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ABSTRACT

In +this +{hesis, the Always-Convergent: terative Noise
Removal and Deconvolution Method of Ioup is applied as a
single-filter in the <“ransform domain %o deconvolutinn wisth
both narrow and wide Gaussian impulse reponse funciions. The
wraparound error for both cases i3 also studied. A method is
developed by which one can find %he opiimum i%era%ion number
for single-filter iterative deconvolution of sampled data.
The method employs +the mean square error (MSE), ihe square
of +the difference beitween <+he deconvolved result and ihe
input, for optimization. The MSE decreases as the
deconvolution iterations proceed, but at the SpLvimum
iteration number, the MSE siaris %o increase. This procedure
is repeated for signal-to-noise rasio of 10 to 150. The
optimum iteration number and the MSE are plotted vs SNR. By
knowing the SNR for a particular experimen%, one can find

the optimum iteration number and MSE.

The result shows +tha%t the narrow impulse response has
Smaller opiimum iteration numbers and MSE +than the wide
Gaussian, which means +he deconvolution of the narrow

Gaussian has beitter results +than ihe wide Gaussian. The
vii



optimum iteration numbers for the narrow Gaussian range from

2.8 %0 19.2 and for the wide Gaussian from 3.0 to 53.0.

This <thesis also shows that even when noise i3 present,
zeros can be added to the original funcition to reduce the
wraparound error. An optimum number of 2zeros has 1o be

chosen 1o save computer time.
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CHAPTER T

THEORETICAL BRACKGROUND

1.1 INTRODUCTION

For much signal processing work, the main ask is W recover the
input signal from the output 3ignal and the impulse response function.
For many linear sysiems, the relaiion be“ween <he output and input may
be given by a comvolution operavion. In other words, the convolution
of the input with the impulse response functiion of the system gives
we output. Thus, in order % recover *ne inputv signal, one has +4»

decorvolve the output signal with <he impulse response funciion.

There are many deconvolution meihods. The iterative decorvolutinn

meinods are among those that are widely used.

In this thesis, an input signal with three peaks is chosen o be
oonvolved with a narrow and a wide Gaussian impulse response funciion.
Gaussian +iype noise is added 1o the corresponding output. The
Always-Convergent Iterative Decorvolution Method of Toup (Ioup, 1981)



is used w decomvolve the output. The mean square error (MSE) beiween
the deconvolved result and ihe input i3 calculated for the
optimization. The MSE decreases as “he deconvolution iterations
proceed, but at the optimum iteration number, the MSE siaris o
increase. The procedure is repeated for signal-to-noise ratins of 10
w 150. By knowing the optimum iteraiion numbers and mean Square
errors for the narrow and wide Gaussian cases, one is able 4o evaluate

the deconvolution for these two cases.

The deconvolutions are also performed at different dais lengths for
e same signal-to-noise ratios Y check the wraparound error.
Conclusions about whather one need <o add zeros in the time domain
(exTending the period) +o reduce the wraparound error are made after

e deconvolutions of differen® daia lengths are done.

This +thesis contains four chapters. Chapter One gives a brief
mathematical background, including Fourier Transforms, convoluion
and decorvolution, and especially iterative decorwvolution meihods;
Chapter Two introduces <he Always-Corvergent Deconvolution Method of
Ioup, with discussion and conditions for using the method; Chapter
Three describes Gaussian Wpe noise and shows how 1o generaie +he
mwise; In Chapter Four, the Always-Convergeni Meihod is applied i»n
decorvolve synthetic data, and conclusions about the resulis and the

conditions for the deconvolusion are made.



1.2 THE FOURIER TRANSFORM

Tne mathematical expressions of the Tourier Transform and its
Xp

inverse are:

/_va

) £(x) exp(-i2IIxs) dx (1.1)

s

P(s)

and

)
o2

jF<s) exp(+i2TIxs) ds, (1.2)

~x

f(x)

where F(s) is the forward Fourier Transform of f(x) and f(x) is the
inverse Pourier Transform of F(s) (Bracewell, 1984). This process

i3 possible if f(x) satisfies the following conditions:
1) The integral of from minus infinity
w plus infinity of |f(x)! exisis.

2) Any discontinuties in f(x) are finize.

For discrete da%a, the PFourier Transforms become the following

Summavions:
P(n) = % £(n) exp(-i2Tinm) (1.3)
and
f(m) = Ei. F(n) exp(+i21lnm), (1.4)
hz-co



where m and n are discrete variables.

