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Let: 

NATIONAL ADVISORY COW1ITTEE FOR AERONAUTICS. 

TECnNICAL NOTE NO. 31. 

CRI?:21ING STIENGTE OT<' AX L\I LY ~OADED RODS . ~' 

By 

Fr. N8.talis. 

Pk = the 10aQ at the ti~e of crippling in kg. 

E = the lLodulus of elast iCity in kg/ cm 2 

F = the cross-aect ion of the rod in cm 2 

1 = the length of the rod in cm 

J = t !" e moment of inertia of the Cross-se at ion in cm4 

i = ffthe radius of gyrat ion of the c ros s -s e ct ion 

L 

i 
k 

= the 

=~ 
F 

in cm) (J = i 2F) . 

slenderness rat io of tne rod. 

the mean unit co;:rroressive stress at the moment 
of cripplin~ in kg/cm 2 

ko = the ultin:ate corlipressive stress of the material 
in kg/ cm 

r,r > 1 the s afe-cy factor" 

P = the allowa"ole loaci in kg . ) (Pk == n:P). 

According to Euler's formula, ~.rve have : 

* Translated from Technische Berichte) Volume III) No. 6 , pp . 207 .. 
217. 
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These formulaE hold good only for slenderness rat los 1-- > 105. 
i 

However> a series of em;>irical formulas havo3 been c'.Gveloped for 
l i 

7" < 105 . They govern, howe'ler, only a liIJ1itcci range of values, 
1 i 

as fa r example , the formula of Tetmajer: 

k == ko [1 - a l.. + b (~ <! J, fOr 10 < 1 < 105 
i ,1 / i 

and the formula of Ostenfeld: 

125 

both of which give too large dimensions. Further, the formula of 

Schwarz - Rankine: 

1 + 
~ Z 

a (~) 
1 / 

.k == 

If in this formula we put a == ~ so that 
ffz E' 

k = ko '--
1 

kQ {-~ )2 
+ n ~ E \ 1 J 

t hen it covers the ent ire range of L from 0 to co 
i 

, 

correct results fpr the extreme value of t == 0 and co, 
i 

as for cases in which 

and when 

l 
== 0 i k -- ko 

l . <! 
- == co • k == 112 E (1. 
i· \ r / ' 

(3) 

and gives 

inasmuch 

as~n Euler's fornula, but ~or the intelwediate values of l 
i 

it 



.;tves too large a factor of safety; for ex.ample, for 
. . 

1. ~- n;;;E . = ---k k~ = 0.5 ko 
1 , 0 

The value l ~ j nO E has fa r too latex cans;'derat ;.an a spee-
l. kq 

ial significance, fox it is the or~inate for the point of intersec-

tion of the straight lines k = k a and the Euler's curve 

k = n
2 

E (i) 2 

it is therefore an. important unit of measUte for the slenderness 

with respect to the cn~raoteristic~ ko and E of the material. 

In the case of ~1= ·/~:~ , for which the Schwarz-Rankine 

fonnula gives k J = 0.5 ko) expe rimental investigations have deter

mined. a value of k 1 = ~ ko for both wood and steel. 

Table 

tr:;:
ij~, 

1 contains the values of .; f~di:fjferent values of 
a 

aCQording to Schwarz-Rankine and Euler'S formulas; 

Table 1. 

· . 
. - : 0 - 25: 0 • 50: O. 7 5 · . . 

:0.94; 0.80: 0.64 

· · . . . . 

1.0 1.25 

0.50: .0. 3B 

.=\\:'i. ... _ : (1.79): 1~00: 0.64 

1 50: Slender
. . ness of 

rod. 

Schvvarz-
0.31: Rankine 

. 
0.44: Euler 
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T 3,b 1 e 1 ( Con t d . ) 

l ;;~OE ....... .. = . . 
:1.75: 2.00: 2 .25 

1 

1 k l ' :2 

+ n
20

E (i ) 1 

:2 .:2 

= ~ (2. 
ko . L , 

= :0.25: 0 . 20: 0 .17 

2 • 50: 2. 75 : 3. 0 

. 

: Slender
: ness of 

rod. 

J.14: 0.12 :0. 10 :Schwarz
: Rankine 

0.16: 0.13 :0.11 :Euler 

In the following, a new formula will 'oe de r i ved. It corresponds 

and coinciding 
1 

to a curve of k~ v 3.1id 

at the beginning k = 1 
ko 

for the entir~ range of 
i 

with the Sc~warz-Rankine and at t he end 

with Euler's curves, and appr:Ja(:hlng c losely dur':'ng the -:vnole range 

of the experimental investigatiur..s on strength of rods of ciifferent 

length and const ant cros s section. 

As the formula s h ould give same 

nega't ive 1 the slenderness ra~ ic 

powers. 

L 
i 

k 
ko 

values for positive aDd 

mus t afpe a r in it only in eve~ 

The formula must be t~e.leforc of the form: 

to b 

line 

For very small 
:2 

1 
i values , 

4 

C (~ ~ 
. l ,' 

~ecomes negligi~le com~ared 

(!;. '\ 
l / 

If therefore, at thE; beginning the curve approaches th3 

then 

+ a ( ~ ) 
:2 

I 
= 1 

1 + b (~ 
\ lJ 
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neces sit at ing If, on the other hand, for very large values 
L of 
i' 

the c~rve is to agree with that of Euler, then the lower 
1 powers of ~ must vanish. Therefore, 
i 

L ;:! 

~(~ :2 :2 
i = n E ( i 

,\4 k T c ( -:- 1 o · ,.' 
~/ 

k 
whence c ~ a~. The formula oecomes th~refore now 

1 + a (~\z 
, J. , 

r 2 k i 4 

+ a (i\ + a i?~ ( -:-\ 
/ ... l ; 

(5) 

In order to dete~in6now the value of a it will be as su.illpc::. 

that 

where 

the new 

n is 

Then 

k 
kO 

... J.. _ 
~ .. -
n' 

. 
curve cuts Euler IS curve at the abs ciss a 

any nu.'!lbe r gre a,:ter than 2, (n > 2). 

n:2 E 
(t ; 

:2 
= ~ = ko 

1 + 
= 

TT2 E 
1 + anl:l ~ 

n:2 E ko = ko n d n 2 E 

:2 

an:2 IT E -y-
Q 

k 
+ an 4 TTz~~ (TTZE\3 

k o ; 

n 2 E n 2 + an 4 _ 

ko 

1 -r;;£E-
i == n J -k;- ' 



- e. o.l 

an2 TI 2 E ( I 2 2 ) 2 +r.. -r;. =n 
~ 

- 1 

The formula then -:Je comes: 

(6 ) 

If, for example, the curve is to cut Euler's curve at the orr.r 

nate ~ = zJTT:oE, then n = 2 and 

3 k t,,2 
1+- ~- ( -\ 

4 TT Ed! k _ 

ko 

It should be noted that 
1 

t:lanEuler's for i between 

(7) 

the new formula viII give larger values 

~ JTI2 
E • and _. o - This is however un--

ko 
objectionable , as the disagreement will not exceed 5%. 

