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ABSTRACT

In this thesis, the Always-Convergent Iterative Noise

Removal and Deconvo!ution Method of Ioup is applied as a

single-filter in the transform domain to deconvolution with

both narrow and wide Gaussian impulse reponse functions. The

wraparound error for both cases is also studied. A method is

developed by which one can find the optimum iteration number

for single-filter iterative deconvolution of sampled data.

The method employs the mean square error (MSE), the square

of the difference between the deconvolved result and the

input, for optimization. The MSE decreases as the

deconvolu_ion iterations proceed, but at the optimum

iteration number, the MSE starts to increase. This procedure

is repeated for signal-to-noise ratio of 10 to 150. The

optimum iteration number and Zhe MSE are plotted vs SNR. By

knowing the SNR for a particular experiment, one can find

the opZimum i_eration number and MSE.

The result shows that the narrow impulse response has

smaller optimum iteration numbers and MSE than the wide

Gaussian, which means the deconvolution of the narrow

Gaussian has better results than the wide Gaussian. The

vii



optimum iteration numbers for the narrow Gaussian range from

2.8 to 19.2 and for the wide Gaussian from 3.0 to 53.0.

This thesis also shows _na_ even when noise is present,

zeros can be added _o the original function to reduce the

wraparound error. An optimum number of zeros has to be

chosen to save computer time.
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CHAPTERI

THEORETICALBACKGROUND

I. I INTRODUCTION

For much signal processing work, the main task is to recover the

inpu_ signal from the outpu_ signal and -dqeimpulse response function.

For many linear systems, the relation between the output and input may

be given by a _onvolu_ion operation. In other words, the convolu_ion

of %heinput wi_h the impulse response func_on of the system gives

the ou_q0u_.Thus, in order to recover the input signal, one has to

deconvolve ilueou_-put signal with the impulse response flmqction.

There are many deconvolu_ion methods. The iterative deconvolution

methods are among those that are widely used.

In this thesis, an input signal with three peaks is chosen to be

convolved with a narrow and a wide Gaussian imp,_Ise response function.

Gaussian _ype noise is added -_ the corresponding output. The

Always-Convergent Iterative Deconvolution Method of Ioup (Ioup, 1981 )



is used -_o deconvolve the output. The mean square error (M_E) between

the deconvolved result and the input is calculated for the

optimization. The MSE decreases as the deconvolution iterations

proceed, bu_ at the optimum iteration number, the M_E starts to

increase. The procedure is repeated for signal-To-noise ratios of 10

-_ 150. By knowing the optimum iteration numbers and mean square

errors for the narrow and wide Gaussian cases, one is able to evaluate

the deconvolution for these two cases.

The deconvolutions are also performed at different data lengths for

_he same signal-to-noise ratios to check the _raparound error.

Conclusions about wh_ther one need -_ add zeros in the _me domain

(ex_ending the period) _o reduce the wraparound error are made after

_he deconvolu_ions of different da-_ lengths are done.

This thesis contains four chapters. Chapter One gives a brief

mthemaZical background, including Fourier Transforms, convolu_.on

and deconvolu_ion, and especially iterative deconvolution methods;

Chapter Two introduces the Alw%ys-Convergent Deconvolution Method of

Ioup, with discussion and conditions for using the method; Chapter

Three describes Gaussian type noise and shows how to generate the

noise; In Chapter Four, the Always-Convergent Method is applied to

deconvolve synthetic data, and conclusions about the results and the

conditions for the deconvolution are made.

2



1.2 THE _)_

The mathematical expressions of &he Fourier Transform and its

inverse aye:

and

/-

F(s) = ) f(x) exp(-i2IIxs) dx (1.1)

f(x)=/F(s)exp(+i2n s)ds, (1.2)

where F(s) is -dqe forward Fourier Transform of f(x) and f(x) is the

inverse Fourier Transform of F(s) (Bracewell, 1984). This process

is possible if f(x) satisfies the following conditions:

I) The integral of from minus irtfinity

"v3plus ip_fini_y of ',f(x)I exists.

2) Any discon_nuties in f(x) are finite.

For discre_ data, the Fourier Transforms become &he following

summa_ons:

and

Q_

F(n) = _ f(m) exp(-i2IXnm) (1.3)

f(m) = _- F(n)exp(+i211nm), (1.4)



where m and n are discrete variables.