1.3 CONVOLUTION AND THE CONVOLUTION THEOREM

1.3.1 CONVOLUTION

For a linear Sysiem the input comvolved with e impulse response

function of the system gives +he output (Robinson, 1980). The

following diagram shows a comvoluvion model of a  linear

shift-invariant Sys+tem:

The mathematical expression for the convolution is:

4



n(x) =f”f(u) g(x-u) du = f(x)*g(x) (1.5)

where h(x) is the output signal, f(x) is *he inpu% signal and g(x) is

the impulse response funciion of the instrument.

For the discrete situation, the convolution may be given by the
following equation:

no- =

n = fm en-m, (1.6)

ms-co

where h, £ and g, are discrete functions and n and m are

discrete variables.

1.3.2 CONVOLUTION THEOREM

Corwolution i3 a comparatively complicated operation because
integration is involved. By using the Convolution Theorem we are able

w simplify the calculation of convolution greatly.
The Convolution Theorem states that the convolution operation in one
domain corresponds o a complex multiplicaiion opera‘ion in +he o*her

domain (Bracewell, 1984).

If there is a corwvolution operation in the function domain as given



in equation (1.5) above, then the Fourier Transforms F(s), G(s) and
H(s) have the following multiplicative relation:
F(s)G(s) = H(g). (1.7)

To use the Corvolution Theorem %0 calculate the convoluition beiween

f(x) and g(x):
n(x) = f(x)*g(x), (1.8)

first we take the iransforms of f(x) and g(x), which are Fs) and

H(s), then mutiply ithe ‘ransforms F(s) and G(s):
H(s) = F(s)G(s). (1.9)
Tne convolution result is obtiained by simply taking the inverse

transform of the product of F(s) and G(s). Thus the operation in *he

iransform domain can be faster {4 obtain on the compuver.

1.3.3 DECONVOLUTION

The relationship Ybetween +the output signal of a linear

Shifv-invariant instrument and its input signal has been esiablished.



The input convolved with the impulse response funciion of the
instrument gives the output signal. But it is often the situation that
we know ine output signal and the impulse response funciion of the
instrumens. Wnat we need i find is the input signal. In other words
we need 0 recover the actual input signal f in lerms of the response
function g and the output signal h. This process 1is called

deconvolution.

There are many deconvolution methods. One of the most popular
methods is inverse filtering. The following diagram shows inverse

filtering or deconvolution in the functiion domain.

h : : f
> > g ! > S
| 1
] |
h = f*g, (1.10)
£ =gt = prgregt, (1.11)



By the Convolution Theorem the above operations in the transfom

domain become multiplication and division:

F(s)G(s) = H(s) (1.12)
and

F(s) = H(s)/G(s). (1.13)

This result is undefined where G(s) = 0. The principal solution

Suggested by Bracewell and Roberts (1954) is:

H(s)/G(s) [ s: G(3)20 ]

Fo(s) = (1.14)
0 [ s: G(s)z0].

Figure 1.1 and 1.2 show *he magnitudes of the i‘ransforms. Because of

Symmeiry, only values at positive frequencies are presented. Figure

1.1 shows [Fi, |G!, and !H!, while Figure 1.2 shows !Fp:, 'G! and 'H'.

In “he ‘ransform domain, a% regions where G(s) is zero, Fu(s) is set

% zero. This is sometimes equivalent t mutiplying Fp(s) by a

truncating function ( reciangular window ):
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Figure 1.1
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Fs) = F(s)T(s/2s, ), (1.15)

where II(s/ So) i3 the reciangular window with ihe cutoff frequency

3

CQ

Since Sinc(zs(_\)() is the inverse Fourier Transform of II(s/285), vy

e Corvolution Theorem the principal solution for *his case is:

fp(x) = f(x) * sesine 2scx, (1.16)

in the function domain. The superposition of +these effects
(comvolution with +he sinc inverse <ransform) is +he approximate

solution f p{x). Proper tapering of the rectangular window reduces inhe

o8cillations introduced by the sinc.

Notice that fp(x) is not a unique solution 4 the deconvolution

problem. Any data having a transform which i3 zero ai regions where
G(s) is non-zers and is non-zero at regions where G(s) equals zero can
be added W f(x) o give a solution o the same decorvolution problem

(Bracewell and Roberts, 1954; Ioup and Ioup, 1983).
If additive noise n(x) is present in the data, the outpui becomes:

d(x) = h(x) + n(x). (1.17)

11



The resulting experimenial data d(x) are:
d(x) = £(x)*g(x) + n(x). (1.18)
If no noise removal is applied, the principal solution becomes:
Fo(s) = H(s)/G(s) + N(s)/G(s) (1.19)
Beyond s, ne cutoff frequency of G(s), H(s) is zero. However, the
noise N(s) is not necessarily zero in <his region. For this region, we

can simply remove the noise entirely first because H(s) is expected o

be zero in +this region.

