TEDENICKF KOTES.
NATIONAL ADVISORT COMAITHES FOR.ABRONAUTICS.

No. 3

by
' E, P. Narner, Chief Physicist, Aerodynamical Laboratory, N.A.C.A. Lengley Fiela, Va.

Washington, May; 1920.

By Eaward D. Warner.

The accelerometers which here been proposed for use on airplanes fall into two classes. The first class, represented by the R.A.F. instrument and the one on winch the starf of tine National Advisory Gomittee is now working, has a single deflecting member. This deflecting membe= is a sfmicircular gla=s fisbs in the R.A.F. accelerometers 三 flat steel spring in the Advisory Committee's. The second class, the oniy representative of whick among airplane acceleroneters is the one designea by Dr. Zakn, has a number of plongers held up againgt stops by eprings of varying ghyength or by springs of the same strength and Ioaded with varying weights. Increasing acceleration causes tio springs to leats thair stops, ona after another, and to maks contact with a sheet of paper which moves below them with 2 normal clearance of oniy 3 fev thousandths of an inch. The springs in tha Zatm instrument are-helisal, but they might be flat without changing the operation of the instrument. An accelerometer of this kint has tho acrantage of a very quick response to shocirs of brief duration, but it maikes a discontinuous record, giving indication only of the raiuss between:which the acceleration lay at any given instant. If there are enough springs a close approximation to the curve of acceleration can be secured, out this is essentially inferior to an instrument giving a continuous record directly if any satisfactory results can be secured from such ar. instrument.

The best way of eqproacining the theory of the accelerometer is to discuss first the oiofous inherent errors and the means for reducing them to a minimm and then to take up the equations of motion and deduce from tinem the leg in responding to shocks, the damping of the sensitive member, ari the possible errors due to resonance with the vibrations of the airplare engine.

Flat spring acceleroreters of either the first or the second cless are sabject to errors arising from accolerations along the aris of the spring superimposed on those wich it is interded to measure at right angles to the exis and from anguier accelerations of the airplane. Furthermore, all accejerometers are affected and give inecourate reacings if they are not flaced exactly at the center of gravity of the airplans (assuming that it is the accelsration of the center of eravity wificin is wanted and not, for special reason, that of some other part of the machirg. The errors from this cause, in turn, may be divided into two groups. First, if the instrument is pleced im a plane passing through tino center of gravity and perpendicular to the axis along winich the acceleration is to be meesurea, but not at the senter of gravity itseli, any exgular acceleretion of the airplan sill sornespond to a linear acceleration of the accejerometer spring and will be recorded as such. Second, if the accelerometer lies on the axis of meesurement any anguiax velocity about eithor of the other axes will produce a centripetal acceleration which will be recorded by the instrument.

Taking up these sources of error in the order in which they were first mentioned, the first is the effent of Iinear accelerations along the axis of the spring. In treating this it wisi be
assumed, to stert with, thet the deflactlug member is normally straight and that it is homogenenus in maderial, constant in section, and submitted to an unverying load. This assmption is very nearly true for the N.A.C.A. instrment, a considerable distance from the twuth for the R.A.E. type, but it will be show later that the distribution of load along the spring has very litile effect on the exror due to longituainal acceleration.

In a flat spring, let we the waight per suitit lensta, x the distance from the free end of the apring, and k_{x} the acceleration normal to the plane of the spring in torms of g (taking the "acceleration" as including the component of gravity normel to the plans of the spring, so that it corresponis to the total eir force acting on the airplane and preventing it from falling with an acceleration g downards). Then the bending moment due to normel acceleration is:

$$
H_{x}=\frac{-k_{2 x x^{2}}^{2}}{2}
$$

Integrating twice, the defiection at any point is found to be:

$$
\nabla_{x}=\frac{x_{x} N}{6 I I}\left(x^{3} x-\frac{x^{4}}{4}\right)
$$

As regards the bending due to longitudinal accelerations of the spring, the moment arm of an element of mass at any point with respect to an axis of berding at any other point is equel to the difference between the normal deflections at the two points. The bending moment is then:

$$
\left.M_{y}=\int \begin{array}{l}
x_{0} \\
0
\end{array} x_{y} y_{0}-y\right) d x
$$

where x_{V} is the longjtudinal acceleration (including ary component
of gravity acting along that axis) in terms of E. Substituting the expression given above for Ψ_{0} and y_{2}

$$
\begin{aligned}
& M_{y}=\frac{k_{x^{k} y_{y}{ }^{2}}^{2}}{6 E I} \int_{0}^{x_{0}}\left(f_{x_{0}}^{3}-\frac{x_{0}^{4}}{4}-\ell^{3} \frac{x^{4}}{4}\right) d x= \\
& \frac{x_{x} x_{y}-y^{2}}{6 E I}\left(P_{x_{0}}^{3}-\frac{x_{0}^{4} x}{4}-\frac{\rho^{3} x_{2}}{2}+\frac{\left.x^{5}\right)_{0}^{x_{0}}}{20}=\right. \\
& \frac{x_{x} x_{y} x^{2}}{6 \mathbb{I}}\left(l^{3} x_{0}^{2}-\frac{x_{0}^{5}}{4}-\frac{p^{3} x_{0}^{2}}{2}+\frac{x_{0}^{5}}{20}\right)= \\
& \frac{x_{x} k^{n} y^{2}}{6 B I}\left(\frac{l^{3} x_{0}^{2}}{2}-\frac{x_{0}^{5}}{5}\right)
\end{aligned}
$$

Dropping the subscript, since x_{0} can have any value, and integrating twice we have:

$$
y_{y}=\frac{k_{x} y_{y} w^{2}}{36 x^{2} y^{2}}\left(\frac{\rho^{2} x^{4}}{4}-\frac{x^{7}}{35}-\frac{4-p_{x}^{6}}{5}\right.
$$

Substituting ℓ for x in the expressions for \bar{y}_{x} and y_{y}, it appears that the deflections of the free ant of the spring due to accelera-. Lions in the two directions are

$$
\begin{aligned}
& y_{x}=\frac{k_{x}{ }^{\prime} \ell^{4}}{8 E I} \\
& y_{y}=\frac{-9 k_{x} k_{y} w^{2}}{560 E^{2} I^{2}} \cdot \rho 7 \\
& \frac{z_{y}}{y_{x}}=\frac{-9 \mathrm{WI} \rho^{3} k_{y}}{70 \mathbb{E}}=\frac{72}{70} \frac{k_{y} \cdot y_{x}}{k_{x} \cdot \ell}
\end{aligned}
$$

The ratio $\frac{\mathrm{YX}}{\mathrm{E}_{\mathrm{I}}}$ is a constant for any given instrument, and is equal to the static deflection of the free end of the spring. The ratio of deflisctions is then

$$
\frac{y_{y}}{y_{x}}=-\frac{35}{35} \frac{\delta_{0}}{\rho} \cdot v_{y}
$$

$$
M_{x}=-i n \cdot k_{x} \cdot x
$$

The deflection due to normal acceleration is found by integrating twice:

$$
\begin{aligned}
i & =\frac{1}{E I} \cdot W \cdot k_{x}\left(\frac{x^{2}}{2}+\frac{P_{2}}{2}\right) \\
\nabla_{x} & =\frac{I}{2 I} \cdot W \cdot k\left(\frac{p^{2} x}{2}-\frac{x^{3}}{6}\right)
\end{aligned}
$$