Further, it is evident that the point of intersec~ion of the 

new curve with that of Euler's can be moved very far off, that 'is, 

' n Cro1 be 0hosen very large without essentially diminishing the val-

ues of Ji. 
ko 

in the central region of the curve and that the latter 

than will ag+,ee still better 

considers th&t -the new curve 

with the test results. Furth:;,;f ono 

which cuts Euler's at ~::: n TIk E 
1 0 

will touch :.t at infinity, then the condition can be made, that alao 
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";,,;.:at ~s 0 ~ he fi rs tint e r3ect ion poin~ is moved of f -:; 0 infinity; in 

ot her words, that the new Curve has tnree points in common wi t:1 

Euler's at infinity. 

From th:i.s follows a s 1mpler and for pract ical applicat i ons es

~ecially useful formula (f or n up to infinity): 

k L \.2 

lL 1 +~ (r , 1 + A = . ::: (8 ) 
ko ~ ( L 2 k 2 

(~ / 
4 

A 
2 

1 + - + (~'\ 1 + A 
n2 E i I it / / 

k F = k H' 
o~ 1 + A + A2 

1 + A 

where A 

This formula is f urther disting~ished by the fact t b at it con

tains no empirical consta.'1ts but only the characterist ics Y- o and 

E of the material. 

Table 2. 

. . . . . . . =:0.25 : 0.50 : 0.75 : 1.00 1. 25 1.50 

k according to Euler . :i'": :(1 .. 79): L Oc) 0 .64 O. ,=~ 
ko 

. 

..k. according to eQuat ion · · 
ko 

. · · 7 (n = 2) =:0.995: 0.963: 0.858: 0.700 : 0 . 545: 0 . 415 

~- .according to equat ion . · · · -0 8 (n = (Xl) =:0.995: 0 . 955: 0. 8 35: 0.667: 0.513: 0. 392 



Table 2 (Oontd. ) 

.-~- ---
L~ _ --.--0_ = :1. 75 - , 2.00 2 . 25 2 .50 2!75 3.00 - 2 E . . . . 
1 TT 

k according to Euler ~O •. 33 0.25 0.20 0.16 0.13 0 .11 
ko 

. ..... . 

l : . . 
1 according to equation :0.319: 0.250: o·zeo: 0.163: 0,135: 0 .113 ';:"0 7 (n = 2) = 
k according to eQuat ion : . 
ko 8 (n =:: ex> ) = :0.303: 0.238: 0.190: 0.152: 0.130: 0 .110 

For different values of 

tne re are grouped i...'1 Table :3 the values of k 
ko 

Fig. 1 shows the curves of kk plotted from formula (5) and 
o 

from these of Euler and Schwarz-R911kir~e. In order to verify the ne-IV' 

formula a seri es of pine ' rods, 4 x 4 cm. 2 and of dj.ffe rent l engths 

was tested. 

The material se 1e cted was as u n iforTc as pcss i",)le . Taking 

F = 16 cre?'" J = 21.3 cm.4 , i == l.15 em, and 

the results of tests were computed i~ terms of 

and plotted in Fig. 1 . 

E == 130,000 kg/ cm.2 , 

1. /,ko and A 
. 2 
l n E ko 
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Table 3. 

l k i J k(L k 
i kg/ em. 2 

k o i n2 E 

0 525 .0.000 1.000 
7.5 523 0.152 0.996 

10.1 524 0.204· 0. 997 
16 508 0.324 0 . 968 
30 479 0.405 0.913 
29 475 0.587 0.906 
39 430 0.7 90 0.820 
46 362 0.938 0.690 

(49.4) (350 ) (1.08 ) (0.66'1) 
54 . 5 309 l.10 0.589 
63.5 · 244 1.29 0.465 
71.5 218 1.45 0.416 

( 74) (206) (1, 50) (0.392) 
80 187 1. 68 0.357 
87 . 5 145 1.78 . 0.8'76 

(98.5) (125) (2.00) (0.;;38) 

In Table 3 there are included further ( in b r aC ke t s ) the cal 0\. ... ":" 

L/~ l at e d results for i n2 E = 1.0) 1.5 and 2 . 0. 

As Can b e seen from Fig . 1, the test results agree well with tt -. 

ul've from formula (8). That the test results do not g iYe an e11-;;:.1·8 -

ly s mooth curve, is not surp rising at all, as in such compres sion 

tes ts slight differences in material and its uniformity exe rt a 001:-

sidera~le influence. 

For a material of unknov,m properties it is sufficient ·to make 

two tests only, in order to detennine the ch a racteristics ko and E: 

one compression test of a s~ort rod giving the ultimate compres sion 

strength ko and one i)ending test of a horizontal rod, freely sup-

ported at tbe ends and loaded in the center, g iving 

from the known load Q in kg. and the observed deflection f in em. 
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'llhe results of another similar sC3!'ies of tests are giver.. in 

Table 4 . They refe r to hollow square sectioned rods and are ca: c"t.:,--

lated for ko = 525 kg/ cm.a ) E :::: 130, 000 kg/ CrIi ,2 , ~ ;= 7.94 .z 
C:'1l , , 

J :::: 15.9 cm. 4 ) and i :::: 1.41 cm . Their dimensions and the curve of 

the test results in c~mparison to the curve given in formula (8) 

are shown in Fig . 3. 

Table 4. 

L k LJ,~ k 

i kg/qcm i n 2 E ko 

0 525 0.000 1.000 
13 519 . 0 . 364 0.989 , 

31 448 0.638 0. 855 
(49.4) (350 ) (:1.. 000) (0.66'1) 
53 .3 407 1 . 057 0.'7'75 

( 74) (206) (1. 50) (0 . 393 ) 
77 237 1 . 540 0.453 

From tests of drawn seamless steel tubes, manufactured accord

ing to the standards of the Army hir Service Inspection (Idflz)~ 

Table 5 and Fig. 3 were established, showing that formula (8) holds 

also for other materials. In t hese tests specimens 30 mm. in diarr.

eter and of varying length were used; the wall thickness varied, be-

tween O. 79 and 1.18 mm . The wall thickne s G of individual tubes \"i'as 

not quite un iform, varying, fOr example, from 1.03 to 1.18 mm. This 

shcul d explain the ir!'egul arities of the curve in Fig . 3. 

* IlIdf l z n means :probably , II Inspektion der Flugzeugtruppen . n 
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':' ab I e 5_. 

