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FEED-FORWARD VOLUME RENDERING ALGORITHM FOR MODERATELY

PARALLEL MIMI) MACHINES

Roni Yagel

Ohio State University

Columbus, Ohio 43210

Abstract

In this report algorithms for direct volume rendering on parallel and

vector processors are investigated.Volumes are transformed efficiently

on parallel processors by dividing the data into slices and beams of vox-

els. Equal sized sets of slices along one axis are distributed to proces-
sors. Parallelism is achieved at two levels. Because each slice can be

transformed independently of others, processors transform their

assigned slices with no communication, thus providing maximum possi-

ble parallelism at the first level. Within each slice, consecutive beams

are incrementally transformed using coherency in the transformation

computation. Also, coherency across slices can be exploited to further

enhance performance. This coherency yields the second level of paral-

lelism through the use of the vector processing or pipelining. Other

ongoing efforts include investigations into image reconstruction tech-

niques, load balancing strategies and improving performance.

1.0 Introduction

Representation by spatial-occupancy enumeration methods allows a simple yet versatile

method of generation and display of three-dimensional objects. The most common spatial

enumeration is obtained when a solid is decomposed into identical cells called voxels and

arranged in a fixed, regular, rectilinear grid. Curvilinear and unstructured grid decomposi-

tions also exist and are being increasingly used. To ascribe visual properties, spatial occu-

pancy functions and colors are assigned to voxels. Binary voxel [Herman79] and variable-

density voxel techniques ([Drebin88], [Levoy88]) arise out of the use of binary and con-

tinuous spatial occupancy functions, respectively.

Several methods exist for the rendering of volumes. A class of these methods convert the

voxel representation into surface and line primitives [Lorensen87]. However, methods of

this class suffer from various disadvantages that mainly arise from the ambiguity of deci-

sion determining the exact position of the surface.

Direct methods have been developed to render volumes. These methods can be classified

as object order or image order Object order methods require the enumeration of all voxels

of a solid and the determination of the affected pixel on a screen. Image order techniques,



on the otherhand,determineall the voxels of a solid which affecta given pixel on the
screen.Hybrid methodsexist which rely on someintermediaterepresentations.Levoy
[Levoy 90a] has categorizedand createda taxonomy of volume rendering methods.
Westover[Westover90]employsthesynonymoustermsfeed-forwardandbackward-feed
for objectandimageordermethods.Weshallalsoemploythesetermsto classifyvolume
renderingmethods.

Feed-forwardmethodsare also calledprojective methods.The viewing transformation
matrix is appliedto all voxels(enumeratedin someorder),thusproviding anintermediate
volumewhich is thenprojectedto a two dimensionalscreen.Feed-forwardmethodsare
easyto implementandarecomparativelyinexpensive.However,suchadirectapplication
of thetransformationmatrix introducesartifactsin the image.Reconstructionor interpola-
tion in three-dimensionscanbeperformedto annulthe effectof artifacts.Hanrahanpro-
posed a method of decomposingthe transformationmatrix into a series of lower
dimensionalshears.Sucha decompositionwouldallow for theeasiersupersamplingoper-
ationalongasingledimension[Hanrahan90].Splatting[Westover90]is anothertechnique
employedto reducethe impactof artifactsin which eachvoxel is renderedasa groupof
pixelsratherthanasinglepixe!, _ .......

Backward'feedmethods,which includeray-castinghavebeenspecificallydevelopedfor
renderingvolumes.The useof thetemplatemethod[Yage192]is one exampleof aneffi-
cientbackward-feedmethod.

= z ........................

Hybrid Methods have been investigated ([Levoy90b], [Upson88]). In these methods the

volumes are traversed in object or image order. The contribution of a set of voxels to a

pixel is then computed in either image or object order.

Hidden volume elimination must be an integral part of the rendering methods and several

standard methods used for hidden surface elimination can be employed fruitfully. Scanline

methods have been used [Herman79]. However, Z-buffer and front-to-back [Reynolds87]

and back-to-front [Frieder85] methods are more commonly used.