The deflection at the free end, measured relative to the base, is then

$$
5 x_{0}=\frac{W \cdot k_{x}}{E I}, \frac{f^{3}}{3}
$$

Proceeding in the same namer as for a distributed load,

$$
\begin{aligned}
& M_{y}=k_{y} W_{x}=\frac{m^{2} k_{x} k_{y}}{T I}\left(\frac{P_{x}^{2}}{2}-\frac{x^{3}}{6}\right) \\
& i_{y}=\frac{\pi^{2} y_{x} x_{y}}{E^{2} I^{2}}\left(\frac{f^{2} x^{2}}{4}-\frac{x^{4}}{27}-\frac{5 f^{4}}{24} \cdot\right) \cdot \\
& X_{y}=\frac{p^{2} x^{3} x^{2}}{E^{2} I^{2}}\left(\frac{0^{2} x^{3}}{12}-\frac{x^{5}}{120}-\frac{5 \theta^{4} x}{24}\right)
\end{aligned}
$$

The deflection at the free end, due to longitudinal acceleration, is

$$
Y_{y_{0}}=\frac{-W^{2} 1_{x_{x}} z_{y} l^{5}}{E^{2} I^{2}} \cdot \frac{2}{15}
$$

Wren

$$
\frac{Y_{y_{0}}}{Y_{x_{0}}}=-\frac{M_{y} \rho 2}{E I} \cdot \frac{2}{5}=-\frac{k_{y}}{x_{x}} \cdot \frac{I_{x_{0}}}{P} \cdot \frac{6}{5}
$$

The error due to longitudinal acceleration in this case is therefore about 17% greater than in the case of a uniformly dis tribute loading. These cases are the extreme antitheses of each other and the true value of the error in either the R.A.T. or the N.A.C.A. instrument will lie somewhere between the two values fount, as both these accelerometers have a tendency to concentrate the active mass near the free end of the springs.
ation of that machine winen pulline out of a dive may be as great as 1.92g. The conditions assuned in this problem were wnduly severe, and g may ba tairen as the maximim socelefation along the spring asis to which the accelerometer wijl be subaitted. In the R.A. ․ acceleroceter an acceledation of this megnjtuce would produce an error of $4.5 .43 \%$ or -4.63% in the detarmination of tine norm mal acceleration, ox a maximux erroi of $23 g$ for the lax gest normal aoceleration so far roconded. This is consmorably grester than the sensitivity of the instrument, and shows that it is not safe to raly on its indications to witinin O,ig.

In the N.A.Q.A. accelsrometor as origiruelly designed (not yet tried out) if is 12.7 cm, and S_{0} is 0.006 cqi . The maximun erros due to a longitudinal acceleretion of g under these conditions wolld be 0.05%, the pius and ininus errons being practically identical. This is 0.002 g for the maxjmum nomal acceleration, İ is evident tiat in this instament, if it is satisfactory in other respects, the errore due to accelerations at right angles to the one to be measured will be smell enough to be neglected with pexfect 3efety.

Instruments such as the one designed by Dr. Zahm, ueing hellcal springs, are of course quite free from any errors due to 1ongitudinal accelerations.

As has alraady been noted, the assumption of a uniform djstribixtion of weight along the spring does not accord ciosely with the facts. If it be assumed, as an alternaifive, that all the weight is concentrated at tine free end of the sprixg, the beniing momint due to the norman acceleration is:

Since any change in derleation perpendioular to the plane of the spring gives rise to a change in the deflection due to forces acting jarallel to that plane, there is a seconary erfect which rodifies $\mathbb{y}_{\bar{y}}$. If, for example, k_{y} acts towards the free end of the spring, so that \bar{y}_{y} anic \mathcal{J}_{x} are in the same direction, the increase of y due to the adaition of y_{y} will itself produce a further increase, and the total effect of longitudinal acceleration will be greater tion that given by the finst approximation vritten above. If the two deflections are opposed, on the other hard, the actual value of $y y$ will be less than that given by the approximate formula. These effects can be allowef for by substituting y_{t}, the total defiection, for y_{x} in tha above equation, Writing

$$
\begin{aligned}
& \frac{\bar{y}_{Y}}{\bar{y}_{t}}=\frac{\bar{y}_{y}}{\bar{z}_{\mathrm{I}} \pm \bar{y}_{Y}} \stackrel{r}{=}-\frac{36}{35} \cdot \frac{\delta_{0}}{\ell} \cdot k_{y_{Y}} \\
& \frac{y_{y}}{\nabla_{x}}=\frac{-\frac{36}{35} \frac{\delta_{0}}{p} \cdot x_{y}}{1+\frac{36}{35} \cdot \frac{\delta_{0}}{-0} \cdot k_{y}}
\end{aligned}
$$

