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ABSTRACT

Recent studies by Diamond and Markham 1,2 have identified significant

correlations between space motion sickness susceptibility and measures

of disconjugate torsional eye movements recorded during parabolic

flights. These results support an earlier proposal by von Baumgarten

and Th_mler 3 which hypothesized that an asymmetry of otolith function

between the two ears is the cause of space motion sickness. It may be

possible to devise experiments that can be performed in the 1 g

environment on earth that could identify and quantify the presence of

asymmetric otolith function. This paper summarizes the known

physiological and anatomical properties of the otolith organs and the

properties of the torsional vestibulo-ocular reflex which are relevant

to the design of a stimulus to identify otolith asymmetries. A specific

stimulus which takes advantage of these properties is proposed.

INTRODUCTION

Attempts to predict motion sickness susceptibility, and in particular

space motion sickness susceptibility, have been generally unsuccessful.

Many factors which play a role in motion sickness have been identified.

These factors include receptor system physiology, neural coding of

sensory information about body orientation in space, oculomotor and

postural control reflexes, the perception of motion and orientation, and

the interaction between motor behavior and perception. However, the

correlations of these factors with motion sickness susceptibility are

weaker than desired, and there has been poor transference of predictions

of susceptibility from one setting to another.

Recent studies by Diamond and Markham 1,2 have identified a strong

correlation between prior history of space motion sickness

susceptibility in astronauts and their eye movement asymmetries

identified during parabolic flights. Specifically, Diamond and Markham

measured torsional eye position (ocular counterrolling) in both eyes at

rest in a 1 g environment, and in the 0 g and 1.8 g periods during

parabolic flight trajectories. With the 1 g measurements serving as a

reference, they identified the existence of small disconjugate torsional

eye positions in 0 g and 1.8 g conditions. The greater the difference

between the disconjugate eye positions in the 0 g and 1.8 g conditions,

the greater the likelihood that the astronaut had experienced motion

sickness symptoms while on shuttle flights. Among those who had
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experienced motion sickness, the severity was correlated with the
magnitude of the difference between 0 g and 1.8 g disconJugate eye
torsion.

An asymmetryof otolith function between the two ears maybe the
cause of the torsional asymmetry. However, Diamond and Markham were not

able to identify an ocular torsion asymmetry in any subject during roll

tilts made in a 1 g environment, including subjects who had identifiable

asymmetries in the 0 g and 1.8 g conditions. A reasonable explanation

for this is that in the terrestrial environment, otolith function

asymmetries are well compensated by central nervous system mechanisms

which effectively mask the existence of the asymmetry.

Diamond and Markham's results support a theory put forward by yon

Baumgarten and Th_mler 3. This theory postulates that an asymmetry of

otolith function between the two ears exists in some subjects and causes

the neural activity arising from the otolith organs in one ear to be

unequal to activity of the other ear. In order to compensate for this

imbalance and provide for normal vestibular function under terrestrial

conditions, the central nervous system generates a central neural tone

that corrects for the asymmetry. When the subject enters a 0 g

environment, the unweighting of the otolith organs in the two ears

produces a shift in the peripheral neural tone to new levels. The

continued presence of the central compensatory tone in the 0 g

environment results in an effective imbalance of otolith function,

possibly leading to the development of motion sickness symptoms. The

theory of yon Baumgarten and Th_mler is additionally supported by the

results of Lackner et al. 4 Lackner's results actually did show a

correlation between asymmetric ocular torsion measured in 1 g and motion

sickness susceptibility on parabolic flights. The correlation, however,

was not large enough to allow accurate prediction of motion sickness

susceptibility.

More sensitive tests for asymmetrical otolith function have been

proposed by Wetzig et al. 5 Wetzig measured tilt perception and ocular

torsion during constant velocity vertical-axis rotations in which the

subject's orientation with respect to the rotation axis varied so as to

deliver asymmetric centrifugal accelerations to the two ears.

Experiments on a limited number of subjects revealed results consistent

with the existence of asymmetric otolith responses. In addition,

disconjugate torsional eye movements were observed indicating that the

otolith organ in a given ear exerts a stronger influence on ipsilateral

as compared to contralateral eye movements. This observation tends to

support the recent results of Diamond and Markham, and indicates that

binocular measurements of ocular torsion could improve the sensitivity

of tests of asymmetric otolith function. Although Wetzig's experiments

were well conceived, the magnitude of the differential acceleration

applied to the two ears was small, about 0.07 g, possibly decreasing the

likelihood that otolith asymmetries could be reliably measured.

