

concepts for a software environment.

STATEMENT OF THE PROBLEM

Based on trends in the computer industry over the
last few years, it is clear that computer hardware,
languages, and procedures are not static. The
software industry recognizes that a large existing
software base must be dealt with as new software

engineering concepts and software technologies
emerge. The old systems use outdated technology
and are costly to maintain. At JSC, as in industry
at large, there is a large investment in existing
FORTRAN software. These FORTRAN systems

do not consistently use modern software practices
that can increase maintainability. Yet these

systems must be maintained for perhaps the next
20 years. Management is seeking ways to reduce
maintenance costs.

In the 1960s-70s many FORTRAN programs were
developed at JSC, each with its own sizeable
software development team, and its own

input/output format. These programs could not
communicate readily and eventually were "wired"

together in a very crude semblance of integration.
Standards could not be enforced because
FORTRAN did not enforce them and some were

not visible by just looking at the code. The
problem was aggravated by the lack of training of
new developers plus a 50 percent turnover in the
very large development staff every two years. In
addition, the user organizations had more people

doing development than the development group,

and these other organizations were not always
aware of the standards and support tools available.
This history has left JSC with the following

problems:

Many programs are large, and difficult to
understand, resulting m maintenance

problems.

The problems in maintenance led to users
keeping their own versions of programs,
resulting in tremendous duplication.

Many of the FORTRAN programs have already
been converted from their original dialect ot
FORTRAN to the FORTRAN 77 standard.
Additional conversions will periodically be

required even if only to new FORTRAN
standards. It is necessary to consider the question,
where will that code have to be in five or ten

years? Three possible answers come to mind:

FORTRAN 77 is the current standard, but

this will be replaced by FORTRAN 90. As
vendors stop supporting FORTRAN 77,
existing FORTRAN will have to move to
the new standard or to another language.

Much of the code may move to the Ada

language. This will be particularly true on
Space Station Freedom work.

With" C being the language of choice for
Unix and the X Window System, some of

the code might move to the C language.

ALTERNATIVE SOLUTIONS

Three alternative solutions to the problems
identified above have been identified: complete

redevelopment of the program, code translation to
a more modern language or version of a language,
and reengineering. Each of these is illustrated in
figure 1 and discussed briefly in the following

paragraphs.

428

Figure 1. Alternative Solutions

Redevelopment of a system from scratch is very
expensive. Redevelopment includes all of the

same phases of the life cyclz as new developm.ent,
from requirements through integra.uon and testing.
Extensive domain analysis is r_luircd, and there is
a risk of incomplete req "uirements. _All too often it
is claimed that a large pmgrmn willbe redeveloped
from scratch to a more modern style only to find
out that the new developers did not understand all
of the functions and necessary information
requirements of the existing system.

Code translation, especially automatic code
translation, costs much less. Some might then
ask, why worry about all of this now? We can use
a translator when the time comes that we are forced

to move the code forward. Although this would
be a nice solution, the truth is that code translators

have proven unsuccessful due to several major
reasons:

Poor existing control flow is translated into
poor control flow.

Poor existing data structures remain poor
data structures.

Translation does not take advantage of the
code and data packaging techniques
available in the newer languages, Attempts
to automatically translate some FORTRAN
programs to Ada have failed.

Reengineering: is the combination of "reverse
engineering" a working software system and then
"forward engineering" a new system based on the
results of the reverse engineering. Forward
engineering is the standard process of generating
software from "scratch." It is composed of the life
cycle phases such as requirements, architectural
design, detailed design, code development,
testing, etc. In each phase, certain products are
required and the activities which produce them are
defined. Each product is required to be complete
and consistent. To progress forward to a new
phase normally requires a new representation of
the products which involve more detail such as
new derived requirements, design decisions, trade
off evaluation between alternative approaches, etc.
Finally, code is developed which is the most
complete, consistent, and detailed representation of
the required product.

Input/output translation usually produces
hard to read "unnatural"code in the new

language.

