
NASA-CR-1936Z4

Semi-Annual Status Report

f

174 

Submitted to: NASA Langley Research Center

GrantTitle: ROBUST STABILITY OF SECOND-ORDER SYSTEMS

Grant Number: NAG-l-1397

Organization: GeorgiaInsd_ateof Technology

Atlanta, GA 30332-0150

Principal Investigator: Dr. C.-H. Chuang

School of AerospaceEngineering

Georgia Instituteof Technology

Atlanta, GA 30332-0150

(404)894-3O75

Period Covered: Feb. 24,1993 to Aug. 23, 1993

Date of Submission: Aug. 19, 1993

(NASA-CR-193624) ROBUST STABILITY

OF SECOND-ORDER SYSTEMS Semiannual

Status Report, 24 Feb. - 23 Aug.
1993 (Georgia Inst. of Tech.)

18 p

N93-32373

Unclas

G3/64 0179669

https://ntrs.nasa.gov/search.jsp?R=19930023184 2020-03-17T04:57:38+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42805489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TABLE OF CONTENTS

lo

2.

3.

4.

5.

Abstract .................................................................................................................... 1

Introduction ............................................................................................................... 1

Dynamics of Space Manipulator System without Attitude Control of the Base ........................ 2

Control System Design .................................................................................................. 7

Simulation Results ...................................................................................................... 11

Conclusions ................................................................................................................ 16

REFERENCES ........................................................................................................... 26



A PASSIVITYBASEDCONTROLLER FOR SPACE MANIPULATORS

Abstract

A feedback linearization technique is used in conjunction with passivity concepts to design robust conlrollers

for space robots. It is assumed that bounded modeling uneextainties exist in the inertia matrix and the vector

representing the eoriolis, centripetal, and friction forces. Under these assumptions, the controller guarantees

asymptotic tracking of the joint variables. A Lagrangian approach is used to develop a dynamic model for space

robots. Closed-loop simulation results are illustrated for a simple case of a single link planar space manipulator with

freely floating base.

The dynamics of the space manipulators differs from that of the ground based manipulators since their base, the

spacecraft, is free to move. The movement of the manipulator produces reaction forces and torques on the base.

Therefore the resulting motion of the spacecraft has to be accounted for in the dynamic model for the manipulator.

However, Papadopoules and Dubowsky [1] showed that a dynamic model for space robots developed by taking into

account the motion of its base is similar in structure to dynamic models of fixed base manipulators. For instance, the

inertia matrix in each ease is symmetric and positive definite.

A few concepts have been proposed for joint trajectory control and inertial end tip motion control of space

manipulators. Vafa and Dubowsky [2] developed an analytical tool for space manipulators, known as the virtual

manipulator concept. The virtual manipulator is an idealized kinematic chain connecting its base, the virtual base, to

any point on the real manipulator. This point can be chosen to be the manipulator's end effector, while the virtual

base is located at the system center of mass, wl_h is fixed in inertial space. As the real manipulator moves, the end

of the virtual manipulator remains coincident with the selected point on the real manipulator. Additionally, it can be

shown that the change in orientation in the virtual manipulator's joints is equal to the change in the orientation of the

real manipulator's joints. While these features give the designer the ability to represent a free floating space

manipulator by a simpler system whose base is fixed in inertial space, the associated transformation depends on

knowing the system parameters exactly. Alexander and Cannon [3] showed that the end tip of the space robot can

be conlrolled by solving the inverse dynamics that includes motion of the base. Their method assumes the mass of

the spacecraft to be relatively large compared to that of the manipulator it carries, and also requires much

computational effort to determine the control input. Note that, futttre systems are expected to have the manipulator

and spacecraft masses of the same order. Umetani and Yoshida [4] proposed the generalized Jacobian matrix that



relates the end tip velocities to the joint velocities by taking into account the motion of the base. The control method

presented in the above reference is based on the concept of Resolved Motion Rate Control and Resolved

Acceleration Control. However, robustness of the control scheme to modeling uncertainties is not discussed.

Masutani et. aL [5] proposed a sensory feedback control scheme based on an artificial potential defined in the sensor

flame. This scheme is based on proportional feedback of _rors in the end tip position and orientation as

wellasfeedback ofjointangularvelocities.

In this report a robust control scheme based on feedback linearization and passivity concepts is proposed for

space robots. A similar control scheme has been ta,oposed earlier for fixed base robots by Abdallah and Jordan [6].