I.3 CONVOLUTION AND THE CONVOLUTION THEOR_N

I.3. I CONVOLUTION

For a linear system _he input convolved with _he impulse response

function of _qe system gives

following diagram shows a

shift-invariant system:

the output (Robinson, 1980). The

convolution model of a linear

system

input output

f ' ' hI I

__,> , , >i ,__> >__.... I g I

t l
I I

The mathematical expression for the convolution is:

4



h(x):IS(u)_. du: f(x)*g(x) (I .5)

where h(x) is the 011_put signal, f(x) is the input signal and g(x) is

the impulse response function of the instrument.

For the discre-_ situation, the convolution m_y be given by the

following equation:

gc

hn = _ fmgn-m, (1.6)
JW-"-_

where hn, fm and gn-m are discrete

discre-_ variables.

functions and n and m are

1.3.2 CONVOLUTION THEORY4

Convolulion is a comparatively complicated operation because

in_gra_on is involved. By using the Convolution Theorem we are able

to simplify the calculation of convolution greatly.

The Convolution Theorem states that the convolution operation in one

domain corresponds to a complex multiplication operation in the other

domain (Bracewell, 1984).

If there is a convolution operation in the function domain as given

5



in equation (I.5) above, then _e Fourier Transforms F(s), G(s) and

H(s) have _inefollowing multiplicative relation:

F(s)G(s) = H(s). (_.7)

To use %he Convolution Theorem to calculate _he convolution be_ween

f(x)andg(x):

h(x) : f(x)*g(x), (1.8)

firsZ we _ The transforms of f(x) and g(x), which are F(s) and

H(s), _hen mutiply the transforms F(s) and G(s) :

a(s)- F(s)G(s). (_ .9)

The convolu%ion result is ob-_dned by simply taking the inverse

Fansform of -due product of F(s) and G(s). Thus the operation in _e

_ansform domain can be faster to ob_in on the computer.

I•3.3 DECONVOLUTION

The relationship between the output signal of a linear

shif_-invariant instrument and its input signal has been established.



The input convolved with the impulse response function of the

ins_-rument gives the output signal. But it is often _qe situation that

we know _dqe output signal and The impulse response function of the

ins_menZ. Wha% we need _o find is the input signal. In other words

we need _ recover the actual input signal f in terms of the response

func_on g and the outq0ut signal h. This process is called

deconvolution.

There are many deconvolution methods. One of the most popular

methods is inverse filtering. The following diagram shows inverse

filtering or deconvolution in the function domain.

-->,,

h , , f

>I g-I ',--> >--

I !

I I

h = f-g, (I .10)

f = h*g-1 = f-g-g-l, (1.11)

7



By the ConvoluZion Theorem the above operations in lJqe transfom

domain becomemul_plication and division:

and

F(s)G(s) - H(s)

F(s)= E(s)/o(s).

(1.12)

(I.13)

This result is undefined where G(s) = 0. The principal so!u_ion

suggested by Bracewell and Roberts (I954) is:

FP(S)= I

_(s)/G(s) [ s: O(s)¢O]

o [ s: Q(s)=o].

(1.14)

Figure I.I and I.2 show the magnitudes of the transforms. Because of

s3rmme_ry, only values at positive frequencies are presented. Figure

1.1 shows IF', ',G',,and ',H',,while Figure 1.2 shows IFp,, IGI and _ ', IHi •

In _he transform domain, at regions where G(s) is zero, Fp(S) is set

to zero. This is sometimes equivalen_ to multiplying Fp(s) by a

tr_caZing function ( rec_mngular window ):

8



Figure i.I

g

Sc frequency
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Figure 1.2

Sc

rI(s/Sc)

frequency

I0



F s) - F(s)n(s/2sc), (I.15)

where II(S/Sc) is _he rec_gnguLar window with the cutoff frequency

S
C"

Since sinc(2Scx ) is the inverse Fourier Transform of II(s/2Sc) , by

the Convolu_-ion Theorem _e principal solution for this case is:

fp(x) : f(x) * Scsinc 2ScX , (i.16)

in the 9mc_ion domain. The superposition of these effects

(convolution with the sinc inverse transform) is the approximate

solution fp(x). Proper _mpering of the rec_%_/ar window reduces the

oscillazions in_roduced by _he sinc.

No_ice thaw fp(x) is no_ a unique solution to the deconvolution

problem. Any data having a transform which is zero at regions where

G(s) is non-zero and is non-zero at regions where G(s) equals zero can

be added -_ f(x) to give a solution to the same deconvolut-ion problem

(Bracewell and Roberts, 1954; Ioup and Ioup, 1983).