1.4 ITERATIVE DECONVOLUTION METHODS

For application i real data, iterative deconvolution methods are

widely used. The ones involved in *his research are:

1. Van Cittert's Method (1931), and

2. Always-Corvergent Deconvolution Method of

12



Toup (1981), which will be discussed in “he next chapter.

1.4.1 Van Cittert's Decorvolution Method

In 1931 Van Citter:t created an iterative deconvolution method. The

iterations in the funciion domain can be described by the following
equations:
fo(x) = n(x)

f1(x) fo(x) + [ h(x) - fo(x)*g(x) ]

To(x) = f£1(x) + [ h(x) - £1(x)*g(x) ]

f

n-1(x) fn-2(x) + [h(x) - fp-2(x)*g(x) ]

Tn(x)

fn-1(x) + [ h(x) = foq (x)*g(x) ] (1.20)

Van Cittert recognized that the image data h(x) could be considered

as & first approximation, f£5(x), to the desired £(x). Then he trok the

difference h(x) - fo(x)*g(x) 1o be the correction for <he second

13



iteration. A similar correction is obimined for each iteration. In
other words, for each iteration, the approximation result fi(x) is +he
sum of the previous approximation fh-1(x) and <he correciion fac4or
wnich is the difference between <the image daa h(x) and *he
convolution of the previous approxima®ion f-1(x) with the response

function g(x).

In the transform domain ihe iterations become:

Fols) = 1(s)

Fi(s) = Fo(s) + [ H(s) - Fo(s)a(s) ]

Fa(s) = Pi(s) + [ H(s) - Fy(s)G(s) ]

Foe1(s) = Fpo(s) + [ H(s) - Fn2(s)G(s) ]

Fa(s) = Faet(s) + [ H(s) = F(s)pe1G(s) ] (1.21)

The last equation may also be written as:

F=l1+0=0)'+ (1024 ....... +(16)n]H

14



={[1-0=617/6}41 (1.22)

Tnis result was obtained by successive substitutions. From equation
(1.22), we can see tha< in order for the iterasions in be convergent,

the following conditions have %o be satisfied:

P 1-G | <1 for regions where G(s) is non-zero, (1.23)

H(s) = 0 for other regions. (1.24)

These are the Convergence Criteria (Iowp and Toup, 198%3). In +he
absence of noise, +he covergence depends heavily on +the impulse
response function g(x). Bracewell and Roberis (1954) gave +*hose
conditions originally. Hill (1973) and Hill ang Ioup (1976) used ihese
conditions t» find necessary resiriciions on the shape and loscation of

e impulse response function g(x).

In satisfying condition (1.23), the origin of the impulse response
funciion g(x) is of importance (Hill, 1973; Hill and Ioup, 1976) !
Sometimes we can adjust the origin of the impulse response funciion

8(x) ‘o such a position ‘hat G(s) satisfies condition (1.23).

15



CHAPTER II

ATWAYS—CONVERGENT DECONVOLUTION METHOD OF IOUP

Van Cittert's Iterative Decornvolution Method is a very effective
method and has been used since the early thirties. But in order o use
this method, the impulse response funciion has o satisfy Convergence
Criteria (1.23 and 1.24), which means that the <transform of the
impulse response function has ‘o be inside the it circle centered on
1410 in the complex plane. Many impulse response functions do not
satisfy Corvergence Criteria (1.23 and 1.24), and often there is no%
too much we could do o make them satisfy (1.23 and 1.24). In 1981,
Ioup creatved a new method o overcome ‘he corvergence problem, which
i3 +the so-called Always—Convergent Iterative Deconvolution Method

(Ioup,1981, Whitehorn 1980, Ioup and Whitenorn, 1981, Amini 1987).

Tne Always—Corvergent Method of Ioup is a modified version of van
Cittert's method. Two modifications are made. Firsi, the transform of

the impulse response funciion G(s) is replaced by

Gu(s) = 16(s)! / 1G(8) ! pax, (2.1)

16



and secondly, in the iteration equations, H(s) i3 replaced by the

product of the principal solution and Gn(s).