In this paper we describe an alternative test stimulus that has the

potential of more reliably identifying the existence of asymmetric

otolith function. The design principles for creating an appropriate

stimulus are described. Since our knowledge of the CNS processing of

otolith signals is not sufficient to predict the success of any given

stimulus, experiments will be necessary to evaluate the efficacy and

efficiency of alternative approaches.



Figure i. A typical otolith
afferent stimulus - response
function relating the otolith
afferent discharge rate to the
componentof linear acceleration
acting along the afferent's most
sensitive axis of stimulation
(adopted from Fernandez and
Goldberg6).
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STIMULUS DESIGN PRINCIPLES

A reasonable set of principles for the design of stimulus and

measurement techniques capable of detecting the existence and

quantifying the magnitude of asymmetric otolith function are as follows:

i. The stimulus should be based on the known physiology of the otolith

receptors.

2. The stimulus should provide a linear acceleration stimulus that is as

large as possible and will produce a differential effect on the two

otolith organs.

3. The stimulus should be novel in the sense that subjects would not

typically be exposed to the stimulus in everyday life. (This would

limit the likelihood that CNS compensatory mechanisms have masked the

effects of asymmetric otolith function.)

4. For practical purposes, the stimulus and measurement techniques

should not be so exotic as to require equipment not currently

available.

PHYSIOLOGICAL PROPERTIES

Otolith Nonlinear Force-res_9/is_p_e_s

Otolith afferent neural responses show significant nonlinear response

properties 6. Figure 1 shows a typical stimulus-response characteristic

curve of an otolith afferent nerve fiber for a linear acceleration

acting along the most sensitive axis, the polarization vector, of the

afferent. The stimulus-response curves vary from afferent to afferent

in their horizontal and vertical shift and scale factors, but the

general nonlinear shape is consistent. On average, the 0 g point is

located on a very nonlinear portion of the stimulus response curve.

For the utricular otolith organs, which to a first approximation lie

in a horizontal plane when the head is in an upright position, the

gravity vector exerts an ineffective compressional force on the

utricular hair cells, and most afferents will be biased near the 0 g

points on their stimulus response curves. When the head is rolled 90 °

so that one ear is directed downward, otolith afferent fibers whose

polarization vectors are oriented toward the downward ear will be biased

to the steeper +i g point on their stimulus-response curves, and
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Figure 2. Otolith afferent neural responses (R versus t) predicted

during subject-on-side low amplitude, high frequency sinusoidal

oscillations about an earth-horizontal axis with the subject's head

displaced from the rotation axis. Most utricular otolith afferents

in the upper ear will be biased toward the -i g operating point on

the stimulus-response curves (R versus F), and in the lower ear

toward the +I g operating point.

afferents with oppositely directed polarization vectors will be biased

to the flatter -i g point. With the head in this ear-down orientation,

any linear acceleration applied along a vertical axis (collinear with

gravity) would therefore produce very different responses in the

afferents with oppositely oriented polarization vectors. Specifically,

afferents biased toward +i g would have larger resting discharge rates

and show larger modulations in neural activity (larger gains) than

afferents biased toward -I g.

Asymmetrical Otolith Morphology

Fern&ndez and Goldberg 7 identified asymmetries in the distribution of

polarization vectors within the otolith organs of the squirrel monkey.

Specifically for the utricles, about 75% of the afferents had

polarization vectors that were generally oriented toward the lateral

direction. This asymmetry means that when a subject is oriented with

one ear directed downward, most utricu]ar afferents in that downward ear

are biased toward their +i g operating points and most utricular

afferents in the opposite ear toward their -i g operating points. If a

linear acceleration collinear with gravity is applied, on average the

utricular otolith responses arising from the downward ear should be

quite different from those from the upward ear (Figure 2).
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Figure 3. Prediction of utricular otolith afferent responses in a

subject with asymmetric otolith function represented by different

slopes for the stimulus-response curves (R versus F) in the two

ears. The stimulus-response curve for the subject's right ear has a

lower slope than the left ear. The identical low amplitude, high

frequency, sinusoidal eccentric axis oscillations with the subject

oriented with right ear down (left side plots) versus left ear down

(right side plots) result in very different patterns of utricular

otolith activity (R versus t) in the two head orientations.
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Asymmetric otolith function

The theory of asymmetric otolith function postulated by von

Baumgarten and Th_mler 3 can be expressed in terms of the otolith

stimulus-response characteristic curves. A reasonable interpretation is

that, on average, the slopes of the stimulus-response curves differ

between the two ears, possibly due to differences in the effective

otoconial mass. If a subject were tested with a vertical oscillating

linear acceleration, first with one ear oriented downward, then with the

other ear oriented downward (Figure 3), the otolith responses generated

in the two head positions would be quite different. One would expect

these differences to be reflected in differences in VOR eye movements.