If additive noise n(x) is present in the data, the output becomes:

d(x) = h(x) + n(x). (I .17)

11



The resul_ing experimental data d(x) are:

d(x) = f(x)*g(x) + n(x). (I .18)

If no noise removal is applied, the principal solution becomes:

Fp(s) = H(s)/G(s) + N(s)/G(s) (I .19)

Beyond So, the cutoff frequency of G(s), H(s) is zero. However, the

noise N(s) is not necessarily zero in _his region. For this region, we

can simply remove _he noise en_irely firsZ because H(s) is expected to

be zero in this region.

I.4 ITERATIVE DECONVOLUTION METHODS

For application _o real data, iterative deconvolution methods are

widely used. The ones involved in _his research are:

I. Van Cittert's Method (1931), and

2. Always-Convergent Deconvolution Method of

12



Ioup (198_), which will be discussed in the next chapter.

I .4.1 Van Ciz_ert's Deconvolu_ion Method

In 1931 Van Citter_ created an iterative deconvolution method. The

i_erations in the function domain can be described by the following

equations:

fo(x) = h(x)

fl(x) = fo(x) + [ h(x) - fo(x)*g(x) ]

f2(x) fl(x) + [ h(x) - fl(x)*g(x) ]

fn--1(x) = fn-2(x) + [h(x) - fn-2(x)*g(x) ]

fn(x) = fn-1 (x) + [ h(x) - fn-1 (x)*g(x) ] (1.20)

Van Cittert recognized that the imsge data h(x) could be considered

as a first approximation, fo(x), to the desired f(x). Then he took _qe

difference h(x) - fo(x)*g(x) to be the correction for the second

13



iteration. A similar correction is obtained for each iteration. In

other words, for each iteration, the approximation result fn(x) is the

stm of the previous approximation fn-1 (x) and the correction factor

which is the difference between the image data h(x) and the

convolution of The previous approxima_ion fn-1 (x) with the response

function g(x).

In the tmansform domain the itera_ions become:

_o(s)= _(s)

F1(s)= F0(s)+ [H(s)- Fo(s)O(s)]

F2(s) = FI(S) + [ H(s) - FI(s)G(s) ]

Fn_1(s) = Fn_2(s) + [ H(s) - Fn_2(s)G(s) ]

Pn(S) : Fn-1(s) + [ H(s) - F(S)n_IG(s) ] (1.21)

The las_ equation may also be written as:

Fn= [ I + (I-G) I + (I-G)2+ ....... + (1-G)n ] H

14



= { [ 1 - (1-G)n+l ] / G } H (1.22)

This result was obtained by successive substitutions. From equa$ion

(I .22), we can see lhaz in order for the itera$ions to be convergent,

the following conditions have to be satisfied:

,' I-4} : <i for regions where G(s) is non-zero, (I .23)

H(s) = 0 for other regions. (1.24)

These are the Convergence Criteria (loup and loup, 1983). In the

absence of noise, the convergence depends heavily on the impulse

response function g(x). Bracewell and Roberts (1954) gave those

condi_ions originally. Hill (1973) and Hill and Ioup (1976) used these

condi_ions to find necessary res_rictions on &he shape and location of

the impulse response function g(x).

In satisfying condivion (1.23), the origin of the impulse response

func_ion g(x) is of importance (Hill, 1973; Hill and Ioup, 1976) '

Sometimes we can adjust the origin of the impulse response func_on

g(x) to such a position that G(s) satisfies condition (I.23).

15



ALWAYS-_ONV}_GENT DECONVOLUTION METHOD OF IOUP

Van Ci_'tert's I_rative Deconvolution Method is a very effective

me_hod and has been used since _daeearly _hirties. But in order _o use

_%is me_/qod, the impulse response function has to satisfy Convergence

Criteria (1.23 and 1.24), which means that the transform of Zhe

impulse response function has _o be inside the uni_ circle centered on

I+i0 in the complex plane. Many impulse response functions do not

satisfy Convergence Criteria (1.23 and 1.24), and often there is not

1oo much we could do -_ make them satisfy (1.23 and 1.24). In 1981,

Ioup created a new method -_ c_ercome the convergence problem, which

is the so-called Always-Convergent Iterative Deconvolution Method

(Ioup,1981, Whitehorn 1980, Ioup and Whitehorn, 1981, Amini 1987).

