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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

TECHNICAL NOTE NO. 98.

NOTES ON THE DESIGN OF LATTICED COLUMNS

SUBJECT TO LATERAL LOADS.

By Charles J. MoCarthy,
BUreau of Aeronautics, Navy

The hcrea~i~lg intereit in the use..=
,.

Departiien*.

of metal for the con–

st:ruotionof aircraft makes timely a discussion of the problems
,.

and difficulties to be met in the design of efficient compression

members. No rational column formula has yet been developed

whioh gives results whioh are sufficiently precise for the de-

S~gll Of airplane memberS, and consequently it is necessary to

fall back upon experimental testing. In order to derive the max-

imum benefit from experiments, however, it is necessary that the

experiments be guided by theory, and it is the object of this

paper to suggest

needed to modify

of tests.

Although it

a method of procedure

existing formulae may

by means of

be obtained

is common in wing construction to

whioh the data

with a minim~

find wing beams

continuous over several supports, for the sake of simplicity this ~

discussion will be limited to that of a simple column supported

at both ends and subjected to uniformly distributed

~icular to its axis and to end loads either axially

tally applied.

loads perpen–

or eccentri- ‘



-13-

1deal GOlumns.

The failing strength of a perfectly straight homogeneous

column with pinned ends in whioh the compressive load is exactly

axially applied is expressed by Euleris formula:

Where P’ is
A is
E’
L ::

7

It should be

pt—.n2E K 2
A

()-z-l ““=” “: “ “ “ “
,(1)

the critical end load;
the cross sectional area of the column;
the modulus of elasticity of the material;
the least ratio of length to radius of .
gyration.

kept in mind that the critical load calculated

from the above formula is the end load required to Wckle the

strut and that for loads smaller

mains perfectly straight. It is

will fail elastically as soon as

than this the

apparent also

the stress at

ideal column re-

that the column

the ends reaches

the elastic limit of the material,

timate stress vs. L/K for al Euler

right hand curve of Fig. l:’

Consequently the curve of ul–

column has the form of the

If now instead of being axially applied, the end load has-an

eccentricity, h, bending stresses are introduced which in&ease

the stresses in the fibers of the column and decrease the magni-

tude of the load which will cause failure. In the case of a prac-

tical strut, variations in the shape and thickness of the section,

initisl curvature and other imperfections have the effect of giving

an eccentricity to the.end load.
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The equation for the maximum intensity of stress under these

conditions is given by Morley as*

Where P is the end load applied;
A “i~ thecross sectional area of the column;
h is the ecceniricity~ i.e., the distance from

the point of application of the load to the
centroid of the section;

d is the depth of the se”ctionin the plane of
bending;

k is the radius of ~qration in the plane of
bending.

(2)

This formula may be expressed (approximately) as follows: .
*+ ,

ft=:
-.

+ (3)

which may be simplified by substituting the Euler load, P’ for

#EIthe expression —.
L2 ..

Thus, P ~
(

pl 0.6 hd)
‘t=~+A pi-p )( Ka j

(Ll)

Failure occurs when ft reaches the elastic limit of the

material in compression, fc.

It will be noted in equation (4) that as P approaches Pf
pr

the ratio
P’-P

approaches infinity.

The curves of Fig. 1, which are’taken from Morley, are of in-

terest as thev show how end stress at failure is affected by varv-

* Morley. Strength of Materials 1916, p.276.

?? Ibid. p.276.
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ing eccentricities and varying values of L/K.

Another condition to be considered is the combination of the

axial loads with forces perpendicular to the axis of the strut.

The deflection of the strut which is produced by the lateral

loads has the effect of making the axial loads eccentric with a
●

consequent increase “inthe maximum bending moment in the strut.

The total bendfmg moment is the sum of an infinite series, the

first two terms of which are the bending moment due to the later-

al load, and that of the product of the axial load by the deflec-

tion of the column under the lateral loads. For a uniformly dis-

tributed lateral load of w per unit length the exact equation

for the maximum bending moment at the center of the column, MO

under the combined loading, is given by* “

(5)

This may be

mate formula:

Mo =M

where M is the

more conveniently expressed by Perry1s approxi-

(

p?

)

(6)
p[_p

maximum bending moment due to the lateral “loads

alone; afidthe other symbols have the same significance as before.