L k L r~ l r 

i kg/qcm. -;- J 2:&; 
ko 1 · TT 

--- -- ------
11.20 5225 O. :82 l.OC5 
13.15 SlS2 0 . ~13 0 . 998 
15 . 10 4786 0.2~5 0.920 
18.03 5203 0.2S2 1 . 001 
20 . 96 4930 0 . 340 0.948 
24,86 4'720 0.403 0.908 
27.79 4918 0.450 0.946 
32.66 4984 0,530 0 . 957 
37 . 54 4500 0,608 0.865 
42.42 4841 0.687 0.930 
51 . 80 48£:0 0.840 0.932 
61 . 56 3541 0 .-998 '0.682 

(61.70 ) (3470 ) (1. 000) (0.667) 
71 . 32 3084 L 156 0,593 
81. 0 8 2698 1.614 0.519 
90 . 83 2022 1 , 4-'13 0,2·39 

(92 . 55 ) (?,G28) (10 50,J) (C , ~38) 
100 . 6 1655 10630 0.318 

5325 + 5192 / 2 The value ko::: 2 ::: approximately 5200 kg cIa, is 

t he mean value obtained from the compression test of -che two shorter 

tubes. The 'value E::: 2,000,000 kg/ cm .2 of the nlOdu1us of elast ic-

it.y is the average of the '::>eno.ing tests of two tubes, hic:1 ga'le 

2,04-1,900 and 2,008,370 kg/cm. 2 respectively (average 8,025,000) 

and of two compression tests giving 1,990 , 000 and 1 , 970,000 kg/cm. 2 

respectively (aver'age = 1,980 , 000) . The calculations were also 

based. on F = 0.911 cm.2 , J = 0.959 cm .4
, 

t L~ so that -1 := 61. 70 and - ---D- = l. 1 TT2 E 

r.-
i ::: j ~ ::: 1. 025 em., 

In the foregoing calculations, besides ko and E, the value 

of F) J and L are assumed to be known and f l'Om them k and Pk= mP 

are calcu l ated; frequently, however, ko and E also Pk :::: mP and L 
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are given and F and J are to ~e calculated. 

In order to simplify such calcula,tions, Tables 6 to 8 Cal} be 

useg:. 

Table 6. 

Solid Square Gross-See~ j on ?ine. 

F ::: h _ h 

J 12 -- 3. <17 
em. ; 

E ::: 130000~ ) 

em<l 

mP = 

F L 2 

52 5 F ___ ~_1_+_4_. _0_9-,J~(.-,,1~0,-><0-/-,1_· ___ _ 
.F·L 2 F L 2 , 2 

1 ~ 4.09 J (100) + (4.09 J (100) ] 

kg . 

h F J J i L = 
F 

em: cm2 
: em4 cm<l : cm 0 20 40 60 . : 80 100 120 

.. 'mP = 
.. TOOO 

: : :--------------------------------
2 : 4: 1.33:0.33:0.577: 
3 : 9: 6 .75: 0.75:0.865: 
4: 16: 21.3 :1.33:1.15 
5: 25: 52.1 :2.08:1.44 
6: 36:108 :3.00:1.73 
7: 49:200 :4.08:2.02 
8: 64:340 :5,33:2.31 
9: 81:547 :6.75:2.60 

2 .10: 1.81: 0.91: 0.45: . 0~ 263 : 
4.72: 4.55: 3.38 : 2.06: 1.27 
8.40: 8 . 28: 7.23: 5 . 33: 3.65 

0 .17l:0.11~ 
o . 846: O. 59 f, 
2.53 : 1. 82 
5. 70 : 4.24 

10:100:833 :8.43:2.88 

:13.1 :13.0 :12.2 :10 .1 : 7.73 
:18.9 :18.9 :18.2 :16.3 :13 . 4 
:25.7 :25.7 :25 .2 :23.5 :20.6 
:33.6 :33 .6 :33.2 :31.7 :28.9 
: 42 .5 :42 . 5 :42.3 :40.9 :38.4 
:52.5 :52.4 :52.1 :51.1 :48.8 

: 10.6 : 8. 20 
:17 . 1 :13.9 
:25.2 :21.2 
:34.5 :30.2 
: 45 . 2 : 40 . 6 



F 

~--i 

~-~ ~ 
J 

I I 

k- h->. 

= h2 em2 J ) 
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= 
h4 

em4 
; ~ rCc' 12 . i = h = 11 ein. _. 

- I. ) J12-l2 F 103 3.47 

k = 526 kg~. E = J.30. 000 kg2• o err?- ) , e~n 

1 + 4.09 
F / L ,2 
J 1,'100/ \ 

mP = 525 F ----------------------.~------------ kg . 
F L.2 F L 2.2 

1 + 4 .. 09 J ( 100; + [4.09 J ~OO ) ] 
--------------------------------~------------~ .~------------

h: F J J i 
F 

em: em.2: em4;: em2 : em 140 160 1 80 300 

~ = 

220 240 

_m P == 
1000 

260 280 

,' : . : : : :----------------------------------
2: 4:1.33 :0 .33 :0.57 7:0.087:0 . 067:0~053:0 . 043:0.035:0.030:0 . 025:0 . 032 
3 : 9:6.75:0.75:0.865:0.444 :0 . 338:0.266:0 .216 :0.180:0 . 151:0 .128:0.111 
4 : 1 6 : 2 1. 3 : 1. 33 : 1. 15 . : 1. 3'7 : 1.06 : 0 . 836: 0 . 680 : 0 . 563 : 0 < 473 : 0 . 4.-04 : O. 343 
5: 25:52.1:2.08 :1. 44 :3.22 :3.53 :2.08' :1 . 64 :1 . 36 :1.15 :0.980 :0. 843 
6 : 36: '108:3.00:L73 : 6.41 :5 .08 :4.12 :3.38 : 2 61 :2 . 37 :2. 02 : 1. 76 
7 : 43 : 200:4408:2.02 : 11.2 :9.02 :7.41 :6. 10 :6 . 13 :4.35 :3 . 72 :3. 23 
8 : 64: 340:5.33:2.31 :1706 :14.6 :12 .1 :10 ·. 1 : 8 ,54 :'7.01 :6 . 27 :5.45 
9: 81: 547:6.75:2.60 : 25 . 8 :21.Q :18 .5 :15,6 :13.3 :1J.5 : 9.89 :8.65 

10:100: 833:8.43:2.88 :35.7 :30.9 : 26 0 :22.8 :19 , 6 : 17.0 :14 . 8 :13.0 
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Table 7. 

Hollow Square Cross-Section Pin~ . 

ko == 525 kg/ cm2
; E == 1 30 ) 000 kg/ cm.8 

. I kg . 
F I __ L_ .8 E. _l_\2 .8 

525 F 
Ji' L .8 

1 + 4.09 J (lOOt 

1 ~ 4 . 09 J \ 100 j + [4.09J (100) ] 
--------------------J------~---------
H : h F: J i 

em : em: c~ : ew 

F 

CrrF em o 20 40 60 : 80 :100 : 120 : 1 40 

2L == 
1000 

. . .------------------------------------. . . 
4:2 . 8:8.16:16 . 2:1 . 98:1.41:4 . 28:4 . 2o:3.96:3~26 : 2 . 46:1 . 80:1 . 32:1.01 
5:3.6:12.0:38¥2:3.1 7 :1.78:6.30:S.39 :6 . 09:5.48:4 . 58:3 . 66:2 . 86:8.24 
6:4.4 : 16.6 : 76.8:4 . 62:2.15:8.71:8.70 : 8 . 36:8 . 07:7.23:6 . 15:5 . 07:4.14 
7:5.2:22.0: 1~1:o.42:2 , 54:11.5:11 . 5:11 . 4:11 . 1 : 10 . 3:9 . 25:e . 04 : 6 o dJ 
8 : 6.0:28.0 : 233:8 _ 34:2.89:14 . 7:14.?:14 . 6:14"4:13-7:12,6 : 11.~:10. 0 
9 : G.8:34.8: 366:10 . 6:3 . 26:18 . 3:18 . 3 : 18.2:18.0:17.5 : 16 . 5:15 . 3 : 13. 7 

10 : 7.6:42.2 : 455 : 13 . 2:3.64:22 . 2 : 22.2 : 22.1:21.9 : 2 1 .5:20.6 : 19.5:18.0 ' 



H: h F 
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mP = 

J 
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Tao1e 7 (Contd.) 