Shading is necessary for realistic images. Shading can be done in either object space or

image space. Image space shading [Pommert89], also called deferred shading is compara-

tively inexpensive. Depth shading, gradient shading, context-grading shading are popular

image shading methods [Yagel et al 92].

The sheer amount of data that arises even from a not too fine resolution volume represen-

tation is enormous. To reduce the total rendering time, several specialized hardware solu-

tions have been proposed [Kaufman et al 90]. All these solutions suffer from a lack of

generality. General purpose methods that can be executed on general purpose machines

and specially on the increasing number of general purpose commercially available parallel

processors.

Some implementations of volume rendering have recently been reported for a variety of

parallel architectures. Some of them are specifically designed for experimental hardware -

such as the Princeton Engine [Schroder and Sto1192] or DASH [Neih and Levoy92], while

others are designed for commercially available massively parallel machines such as the

2



CM-2 ([SchroderandSalem91],[SchroderandSto1192]),MasPar[Vezinaet a192],Hyper-
cube[Montaniet a192],or nCube[Elvins 92].

Researchersalsodiffer in theviewing algorithmthey adopted.Severalarebasedon feed-
backwardmethods.In [Neih andLevoy92]and [Montaniet a192]ray-casting[Levoy 88]
is used,while in [SchroderandSto1192]our template-basedray-casting[YagelandKauf-
man92]wasimplemented.Someresearchers([Schroderand Salem91],[Vezinaet a192])
ha_/eadopteda feed-forwardmethodsuchas shear-and-composite[Hanrahan90]while
others [Elvins 92] implementedrotate-and-splat[Westover91]. We developedan algo-
rithm that follows a feed-forwardrotate-and-drawparadigm.Unlike previouswork we
uncoverseveralinherentparallelismschemesanddemonstratesuperiorspeedandlinear
scalability.

In this workwepresentalgorithmsthatareamenableto efficientimplementationonparal-
lel andvectorprocessors,in section2.0wedevelopanefficientmethodto transformvol-
umesand show that it is amenableto parallel implementation.Section 3.0 presentsa
parallel feed-forwardrenderer.The final section contains some concluding remarks.

2.0 Parallel Transformation of Volumes

A volume represented by a rectilinear grid can be embedded in the 3-dimensional Euclid-

ean space. If the grid lines are regularly spaced in all dimensions then the voxels are

cubes. We denote a object space grid point v by a 4-tuple [v x , Vy, vz , 1] in the homoge-

nous 4-D homogenous space XYZ1 of resolution N.

2.1 Decomposition of Volumes

A slice is the set of grid points having one coordinate the same. A z-slice at k, is therefore

the set

Sz:lc = {(x,y,z) / z = k, O < k < n , O <_x, y < n}.

Thus, all voxel planes perpendicular to the z-axis are z-slices. Similarly we can define x-

slices and y-slices.

We define a beam to be the set of grid points with two of the three coordinates being fixed.

Thus a x-beam at j, k is the set

Bx:(j,k )= {(x,y,z)/y=j,z=k,O<j,k<n, O<x<n }.

In a similar way we define y-beams and z-beams. A z-slice at k would therefore have x-

beams parallel to the x-axis and y-beams parallel to the y-axis. Figure I shows the decom-

position of a volume into beams and slices.



2.2 Spatial Order and Spatial Coherency

A voxel set can be thus divided into sets of beams and slices. There exists an inherent spa-

tial ordering between consecutive slices determined by the viewing direction. Spatial

ordering exists between beams in a slice and between voxels in a beam. The inherent spa-
tial order of slices in a volume lends itself well to efficient hidden voxel elimination such

as the back-to-front and front-to-back algorithms [Frieder85].

Spatial coherency exists between voxels in a beam and in a slice. This coherency stems

from adjacency of grid points in object space. In the case of regular grids, grid points are

separated from each other by a constant distance. This allows the efficient transformation

of volumes through the use of constant incremental updates. The next section shows the

use of regular spatial coherency to enhance computation performance.

By:(0,0)

1i

Sz:0 _]

Bx:(0,0)

FIGURE 1. Decomposition of volumes into slices and beams. Sz:o is the first slice of the
volume, Bx:(O,O) and By:(O,O)are the first x and y beams in Sz:o.