The Alw%ys-Convergent Me_hod of Ioup is a modified version of van

Cittert's method. Two modifications are made. First, the transform of

1_qeimpulse response function G(s) is replaced by

°m(s): ',G(s)l/ ',G(s)Imax, (2.1)

16



and secondly, in the iteration equations, H(s) is replaced by the

produc_ of the principal solution and Gin(s).

From the definition of Gin(s)' we can see that Gm(s) is always real

and between 0 and I, which guarantees that Gm(s) satisfies Convergence

Criterion (I .23), thus the iterations are always convergent.

Applying the above modifications to the van Citterz iterations in

the _ansform domain, the Alw%vs-Convergent Method in the transform

domaincan be described by the following equations:

Po=H

FI = F0 + [ Fp- F0 ] Gm

Fn= Fn_I + [ Fp- Fn_I ] Gm. (2.2)

With successive substitutions, the above equations can be written in

the general form:

Fn = [ I - (1-G)(1-Gm)n ] H/G. (2.3)

17



For regions where G(s) is zero, then:

2n = O. (2.4)

The Alw%ys-Convergent Deconvolution Method can be also used in _he

domain. The iterations are given by the following equations:

fl = fo + [ fp- fo ] * gm

fn-- fn-1 + [ %-f,,-1 ]*_, (2.5)

where gm and fp are the inverse Fourier Transforms of Gm and Fp.

With the AlwsTs-Convergent Method in the _me domain, since the

convolution operation is involved, it is harder to do the iterations

and i_s more computer _ime, but one usxmlly has more information

about the original signal than the transform. Thus during the

18



deconvolution process, one m_7 be able to check the result and make

corrections _o the result _o mak_ the deconvolution more precise. For

example, for a positive signal, one knows that the resu_lt sho_ld be

non-negative, thus the non-negative constraint may be applied _ the

deconvolved signal to improve the deconvolution.

For the Always-Convergent Method in the transform domain, only

complex multiplication is involved, so it is easier and much faster to

deconvolve on the computer. The disadvantage is that one usually has

less information about the _ansform than about the original signal,

_hus it is harder _o make adjus_menta during the deconvolution process

_o get a more accurate deconvolved result.

A_ regions where G(s) is zero, the deconvolu_ion equation (2.3)

becomes:

[Fn(s)][o]: (2.6)

Obviously any arbitrary function will satisfy (2.6), and we are not

be able to recover the input. For all of the above deconvolution

methods, the solution F(s) is defined to be zero in _his region. This

does not really solve the problem, as we still have no idea what the

real input is. Howerer, the applica_on of func_on domain constraints

can extend the solution into this region !

19
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III

NOISE

In the real world there will be always noise present. Data

processing systems are usually required -_ handle a large assortment

of signals in the presence of noise. There are many _pes of noise:

noise could be due wrong signal, or the right signal out of place, and

whaZ is noise to one observer mighZ be signal -_ another. In any

application, care must be given to the classification of which signals

sre considered -_ be useful and which ones are considered undesirable,

or noise (Ronbinson, 1980).

The noise studied in this research is Gaussian distributed noise.

Gaussian noise has a Gaussian or bell curve distribution about any

given da%a point. If enough noise cases are generated, a plot of

occurrence versus the magnitude of that emplitu_de approaches a

Gaussian shape (Pig.3. I).

21



There are two types of Gaussian distributed noise: constant and

ordinate-dependent noise. For constant Gaussian noise, the width of

_dqe bell curve is fixed; i_ is Oaussian noise wi_h _he same standard

devia_ion at each point. However, ordinate-dependent Gaussian noise is

thaZ for which the width of %he bell curve depends on _ne ordinate

value of the data poinZ.

To add Gaussiazl noise to the data, one can use the well-known result

that the sum of comparatively few random numbers from a uniform

dis_ribution gives a very good approximation to a normal Gaussian

dis_ribuZion (Hamming, 1962). UZilization of the Central-Limit Theorem

leads to the above conclusion (Hamming, 1962). On the computer, in the

case of a decimal machine (expressed as a base 10 number) it is

customary to use 12 random numbers to get a variance of I (Hamming,

1962). Since the mean in this case is not zero (the mean is half of

%he number of poin_), a necessary amount (in this case 6) must be

sub_racted from the sum of the numbers to make the mean zero. For the

constant noise case the expression is:

hnc(l ) = (Ai - 6) SFI/2 + h(1) (3.1)

i

where the Ai are the sum of random numbers, SF is the scale factor,

and h is the noise free data. With the help of the SF one can generate

a noisy data set which has approximately the signal to noise ra_o

(SNR) of interest (Leclere, 1984).