If Z equals the

due to bending equals

section mo”dulusthe maximum fiber stress ,

(
pr

—.— ‘)yI .- p .
.(7)

,

“ Morley.
—

p.282.
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The error introdu~ed bjj

than 3 percent for ratios of

Combining equations (4)

for the maximum-intensity of

this approximation amounts to less

P to PI up to 0.9.

and (7) results in a general formula

stress in a perfectly-straight col--

umn of homogeneous material with pin ends, loaded with a unifor~-

lY distributed transverse load, which, acting alone, would pro-

duce a maximum bending moment M; and in addition, an end load,

P Which is applied a dist~ce, h from the ceritroidof the

section in the p“~.neof bending.

(8)

when

This formula is an a~roximation, but is sufficiently precis~

the ratio of p to ?t does not exceed 0.9. For higher val-

ues the formulae of equations (z) and (5) are recommended. It

should be noted here that pi in equation (8),is introduced

~2 EI ‘and its Valuemerely as a substitute for the expression —
L2

is not limited by the strength of the uterial at the elastic

Itiit, as is the case when calculating the strength of a ‘fEulerll

strut, as has been explained in connection with equation (1).

Failure of the column may be e~ected to occur when the total

fiber stress ft reaches the elastic limit of the material in

compression. “

Latticed (lolumns.

The above formula, equation (8),”has been derived for a col-

umn of homogeneous material, but may be applied to one built up
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Cd LOIIgiTUdiIId izem’cers cr flanges ‘fih~char9 1325G togethe2 rit-~

lattice bars if attention is paid to the faot that the individual

flsmges act independently as little columns of length equal to

,the lattice spacing, The maximum fiber stress of equation (8)

should be limited to the end stress which

as a pin-ended coluznnwhose length equals

It is not correct to Wse the design of a

assumption that the coi~ is homogeneous

&spacing of the lattices such that the ~

the points of attachment of lattices does

t~Le fl~ge @.11 carry

the lattice spacing.

lattice column

and then limit

of each flange

not exceed the

on the

the

between

L
v ofn

the column as a whole. This procedme leaves nomargin to allow

for the increase in stress in the flange due to its acting as an

independent column betwee~ lattices.

Another point to

as abeam the flanges

the flange as a whole

axis. In calculating

be noted is that when the column is acting

receive their load from the lattices, and ‘

acts approximately along its centroidal

the section modulus, Z, therefore, it

will bemore nearly representative of the true-condition if.the

“extreme fiber distance!!’,y, is measured from the cent~oid of

the flange instead of taking one-half the depth of the column.

Thinsamounts practically to assuming that the stress is uniformly

distributed over the flange section.

Application of-Theory to Practi@ Columns.

Many atten@s have been made to develop a rational formula

which will properly express the state of stress in a practical
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column, but this has not yet been accomplished. paaswell cays *

in commenting on a recent paper on the subject: Wrieflyj a col--

umn is an engineering structure s~bjected to a compressive force

of a determinantscharacter and to a fle=re absolutely indetermin-

ate and unpredictive wit-nar.ymathematical certainty. This of

oourse refers to columns presumably axially loaded. The intro-

duction of flexural stresses occurs in a manner which can only

form a matter of conjecture.~!

Che@* classifies imperfections which may reduce the strength

of an,aotual column as follows:

“l. Initial stresses immaterial due to manufaoimre.

2. Variation in strength of component parts of section.

3. Crookedness of component parts.

4. Crookedness of whole member.

5. Local stresses due to details

6. AcficAdentaleccentricity.

and shop work.

7. Deflection caused by the foregoing imperfections.~t’

Basquin*** too has gone into the problem of developing a

formula for the design of columns which will take separate ac-

count of the stresses to be anticipated in the actual column due

to crookedness, probable eccentricities, eto., but the tests on

which his work has been based mere not extensive enough to warrant

the general application of his conclusions to design.

It has been found, furthermore, that a built-up column as re-

gards bending actiondoes not act as a perfect unit. Fig. 2 is

* Pr~c. ASCE, January, 1922.
** Proc. Am. Sot. Civil Engrs.,”Mayj 1911.
*** BasWin on Columns Journal W.S.C.E.~ 1911.
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taken from the comments of Prof. H. l?.Moorej of the University

of Illinois*, and gives the results of a series of tests conduct-

ed at the University of Illinois to determine the ratio of com-

puted to actual fiber stress in the cross section of members

built up of channels, fastened together with different types of

lacing. Quoting ?rof. Moore, IIShortcolunn sections (all of the

same length) were tested as beams with flexure in a plane paral-

lel to the plane of the lacing. Assuming integrity of action of

cross section, the extreme fiber stresses in a test beam were

Cahzla’ted for various loads, and the actual fiber deformations

developed under these loads were measured by means of a strain

gauge, and the actual fiber stresses, determined from the ob-

served elongations and compressions= were indicated by the strain

gauge, In Fig. 2 is shown the variation of flexural efficiency

with computed fiber stress for various column sections. In a

column of usual length in structures (+ =50t075), the com-

pressive stress is the principal stress i: the column and the

flexural stress is not very high; so in comparing the flexural

efficiencies of different column sections the efficiencies under

low flemral stresses are most significant. The superiority of

the double-laoed section with rivets at the crossing of the bars

is evident; the efficiency of this section at low stress proved .