2.3 Transformations of Volumes using Spatial Coherency

The word transformation here includes all viewing transforms, shape/position changing

transformations, and inverse texture mapping transformations. All transformations are

assumed to preserve the connectivity of grid points, grid resolution and grid spacing. A

transformation of a volume consists of several matrix vector multiplies and is expressed

by the matrix equation:

p • r

[Vx, Vy, v z, 1] = [v x, Vy, v z, 1] • M
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wherev and v' representthe position of grid points in a 4-D object and image spaces
respectivelyandM is thetransformationmatrixof order4:

mOO rnl0 m20 1_

m01 roll m21 0

rn02 m12 m22 0

rn03 m13 rn23 1

Application of the above multiplication to a data set of N 3 voxels requires a total of 16N 3

floating point multiplications and 12N 3 floating point additions. However, by using spatial

coherency the number of operations and hence rendering time can be greatly reduced. It
will be shown that a volume of resolution N 3 can be transformed with only 3N 3 additions.

Suppose u and v are two adjacent grid points along x-beam at Bx:(j,k ) with v being enumer-

ated after u, that is:

vx=u x+l,vy = uy =j,v z=u z=k

After the transformation let u' and v' be the positions of the grid points u, v. The trans-

formed point v' is first expressed in terms of v. In addition it true that

[V'x,V'y,V'z, 1] = [Ux+ l, Uy, Uz, 1] .M

Through simple algebra we can express the above product as the sum of two vectors. The

right most vector is the first column of the transformation matrix:

[v' x, V'y, V'z, 1] = [u x, Uy, u z, 1] • M+ [mOO, rnlo, rn2o, 0]

Finally,

! v I I ! !

[Vx, Vy, Vz, 1 ] = [Ux, Uy, Uz, 1] + [moo, mlo, m20, O]

Each incremental update requires 3 additions. To begin the incremental process we need

one matrix vector multiplication (16 multiplications and 12 additions) to compute the

updated t_osition of the first grid point. For the remaining N 3 grid points we need a total of

only 3N _ additions. It should be noted that using the above approach we have both

reduced the number of operations and also eliminated the need for floating point multipli-

cations, which are more expensive than floating point additions.

2.4 The Vector Nature of Incremental Updates

It is not necessary that the same incremental scheme be used to transform the entire vol-

ume. The incremental computation can be organized into several phases. Each phase con-

sists of updates in a particular direction. Figure 2 shows a particular scheme of

incremental computation which has been implemented.
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Theincrementalschemecanbedividedinto four phases

• SeedPhase:

In this phase, a single grid point (usually the lowest point of the grid of the first slice k) is

transformed through the use of a matrix vector multiply. This grid point forms the seed for

consequent updates.

• VerticalBeamPhase

Incremental computation is used to transform an entire beam. The first vertical beam,

By:(0, k) is updated using the seed. As shown in the previous section, the second column of
the transformation matrix M is added to a previously enumerated grid point. The updates

here are of a scalar nature.

(a) (b) (c)

I

(d)

FIGURE 2. The four phases of incremental updates: (a) seed phase (b) vertical beam
phase (c) horizontal beam phase (d) slice phase.

• HorizontaIBeamPhase

In the third phase beams Bx:(j,k ), 0 < j < n are updated. Beam By:0 ' k) is used to update

beam By:(j+l, k). The first column of matrix M is used for incremental updates, since the
enumeration is along the x-axis. If each beam is considered to be a vector of length N, then

the updates in this phase are essentially vector additions. A processor with vector capabil-

ities can exploit the vector nature of the updates. At the end of this phase, slice Sz:k0 is

completely transformed.

• Slice phase

Updated slice Sz: k is used to incrementally update the next slice Sz:k+ 1. The third column

of M is used for updates in this phase (since the enumeration is along the z-direction).

Once again the updates are essentially vector additions, except that the length of the vec-

tors is N 2.