The extension to space robots is in the spirit of the [1], where it was proposed that due to the striking similarity in

the structure of the equations of motion of fixed base and space robots; almost any conlzoi scheme used for fixed

base robots can be applied to space robots. The control scheme uses inverse dynamics; however, it is robust in the

face of bounded modeling uncertainties which might be due to imprecise modeling and/or intentional simplifications

to the model based control law in order to reduce computational effort. The controller asymptotically tracks

prescn'bed time varying joint angle trajectories whose acceleration is bounded in the L2 space.

2. Dynamics of Space Man_ulator System without Auimde Control of the Base

The development of the equations of motion for space robots presented here closely follows that given in [5]. A

space manipulator system in the satellite orbit can be approximately considered to be floating in a non-gravitational

environment. As shown in Figure 1, the manipulator and the base can be treated as a set of n+l rigid bodies

connected through n joints. The bodies are numbered from zero to n with the base being 0 and the end tip being n.

Each joint is then numbered accordingly from one to n. The angular displacements of the joints can be represented

by a joint vector,

q -- [ql q2""qn ]T (1)

The mass and inertia tensor of the ith body are denoted by mi and Ii, and the inertia tensor is expressed in the base

frame coordinates.

2.1 Kinematics

A coordinate frame fixed to the orbit of the satellite can be considered to be an inertial frame, denoted by I_I. In

addition to _i, another_te f_ramegB is defined that is attached to the base with its migin locatcd at the base

center of mass. The attitude of the base itself is given by roll, pitch, and yaw angles. In the sequel all vectors are

expressed in the base fixed coordinate axes.

2



Base Frame
Link i

I
End Tip

R

Spacecraft
(Body O)

r
¢

System
Center of
Mass

Inertial Frame

Figure 1. A Space Robot.

Let Vi be the linear velocity of the center of mass of the _ link with respect to the inertial frame. Also, for the

i th link, let [Ii be the angular velocities with respect to the inertial frame, and let o)i be the angular velocity with

respect to the base frame. Then Vi and fI i can be written as

Vi ffi VB + vi + L'IB x ri (2)

fli = f_B + _ (3)

where r_ is the position vector of the center of mass of the ith body with respect to the base center of mass, and

v_ =i_. VB and _B are the center of mass linear velocity and angular velocity respectively of the base with respect

to the inertial frame, vi and _ for each link can be represented by the following forms

vi = Ju (q)cl (4)



toi = JAi(q)cl (5)

where JLi(q) and JAi(q) _ R3xn are the Jacobian matrices for the ith link.

The position of the system center of mass with respect to the base frame depends on the joint angles. Given

below are two measures related to the system center of mass

u

mc = 5".mi (6)
i**0

n

rc(q) = _ miri (q)/m o (7)
i-,0

2.2 Dynamics

The total kinetic enwgy of the space robot can be written as

1
T = - _ITD(q)/I, D • R °xn (s)2

where D is the inertia matrix of the system and is given by

T ,J" Hv Hval-'[Hvq 1

It can be shown that D = DT > 0, Hq is the inertia matrix corresponding to the fixed base manipulator

(9)

Hq = _[lIliJTLiJLi+JLIiJAi], Hq ER axe (]0)

i=l -

The second term on the right hand side of Equation (9) arises due to the fact that the base of the space robot is free.

Since the working environment is non-gravitational and no actuators generating external forces are employed, the

linear and angular momenta of the whole system are conserved. Since the inertial frame is fixed to the orbit, the

whole system can be assumed to be stationary with respect to the inertial frame at the initial state. Thus the above

two momenta are always zero for the whole system. Note that it is implicitly implied that the satellite is a non-

spinning body. Using the assumption of zero initial momenta the individual components comprising the second

term on the fight hand side of Equation (9) can be written as
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H v = m©I3x3 , H v • R 3x3 (11)

Ho = _I i + _mi[rix]T[rix], H o • R sx3
i=0 i=l

(]2)

H a = - m c [re x], H_n • R 3x3 (13)

H

Hvq = _".miJLi , Hvq e R 3xa
i=l

(14)

H_i = E{IIJAi + mi[rix]Ju],
i=l

H_q e R 3xn (is)

where for any vector

f_ I*/f2

f3

06)

0 -f3 f2[fx] = f3 0 -fl

t-f2 ft 0

(17)

and I3x3 is the 3x3 identity mauix.