In the gless ijber insirument devised and used at the Royal Aircraft Estailiskment P is 1.3 cm and S_{0} ranges from .05 to .08 cm . For an acceleration of g along tio axis of the spring $\frac{Z y}{Z_{x}}$ would therefore be .05. The accelerometer may ba placed with the axis of the spring coinciding either with the X or the \bar{I}-axis of the airplane. The accelerations along the Y-axis cexteinif never exceed g, whereas the computation of the behavior of a JN2 during a loop* shows that the lonatudiral deceler-

* Forces in Dive and Loop: Bualetin Airplane Bngireering Department, U.S.A.: June, 1918.

Effect of Angular Accelerations.

The effect of angular accoleretion'appears in two ways. In the first place, the spring, no matter where it may be placed, is affected by tho angular acceleration as such. Secondly, if the origin of co-ordinates in the spring does not coincide with the. center of gravity of the airplano ail aigular acceleration about the O.G. will give a lynear acceleration to the spring.

The origin will be taken at the base of the spring as a first assumption, being shifted later to a more convenient and logically chosen loation. An nngular asceleration of k_{a} radians per sec. per sec., the base of the spring being assumed to remain stationary, imposes upon every element of length $4 x$ a load

$$
\frac{x_{a} \cdot k_{a} \cdot \lambda x}{g}
$$

where is the weight per unit length. The shear at a distance x from the base is, integrating from the free end of the spring to the point in question,

$$
s_{a}=\int_{d}^{x} \frac{x \cdot k_{a} \cdot W \cdot d x}{g}=-\frac{k_{a} \cdot W}{g}\left(\frac{f^{2}-x^{2}}{2}\right)
$$

and the bending morent is

$$
M_{a}=\frac{-k_{a} \cdot W}{g}\left(\frac{\rho^{2} x}{2}-\frac{x^{3}}{6}-\frac{\ell^{3}}{3}\right)
$$

Integrating twice more,

$$
\begin{aligned}
& i_{a}=\frac{k_{a} \cdot W}{g^{E I}}\left(\frac{-D 2 x^{2}}{4}+\frac{x^{4}}{24}+\frac{P 3 x}{3}\right) \\
& Y_{a}=\frac{k_{a} \cdot W}{g^{E I}}\left(\frac{x^{5}}{120}+\frac{P^{3} x^{2}}{6}-\frac{\theta^{2} x^{3}}{12}\right)
\end{aligned}
$$

The deflection at the free end is then
$Y_{a_{0}}=\frac{k_{a} \cdot T}{g_{E I}}\left(\frac{11 P^{5}}{120}\right)=\frac{11}{15} \times \frac{f}{g} \times x_{a} \times S_{0}$
The direct erroz arising from grgular accejerations is therefore dixectiy proportional to the length of the spring, and the R.A. $\mathrm{H} . \mathrm{instrumant}$, have a marked advantage in this particular. It is, however, evident that a judicious location of ths origin of co-ordinates with respect to the Q. Q. of the airplans will introduce $_{\text {IInsan accsle=- }}$ ations, sesulting fron angular accelerations, which will counterbalance the direot eifect of the accelaratea rotational motion.