In summary, we have reduced the projection process from a set of matrix vector multipli-

cation into a sequence of vector additions. The same scheme can be implemented for any

other order of the axes, as commOniy required by a back_to-front algorithm.
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2.5 Parallel Transformation of Volumes

The decomposition of volumes into beams and slices and the use of incremental computa-

tion allows for an efficient parallel implementations. There exist two levels of parallelism

to be exploited.

Slices can be processed independently by different processors without the need for any

communication between processors. This is the first level of parallelism. Next, each pro-

cessor can process its slices by incrementally updating the beams as shown in the previous

section, thus exploiting the second level of parallelism. If a processor is assigned multiple

slices, the coherency between different slices can also be exploited. If individual proces-

sors have either vector processing capabilities or pipelined functional units, the perfor-

mance is even better as explained in section 2.4.

It is important to observe that all voxels including empty ones are transformed. Thus,

medium to very dense volumes would benefit most from such a brute-force approach. Fig-

ure 3 shows schematically a parallel/vector implementation of transformations.

Parallel
Processors

@
NN

Slices

By:(k,l) By:(k+l,l)

incremental updates of
beams, slices

By:(k,1) By:(k+l,1)

FIGURE 3. Transformation of Volumes on Parallel/Vector Processors

3.0 Parallel Feed-Forward Volume Rendering

The feed-forward algorithm for volume rendering implements the classical graphics pipe-

line for rendering which consists of the following stages:

• Creation of a viewing transformation from the viewing parameters.

• Transformation of the volume by the view matrix.

• Hidden voxel elimination to determine visible voxels.

• Display of the visible voxels by assigning colors to the appropriate screen-pixels.

In this section we report on a feed-forward renderer which allows the orthographic view-

ing of volume data using the ideas developed in section 2.0.
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3.1 Parallel Implementation

The functional parallelism paradigm has been used to implement the graphics pipeline on

parallel machines (or ensembles) where each part of the graphics pipeline is executed by a

separate active process. An alternative way is to use the single-program-multiple-data

(SPMD) model of parallelism, where each process executes the same code. The SPMD

model allows a better utilization of the parallel ensemble of processors. We implemented

our-renders in this paradigm. Each active process is either assigned to processors deter-

ministically or is assigned to the first available processor by the operating system.

procedure feed_forward

Construct viewing matrix M

Read subset of slices Sz:k, k = ko,...,k 1

for slices Sz: k, k = ko,...,k 1do

By:(0_k)[0] = [0, 0, k] M /* seedphase */

for i = 1 to N-1do /* vertical beam phase */

By:(0,k)[i] = By:(0,k)[i-1] + [m01, mll, m21]

endfor

Draw By:(0,k) on local image Ip

for i = 1 to N-1do /* horizontal beam phase */

for j = 0 to N-1 do ___

Bx:(i,k)[j] = Bx:(i_l,k)[j] + [moo, ml0, m20]

endfor

Draw Bx(j,k)[0...N-1] on Ip
endfor

endfor

Compose Ip with final image If

end procedure feed_forward.

FIGURE 4. Thefeed_.forward algorithm employing parallelism and beam-coherency.

Each processor executes the graphics pipeline on the subset of slices assigned to it. The

subset is transformed, and an image is created by each processor independently after per-

forming hidden volume elimination on the set of assigned slices. Ideally all processors

should be given equal number of slices to process. An equal distribution of slices would

lead to a highly load-balanced operation, wherein all processors perform the same amount

of work. However it is not always possible on all machines to explicitly assign the slices to

processors. For instance, on the CRAY/Y-MP, parallel execution is bas_ on the creation

of processes and their allocation to processors, and the user has no control over the assign-

ment of slices to processors. ..................



The methodsof section2.0 aremost efficienton parallel processorswith vector nodes.
Implementationson commercialmachineslike the CRAY/Y-MP,IBM Power Visualiza-
tion System(PVS),Intel iPSC/2(with vectornodes)performsignificantlyfaster.

Eachprocessorcreatesalocal imagewhicharethencombinedto obtainthefinal image.A
local image canbe createdby employingthe Z-buffer hiddenvoxel elimination or the
back-to-front compositingmethods.The actual method of combining dependson the
viewing chosenandtheinterconnectionnetworkof theparallelensemble.Shadingis cur-
rently donein the imagespaceon thecombinedimage,by a singleprocessor.