22
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CHA2TER IV

SINGLE-FILTER APPLICATION OF THE ALWAYS-CONV_GENT

DECONVOLUTION METHOD TO PHYSICAL DATA

In __is chapter, the use of -due Always-Convergent DeconvoluVion

Method _ deconvolve _/nthe_ic da_a is discussed. The input used here

consists of three narrow Gaussian peaks which are shown in Fig.4.1.

The second and third peaks are located close enough together so that

after convolution there is some overlap. To get the output data, the

input is convolved with both narrow and wide Gaussian impulse response

functions. The narrow Gaussian impulse response function contains 9

points as shown in Fig.4.2, while the wide Gaussian contains 21 points

as shown in Fig.4.3. Gaussian-type noise with various signal-to-noise

ratios is added to the output data. The deconvolved result is compared

24



%o The inpu1, and _e mean square error (MSE) between the deconvolved

result and _he input is calculated as a quality measure. The

minimization of The mean square error between _qe deconvolved result

and -dqe known _nqThetic input is used _ determine the optimum

i_eration number.

The mean square error of -due deconvolved result F' and the input F

in the transform domain is given by:

MSE= [ ( F'i_Fi )2 ]I/2, (4.1)

which is The square root of The _ over all frequencies of the

squares of The difference between The transform of the deconvolved

result and The transform of the input.

Two Gaussian impulse response functions were used since many

instrumen-_ have Gaussian impulse response functions. We use boTh

narrow and wide Gaussian impulse response functions, expecting to

c_ver approximately the range of typical instruments.

Discrete Fourier Transforms of The sampled impulse response function

g(x) and Zae output h(x) (wiTh or without noise) are taken for both

narrow and wide Gaussian impulse response functions, using an _TSD

subroutine (IMSL). Equation (2.3) is used to perform The deconvolution

iterations in The transform domain.

25



The mean square error between the known synthe_ic input and the

deconvolved resul_ is calculated for each iteration and compared to

%has of -dne previous iteration. Previous research results (Amini,

1986) show _ha_ %he curve of mean square error versus iteration number

under certain signal-to-noise ratios has the shape of Fig.4.7. This

means that the mean square error decreases as the iteration number

increases until %he optimum iteration is reached. Beyond the optimum

i_ration number, the mean square error increases as the iteration

number increases. During the process of deconvolution, once the MSE is

found -_o increase compared -_o the previous itera_on, we simply

-_rminate %he deconvolution and set _qat iteration number to be the

optimum i-_ration number.

Table 4.1 shows %he optimum iteration number for the narrow Gaussian

case at a signal to noise ratio of 10 -_ 150. The optimum iteration

number is 3 at a 8NR of 10, and increases to about 19 at a SNR of 150;

%he optimum i_ration number is larger at lower SNR regions and

_naller at higher SNR regions.

Table 4.2 shows similar values for the wide Gaussian case. Tne

optimum iteration number increases from 3 at a _NR of 10 to 53 at a

of 150. This has the same behavior as that of the narrow Gaussian

case, except the msgnitudes are larger.

At the regions of low signal to noise ratio, _qe noise is large, and

the large noise will terminate the iterations quickly. That is why the

optimum iteration numbers are smaller in this region. As the signal to
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noise ratio increases, _ne noise becomes smaller and more signal can

be restored. It will _ak_ more iterations to reach He optim,_n level

of restoration, thus the optimum iteration number becomes larger in

this region.

If we compare the optimum iteration numbers for _hese two cases, we

see that the narrow Gaussian case has a lower value than the wide

Gaussian. This is a reasonable result, because the narrow Gaussian

impulse response function has a wider transform than _ha_ of the wide

Gaussian. Thus at most frequencies the Gm of a narrow Gaussian is

closer -_ one (or 11-Gm,_ is closer to O) than that for the wide

Gaussian. From equation(2.3), the closer ',l-Ore,, is to zero, the faster

iiqeconvergence speed is. Thus the narrow Gaussian reaches the optimum

iteration faster, or has a smaller optimum iteration number.