~ollOW Square Cross-Section Pine. 

525 F 

J 
F 

2 

+ h c' 18 m) 

ko = 525 kg/cm2 ; E = 130,000 kg/cm 2 

1" + 4.09 F ( _L_ 2 

__________ ~---_~J~\~J=.~O~O~.~--------- kg. 
F 1 2 2 

J (100 J ] 
F 1 2 

1 + 4.09 J (100\ + [4.09 
/ 

i L = 
------------------------------------~ 

160 180 200 : 320 

mL = 
1000 

240 260 : 280 

: : : :----------------------------------------
4:2~8:8.16:16.2:1 . 98:1.41:0~791;0,631:0.514:0 . 424:0 .360:0.309:0 . 235 
5:3.6:12.0:38.2:3.17:1.78 :1.80 :1044 :1.18 :0.989:0.834:0.715:0.618 
6:4.4:16.6:76.8:4 .62 :2.15:3.39 : 2 .79 :2.32 :1.95 :1.66 :1.42 " :1. 33 
7 : 5.2:22.0: 141: 6 . 42 :2. 54:5 . 74 :4.84 :4.08 :3.47 :2.97 :2.56 :2.24 
8:3 . 0:28 .0: 233:8.34:2~8S:8?()5 :7.45 :6.40 : 5 . 50 :4.76 :4.14 :3.63 
9:3 . 8 :3 4 . 8: 368:10 , 6 :3. 26:12,2 :10.7 : 9.43 :8.23 :7.21 :6.33 :5.59 

10:7.6:42.2: 455:13 . 2:3.64:16.4 :14.7 :13.2 :11.7 :10.3 :9.17 :8.13 

In Table 8, only one value of wall thicknes s 'v7aE taken for e ach 

tube diarr.eter . As F and J are nearly prop ortional to 6 ior thin 

-.?alled tu'oes, therefore the st rength of the tuoes is pract ically 

proportional to the thickness of the wall and can oe easily estimat-

ed for other thicknesses from the values of the table. 
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Table 8. 

Seamless Steel Tubes! Army Air Service }ns~ction Specification. 

,~ ~~. 

I 

I 

I*-D 

I 
I 
I 

~ 
I 

-

n 
(D

2 
d

2 
) 6 (D TT (D" 

-1, .A F = =TT - 6 ) cm 2
; J 4 

- = 34 - d ) en~ :; 

jD 2 J D2 + d
2 

1 d 2 = errf3 .i i = + cm; F 1 6 4 

ko = 5200 kg/em 2
; E = 2 ) COO,0~0 Lg/em 2 

F L 2 

mP = 
1 + 2 . 63 J (- '\ 

5200 F ________________ ~~~l~O~O~,~)----------- kg . 

D : d 6 

em err. em 

~ F L 2 .., 7 2 2 
1 + 2 . 03 - (-) + [ 2 . 63 =:... (-~-) ] 

J \100 J 100 

F J J 

2 em 

i 

em 

.. . . .. . . .. . . . 

l = 

o 25 50 75 

mP 
1000 = 

10C 12 5 

2 . 0:1 . 8:0 . 1 :0 . 597 : 0.270:0 . 453:0 . 673:3 . 10:2 y 83:1 . 67 : 0 . 889 :0 . 523:0 . ~38 
2 . 5:2 . 3:0.1 : 0 ~ 754~0 . 544:0.723 : 0.850:3 . 92:3 . 76 : 2 . 74:1 . 65 :1 . 02 :0.673 
3 . 0 : 2 . 8:0 . 1 :0.911:0 . 959:1.050 : 1 . 025:4 . 74 : 4.63:3 . 64:2.60 :1 . 70 :1.15 
3.5:3 . 3:0 . 1 :1.068 : 1 . 545:1 . 444 :1 . 203 : 5 . 55 : 5 . 49:4.83:3 . 67 :3.55 :1. ~e 
4.0:3 . 8 :0 . 1 :1 . 225 : 2 . 331:1 . 90 : 1 . 38 : 6 . 37 : 6 . 32:5.84 : 4.75 :3 . 54 : 2. 5 7 
4 . 5 : 4 . 2:0 . 15:2 . 050:4_854:2.37 :1 . 54 :10.6:10.6 : 10 . 0 : 8 . 68 :3 . 73 : : . 08 

. . . . . . . . .. . 
5 . 0: '4 . 7:0 . 15:2 . 286:5 . 726 : 2.95 
5.5:5 . 2 : 0~15:2 . 521:9 . 027:3.58 

6.0 : 5 . 6: 0 . 2 :3 . 644:15 . 34:4.20 
7 . 0 :6 . 6: 0 . 2 :4. 273 :24.72 : 5 . 79 
5 .0 : 7 . 6 : 0 . 2 :4 . S01:37 . 30:7.60 
S . O:~. 6: 0 . 2 :5.529 : 53 . 55 : 9 . 68 

lO . 0 : 9 . 6:J , 2- : 6:158~73~95~12 . 0 

l = 

o : 150 :175 : ' 2CO 225 250 

:r.P _ ---. . 1:)00 . . 
:1.72 :11 . 9:5 . 10:3 . 97:3 . 17 
:1.89 ,:13.1:6.47:5 . 13 : 4 .13 
:2 . 05 :18 . 9:10.4:8.30 : 6.30 
:2 . 41 :22.2:14 . 7 : 13 . 3:10 . 2 
:2 . 76 : 25 . 5:19.0 : 13.5:14 . 1 
:3.11 : 28 . 7:23.3:20.9:18.4 
:3 . 47 : 32 .0:27.5:25 . 2 : 22.7 

:2 . 54. 
:3.36 
:5 . 55 
:8.54 
:12.1 
: 16 . 0 
:2~ . 2 

: 2 ... 08 
:2.76 
: 4 . 60 
:7 . 1 6 
:10 . 3 
: 1-1. 0 
:17 . 9 
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Table 8 (;::ontd.) 

Seamless Steel Tubes. ArmL.Air2el'viee Inspection Speeificat ion. 