The algorithm in Figure 4 is executedon eachprocessorof a parallel ensemble.We
assumethat the viewing matrix M is of order4 andthatbeamB is anarrayof N triples
(wherethevolumeresolutionis N3).Thesubscriptsfor B describethetypeandlocationof
thebeam.

In theabovealgorithmonly threeof thefour incrementalcomputationphasesdescribedin
sectiontwo are implemented.Theslicephaseis not usedThis is the mostgeneralimple-
mentationwhichwouldwork evenwheneachprocessoris givenoneslice.In eachz-slice,
aseedis first found,thenthefirst vertical beamis updated,andfinally, afterthehorizontal
beamphase,theentiresliceis updated.Thehorizontalbeamphaseupdatesareexecutedin
thevectormode.Thisversionof therendereris implementedon theCRAY/Y-MPandthe
SiliconGraphics.

In the abovethe algorithm,Draw performs hidden volume elimination. Currently we

employ a Z-buffer algorithm towards this purpose. Shade implements currently depth

shading and depth gradient shading.

3.2 Salient Features of the Parallel Feed Forward Approach

• Volume data is distributed only once to all processors.

• Changes in viewing parameters does not cause any movement of data between proces-

sors.

• Each processor is assigned equal number of slices to process if possible.

• All voxels are transformed, including the empty ones. This is done so that the comput-

ing pipeline in vector processors is never interrupted.

- The amount of data transferred between processors is of O(N2). Communication occurs

only when the parallel architecture supports a memory hierarchy of local and shared

memories. Communication is required in the compositing phase.

• Although Z-buffer algorithms can be used, it is preferable to employ back-to-front or

front-to-back algorithms. The reason for this preference is the use of the brute force

strategy that, as above, keeps the pipeline busy.



3.3 Example Implementations

3.3.1 CRAY/Y-MP

The first algorithm feed_forward (with no slice coherency) was implemented on the

CRAY/Y-MP. On the Y-MP the multitasking facility called microtasking was employed to

obtain concurrency at the slice level.

The outer loop in the above algorithm is divided into as many tasks or processes as the

number slices. Each process would then be executed by an available processor. The imme-

diate outcome of this strategy is that the program has no control over which slice will be

assigned to which processor. Therefore, there is no way to exploit slice coherency but only

beam coherency. To increase the granularity of the tasks, loop unrolling can be done. An

immediate benefit from this would be the reduction in synchronization overhead and the

exploitation of concurrency across slices. Loop unrolling has not been implemented yet.

The vector facilities of the Y-MP are used to achieve concurrency at the beam level. Hid-

den volume elimination was achieved through the use of a common Z-buffer, and depth

shading was done on the final image by a single processor. Table 1 lists the transformation

times for volumes of different sizes. It is noted that the incremental update algorithm

scales well with the volume size.

Table I. Transformation Time on a

CRAY/Y-MP (8processor_s) _!;i :::

N

64

128

256

512

, - • z

Time

(sec.)

0.089

0.175

0.696

5.27

3.3.2 Silicon Graphics Workstation _:_ .k .

The implementation of the forward rendered on a multi-pro_cessor_S!lic0n Graphics is

actually a slightly diferrent from the CRAY implementations. The distribution of slices is

explicit which allows us to assign consecutive slices to each processor and employ slice-

coherency. However, since there is no local memory, all processors access one Z-buffer

and the data is not distributed a-priori, like in the CRAY implementation. In addition,

since the Silicon Graphics Workstation does not have vector processing capabilities,
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speedupis gainedonly becausewe haveeliminatedmultiplication and not becausewe
computein avectormode.Table3.0containsthetransformationtimes.

Transformation Times for SGI workstation for different ensembles
I I

N P=I P=2 P=4

64 0.32 0.46 0.76

128 6.14 3.12 1.77

256 45.68 25.19 12.57
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performance. This coherency yields the second level of parallelism through the use of the vector processing or

pipelining. Other ongoing efforts include investigations into image reconstruction techniques, load balancing strategies

and improving performance.
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