Reverse engineering is the opposite of forward
engineering. It is the process of starting with
existing code and going backward through the

429

software development life cycle. Life cycle
products are, therefore, obtained by abstracting
from more detailed representations to more abstract

ones. This process should proceed much faster
than forward engineering since all of the details
required are available. Reverse engineenng starts
with the most detailed representation, which has

also proven to be complete and consistent since it
can currently do the job required. Developing
products in reverse involves abstracting out only
the essential information and hiding the non-

essential details at each reverse step.

How far to go backward in the reverse engineering

process before it is stopped and forward
engineering begins is a critical question and
involves trade offs. It is important to understand

all of what theprogram does, all of the information
it handles, and the control flow since these are

probably required to get the job done. This

implies taking the reverse process far enough to
understand what the "as is program is. This is

usually more significant than how the program
does its job since the how is usually the part that
_vill be changed in any following forward

engineering process.

What a program does is called its requirements.
How it meets those requirements is its design. For

a reverse engineered program it is the design that
will be updated more often than what the program
will do. Modem software engineering techniques

and technologies such as user interfaces, database
management, memory utilization, data structuring,
packages, objects, etc. will affect the design, not
what the program does. Therefore, once it is
understood what the program does and what is
obsolete, then the forward engineering process can

begin with confidence.

Reverse _ngineedng is referred to as "design
recovery" when the reverse engineering process
stops at the recovery of the design of the
implementation, rather than proceeding on to a
higher level of abstraction to include the recovery
of the requirements. The basic process of this
level of design recovery involves recovery of
information about the code modules and the data

structures in an existing program. This
information will support the programmer/analyst
who is maintaining an unfamiliar large FORTRAN

program, upgrading it for maintainability, or
converting it to another target language.

However, a better job of redesigning a program

can be accomplished with requirements recovery
than with design recovery. To carry the reverse
engineering process beyond design recovery to
requirements recovery is difficult and requires
higher levels of domain knowledge to do the
abstractions. The whys of the requirements,

design, and implementation can only be provided

by someone very familiar with the pro. gram and the
domain. This level Of expertise is often very
difficult to find and have dedicated to the

reengineering process. For this reason, the
methods and tools that the STB has developed

initially assume reverse engineering only to the
design recovery stage. Future development will be
based on feedback from the JSC software

engineering community: The current standards,
methods, tools, and environment are all designed

to be sufficiently flexible and extendible to enable
the strategies to be extended to cover the full

spectrum of reverse engineering.

The overriding philosophy of this planned reverse

engineering process is to capture the total software
implementation in an electronic form. This
includes source code, documentation, databases,

etc. Figure 2 illustrates the progression of data
structures from COMGEN-compatible code (see
section "Software Technology Branch's

Reengineering History") to reengineered code.
This progression in electronic form ensures that
the total consistent and complete requirements

representation is available. Software tools are
provided to support the generation of the more
abstract products required for engineering in
reverse as well as capturing rationale and decisions
of the engineer. By the continuing process of

abstracting the information about the pro.gram into
the different representations, the eng.meer can
remain more confident that informauon is not

being lost or inadvertently "falling through the
cracks."

430

Figure2. Data StructureProgression

SOFTWARE TECHNOLOGY BRANCH'S
REENGINEERING HISTORY

In the early 1970's, the Mission Planning and
Analysis Division's (MPAD) Software
Development Branch and TRW/Houston
developed a tool, called COMGEN, that began as a
COMMON block specification statement
generator. It grew to include many other functions
as new techniques were developed. Later
COMGEN was broken up into a continually
evolving set of tools with common data interface
structures. This tool set supports the maintenance
of FORTRAN programs today on Unisys and
multiple Unix systems. People still refer to this
tool set as COMGEN tools, and a program that
complies with the M_PAD standard COMMON
concept as a COMGEN-compatible program.
[1,2,3]

In the1970's,MPAD performeda lotof software
reengineeringtomeet thegoalofcombiningmany
of the independently developed engineering
programs, each with its own input/output formats.
Many of the modern concepts such as separation
of input/output processing from the applications,
databases,data structures,packages,generics,
objects,etc.were recognizedand simulatedto
some degree.They were notcalledby themodem
names, of course,but thedesignengineerswere

trying to do good engineering, modularization, and
data handling. Even though these techniques were
known in the 1970's, they are just now really
becoming popular because of newer technologies
such as database management systems, user
interface tools sets, and modern languages that
actually embed and enforce good software
engineering practices.