D 

em 

&;, b 
. d 

t I 
I t 
I 

*-D 
I 

· d 

'em 

[) 

em 

+ d
2 em: 

ko = 5300 kg/ em2; E ~ 3;000,000 kg/em 2 

F L 2 1 + 2.63 - (-
.J ,100/ kg. mP = 5300 F 

1 + 2.63 ~ ( L)2 [3 1"' .... F ( L )2 J 2 
100 + • 0,", J 100 , 

E J J i L = F , 

err? em4 em2 em 150 175 300 225 350 

mP 
--:;:: 

1000 
· . : : : : :-------------------------------

2.0:1.8:0.1 :0 . 597: 0 .270:0. 453~0.673:0.237: 0 .174: 0 .13 4 : 
~.5:2.3:0.1 :0.754:0.544:0. 723: 0 .850:0. 473: 0 .34B :0.238: 
'3.0:2.8:0.1 :0.911:0.959:1.050:1.085:0 . 828 :0. 6G0:0 .469:0.372 :0.301 
.3.5: 3.3: 0 .1 : 1.068: 1.545: 1. 44 4: 1. 203: 1 . 29 :0 . 9'(3 :0.751 :0.596:0.485 
4.0:3. 8 :0.1 :1~235:3.331:1. 9C :1.38 :1. 8 5 :1 . 43 .1.12 :0.894:0.735: 
4 .5:4.2:0.15:3.050:4.854:2.37 :1.54 :3.78 : 3 .94 :2.30 :1~85 :1.51 

L == 
--- - -

275 300 325 350 375 
- .----- mP 

1000 
:::; 

· . . . . -· . . 
5 .0:4. 7 :0 .15 : 2.386:6.726;3. 95 :1.72 :1- 73 :1. 46 :1.24 :1.08 :0 . 945 
5.5: 5 .2:0.15:2.521:0.02 7 :3.58 :1.89 :3 · 30 : J..94 ' 1.67 :1,44 :1.26 
3· 0:5.6:0.2 :3.a44:15 . 34:4 ~ aO :2.05 ~ 3 87 :3 . 28 : 2. 83 :2.43 :2.13 
7<0:6.6:0.2 :4.273:24.72:5.79 :3. 4:1 :6 . 0 6 : 5. 19 : 4 .47 :3.89 : 3.40 
0 0:7.6:0.2 :4.901:37.30:7. 60 :2 :1 76 :8 e8 2 ' 7. 59 :6.60 : 5.74 : 5.08 
9 .0: 8 .6:0.2 :5.529:53.55:9.68 :3 , 11 :12. 1 :1.0.5 : 9 .30 :8.06 :7.21 

10.0:9.6:0.2 :6.158:73.95:12.0 :3.47 :10.7 : 13 .9 :12.2 :10 . 8 :9 . 65 

• 
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Table 8 (Contd.) 

Seamless Steel Tubes. Army Air service Inspection Specificatio~. 

~o 
~ 
I I 
, I 

~l>-, 
ko = 5200 kg/cm2 ; E = 2,000,000 kg/cm2 

F t a 

mP = 5200 F 
1 + 2.63 

E . 2 z 
1 + 2.63 -- (-

-(-) J \ 100 kg . 
F 2 2 2 

J 100 / + [2.63 J (100) J 

D d 
, 

0 F J J i 2 , = F 
, 

: :275 em em' em cm 2 cm4 emz Cl"il 300 325 , 350 375 

~= 
1000 

· . : : : : : --------------
2.0:1 . 8:0.1 :0.597:0.270:0r453:0.673: 
2. 5:2.3:0.1 :0.754:0.544:0.723:0.850: 
3.0:2.8:0.1 :0.911:0.959:1.050:1.025: : : 
3.5 : 3.3:0.1 :1.068:1.545:1.444:1.203:0.400: 0 .339: : : 
4.0:3 . 8:0.1 :1.225:2.331:1.90 :1.38 :0.605:0.508: 0 .438:0.375:0.326 
4.5:4.2:0.15:2.050:4.854:2.37 :1.54 :1.25 :1.06 :0.904:0.778:0.682 

· .. . . . · . . . . 
5.0:4.7~0 . 15:2.286:o.726:2.95 
5.5:5.2:0.15:2.521:~.027:3.58 
6· 0 :5.6:0.2 :3.644:15.34:4.20 
7.0 '6.6:0.2 :4.273:24.72:5.79 
8. 0 :7.6:0 . 2 :4.901:37.30: 7.60 
9.0:8.6:0.2 :5.529:53.55: 9 .68 

10.0:9.6:0.2 :0.158:73.95:12.0 

2 =' 

400 425 450 : 475 500 

mP _ 
WoO -

. .---' 
~1~72 :O.8aO:O. 736 : ~ .658:0.590:0.534 
:1 . 89 
:2.05 
:2.41 
:2.76 
: 3.11 
: 3.47 

:1.11 
:1 ,88 
: 3,00 
: 4,~7 
: 6 .36 
:8.58 

:0 . 983 :0 .882:0 . 791:0.712 
: 1 v ~~ S : 1 · 49 : 1. 34 :1.21 
: '1. Wi . ?, . ...., 39 : 2 .15 :1.94 
: 3.89 :3 , 58 :3.22 :2.91 
::5. 66 : 5. 09 : 4.60 : 4.15 
: 7.37 : 6 .95 :0.30 : 5.68 
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GRAPHICAL DETEruHNAT 103 OF CRIPP LING LOAD. 

In formula mP == kF = k F J£.. . ko and F ok' 
o 

a re known and k de -
ko 

derivation of formula (3) it 

1 ~ -( .) -;- :::: --<L == 1 == OA See F~g.-±-. 
~ n 2 E 

During the d l" E 1 pen s on _ ana _ on y . 
i ko 

was point ed out t hat the express ion 

is an i mportant unit of measurewent for the slenderness of the rod 

and rr.akes it possible to read off 
1 

the values of for all values 

of 7"'- and for all materials from 
:1:. . 

a single curve. 

If the cri~~lin6 load for any value of 

it is necessary first of all to multiply 1 
T 

ordinate AB corresp.onding to t:1e absc i ssa 

L is to ~e determined, 

~y ~~o • Along the 
TT E 

1 1.0 a scale for 
i 

is provided and from the origin 0 radial lines are drawn for dif-

ferent values of E 
k o • 

E For inst 2n ce, t~e line for ~ == 250 (wo od) 
o 

ag re es i'-v it h the 8x:Jerimental results in Table 3, in which 

E- == 13~2~OO :::: 248 = a~proxjL1ately 250. l<q. 

r 
"1_ 

i 

200 

44.4 

250 
(Holz) 

49.7 

Table 9. 

300' 350 

54.6 58.9 

385 
: (Stahl) : 

61. 7 

l 
i 

:::: 39 :::: AC ~Dd if t~e line 

400 

62 .8 

CDE 

450 

: 66 .8 

is dra:Jm , 

tnen OE:::: c X AC, whe re c is a constant. The r adial line OD 

Lust t n erefore have a slope corresponding to c ;=. I-rr~~E' T11e inter-

section p oint F of 
l 

ue of f or which i 

line OD and t he ordinate 

~ I ko = 1; i. e . > AF:::: 
l TT z E 

AS g iv es the val -

t-= If o 



." gO •• 

For E = 250, the refore 1- = 1-9 . 7 . 
ko i 

Fo:-t other ~ the values are given in Table 9, from whioh 
ko 

t h e radial lines for the ohar a cteristios of di f fere nt materi a ls u , J." 

be e asily dram in F ig. 4 . 