Since there is no potentLa/energy in non-gravitational environment, the Lagrangian, A, is equal to the kinetic

energy

A=T (18)

So the system dynamics is given by

(19)

where _ is an nxl vector of input torques. Paralleling the development for fixed base robots given by Spong and

Vidyasagar [7], the equations of motion for space robots can be written as,
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D(q)_. + h(q,_l) = % (20)

where

h(q,_l)= C(q,4)_l (21)

and the dements of the matrix C are given by

CkJ ----2i=2_II'_i + _qj--_qk _qi

(22)

2.3_

The conservation of linear and angular momenta yields expressions for the base translational and angular

velocities

Iv,,1r-,,
cI.J=-LHS.HaJ LH_J"

(23)

Using the above expressions, the evolution of the base position and orientation with time can be determined as

foHows

ib] rcvco ¢vsost-SvCt

!,,/:is:° s,,s.s.+o,c.
zbJ L-se ces,

CvSeC* + SvS,]

SvSeCi - cvsi/V s
CeCt J

(24)

{']I'"'<°>6 = 0 c,

o s+SeC(O)

c, tan(O)l...

-St _z e

c,sec(O)J

(25)

where

%) - cos(-), so -sin(:) (26)
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3. Control System Design

3.1 Feedback Lincarization

Assuming that the dynamics of the space robot is described by Equation (20), where D and h are completely

known, the feedback iinearization or inverse dynamics technique [7] can be used to design controllers for tracking

prescribed command Irajectorics for the joint angles. This can be accomplished by letting

x = Du + h (27)

where u is the pseudo-conarol, i.e., it is the control input to the lincarized system. With the control law given by

Equation (27), the closed-loop systembecomes

_l q

where

A simplePD (ProportiouaI-Derivative)typeofconlxollawischosenforthefeedbacklinearizcdsystem

u = qa + K2 (Old- el) + Kl (qd --q) (30)

whereKI and K2areproportionaland derivativegainmatrices,respectively._ matricesareusuallychosento

be diagonalinordertoachievedecoupledresponseamong thejointangles.Substitutingforu fromEquation(30)

intoEquation(28),oneobtains

(_=Ace 01)

where e={e_ e2r}r,et =qd--q, ez=_ld --4, A©=A-BK, andK= [K1 K2]. /fK 1 >0and K2 > 0, the error

dynamics as given by Equation (31) is asymptotically stable. The freedom in selecting the gain matrices can be

utilized to meet performance specifications for the closed-loop system.

The preceding discussion assumes availability of pedect knowledge about the system dynamics. However, in

practice, D and h are usually imprecisely known due to modeling inaccuracies. Furthermore, D and h may be too
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complex to be used for real-time conlml implementation. In the following sub-section, a control law that is robust

for bounded unoenaintios in D and h is given. The control law results in closed-loop asymptotic tracking.

3.2 Robust Feedback Linearizafion Usin_ Passivity

The development in this section follows that given in [6] very closely.

uncertainties, the control law is given as

In the presence of modefing

= Dcu + hc (32)

where Dc and hc are computed versions of D and h respectively. Substituting for g and u from Equations (32) and

(30) into Equation (20) it can be shown that the closed-loop system dynamics is given by

= Ace + By (33)

where

v = Au+ 8 (34)

and

A = (I - D-ID©), 8 = D-l(h - he) (35)

The first step in the design proposed in [6] is to choose the gain matrix K = [K1 K2] and an output matrix F such

that the linear system given by

= Aoe + By (36)
y=Fe

is SPR (Strictly Positive Real). This can be achieved as outlined in the follow'rag theorem. A definition of the

concept of Strictly Positive Realness can be found in Slofine and Li [8].

TheoremI[6].LetKI andK2 besuchthat

Kl = diag[kli];kli > 0,i= l.....n

K 2 = diag[k2i];kzi> 0,i= I.....n

(k2i) 2 > kti, i = 1..... n

(37)
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then if F = K, the system described by Equation (36) is SPR.

The proof is omitted here, the interested reader is referred to [6]. Note that the conditions of the theorem given in

Equations (37) are extremely easy to satisfy.

With the linear system (37) being SPR, the passivity theorem (Desoer and Vidyasagar, [9]) can be used to

design asymptotically stable controllers as shown in the following theorem. The theorem is very similar to that

given in [6], with the only difference being in the way in which the uncertainty bound on the h vector is
(T ,_t/2

characterized. Tbe no.don ,X_T= l_ x'rx & ) is used in the sequel.