In the late 1980's, some of the personnel and the
functions of the Software Development Branch
were reorganized into the newly created Software
Technology Branch (STB). The STB's
reengineering history has put JSC in a better
position with respect to the maintainability of its
older software than many other organizations. The
positive results of this experience include the
following:

- Most of the software is reasonably
modular.

- The data has some structure.

Most of the software at JSC is reasonably
compatible with the STB's tools, including
the in-line documentation.

The large complex programs that support
many simulations have considerable
software reuse and information sharing.

431

MAINTENANCE STRATEGIES New FORTRAN Standards

The strategies presented in this document are
intended to help with design recovery in support of
programmer/analysts who are required to maintain
large FORTRAN programs that they did not
develop. In addition, these strategies are intended
to support reengineering of existing FORTRAN
code into modem software engineering structures,
which are then easier to maintain and which allow

a fairly straight forward translation into other target
languages. The STB is proposing standards,
methods, and an integrated software environment
based upon the significant set of tools built to
develop and maintain FORTRAN code for the
Space Shuttle. [4,5,6,7,8] The environment will
support these structures and practices even in areas
where the language definition and compilers do not
enforce good software engineering practices.

New standards, which allow modem software

engineering constructs to be used in FORTRAN
77, have been defined by the STB. [5] These
standards are added to existing standards defined

by the former MPAD and still in use in the mission
planning and analysis domain. The goal of the
new standards is to improve maintainability and

permit relatively automated translations to newer
languages. In table 1, the standards and their
benefits are summarized. These standards address

documentation, longer variable names, modem
control flow structures, grouping subprograms

together as virtual packages, data s.tl"ucturing, and
input/output encapsulation in separate
subprograms. Where FORTRAN 77 does not
provide the constructs, virtual constructs are
provided along with a tool environment to support
their development and maintenance. The existing
core of FORTRAN programmers should have little

problem with the standards and new FORTRAN
code should adhere to them from the start.

Table 1. Standards Summary

Standard

Documentation
Header statement before code blocks

Requirements in CD1 statements
Rationale in CD7 statements

Virtual p_ka8e identification

Longer, more meartin_ul variable names I
Modem control flow structures !Block I30

DO WtmJE

Grouping subprograms into virtual packages
Data structunng

Preferred use of calling parameters
Controlled use of COMMON blocks

Preferably encapsulate input/output in

separate subpro_'arns

Benefit

Understandability
Understandability and traceability

Design knowledge capture
Maintenance

Understandability
Maintenance and understandability

Hi_her level of abstraction, understandability

Maintenance
Maintenance
INCLUDE

COMMON database concept
Maintenance and support to future
conversions

Design Recovery and
Methodology

Reengineering The re.engineering methodology defines the steps,
the skills required, and guidelines on how far to
reverse engineer before deciding to rebuild. The
key goal is to update to modem technology and

432

software engineering concepts without losing
rexiuired functions and data. Methods are provided
that have the flexibility to meet multiple levels of
conversion, each of which improves

maintainability. Figure 3 illustrates five methods.
[6] Method 1 converts an arbitrary FORTRAN

program to COMGEN-compatiblc FORTRAN,
which provides in-line documentation, data
structure, and unique data names within a
COMMON structure. Method 2 converts software

already in this format to the new "standard"
FORTRAN with a more Ada-like structure that is

ready for a mostly automated translation by
Method 3 to a target language that embeds

software engineering principles. Alternatively,
COMGEN-compatible programs can be converted
directly to a target language like Ada by Method 4.
Although it is easier to convert a FORTRAN
program when the code already meets the standard
COMMON concept, commonly known as
COMGEN-compatible, arbitrary FORTRAN can

be directly converted to a target language by
Method 5.