If the value of L ;:ko ~ OE is onoe determined by means o f 
i n 2 E 

a prOper radial line for a value of ~ = AC the line 
l 

DGH g ives 

i fl1r[,ed1ately the value k as fOr inst ance l = . 81 in the ex-
k o ' ko 

ample, this value is then to "be insert ed in the equation 

mD -..L - ko Fkk = .81 koF. 
o 

For another value of 

1 Inko - 1 5 the line 
i n 2 E - • 

.392, i.e. mP = .392 k oF. 

7, 

1 
= 74 > AF, corres p onding to 

JKLM should be drawn, g ivi ng = eM = 

When the load mP I instead of the OrOss section of the rod, 

13 known , the process must be repeated in order to determine the 

c r OSS sectional dimensions. 

TEE ELASTIC CURVE k~D THE LATERAL DEFLECTION OF THE ROD. 

The differential equation of the elastio line , (Fig . 5)) from 

which Euler's formula is de rived is: 

2 

~= dX: 
M --- = 

E J 

v/c ere P is any lO3.d at all. 

This e quat ion is sat i s fi3d by 

p 
y , 

E J 

y ::: B sin V7 x + C cos w x ~ 

(9) 

(10 ) 



in which B, C and 'Iff are constants and are still tc be detemined . 

x=:O gives y:::: 0, therefore, C = O. As, however, y must a~.s c 

= .O :_fOT x = l, therefo!'e B sin W l :::: 0, ilence w L :;:= iT 

2nor3iT ...... The values 2 TI, 3 TI, etc., correspond to a rod 

~:: ent into several waves by fourfOld, ninefold, ........ loads, and 

therefore are not to be cons i dered. 

Hence, we have: 

iT X W := - and y := :3 s in n 
L ~ 

(11) 

Tne elastic curve is therefore a sine curve. 

As further, for the deflect ion y == a, then B:= a, 

y = a sin TI~ 
t 

d
2 ¥ :::: _ n

2
• x :::: 

dx a !2 s ~n TT l 

and (12) 

On the other hand, according to equation (9) 

Then there follows: 
:2 E -

P 
_ iT J 

k - 2 
l 

( 13) 

In other words, if a deflection of 'cil!e rod takes~lace 3.1i all 

d2~-
:=......i.. > ° dx 2 then it can 9ccur only under the e f fect of ~ definite 

load Pk' 

Howeve r, the maximur.1 defle ct ion a for 

1 ated from equation (12) as the equa.tion a :::: 

can b e satisfied for any value of a . Henoe, 

x = ~ cannot J e ca lcu-
2 

• IT t· TI a S J.n - ... = a sin 
1 2 2 

it follows first I 

defle ct ion at all; second, t~at in case of P < Pk there 

that for a definite load Pk = the equilibrium of the inner 
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and outer forces is present for any value ~i a, and third, tha~ 

in case of P > P :<: the deflection 

unt il the rod will bre ale and a = CD 

a will continue to i:lc:r-ease 

This is, however, not to be taken literally, for the deflec·-

tion of a rod. in proportion to its length cannot exceed cer-cain 

practical limits. The conclus ions. of this investigation app:Ly 

tfiereiore to comparatively small deflections of the roj and to rods 

which originally were perf e ctly straight, s ymmetrical and of uni--

fOrm material. Wi-;:;h these reservations, the fonnula and the C011-

elusions drawn therefrom are unobjectionable. 

That the deflection, according to Euler, for the load 
__ rr2 EJ 

---L~- can assume any value~ seems astonishing at firat, but 

is easily ex.plained by the following cons idera.t ion. 

If, at a cert ain definite deflection a, there is an equilil:;-

riulli between the outer fOrces and the inner bending moments, 8n:i 

if the deflect ion is art ificially increased to n a, tiL.er: all t:!.. e 

inner stresses and si~ultaneously the outer jending rr.o~ents for 

every cress-sect ion will be increased n t ir..1es . The rod is the :re-

fOl'e in an indifferent equilibrium. I f P k is s orr.ewhat :ii::iinished., 

the roct. will come :cack to i"(;s original form) if Ph. 'lJe slightly 

increased, the original small deflect ion will continue to grow 

larger until the rod breaks. 

In contrast ti 0 the above is the state of equilibrium of a hO:r-

izontal r od supported at the ends and lOaded transversally to t~1e 

ax..is in which case there is a definit3 deflection for every load . 
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The difference in the two oases is due to the faot that, in the 

t ransvers ally loaded rod t he bending moments are independent of t te 

deflections while in the axially loaded rods they are proportional 

to the deflection. 

The oonolusion drawn from the discussion of 1uler's formula 

that an axially loaded rod should not deflect any measurable amount 

and that no gradual increase in deflection should correspond to the 

gradually increasing load, is, however, not generally oonfirmed by 

experiments. For instanoe, Fig. 6 shows the lateral defleotion in 

relat ion to the axial load fOr two steel tubes. 

No. I, 304 cm. long, 65 rr~. diameter and 1.46 ~m· wall thiokness. 

nIl, 294 cm. long, 80.1 mm. diameter and 1.98 mm. wall thiokness. 

It follows f r om the curves that, although the deflections grow 

rapidly with the load, the crippling of the rod does not ooour very 

suddenly. 

This contradiction might be attributed to the fact that the 

modulus of e lasticity E does~ot remain quite oonstant as the 

stress increases Or that either the cross-sections of the rod are 

not perfectly symmetrical or the material is not uniform, Or also, 

that the rod was not perfeotly straight before the load was applied. 

Finally, it is not quite correct to assume that for considerable 

deflect ions the arc element d s of the rod is equal to d x, us-
d:? d(GY) 

ing d ~2 ins t e ad of "1, dx in the derivation of Euler's formul a . 
d s 

The last point seems, however, unessential as the practically 

admissible deflection of the rod is slight. Also the variation of 
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E is inconsiderable. On the contrarY, some bends in the rod ~e-

fore the test or nonuniformi ties of the wall thickness (for ex.al'l'lple, 

in a tube) or of t:Ge material) are of essent ial importance. 

It ia evident that even a perfectly straigpt rod will 'oreak 

only at a certain definite deflection a. This deflection for large 

values of at whic~ the compressive stress is negligible in com-

parison with the bending stress can be calculated in the following 

manner: 

ko J. 
e' where e is the distance of the out-

most fiber from the centerline of the cross-sect ion. 

FOr small values of 
i' 

besides of the bending stress, the 

compressive stress must be considered. As both stresses taken to-

gether should not exceed ko, the bending stress alone equals 

ko - k . 