From the definition of G (s), we can see that Gp(s) is always real

and between O and 1, which guaraniees that Gp(s) satisfies Convergence

Criterion (1.23), thus the iterations are always convergent.

Applying the above modifications ‘o the van Cittert iterations in
the transform domain, the Always-Cormvergent Method in the +transform

domain can be described by the following equations:

O*’-:l
1]
oo

-FO'*'[Fp'FO]Gm

—_
)

F=TFpq + [ Fp-Ppt ] Gn.  (2.2)

With successive substitutions, the above equations can be written in

the general form:

Fo=[1-0=8)(16pn ] H/G. (2.3)

17



For regions where G(s) is zero, +then:

Fo=o0. (2.4)

The Always-Convergent Deconvolution Method can be also used in *he

time domain. The iterations are given by the following equations:

Th=fng + [ fp = fn1 ] * &g, (2.5)

where €y and fp are the inverse Fourier Transforms of Gy and Fp.
With +the Always-Corvergent Method in ihe +time domain, since the

convolution operation is involved, it is harder 4o do the iterations
and takes more computer iime, but one usually has more information

about the original signal than the transform. Thus during he

18



decomvolution process, one may be able o check the result and make
corrections Yo the result to make the deconvolution more precise. For
example, for a positive signal, one knows that the resuli should be
non-negative, thus the non-negative consirain=: may be applied 4o ihe

deconvolved signal to improve the deconvoluiion.

Por +the Always-Convergent Method in <he ‘ransform domain, only
complex multiplication is involved, so it is easier and much fasier s
decorvolve on the computer. The disadvantage is that one usually has
less information about the ‘ransform than abouv the original signal,
U3 it is harder o make adjustments during the decomvolution process

W gel a more accurate deconvolved resuls.

v regions where G(s) is zero, the deconvolution equation (2.3)

becomes:

[Fr(s) 1007 = u(s). (2.6)

Oviously any arbitrary funciion will satisfy (2.6), and we are not
be able 1o recover the input. For all of the above deconvolutinn
methods, the solution F(s) is defined % be zero in this region. This
does not really solve +he problem, as we still have no idea what the
real input is. Howerer, the application of funciion domain consirainis

can exiend the solution ints this region !

19



Figure 2.1
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CHAPTER III

NOISE

In the real world there will be always noise present. Data
processing systems are usually required o handle a large assoriment
of signals in the presence of noise. There are many +{ypes of noise:
noise could be the wrong signal, or the right signal out of place, and
whai is noise io one observer might be signal < another. In any
application, care musi be given 1 the classificaiion of which Signals
are considered W be useful and which ones are considered undesirable,

or noise (Ronbinson, 1980).

The noise studied in this research is Gaussian distributed noise.
Gaussian noise has a Gaussian or bell curve distribution about any
given data poini. If enoygh noise cases are generated, a plot of
ccurrence versus the magnitude of +hat amplitude approaches a
Gaussian shape (Fig.3.1).

21



There are +two +1ypes of Gaussian distributed noise: consian® and
ordinate-dependent noise. For constant Gaussian noise, the width of
the bell curve is fixed; it is Gaussian noise with the same standard
deviation at each poin<t. However, ordinate-dependent Gaussian noise is
what for which the width of the bell curve depends on *he ordinate

value of the data point.

To add Gaussian noise t the data, one can use the well-known resuli
what the sum of comparatively few random numbers from a miform
distribution gives a very good approximation 0 a normal Gaussian
distribution (Hamming, 1962). Utilization of the Ceniral-Limit Theorem
leads t the above conclusion (Hamming, 1962). On ihe compuier, in the
case of a decimal machine (expressed as a base 10 number) it is
cusvomary w use 12 random numbers o get a variance of 1 (Hamming,
1962). Since the mean in +his case is noi zero (the mean is half of
the number of poinis), a necessary amount (in this case 6) mus® be
subiracted from the sum of the numbers i make ithe mean zero. For “he

consiany noise case the expression is:

Bne(1) = (Ag - 6) SP1/2 + n(1) (3.1)
/
where the Ai are ithe sum of random numbers, SF i3 the scale facvor,
and h is the noise free data. With the help of the SF one can generave
a noisy data set which has approximately the signal to noise ratio

(SNR) of interest (Leclere, 1984).