Theorem 2. Let the following two inequalities hold

D<II (r>0) (38)
r

ID-_(h-h,)_T < clUlT+d VT>0 (c>0,_>d>0) (39)

Furthermore, let/id _ L2- Then if Dc = aI where

c+l
a >_ (40)

r

the closed-loop system is asymptotically stable.

Proof. The closed-loop system as given by Equation (33) can be represented in block diagram form as shown in

Figure 2. It is Firstshown that the non,near block in the feedback path is 17assivc [9].

-v=--Au--8

Figure 2. Robust Feedback Linearizadon Using Passivity Theorem.
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Consider

T

I = _-uTvdt (T > O)
0

T

= f-uT(Au + S)dt
0

01)

Let the fu'stand second integrals on the right hand side be denoted by II and I2 respectively. Then

T

11= _uT (aD -1 - I)u dt
0

(42)

Noting that

D_II _ aD-t-I>(ar-l)I
r

(43)

one can obtain

IlZ (at-I)I.12- (44)

On the other hand,

Hence

T

-I2 = S uTD-I(h - he)dr

o

< lulr[D-l(h - h_)_r (H61der' s Inequality)

_iu_tclu_+ d]

I > (at =c- l)lul2 -d|u_ T = f(lulr)

(45)

(46)

It can be shown that if (ar - c - 1) > O,then

d 2

f([u[r)>-4(ar_c_ i)
v luIT_o (47)
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Hence

_-uTvdt >- VT > 0 (48)
d2

o 4(at- c - I)

Thus a sufficient condition for the nonlinear block to be passive is that a > (c + l)/r.

Additionally, the transfer function of the feedforward block [Ac, B, K] is proper and has no poles on the

imaginary axis. Hence it has finite gain (Doyle, Francis, and Tannenbanm, [10]). Since Cide L2, then using the

passivity theorem [9], one can conclude that the signals u, Ke, and v arc bounded. Moreover, since the feedforward

block is SPR, Ke(t) = Ksel(t) + K2e2(t) goes to zero asymptotically. This in turn implies that el(t) and %(0

individually approach zero asymptotically [8].

The f'LrStcondition of the theorem, given by Equation (38), is easy to satisfy since D is upper bounded.

However, the second condition, given by Equation (39), might not be easy to verify in a sWaighfforward manner in

all applications.

4. ftinmlalion.l_

As an example, results are illustrated for a single link space robot shown in Figure 3. Equation (20) describes

the dynamics of this one degree of freedom system. The system inertia, computed using Equation (9), turns out to

be

D(ql)= m'P_1+ Il-d[m'P2fPocl-+Pl)+ Ij]2 (49)

where

d = m'(P,2+ P12+ 2PoPIcI)+ Io+ II

and m' = mornI/(mo + m l).UsingEquations(21)and(22),h isdeterminedtobe

m'PoPlS1
h(ql,ih)= d2 [m'P,(P,+Plcl)+Io].[m'Pl(PoCI+Pl)+ I1]q_

In Equations (49) through (51), c I .. cos(ql).s I • sin(ql).

(5o)

(51)
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Yl

End Tip_-

1P

'_ x I

Figure 3. A Single Link Planar Space Robot.

It can be seen easily that as mo -_ oo,and Io -+ o_,

D--) mlp2 + I1, h_O (52)

which represents the case of a fixed base manipulator. Equation (24) is used to determine the evolution of the base

position with time

,, = m_I-P1c,1 +l{m'P1(PoC,+P,)+ I,}.(P,c_,,+PoC,)]Cl_

(53)

where

svl = sin(¥ + ql ), cvl = cos(¥ + ql) (54)

Finally, the base attitude dynamics is oblained using Equation (25)

12



= -d[m'P1(PoCs+ Pl)+ Ii]/11 (553

Next, a feedback controller is designed for the space robot using the results of Theorems 1 and 2. Closed-loop

results are generated for a step command of 1 radian to the joint angie. Note that in general, for end tip motion

control in the inertial space, the inverse kinematics problem needs to be solved to genexate a command trajectory for

the joint angle. Table 1 lists physical parameters of the example robot used in simulation. The base and link masses

are of the same order of magnitude. The feedback gains are chosen to be kl = 0.4 and k2 = 1.0. This choice of gains

satisfies Equations (37) and in case of no modeling uncertainty, yields a closed-loop response without any

overshoot. The fact that the system center of mass should remain stationary in inertial space is used to monitor the

step-size of integration to achieve numerical accuracy. Simulation results ate shown for the case in which there is

no modeling uncertainty, and for two other cases that involve differing degrees of uncertainty. It is assumed that

Equations (20) and (49) through (51) represent the true robot; the uncertainty is introduced in computing D and h.