Table 4.3 shows the mean square error for the narrow Gaussian c_ase

in the frequency domain at a SNR range from 10 -_o 150. To save

computer _ime, the mean square error is calculated in the transform

domain. The mean square error decreases rapidly from 247.7 at a SNR of

10 _o 34.9 at a SNR of 150. The data show clearly that the mean square

error is very large at regions of low signal to noise ratio and drops

rapidly as the signal to noise ratio increases. This is obviously a

reasonable result. Under the same input signal, the mean square error

depends on two factors: noise and the impulse response function. At

regions of low signal to noise ratio, the noise is large, and we

simply get a large mean square error due to large noise. At regions of

high signal to noise ratio, the noise is small and the impulse
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response function becomesa more important source of meansquare error

due to lack of restoration.

The mean square error depends heavily on the shape of the impulse

response function. Figure 4.4 shows the transform of a narrow Gaussian

impulse response function. We see that the transform has only one

almosZ zero point and increases rapidly to some considerably large

ampliU_des on both sides. In other words, at almost all frequencies

the _ansform G(s) of _he impulse response func_on has relatively

large ampli_des. If G(s) is non zero, we do not 'nave to assumeH(s)

to be zero. If the amplitude of G(s) is not very small, a little noise

added to H(s) will noZ affect the result of H(s)/G(s) significantly.

Thus the mean square error is very small at high signal-to-noise

ra_os for the narrow Gaussian case.

Table 4.4 presen_ similar MS_Eresults in the _ansform domain for

the wide Gaussian case. The mean square error decreases slowly from

559.0 at a S_NRof 10 -_o449.2 aS a SNRof 150. The mean square error

is very large in the low _ region (high noise region) and is only

slightly smaller in the high _ region (low noise region). This is

obviously a different situation from the narrow Gaussian case. At

regions of low signal to noise ratio (high noise region), it is

natural tha_ due to the large noise, the mean square error is large.

But in the high _R region (low noise region), _he mean square error

is still very large, only slightly smaller _ that of the high noise

region. Consider the impulse response func_ion. Figure 4.5 is the

transform of the wide Gaussian impulse response function. In a very
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wide frequency region, the _ransform appears to be zero. Actually the

_ransform is not zero but is very small (on the order of 10-7 or

10-6). Thus when we do the division H(s)/G(s), a small amount of noise

will cause significantly large mean square errors.

From the above results, we see that the narrow Gaussian case has a

_mmller mean square error and thus a better deconvolution result; the

wide Gaussian has a larger error and worse deconvolution results.

Wraparound error can also be a significant error source during _he

deconvolution process. If the inverse of the impulse response function

and the output signal are not narrow enough compared to the whole time

interval, errors will arise at the edges due to overlapping effects.

This is called -dqe wraparound error. One way to reduce or get rid of

the wraparound error is to add more zero points to the original

function to increase the length. BuZ the ques_on is: will this affect

the deconvolution result ? BenSueid (1987) showed _hat when no noise

is present, adding zeros _o the original function will not affect the

deconvolution result if the means square error is calculated in the

time domain, later we will show that even when noise is present, we

will have the same result in the _me domain. This means that in order

to reduce the wraparound error one can add as many zeros as he wants

to the original function. But if zeros are added, it will take more

computer _me. So one needs to choose an optimum length (adding _he

proper number of zeros) which will minimize _he wraparound error but

do slow down the computer unnecessarily.
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Table 4.5 shows the optimum iteration numbers and mean square errors

(in the time domain) for different lengths for the narrow Gaussian

case at a SNR of 10 to 150. The optimum iteration numbers and mean

square errors change significantly when the length increases from 32

points to 64 points; after that, they do not change at all while the

length keeps increasing from 64 to 128 and from 128 to 256 and so on.

From the fact that the optimum iteration numbers and mean square

errors do not change when the length takes a value longer than 64

points, we can conclude that adding zeros beyond 64 points to the

original function even when noise is present does not affect the

deconvolution result. This conclusion allows one to reduce the

wraparound error for the noise situation.

The mean square errors and the optimum iteration numbers change

significantly when the length increases from 32 points to 64 points,

and remain constant when the length is over 64 points for this case.

Therefore, the wraparound error is significant when the length is 32

points and vanishes when the length is over 64 points. Thus we can

simply choose 64 to be the optimum length for _LiS case to reduce

wraparound error and save computer time.

Table 4.6 shows similar quan_ities for the wide Gaussian case. The

results have the same behavior as the narrow Gaussian case. Thus the

same conclusion can be made as for the narrow Gaussian case.