OCCURANCE

FIGURE 3.1
GAUSSIAN NOISE
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CHAPTER IV

SINGLE-FILTER APPLICATION OF THE AIWAYS-CONVERGENT

DECONVOLUTION METHOD TO PHYSICAL DATA

In this chapter, the use of the Always-Convergent Deconvoluiion
Method o decomvolve synthetic data is discussed. The input used here
consists of three narrow Gaussian peaks which are shown in Pig.4.1.
The second and third peaks are located close enough together so thai
after comvolution there is some overlap. To get the output data, the
input is corvolved with both narrow and wide Gaussian impulse response
functions. The narrow Gaussian impulse response funciion coniains 9
poinus as shown in Fig.4.2, while the wide Gaussian contains 21 poinis
as shown in Fig.4.3. Gaussian-type noise with various signal-to~-noise

ratios is added to the output data. The decornvolved result is compared

24



o the input, and the mean aquare error (MSE) beiween the deconvolved
result and the input is calculated as a quality measure. The
minimization of the mean square error between the deconvolved result
and the known synthetic input is used w0 determine the optimum

iteravion number.

The mean square error of ihe deconvolved result F' and the input F

in the transform domain is given by:
- ]
wE= 5 (o 21172, (4.1)

which is the square root of the sum over all frequencies of the

squares of the difference between the iransform of the deconvolved

result and the transform of the input.

Two Gaussian impulse response functions were used since many
instruments have Gaussian impulse response funciions. We use both
narrow and wide Gaussian impulse response functions, expeciing W

cover approximaiely the range of iypical insiruments.

Discrete Fourier Transforms of the sampled impulse response function
g(x) and the output h(x) (with or without noise) are itaken for both
narrow and wide Gaussian impulse response functions, using an FFT3D
subroutine (IMSL). Equation (2.3) is used i perform the deconvolution

iteravions in the transform domain.

25



The mean square error between the kmown synihetvic input and the
deconvolved result is calculated for each iteration and compared o
that of the previous iteration. Previous research resulis (Amini,
1986) show that the curve of mean square error versus iteration number
under ceriain signal-io-noise ratios has the shape of Fig.4.7. This
means that the mean square error decreases as the itveration number
increases until the optimum iteration is reached. Beyond the opitimum
iteration number, the mean square error increases as the iteration
number increases. During the process of decomvolution, snce the MSE is
found 7w increase compared % the previous iteration, we simply
terminate ine decorvolution and set that iteration number W be the

optimum iteration number.

Table 4.1 shows the optimum iteration number for the narrow Gaussian
case at a signal 1o noise ratio of 10 40 150. The optimum iveration
number i3 3 at a SNR of 10, and increases ito about 19 at a SNR of 150;
the optimum iteration number is larger at lower SNR regions and

smaller at higher SNR regions.

Table 4.2 shows similar values for the wide Gaussian case. The

optimum iteration number increases from 3 at a SNR of 10 %0 53 at a
NR of 150. This has the same behavior as that of the narrow Gaussian

case, except the magnitudes are larger.

At the regions of low signal to noise ratio, the noise is large, and
the large noise will terminate the iterations quickly. That is why the

optimum iteration numbers are smaller in this region. As the signal o
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noise ratio increases, the noige becomes smaller and more Signal can
be restored. I+ will take more iterations reach the optimum level
of restoration, thus +he optimum iteration number becomes larger in

Wis region.

If we compare the optimum iteration numbers for tese two cases, we
See that the narrow Gaussian case has a lower value *han the wide
Gaussian. This is a reasonable result, because +he narrow Gaussian
impulse response function has a wider transform than that of the wide
Gaussian. Thus at mog frequencies +he G of a narrow Gaussian is
closer w one (or :1-Gm} i3 closer o O) than <hat for 4he wide
Gaussian. From equation(2.3), the closer =Gl i3 4o zero, the fasier
e corvergence speed is. Thus the narrow Gaussian reaches *he OpTimum

iteration faster, or has a smaller optimum iteration number.

Table 4.3 shows +the Dean square error for the narrow Gaussian case
in the frequency domaijn at a SNR range from 10 +p 150. To save
computer time, the mean Square error is calcula*ed in <he transform
domain. The mean square error decreases rapidly from 247.7 at a SNR of
10 % 34.9 at a SNR of 150. The data show clearly that the mean square
error is very large at regions of low 8ignal 1o noise raiio and drops
rapidly as the 8ignal o noise ratin increases. This is obviously a
reasonable result. Under <he Same input signal, the mean square error
depends on +4wo factors: noise ang the impulse response function. At
regions of low signal 4o noise ratio, the noise is large, and we
Simply get a large mean square error due W large noise. At regions of

nigh signal +o noise ratio, the noise is small and +the impulse
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response funciion becomes a more imporiant source of mean square error

due W lack of resioration.