The normal accelaration required to produce a deflecm tion equivalent to that produced by the angular acceleration k_{a} would be of the magnitude

$$
x_{x}=\frac{11}{25} x+x k_{a}
$$

where k_{x} is expresseă in terms of fit. par sec. per ses. It is then' evident that, if the center of gravity of the airplene lies In the plane of the spring and $\frac{11}{15}$ of its lemgth from its base, there will be no deflection of the free exil of the gering due to angalar accelerations, the tuo manmers in which the effects of such accelerationa appear just cencalling each othar. If the weight is concentrated at the tip of the gpring, instead of being uniformly aistributed along its mhole length, the free end should obviously be at the C.G. Gompromising between the two conditions It may be seid thet, for the accelerometers now in use, the Iocation of the mounting should be such that tine O.G. Iies from 75\% to 80% of the way out alox the spring.
 as has already been pointed out, two possible sorts of error. The first of these is the error due to angular acceleration when the Q.G. lies in the axis of the spring. By properly choosing the origin in the soring the direct affect of angular acceleration can be eliminated, and tha total effect can be reduced to thet of a Iinaer acceleration given (in terms of g) by the expression:

$$
k_{x}=\frac{k_{g} x d}{g}
$$

where d is the distance from the center of dravity of the airplane to a point in the spring and 75% of its length from the base.

The anal.ysis of the "lcop problem" already mentioned, showed that, under the conditions essumed, the angular acceleration ebout the Y-axis has a maximun valua of 10.5 redians per sec. per sec. at the instant when the elevator was pulled up, that it Falls to 2.4 rad ians per 日ec. par sec. in 0.3 secord, and that it never rises above 1.0 rad. per sec. per sec. after 0.5 sec. until the loop is completed. The essumption, made in this enslysis, that the elevator is pulled up instentaneously is, of course, much too severe, and it is probable that 0.5 rad. per sec. per sec. is the largest acceleration in pitch that an airplane mould ever have to undergo. Hxperiments on the rolling moment due to the ailerons suggest that the acceleration about the X-axis has a maximun value, on small and mediumusized airplanes, of about 5 rad. per sec. per sec.

If d_{x}, d_{y}, and d_{z} be the projections on the three axes of the distance from the orisin of co-orajnates in the spring to
the center of gravity of the Eirplane, it is evident that the maximum error due to acceleration in roll is 0.15 g when d_{y} is 1 foot, and that the similat error arising from the pitching motion is 0.20 g when d_{x} is 1 foot. Corrections can be made, using estimated velues for tino angular accelerations, which can be relied upon to reduce these errors by about 60\%. In order that the normal acceleration, thus corrected, meg be accurate within 0.05g, the velue of d_{x} mist be less then $7 \frac{1}{3}{ }^{n}$ and d^{2} must not exuesa $10^{\prime \prime}$. The other source:of error is the centripetal acceleration due to enguiar velocity. In the usuel case, where the acceleretions along the Z-axis are being measured, centripetai accelerations arise whenever there is axy roiling or fitchirg motion if the active mess of the instrunent is above or below the C.G. The acceleration is, of course,

$$
k_{x}=\frac{a, 2 a_{z}}{g}
$$

The loop analysis showed a maximun engular velocity of 1.81 radians per sec. occurring 0.4 sec. after the slevator was palled up. Since the theoretical time for completing the 100 p was about a third less than actual measurement shows to be roquired, this maxImum is about 50% too higk, ard the true maximum may be takan as 1.2 rad , per sec. Since it is reportad that an airplare can be rolled onto its back in 3 sec., the maximum rolling velocity must be about 1.5 rad. per sec. The arror when d_{2} is 1 foot would then be 0.07 g . As in the case of angular accelerations, approximate corrections can be made, and the error reduced by at least 50%. To keep the corrected value of tha rormal acceleration within 0.05 g
of the truth, \dot{a}_{2} muat not exceed $16^{n \prime}$. This condition is easy to realize, and it will usually be fiound that the bee t place for mounting an accelerometer is directly above or below the G, G. The dymamics of the accelarometer wi.li be treated in a subsequent report.