One important thing the above results show is that the narrow

Gaussian case hes better deconvolution results than _he wide Gaussian
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case. But does a narrow impulse response func_on alw_%vs have a better

deconvohtion result _mm a wide impulse response ? If so, why ? _Hnat

can we do %o get a better deconvolution result ? Analysis in _ne

%rsnsform domain has been made on whether a deconvolution is

successful ' How abou_ analysis in the _ime domain ? Curiosity ms/es

me look for the answers _o these questions :

Figure 4.12 illus_rates some general impulse response func_ons

(sometimes called windows). Curve gc is an given impulse response

function. As curve gc becomes wider yet, it takes the shape of curve

gb. As it ge_s wider, i_ becomes a flat "curve", (curve ga), which is a

horizontal straight line. On the other hand, if curve gc gets

narrower, it becomes a delta function (curve gd). Therefore this graph

shows windows of a range of widths, from the narrowest delta i_mction

(curve gd) to the widest horizontal line (curve ga).

Figure 4.13 is an inpuz signal f with two peaks. To see what happens

in the _ime domain during the deconvolution process, this input f is

convolved with each of the above windows individually. In figure 4.14,

ha, hb, hc and hd are the convolutions of f with ga, gb, gc and gd.

Recall that the convolution can be defined by the following:

h(x) = ___f(u)g(x-u)du (4.2)

To get the convolution value at a certain point x, the window is

reversed and centered on x, then multiplied by the input and
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integrated over _e period (to avoid wraparound errors, the period is

selected much larger than the width of the windows). This is ac_h_ally

an "average", calculation of the input with a '_eight" function g(x-u).

If The window g(x) is narrow, then we are "averaging" the input in a

narrow region for each convolution value. Thus we will loose less

detail abou_ the input during the convolution process and _he

convolution will have a shape more like the input. The deconvolution

will be easier in this situation. On the other hand, if we have a wide

window, _hen we are "averaging", the input over a wide region for each

convolution value. More details of _dne input get lost during

convolution and it will be harder to recover the signal. This can be

observed in Figure 4.14.

In Figure 4.12, gd is a delta function or the narrowest window..h d

is _e convolution of gd with the input, which is _he same as the

input because The delta function is the iden_ty for convolution. When

the input is convolved with a delta function, it does not change at

all. It is easy to do such a deconvolution when the output is

idenZical to the input.

Now consider The windows gc and gb. Window gc is narrower than

window gb. The outputs hc and hb are the convolution of gc and gb with

the input f. We see that hc lies between hd (the same as the input)

and hb, which means hc has values closer to the input or carries more

information about the input than hb. Thus it is easier to recover the

input from hc (the result of convolution with the narrower window)

than from hb (the resulZ of convolution with the wider window).
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If the window k_eps getting wider, finally it will become the

horizontal line ga- The output ha ( convolution of ga with the input

f) is a constant; indeed, the convolution of this window with any kind

of input will be a constant. This is not a surprising result, because

we are actually "averaging", the entire input. Any input convolved with

this window becomesa constant output. Obviously the solution to this

deconvolution problem can be any function, or in other words, we are

not able to get the solution we wanted.

We can also mak_ a similar analysis in the transform domain and

reach _he sameconclusion.

Figure 4.15 illustrates the _ansforms of the windows shown in

Figure 4.12. Ga, Gb, Gc and Gd are the _ansforms of ga, gb, gc and

gd- Note tha_ the _ansform of a delta function is a constant and the

transform of a constant is a delta 9_nction. Also we see that the

narrower window hc has a wider transform than that of the wider window

For the convolution with a delta function, deconvolving in the

transform domain is simply the division Hd/Gd" Since Gd is a constant,

this is almost as simple as the parallel deconvolution in the time

domain.

Comparing the transforms Gc and Gb, we see that the transform Gc of

the narrower window (gc) is wider _@mnthe transform Gb of the wider

window (gb)" This means _b has more zero points or more small
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ms_ai_ude points than Gc. To do the deconvolution, one has to perform

_e division H/G. If in a certain region G is zero, then the division

is undefined. In other words, the information in the input in _his

region ge_ lost. If G is not zero but has very small msgnitude, _hen

as discussed before, large errors will be produced in this region.

Therefore from the transform domain the narrower window will retain

more details about _e input and produce less error.

The transform of line constant function ga is Ga, which is a delta

function. Ha is required to be zero in the entire transform domain

except for one point. In other words, all the information about the

input has been lost in the transform domain except the value at _iqe

origin. Any input F will give a solution to the deconvolution problem.