The mean square error depends heavily on the shape of the impulse
response funciion. Figure 4.4 shows the {ransform of a narrow Gaussian
impulse response funciion. We see +hat the itransform has only one
almost zero point and increases rapidly Vo some considerably large
amplitudes on both sides. In other words, at almost all frequencies
e transform G(s) of the impulse response funciion has relatively
large amplitudes. If G(s) is non zero, we do noi have o assume H(s)
w be zero. If the amplitude of G(s) is no% very small, a litile noise
added v H(s) will not affect the result of H(s)/G(s) significantly.
Thus the mean square error is very small at high signal-to-noise

ratios for the narrow Gaussian case.

Table 4.4 presenis similar MSE resulis in *he transform domain for
e wide Gaussian case. The mean sSquare error decreases slowly from
559.0 at a SNR of 10 w0 449.2 at a SNR of 150. The mean square error
1s very large in the low SNR region (high noise region) and is only
slightly smaller in the high SNR region (low noise region). This is
Obviously a different situation from the narrow Gaussian case. At
regions of low signal 1o noise ratio (high noise region), it is
natural that due Y the large noise, the mean square error is large.

t in the high SNR region (low noise region), the mean square error
is still very large, only slighily smaller than that of the high noise
region. Consider +the impulse response funciion. Figure 4.5 is +the

iransform of the wide Gaussian impulse response function. In a very
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wide frequency region, the transform appears ‘o be zero. Actually the
ransform is not zero but is very small (on ihe order of 107 op
10-6). Thus when we do the division H(s)/G(s), a small amoun® of noise

will cause significantly large mean square errors.

From the above results, we see that the narrow Gaussian case has a
smaller mean square error and thus a better decorvolution result; the

wide Gaussian has a larger error and worse deconvolution resulis.

Wraparound error can also be a significan® error source during +the
decorvolution process. If the inverse of the impulse response func+tion
and the output signal are no% narrow enough compared o the whole +ime
inverval, errors will arise at the edges due o werlapping effects.
This is called the wraparound error. One way %o reduce or get rid of
e wraparound error is 4o add more zero poinus 1w the original
funcvion % increase the length. Bui the quesiion is: will this affect
the decorvolution result ? BenSueid (1987) showed that when no noise
is present, adding zeros o the original funciion will not affect the
deconvolution result if the means square error is calculated in +he
vime domain. later we will show that even when noise is present, we
will have the same result in the time domain. This means tat in order
W reduce the wraparound error one can add as many zeros as he wants
w the original function. But if zeros are added, it will take more
computer <tvime. S0 one needs 4o choose an optimm length (adding +he
proper number of zeros) which will minimize the wraparound error bub

do slow down the computer unnecessarily.

29



Table 4.5 shows the optimum iteration numbers and mean square errors
(in the time domain) for different lengths for the narrow Gaussian
case at a SNR of 10 to 150. The optimun iteration mumbers and mean
3quare errors change significantly when <he length increases from 32
points 1o 64 poinis; after that, they do not change at all while the
length keeps increasing from 64 +o 128 and from 128 4o 256 and so on.
From the fact ihat the optimum iteration numbers and mean square
errors do not change when the length takes a value longer than 64
points, we can conclude that adding zeros beyond 64 poinis {0 +the
original function even when noise is present does not affect the

deconvolution result. This conclusion allows one W reduce the

wraparound error for the noige situation.

The mean square errors and the optimum iteration numbers change
Significanily when +he length increases from 32 points 4o 64 points,
and remain constani when the length is over 64 poinis for this case.
Therefore, the wraparound error is significant when the length is 32
points and vanishes when the length i3 over 64 points. Thus we can
8imply choose 64 to be +the optimum length for +his case 4o reduce

wraparound error and save computer time.

Table 4.6 shows similar quanvities for the wide Gaussian case. The
resulis have the same behavior as the narrow Gaussian case. Thus +he

Same conclusion can be made as for the narrow Gaussian cage.

One imporiani thing the above results show is that the narrow
Gaussian case has beiter deconvolution results than the wide Gaussian
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case. Bui does a narrow impulse response funciion always have a better
deconvolution result than a wide impulse response ? If so, why ? Wnat
can we do w get a better deconvolution result ? Analysis in the
wransform domain has been made on whether a deconvolution is
successful ' How about analysis in the +time domain ? Curiosity makes

me look for the answers o these quesiions !