A linear acceleration stimulus can evoke horizontal, vertical, or

torsional VOR eye movements depending upon the direction of the

acceleration 8. Early experiments which measured ocular counterrolling

in response to static tilts with respect to gravity showed only low
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Figure 4. Binocular recordings of torsional eye movements in

response to a sinusoidal roll tilt stimulus (0.2 Hz, _20 °) about an

earth-horizontal axis with head on axis. Torsional measurements

were derived from video recordings. Systematic differences between

right and left eye torsion were observed (center trace). Large

spikes are eye blink artifacts.

amplitude torsional responses 9. This led to the conclusion that the

torsional component of VOR was unimportant relative to the horizontal

and vertical components. However more recent results have shown that

the gain of the torsional VOR during roll rotations (vertical canal and

otolith stimulation) is comparable to that of the horizontal and

vertical components I0,II, particularly at higher stimulus frequencies 12.

Therefore alterations of otolith function associated with 0 g conditions

could have a significant influence on torsional VOR dynamics, possibly

contributing to increased sensory conflict and leading to motion

sickness.

The torsional VOR has some unusual properties that could make it

particularly useful as a measure related to otolith function. In

comparison to horizontal and vertical VOR, the torsional VOR is less

influenced by visual information and is less influenced by conscious

attempts to modulate the reflex amplitude by imagining earth-fixed or

subject-fixed targets during motions in the dark 13. The direction of

gaze and the vergence angle of the eyes are known to influence the gain

of the horizontal and vertical VOR 14, but not the gain of the torsional

VOR. Finally, some linear accelerations, such as those along an

interaural axis, are known to evoke torsional eye movements that are not

compensatory in the sense that they do not serve to stabilize gaze in

space 8. The fact that this non-compensatory VOR exists, suggests that

it is an artifact of an unusual force environment, and as such is likely

to have escaped the actions of CNS mechanisms that might otherwise mask

the effects of asymmetric otolith function. Therefore, the use of a



stimulus that evokes torsional VOReye movementsas an indirect
indicator of otolith function is likely to be less influenced by
uncontrolled experimental variables which confound horizontal and
vertical VORresponses.

A CANDIDATESTIMULUS

With minor modifications to available equipment, we propose to
deliver a low amplitude, high frequency, roll rotational stimulus (±5°,
2 Hz) to subjects positioned with headabout 0.8 moff-axis and oriented
in both the right and left ear downpositions. This stimulus produces
an oscillating tangential acceleration with a peak value of i.I g acting
essentially collinear with gravity, and with only a small centripetal
acceleration with peak amplitude of 0.1 g. Unfortunately a rotational
stimulus also stimulates the vertical semicircular canals. Thevertical
canal responses,however,shouldbe identical in both the right and left
ear downpositions, so that any difference in VORresponsesin the two
positions should be attributable to asymmetricotolith function.

Onewouldexpect this stimulus to evokeboth torsional and horizontal
VOReye movements. The torsional componentwould be driven by both
otolith and vertical canal stimulation and the horizontal component
probably would be driven by the interaural tangential linear
acceleration. Fromthe work of Paige15, it is reasonable to expect that
the gain of the horizontal componentwould dependuponvergenceangle,
and therefore it will be important to record eye movementsbinocularly
in order to account for this variable. In addition, binocular
recordings will allow detection of disconjugate torsional eyemovements
which might be an additional indicator of the presence of asymmetric
otolith function.

Wehave recently begunbinocular video recordings of eye movements
with off-line computeranalysis of horizontal, vertical, and torsional
eye position using image processing techniques similar to those
described by Clarke et al. 16. An exampleof binocular recordings of
torsional eye movementsevokedby a head-on-axis roll rotation about an
earth-horizontal axis is shownin Figure 4. Thetorsional eyemovements
produced by this mild stimulus (0.2 Hz, ±20°) showed some small
disconjugacysuch that at maximumexcursions of torsion, which typically
occurred at maximumtilt positions, the intorting eye movedfarther than
the extorting eye. Given the mild nature of this stimulus, it wouldbe
surprising if the disconjugate torsion was the result of otolith
asyn_netry. Rather, orbital mechanicsof the eyemaybe a contributor to
disconjugate torsional eye movements, and therefore could be a
confounding factor in the search for measurementsreflecting otolith
asymmetries.

CONCLUSION

Wewill shortly begin experimentsusing the stimulus described above,
and will additionally measuretorsional responsesto rotational stimuli
designed to replicate the work of Wetzig et al. (1990). If the two
experiments give corresponding results, this will provide strong
evidence for the existence of asymmetricotolith function in a normal

population, and will motivate the application of these results to

prospective studies of space sickness susceptibility in astronauts.
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