This _he same conclusion as was reached in the _me domain.
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CONCLUSION

In this thesis, the Alw%ys-Convergent Iterative Noise Removal and

Deconvolution Method of Ioup (Ioup,1981) is applied as a single filter

1o deconvolution with both narrow and wide Gaussian impulse response

functions. The wraparound error for both cases is also studied. The

results show that the narrow Gaussian impulse response converges

faster and has smaller mean square error than the wide Gaussian

impulse response. In general, deconvolution using a narrow window

usually produces better results (converging faster and having smaller

mean square error) than a wide window. In our particular case, the

deconvolution result of the narrow Gaussian case matches the original

input very well, while the result using the wide Gaussian does not

match the input so well.

In our case, the narrow Gaussian impulse response has smaller

optimum iteration numbers and smaller mean square error than the wide

Gaussian, which matches the above conclusion.

This thesis also shows that for a deconvolution problem, even when

noise is present one can still add zeros to _he original function

(increasing the length) to reduce the wraparound error. This result
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enables one -_ minimize the wraparound error when noise is present. In

order to _ave computer time, a optimum length should be chosen. To

ob_dn the optimum length, one has _o minimize both _he wraparound

error and the compu*_er _me. In _e narrow Gaussian case, the optimum

iteration numbers and _e mean square errors change significantly when

the length increases from the original 32 points to 64 points and

remain unchanged when the length is over 64 points. This means _he

wraparound error is only si@uificant at the leng_ of 32 points and

vanishes af-_r the length is lor_er than 64 points. Thus *due optimum

leng-da is obviously 64 points for this case. In _ne same way, the

optimum length for the wide Gaussian case is chosen to be 88 points.
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TABLE 4.2

OPTIMUM ITERATION NUMBERS OF THE WIDE GAUSSIAN CASE FROM

SIGNAL TO NOISE RATIO OF 10 TO 150
( 50 CASES )

SIGNAL TO NOISE RATIO
10
20
30
40
5O
6O
7O
8O
90

IO0
110
120
130
140
150

OPTIMUM ITERATIONS

20
23
27
31
35
39
43
46
50
53

3.0
6.1
9.8

12.9
17 0

8
9
7
8
2
0
1
2
1
0
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TABLE 4.1

OPTIMUM ITERATION NUMBERSOF THE NARRONGAUSSIAN CASE FROM

SIGNAL TO NOISE RATIO OF 10 TO 150
( 50 CASES )

SIGNAL TO NOISE RATIO
10
20
30
4O
5O
60
7O
8O
9O

100
110
120
130
140
150

OPTIMUM ITERATIONS
2.8
4.0
5.9
78
99

110
122
13 1
14 0
15 1
16 0
16 9
180
189
19 2
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TABLE 4.4

THE MEAN SQUAREERROROF THE WIDE GAUSSIAN CASE FROM

SIGNAL TO NOISE RATIO OF 10 TO 150
( 50 CASES )

SIGNAL TO NOISE RATIO
10
20 531
30 515
40 502
50 493
60 485
70 478
80 473
90 468

100 464
110 460
120 457
130 454
140 451
150 449

MEAN SQUAREERROR
559 0

1
1
9
4
5
8
2
3
1
4
1
2
5
2
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TABLE 4.3

THE MEAN SQUARE ERROR OF THE NARRON GAUSS IAN CASE FROM

SIGNAL TO NOISE RATIO OF 10 TO 150
( 50 CASES )

SIGNAL TO NOISE RATIO
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

MEAN SQUARE ERROR
247,7
159.5
122.5
100.9

86.3
75 3
66 8
60 0
54 5
49 8
45 9
42 6
39 7
37 2
34 9
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TABLE 4.5

MSE RESULTS AT DIFFERENT LENGTHS, NARRONGAUSSIAN

SNR LENGTH

I

I

32 I 64 I 128 I 256 I

MSE I

10
20
30
40
50
60
70
8O
90
O0
10
20
30
40
5O

82
56
41
32
26
22
19
17
15
13
12
11
10

9
9

7 80
6 53
7 38
3 30
5 24
4 21
4 18 2
1 16 0
2 14 3
7 129
5 118
5 10.8
6 IO.O
9 9.3
2 8.7

3
6
8
1
7
0

8O
53
38
30
24
21
18
16
14
12
11
10
10

9
8.

3 80.
6 53
8 38
1 30
7 24
0 21
2 18
0 16
3 14
9 12
8 11
8 10
0 10
3 9
7 8

3
6
8
1
7
0
2
0
3
9
8
8
0
3
7
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