Figure 4.12 illusirates some general impulse response funciions
(sometimes called windows). Curve 8c 13 an given impulse response
function. As curve &c becomes wider yet, it takes the shape of curve
8p. As it gets wider, it becomes a flat "curve™ (curve g4), which is a
horizontal straight line. On +he o%her hand, if curve 8. gels
narrower, it becomes a delta funciion (curve 84). Therefore this graph

shows windows of a range of widths, from the narrowes:i delta func<ion

(curve 83) ‘o the widest norizontal line (curve Ea)-

Figure 4.13 is an input signal f with 4wo peaks. To see what happens
in the time domain during the deconvolu®ion process, this input f is

convolved with each of the above windows individually. In figure 4.14,

Ny, hp, he and hq are the convolutions of £ with ga, &b, 8c and g3.

Recall that the convolution can be defined by the following:

n(x) = f_:f(u) g(x-u) du (4.2)

To gel the corvolution value a%t a ceriain poins x, the window is

reversed and ceniered on x, then multiplied by the input and
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integrated over the period (o avoid wraparound errors, the period is
selecled much larger +han the widih of he windows). This is actually
an "average" calculation of the input with a "weighi" function g(x-u).
If the window g(x) is narrow, then we are "averaging" the input in a
narrow region for each convolution value. Thus we will loose less
detail about the input during the convolution process and +he
convolution will have a shape more like +the input. The deconvoluion
will be easier in +*his situation. On the other hand, if we have a wide
window, then we are "averaging". the input over a wide region for each
convolution value. More deiails of the input get 1lost during
comvolution and it will be harder o recover the signal. This can be

observed in Figure 4.14.

In Figure 4.12, g; is a delta function or the narrowest window. hg
i3 the convolution of €q with the input, which is the same as the
input because the delia function is the identity for convolution. When
we input is convolved with a delta function, it does not Change at
all. I{ is easy % do such a deconvolution when +he output is

identical ‘o the input.

Now consider the windows 8 and g, Window gc 1S narrower than
window &p. The outputs he and hy, are the corvolution of &c and gy with
the input f. We see ihat h, lies between hg (the same as +he input)

and fy,, which means he has values closer 4o the input or carries more

infOI‘ma‘tiOn about the lﬂput than hb' Thus it is easier 0 recover the
input from h, (the result of convolution with the narrower window)

wan from hy (the result of corvelution with the wider window).
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If the window keeps getting wider, finally it will become the
horizontal line g,. Tne output hg ( convolution of gg with the input
f) is a constant; indeed, the comvolution of this window with any kind
of input will be a consians. This is not a surprising result, because
we are actually "everaging" the entire input. Any input convolved with
Wis window becomes a consiant output. Obviously the solution 4 this
deconvolution problem can be any function, or in other words, we are

not able % get the solution we wanted.

We can also make a similar analysis in the +transform domain and

reach the same conclusion.

Figure 4.15 illusirates the 4ransforms of the windows shown in

Figure 4.12. G, g, Ge and Gq are the transforms of g,, gp, g, and
€3. Note that the transform of a delta funciion is a consiant and the

transform of a constant is a delta function. Also we see +hat the

rarrower window h, has a wider ‘ransform than that of the wider window

hb-
For the convolution with a delta function, deconvolving in +the
transform domain is simply the division Hd/Gd- Since Ggq is a constant,
this is almost as simple as +he parallel deconvolution in 4he time

domain.

Comparing the transforms Ge and Gy, we see that the transform Go of
e narrower window (g;) is wider than the transform Gy, of the wider

window (8b). This means Gy, has more zero poinis or more small
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magnitude poinis than G, 7o 3o the deconvolution, sne has %o perform

the division H/G. If in a certain region G is zero, then the division
is undefined. In other words, the informaiion in +he input in this
region geis lost. If G is not zero but has very small magnitude, *hen
as discussed before, large errors will be produced in +his region.
Therefore from the transform domain the narrower window will reain

more details about the input and produce less error.

The +vransform of the constant funciion 8y i3 G, which is a delia
function. Hy is required %o be zero in the entire ‘ransform domain
except for one point. In other words, all the information about the
input nas been lost in the transform domain except the value at the
origin. Any input F will give a solution 4o *he deconvolution problem.

This the same conclusion as was reached in *he time domain.