In Fig. 1, 

ue from the x - axis 

f Or l = 1-
ko 

T1-;.erefore, 

Pk 

a 

is represented by the distance of the ~ val
ko 

ko - k 
and - b y the distance from the line 

k 

= k F and a Pk = (ko ... k) J 
e 

ko - k J ka - k i 2 

(15) - = 
k Fe k e 

This equation gives the same values of a as equation (14) 

if , as for long rods, k in the numerator can be neglected and 
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Pk is taken equal to k F = n 2 EJ 
22 

Subtracting in equation a ;::: (:0 -
from equation (8). 

a ;::: 

k r 2 . :2 

(~ 52 ) i 2 

2 
~ l e 

1 + ' 2 ~ 
TT E i 

1 
i 2 

J e 
the value of 

.2 
1 

e 

~ 
k 

(16) 

(17) 

EquatIons (15) and (17) lead furtner to the following kport-

l k 
ant consideration. If, ror a certain value of the ratio 

i ko 
is deter:~ined according "to equat ion (8) or Fig. 4 , "then the great es t 

admissible deflect ion a is propo.rt ional to Table 10 g.ives 
.2 
1 

e for s ome solid and thin walled hollow sect~ons. 

CrOss-sect ion 

~--..

~-]-
lo<- b-'1>4 

!Q--,--f- : 
.. 1:>' -

___ 'L.: 8 

bcf3 
12 b d 

4 6 d 

Table 10. 

= 

.2 
1 

e 

d:2 /16 ;::: d ;::: 
d/2 8 

0 .125 d 

d
2 
;12 = d ;::: O. 167 d 

d2 "6 

0.250 d 

0 .333 d 



- 26 -

In aT: air:r;lane late:::.' al defle c ... icn of rod.s ca..Tl t e produced c- ~-

vi".:. :ration or other external causes, and Table 10 shows that t h e 

hollow sectioned axially-loaded rods can be allowed to deflect 

twice as n:uch as t h e sol"d sectioned rods. T2:le s quare section i s 

4/3 t ir::.es mOre adv ant ageous than the circular one, due tot he l a r -

ger cross - sectional area. 

Now) examining the case of an eccentric load) considering at 

the same time, instead of a straight rod, a rod having an initial 

bend b, before t he load is applied, (See Fig. 7). The curve of 

the initial bend is unessential. To simplify the calculations, it 

can therefore be assume d that the curve of the fnit ial bend is simi-

lar to t~e elastic curve of the roa deflvcted under the load . If 

trlen b denotes the initial bend and a the additional elast ic 

deflect ion, 

~ Y' d Y == ) 1 
a+b 

As further 

where P is any load, then 

a + b 

a 

This equation is s atisfied b y 

p 
y, 

S J 

P 
E J Y· 

y == ( a +~) sin TI x 
! 

_b.:::.-_ d:Z Y • 
a + "0 

(13) 

(19 ) 



y 
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~ (a + b) 
n2 

sin Tf 
x TT2 

::: 

12 = - 12 Y 
d x2 1 

-t sin TT 
x d

2
Yl = b 

n 2 
sin x n 2 

= L - P n-::= - T2 y . 
1 d.. x 2 Z 1 

With reference to equation (18) we have t h erefore: 

a + b 
a 

The elastic deflect i on however 

it depends upon b and p. 

a ::: "b P t 2 

= 
n 2 E J - P L 2 

is not a + b but 

b 
2 

TT E J 
- 1 P 12 

(19a) 

(19b) 

a only 

(20 ) 

In the case of an eccentrically loaded rod, the deflection a 

depends therefore, upon P. For P = 0; a = 0 and fOr 

P - P _ n
2
E J a--- k - l2 0:>. 

nZLJ = Pk is Euler's crippling load. 12 

P ::: "I ' 'Pk , it will be found that 
I 

'Y 
a = b 

'Y - 1 

For different values of 'Y 

en in Ta::) le 11. 

t he values of 

Table 11. 

Taking therefore 

a 
b 

'Y 

'Y - 1 

(21 ) 

are g iv-

'Y :1.0: O~9:0 . 8:0. 7 0.6 0.5 :0.4 :0 . 3 :0.2 :0.1 :0.0 

a 
b 

9~O:4.0:2.33 1.5 1.0 :0. 667 :0.428:0.250:0.111 :0 . 000 
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The ecCentricity b cannot be easily mea,sured as it is com·-

posed not bnly of the real eccentricity of the IQaC" but also of the 

lack of unifoTInJ..ty of the wall thickness and tbe r:,aterj.al.. If, how

ever , t his seeming (total effective) eccentricity be calculated for 

one of the experimental results in Fig. 6 (curve 1 gives 'oJ::: 1.1 cn: 

~~d Curve II as 1.27 cm.) and then for the various loads the corres-

:ponding defle·ctions a figured out (in Fig. 6 the various cases are 

marked by circles) it will De seen that the calculations agree sUr

prisingl y well wi t h the test results. This proves the statement that 

the regular inc reas e of deflection with the load i s due mainly to 

lack of symmetry and uniformity of the nod, both in dimensions and 

material , and that the effeot oan be reproduced by the assumption 

of an eccentric load. 

DETERMINATION OF ADMISSIBLE LOAD WITH REGARD TO ECCENTRICITY. 

1. F·or re l at ively slender rods, in whi ch the mean a:ompressive 

stress k is negligible in comparison with the bending stress 

ko - k, the f oll owing relations are approximately tr~e: 

p (3. + b) ::: ko J 
e 

k ,.., 
a ::: ---'-<:. 

p 
J 
=~b 
e 

J _ b 
e 

and with equation (20) 

P 
I 

ko 
J Z 2 +- b n 2 E J) ko 

J 1j2E J \. ::: 

e e , 

p n 2 4' J 1 ::: -' 

l2 
n 2 E e.· 1 + b 

ko 7 

(23 ) 



2. For stouter rods, where the mear~ compressive stres s shou:d 

be cona idered: 

-P --' 

k = P 
F 

a = 
2 n 

n 2 E 
-

n 2E J -

( ± 

P (a + b) = ( ko - k) ~ 
e 

and from the equat ion ( 20 ) 

b P 1 2 
and it will .,: e 

1i"' J P 12 ...., -

J J P J = ko -
P r2 e F e 

(25 ) 

found: 

(26) 

This formula has two roots and if ap:plied to the steel too:':) €: 

No. II in Fig. 6> where 1 = 294 em.; F = 4.9 cru2 ; J = 37.3 cm4
; 

k b == 5200 kg/cm2
; E = 2> 000,000 kg/cmz and b = 1~27 em., the 

buckling load will be found either P 1 == 33,275 kg ., and the eorres-

pending elastic deflection according to e quation (80) 

a 1 = - 1, 715 em. or Pz = 6,635 kg. and a z == 4 .14 err •• 

P 1 and a 1 do not pract ically corr,e into question as t he deflec-

t ion al is in a direction opposing the initi a l o end b and k 

would b e greater than ko ' Therefore, 0::111' t ~1e negative si:?;!1 of :one 
root in equation (26) s~ould b e used. 
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Equation (26 ) can be used in ordeT to determine the b~cklin~ 

load P according to the idea of Mueller-Breslau* ass'~ning eccen

tricity of the rod. The additional deflection a corresponding 

to the load P is given by equation (20); the total deflection is 

therefore: 

+b . n 2 E J = b <: 2 
nEJ-P1 

(27) 

and the bending stress is obtained from equation (25) to 

=: P (a + b) e 
J 

(28) 

The foregoing calculat ion be comes ve ry clear 7vhen the moments 

Ma and Mi of the outer ~nd inner fOrces are drawn in relation to 

tfue deflection a, for ex~ple, for the weakest section, as in 

Fig. 7. 