canterminateatanyof thestates

Figure 3. Reengineering Methods

Environment to Support Design Recovery
and Reengineering

The STB's reengineering environment [7] is being
built around three components: standards,
methods, and tools that support the standards and
the methods. It contains modified versions of the

tools used to support the current JSC FORTRAN
programs plus commercial off-the-shelf (COTS)
tools and additional custom-built tools. The intent

is to get an environment out into use in JSC's

maintenance community to provide support for
upgrading FORTRAN programs in terms of
maintainability in the near-term, then to extend the
functionality of the tool set and environment in

response to feedback from the programmers/
analysts. Currently several groups at JSC are
using the tools. Several tools, both COTS and

custom-built, are available for C language support.

The environment has been designed with stable
interfaces defined to provide for the maximum
feasible degree of seamless integration. It is

doubtful that COTS tools can be integrated
seamlessly into the environment as no standard
interfaces have yet been established for either user

interface or data interface (as opposed to data
exchange). The tools are integrated at the front
end by a user interface and behind the screen by
two logical databases, one containing data passed
to and from the tools and the other containing the

433

original and modified source code as shown in

figure 4. CASE framework tools are being

evaluated as possible integration mechanisms.

Figure 4. Conceptual Architecture of the Design Recovery and Reengineering Environment

The environment will not be a completely
automated environment since much work will still

have to be done by a programmer/analyst. A
person must be in the loop to provide the required
puzzle-solving skills that are beyond the
capabilities of state-of-the-practice tools.
However, as an experience base is accrued in
design recovery and reengineering, knowledge-
based capabilities can be added to the environment.

Version 1 of the environment called REengineering
APplications (REAP) was delivered in June, 1991.
This integrated all existing JSC supported tools
discussed above, behind a common user interface
built on the MOTIF standard. It contains major
elements of all subsystems and encapsulates the
capabilities that have been developed and used at
JSC during the last fifteen years. A version with
improved tool integration, user interface
enhancements, and the commercial LOGISCOPE
tool was delivered in October, 1991. The

FORTRAN design recovery version was delivered
in February, 1992. In parallel, the study of using
CASE framework standards and tools to better

integrate and manage this environment should be
completed early in 1992 and the version 2 series
will be delivered on one of these platforms. The

plans and design of REAP are such, that all
deliveries containing COTS products will be
tailorable so that users can delete the COTS tools

that they do not want to license. This policy even
includes the framework integration tools. In most
cases, similar functions might still be available but
they would have less capability.

CONCLUSIONS

JSC has a large amount of existing code in
FORTRAN that embodies domain knowledge and
required functionality. This code must be
maintained and eventually translated to more
modern languages. Three primary alternative
solutions have been identified to address the

maintenance problems of these old FORTRAN

programs: complete redevelopment of the
programs, code translation to a more modern

language or version of a language, and
reengineering. Complete redevelopment is
effective but very costly. Simple code translation
is cheap, but usually ineffective since seldom do
the old systems incorporate modern software
engineering concepts such as good data

434

structuring, good control structuring,packages,
objects, etc., that should be presentin the new
system. Modern languages such as Ada have
constructs for representing these features, but
translators cannot determine these features in the

original code to map them into the new system.
Reengineering is being recognized as a viable

option because the old systems, in spite of
obsolete technology, do contain all of the required
functionality and can get the job done. However,
at the present time there are only a few expensive
Computer Aided Software Engineering (CASE)
tools and no total system environment available in
the COTS market to support reengineering

FORTRAN programs.

The STB maintenance strategies provide
standards, methods, and a tool environment for

upgrading current FORTRAN systems without
losing the embedded engineering knowledge and at

a lower cost than for complete redevelopment of
the program. A useful environment for
reengineering FORTRAN software can be built
fairly quickly by building upon the existing
FORTRAN development and maintenance tools,
COTS products, new software and hardware
technologies, plus current research into reuse,
design recovery, and reengineering. This
environment will support reengineering existing
FORTRAN code into more maintainable forms that

can also be readily translated into a modern
language including newer versions of FORTRAN.