CONCLUSION

In this thesis, the Always—Corwergent Iterative Noise Removal and
Deconvolution Method of Ioup (Ioup,1981) is applied as a single filter
w deconvolution with both narrow and wide Gaussian impulse response
funcivions. The wraparound error for both cases is also studied. The
resultws show that the narrow Gaussian impulse response converges
faster and has smaller mean square error than *he wide Gaussian
impulse response. In general, deconvolution using a narrow window
usually produces beiter results (converging faster and naving smaller
mean square error) than a wide window. In our particular case, the
deconvolution result of the narrow Gaussian case maiches the original
input very well, while ihe result using the wide Gaussian does no3%

patch the input so well.

In owr case, the narrow Gaussian impulse response has smaller
optimum iteration numbers and smaller mean square error than the wide

Gaussian, which matches ihe above conclusion.

This thesis also shows that for a deconvolution problem, even when
noise is present one can still add zeros %o the original function

(increasing the length) to reduce the wraparound error. This result
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enables one i minimize the wraparound error when noigse is present. In
order 1 save computer time, a optimum lengh should be chosen. To
obtain the optimum length, one has +o minimize bo*h the wraparsund
error and the computer iime. In *he narrow Gaussian case, the optimum
iteration numbers and ihe mean Square errors change significantly when
the length increases from the original 32 points 4 64 points and
remain unchanged when the length is over 64 poinis. This means the
wraparound error is only significant at the length of 32 poinis and
vanishes after the length is longer than 64 poinis. Thus *he optimum
lengtn is obviously 64 points for +this case. In +he same way, the

optimum length for 4he wide Gaussian case is chosen o be 88 points.
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TABLE 4.2

OPTIMUM |TERATION NUMBERS OF THE WIDE GAUSSIAN CASE FROM
SIGNAL TO NOISE RATIO OF 10 TO 150

( 50 CASES )

SIGNAL TO NOISE RATIO OPTIMUM ITERATIONS
10 3.0
20 6.1
30 9.8
40 12.9
50 17.0
60 20.8
70 23.9
80 27.7
90 31.8

100 35.2

110 39.0

120 43 .1

130 46.2

140 50.1

150 53.0
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TABLE 4.1

OPTIMUM | TERATION NUMBERS OF THE NARROW GAUSSIAN CASE FROM

SIGNAL TO NOISE RATIO OF 10 TO 150

{ 50 CASES )

SIGNAL TO NOISE RATIO OPTIMUM | TERATIONS
10 2.8
20 4.0
30 5.9
A0 7.8
50 9.9
60 11.0
70 12.2
80 13.1
90 14.0
100 15.1

110 16.0
120 16.9

130 18.0
140 18.9

150 19.2
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TABLE 4.4

THE MEAN SQUARE ERROR OF THE WIDE GAUSSIAN CASE FROM

SIGNAL TO NOISE RATIO OF 10 TO 150

( 50 CASES )

SIGNAL TO NOISE RATIO MEAN SQUARE ERROR
10 559.0
20 531.1
30 515.1
40 502.9
50 493 .4
60 485.5
70 478 .8
80 473.2
80 468 .3

100 464 .1

110 460.4
120 457 .1

130 454 .2

140 451.5

150 449 .2
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TABLE 4.3

THE MEAN SQUARE ERROR OF THE NARROW GAUSSIAN CASE FROM

SIGNAL TO NOISE RATIO OF 10 TO 150
{ 50 CASES )

SIGNAL TO NO!SE RATIO MEAN SQUARE ERROR
10 247.7
20 159.5
30 122.5
40 100.9
50 86.3
60 75.3
70 66.8
80 60.0
90 54.5
100 49.8

110 45.9
120 42 .6

130 39.7

140 37.2
150 34.9
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TABLE 4.5

MSE RESULTS AT DIFFERENT LENGTHS, NARROW GAUSSIAN

SNR LENGTH
I 32 | 64 | 128 | 256 |
I MSE !
10 82.7 80.3 80.3 80.3
20 56.6 53.6 53.6 53.6
30 41.7 38.8 38.8 38.8
40 32.3 30.1 30.1 30.1
50 26.5 24.7 24.7 24.7
60 22.4 21.0 21.0 21.0
70 19.4 18.2 18.2 18.2
80 17.1 16.0 16.0 16.0
90 16.2 14.3 14.3 14.3
100 13.7 12.9 12.9 12.9
110 12.5 11.8 11.8 11.8
120 11.5 10.8 10.8 10.8
130 10.6 10.0 10.0 10.0
140 9.9 9.3 9.3 9.3
150 9.2 8.7 8.7 8.7
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