An upper bound for the system inertia, needed for condition (39) of Tbeorem 2, is given for this particular case by

1_= re,p2 + 11 (56)
r

a in Theorem 2 is assumed to be 1.1/r for both cases involving uncertainty. The choice of hc however, is different

for the two cases. In the first case, the following simplification to h is used for computing the closed-loop control

h© -- m'P.Plslctl (57)

The second case corresponds to an even greater simplification to h

h©= m'PoPsCll (58)

Figures 4 through 7 show closed-loop results for the nominal case and for the first case involving uncertainty, c

= 0.01 was chosen to satisfy condition (41) of Theorem 2. d was chosen to be 2.5. Figure 4 shows that asymptotic

tracking in the joint angle is achieved in the face of uncertainty. This is associated with a slight performance

Table 1. Physical Parameters of Example Robot.

Body P (meter) l(meter) m (kg) I (kg.m2)

0 (Base) 3.0 5.0 30.0

1 (Link) 3.0 6.0 1.0 3.0
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degradation in the joint angle response in the sense that it has an ovi=shoot. ]F_,ure 5 shows that higher magnitudes

of joint torque are required for the case involving _ty. F_,ures 4 and 6 show that the base moves in reaction

to link motion; this is due to l_e _ of linear and angular momenl_'n as discussed l_evi(msly. However,

thejointanglestillachieveslherightcommanded value.Figure7 showsthatthechoice¢_cand d usedinthiscase

lalisfies condition (40)of The(xrem2.

, ............. ...............i................]................i................
o___ ....._......1

% , ,o ,,'' ' " _ o , ,o ,, _o
Time (_,,mds) mime (uoonds)

Figure 4. Joint and Base Angle Responses for the Figure 5.
Nominal Case and the First Case
Involving Uncertainty.

Joint Torque Input for the Nominal
Case and the First Case Involving
Uncertainty.
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Figure 7.
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Fi_0rcs 8 thro_h 11 show closed-loop results for the nominal case and dlc second case involving unccrtain_.

For the second case, cand d ram=clmsen robe c-, 0.01 and d- 5.0. Trends similar to the previous case sm_noticed

hem also. However. zincc the mtmt of mzccm_y is Ercatcr. thc_ is more dcvintioo in the _ _ _

to the previot_ case. This is observed in Figures g through 10. Figure 11 confirms that the choice of c and d

m_fies therequirementsof Theorem2.

i'll . ! ' ' I

,,-_ i _ t i i i¸

/ _ ..............._................_................i................

o ' " :"-_...... i
I J .,I "..-"i i i I

o 5 lo 15 20 o 5 ]o 15 2o
"nnz (_oods) Time(seozds)

Figure 8. loin| and Ba_ Angle ReSlX)nses for _ Hgure 9. loint Torque Input for the Nominal
Nominal Case and the Second Case Case and the Second Case

Involving Uncextainty. Involving Un_tainty.

N_ : 5, .__:
°'41 ! i i ._ _ _ !I

_'j_o._-_,,--_,.._i. . ..............................................] , i __._................ii................
i_--:-'._. ' .i i

- o ..........4.................i................ 3 .........._................................................

414 ,
0 5 10 15 20 0 5 10 15 20

Time O_.,conds) _ (seconds)

Figure 10. Motion of the Base C.en_ of Mass for the Rgur¢ 11,

Nominal Case and the Second Case
Involving Uncertainty.

44r+d-lo-'Co-.h._ror_
Nominal Case and the Second Case
Involving Unce_inty.
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5.Conclusions

A control method based on feedback linearization and passivity concepts that was proposed earlier for fixed

base robots is modified and extended to the case of space robots. The control law results in asymptotic joint angle

tracking in the face of bounded uncertainties. For the first time, closed-loop simulation results are presented using

this control method. For the simple example illustrated in the report, the control method shows promising results.
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