M = a P (a + b) 

2 2 

M· 
d . y d Yl E J = -
dx 2 dx 2 ~ 

in uhicn, according to equations (19a) and (19~) 

fOr 

and 

x = { 
2 

(29) 

(30) 

(31) 

The mome.nts Ma and 1>!i are represented in Fig. 7 by full 

lines. Their point of intersection corresp onds to a deflection a 

at which the inner and the outer forces are in equilibrium. A 

s !"{; aJJe r load P < P would have a corr'3sponding moment line lliat. 
~~~ __ -,~ __ ~1~ __ ~~ ________ ~ __ ~~ __ ~ __ ~ __ ~~ __ ~ ______ ~~ 
*Mueller (Bres1au), Die neueren Meth oden der FestigkeitlehJe. 
Published by A. Kroener, Leipzig, 1913, Chap. VI) p .360. 
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dotted and a smaller a similarly for p = p , 
2 

there "nill ':'e 3. 

line Maz and a greater, a and a + b. If P inc:ceases GO mu.ch 

that the line MC18 becorr:es pa,ralle l to Mi , a will be equal to 
z 

Cb and P = P == n E J If P is increased. still further . then k L 2 , . , 

the line Ma4 will intersect the line Mi produced so that a 

becomes negative. This value of -a corresponds to the unused 

root of equation (26). 

The foregoing ought to prOve that although t 'he bend a + b } 

in the case of an eocentrioally loaded rod, grows rapidly with the 

inorease of the load, the break does not occur suddenly. On the 

other hand, it seems possible to eliminate in a oompression test, 

by means of a prOper arrangement, the always present slight eooen

trio~ty in Whioh all the ununiformities of wall thiokness and ma

terial are included. Then for a definite load (namely, Euler1s 
z 

orippling load Pk = 'IT f2 J~, there must be an equilibrium fOr any 

deflection. This means that the curves I and II, Fig. 6, should be 

vertioal lines P, having the same value for any deflection. 

This apparatus may, for example, oonsist of two spherical com

l.)ression blocks, with respeot to whioh the ends of the tube, pro-

'ceoted by end plates, may "je laterally displaoed by means of ad

justing sor,ews until the crippling load reaches a maximum. 

The author had suoh a test ing devioe made. The tubes to be 

tested are closed on both ends by plane pressure plates, and in the 

machine are plaoed two compression blooks whose knife edges, rounded 

off to 5 mm. radius, are adjusted aoourately parallel. On both 

sides of the knife edges are adjusting sorews, by means of which the 
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ends of the tube may be adjusted laterally with reference to the 

knife edges, thereby avoiding the turning of the tube about its 

axis, as well as permanent deflections. In the experiments, tests 

were made upon the strut, a steel tube of 8 mm . diameter, 2 mIT.. 

\tvall thickness, and. 3030 mm. length) with apparent eccentricities 

varying .-£rom +12 mm. to -2»6 rom. While the ca lculation gives Euler' s 

buckling load " P = n
2 -~ 2,15)0,000 X 37.3 = 8400 kg. ~ it was found 

303
2 

that the tube could stand a load of 9500 kg. at an eccentricity 

e = - 2 .6 mm. At 9600 kg. 1 without any increase of the load, the de

flection rOse i rrrnediately from -1~2 rom. to a very high value, that 

would have led to collapee (Se e Ta"o le 12). 

TABLE 12· 

Deflections II an in mm. at Various Eccentricit ies. 

Eccen- : 
t ric it Y : Loads in kg . 

C :::::::: 
in mm. :1000:2000:3000:4000:5000:6000 :7000:8000:8500:9000 :9500:9600 

12 2 ~ 1: 

10 1.7: 

8 1. 4: 

6 1.1: 2.8: 

4 0.9: 2.4: 

2 .. 0.5: 1. 3: 2.4: 4.0 : . 

0 0.1 : 0.3: 0.9: 1.6: 2.7: 4.5: 

-2.5 0.0: 0.0: 0 .0 : 0.0: 0.4 : 0.1 : 0.2: 0.6: 

-2.6 0.0: 0.0: 0.0: 0.0: 0.0: 0.0: 0.0: 0.0:-0.1:-O.3:-l.2:Buck-
ling. 
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It foll ows from these tests that a perfectly stra i ght rod. ~ in 

agreement wi t h Euler's theory, does not deflect at all under lc adG 

below Euler I s cripp } ing load, and that aft er the ir 1:.1 t in:a.t e 108.L'. H' 

reaChed , there i s an equili"b rium between the oute r p.J".·i tr.e i rmf;!: 

forces for any deflection within the elastic lilli it of the materi al. 

SUMMARY. 

The formulas hitherto employed for calculation of rods sub ject 

to compression, are usually of value only for stout or for $lender 

rods. They do not cover l as a rule, the whole range of rod lengths, 

or they give too great a safety factor for short and mOderately 

large rods. Therefore, a new empirical formula, equation (8), has 

been developed, that holds good fOr any length and any material of 

the rod, a~d agrees well with the results of extensive strength 

tests . To facilitate the calculations, three tables are included. 

giving the crippling load for solid and hollow sectioned wooden 

rods of different thic'knes a and length, as well as for steel tubes 

manufactured according to the standards of Army Air Service Inspec

tion (Idflz) . Further, a graphical method of calculation of the 

~reaking load is derived (Fig. 4) in whiCh a single curve is employ

ed for determination of the allowable fiber stress. 

Finally, the theorY is discussed of the elastic curve fOr a rod 

subject to compression, according to which no deflection occurs, 

and the apparent contradiction of this conclusion by test results is 

att r ibuted to the fact that the rods under cest are not perfectly 

straight, or that the wall thickness and thl; material are not uni-
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fOrm. Under the assumpt ion of aJl e ccen~ ric roc, having a slight 

initial bend according to a sine curve, a simple formula fo r tts 

deflect ion is derived, Nhich SLOWS a sUrpris ing agree:nent -;7i th test 

results . From this a further formula. is derived fOr the determi-

na~ion of the allowable load on an eccentric rod. The resulting 

relations are made clearer by rr.ea:lS of a graptical reiJrese:'1tat ion 

of the relation of the moments of the outer and inner forces (Fig. 

7) to the defl ect:'on, and. through the determination of equilibrium 

oetween moments. 

Translated b~' F. ~ . Pa~lowsk i) 
University of 1, ichigarl_ 
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