Two versions of the environment were delivered in

1991 which integrate the existing JSC tools plus
the commercial LOGISCOPE tool behind a
common OSF MOTIF-like user interface. A

FORTRAN design recovery capability was
delivered in February 1992.

GLOSSARY

arbitrary FORTRAN FORTRAN program that is
not compatible with the
COMGEN standards long

in place for JSC's mission
planning and analysis
domain.

COMGEN-compatible FORTRAN program
that is compatible with the
COMGEN standards long

in place for JSC's mission
planning and analysis
domain. [1]

design recovery Reverse engineering, the
first step for maintenance or
re,engineering.

environment Instantiation of a

framework, i.e., an

integrated collection of
tools. It may support one
or more methodologies and

may also provide a
framework for third party
tools.

framework Software system to
integrate both the data and
the control of new and

FORTRAN 77

FORTRAN 90

forward engineering

package

reengineering

existing tools; usual
components include a user
interface, object
management system, and a
tool set.

OLrrent ANSI standards
for FORTRAN

Future ANSI standards for
FORTRAN.

Process of developing
software from "scratch,"

through the phases of
requirements, design, and
coding.

"A collection of logically
related entities or

computational resources"
(Booch[9]).

"The examination and

alteration of a subject

system to reconstitute it in a
new form and the

subsequent implementation
of the new form"

(Chikofsky and Cross

435

reverse engineering

[10]); combination of
reverse engineering and
forward engineering.

"The process of analyzing a
subject system to identify
the system's components
and their interrelationships
and create representations
of the system in another
form or at a higher level of
abstraction" (Chikofsky and
Cross [10]); the first step of
maintenance or

reengineering; reverse of
forward engineering;
process of starting with
existing code and going
backward through the

software maintenance

subject program

virtual package

software development life
cycle.

Process of modifying
existing operational
software while leaving its
primary functions intact
(Boehm [11]).

Program that is being
maintained or re.engineered.

Package concept as defined
by Booch [9], but
implemented either in Ada,
which enforces the concept,
or in a language in which
the concept must be
supported procedurally.

REFERENCES

[1] Braley, Dennis: Computer Program
Development and Maintenance Techniques.
NASA IN 80-FM-55, NASA Johnson Space
Center (Houston, TX), November 1980.

[2] Braley, Dennis: Automated Software
Documentation Techniques. NASA Johnson
Space Center (Houston, TX), April 1986.

[3] Braley, Dennis: Software Development and
Maintenance Aids Catalog. NASA IN 86-FM-
27, NASA Johnson Space Center (Houston,
TX), October 1986.

[4] Fridge HI, Ernest: Maintenance Strategies for
Design Recovery and Reengineering:
Executive Summary and Problem Statement.
Volume 1. NASA Johnson Space Center
(Houston, TX), June 1990.

[5]Braley, Dennis: Maintenance Strategies for
Design Recovery and Reengineering:
FORTRAN Standards. Volume 2. NASA

Johnson Space Center (Houston, TX), June
1990.

[6] Braley, Dennis; and Plumb, Allan:
Maintenance Strategies for Design Recovery
and Reengineering: Methods. Volume 3.
NASA Johnson Space Center (Houston, TX),
June 1990.

436

[7]

[8]

[9]

[10]

[11]

Braley, Dennis; and Plumb, Allan:
Maintenance Strategies for Design Recovery
and Reengineering: Concepts for an
Environment. Volume 4. NASA Johnson

Space Center (Houston, TX), June 1990.

George, Vivian; and Plumb, Allan: A Method
for Conversion of FORTRAN Programs.
Barrios Technology, Inc. (Houston, TX),
March 1990.

Booch, G.: Software Engineering with Ada.

Benjamin/Cummings Publishing Co., Inc.
(Menlo Park, CA), 1983.

Chikofsky, E. J.; and Cross II, J. H.:
"Reverse Engineering and Design Recovery:
A Taxonomy." IEEE Software, January
1990.

Boehm, B. W.: Software Engineering
Economics. Prentice-Hall (Englewood Cliffs,
NJ), 1981.

i 1 . r