to be the-same as the efficiency of a pair of channels tested in”

flexure in a plane parallel to the plane of their webs. The low

efficiency of channe>s connected by means of batten plates is

* Illinois University Bulletin No. 40.
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noteworthy as is the very low efficiency of two channels conmect–

ed by non-overlapping bars with only one rivet for each end of a

bar. In eaoh test piece approximately the same weight of lacing

material was used, and all tests were in duplicate. Each test

was loaded symmetrically at two points of the span, and the spans

were the ‘samefor all test pieces.”

Major Nicholson has also observed, in a series of tests on

metal girders designed

latticed girders under

lar girders with solid

for airplanes, that the deflections of

transverse loading exceeded those of simi-

webs.*

The weight of other authorities whose opinions &re

same vein might be added,but those quote< above should
\

cient to indicate the difficulties to be encountered in

in the

be suffi-

attempt-

ing to calculate the distribution of stress in compression mem-

bers. In ordinary structural aesign these difficulties are some-

times circumvented by the device of limiting the calculated max- F

imum intensity of stress due to the combination”of end and side

loads to the allowable end stress on the strut as a simple pin–

e“ndedcolumn. This procedure is illustrated in the’desigm of a

large derrick boom which has been worked out in detail by M. C.

Bland in a paper entitled ‘lInvestigationof Stresses in Derricks?*’”

r This procedure is conservative, and while it probably gives re-

sults which qre quite satisfactory for structural work where a

slight excess in the weight of a member is not a serious matter,

it is not sufficiently precise for general use in the design of

* The IkWelaprnentOf Metal Construction in llAircraftEngineer- ““

ing,n London, March 12, 1920.
** Trans. ASOE, 1920.



airplane girders, particul~ly when the end load is relatively

small compared with the transverse load. As the magnitude of the

end load approaches zero, the column becomes a siqle warn, but

according to the above method the criterion for the maximum in–

tensity of fiber stress is still the limiting stress on the mem-

ber as a pin-ended column.

We are thus,forced to the conclusion that for the design of

compression member6 the theoretical formulae must be reinforced

and modified by experiments on the particular type of colmm

which is to be used. The most hopeful procedure is to select a

formula such as equation (8) and by a series of careful experi-

ments on full-size columns, determine the factors which must be

introduced into this formula to make it fit the actual members.

-Referringto equation (8), it will be noted that there are two

quantities, PI and h, to which modifying factors could be
,,

applied.

As has been stated previously, P: in this’formula is me”re-
~2 EI

Iy a shorthand expression of the quantity — NOW the only
La “

quantity in this expression’to be determined experimentally is

the E, which represents the mod~us of elasticity of the built-

up member. This can be easily found by measuring the deflection

of the column when loaded as.a simple beam by a

oonoefitratedat the center, and solving for E

deflection formula S ~ & ~. The procedure

transverse load

in the well-knom “

my’ be improved,
.

however, by retaining ‘E as the modulus of elasticity of the
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material of w-nich the column is built and introdu~ing a coeffi-

cient C into the formula: thus S = ~ ~ . C may be looked

upon as the llformfactorl~for the se~tion, and represents the

ratio of the stiffness of the actual column to that of a solid

theoretical column of the same material. This coefficient could

then be applied to the calculation of p~, but it mill be pref-

erable to introduce C into equation (8) and use the modulus of

elasticity of the material in calculating P;.

The term h, may be considered as being the sum of the known

eccentricity of the application of the load to ends of the col-

- H, and an equivalent eccentricity which repre~ents the over-

all [Jconstzuctional!leccentricity of the actual column, that is,

the sum of the imperfections of the act-l strut ad is designat-
.

ed by e. To find e, it is necessary to build and test as pin-

ended struts with axial 10ads, a number of full-sized.columns of

varying lengths of the type to be used. These test

should of course be built as far as possible to the

of workmanship and straightness as will be followed

struction of the columns or beams to be used in the

specimens

same quality

in the con-

airplane it-

self. A column formula may be plotted from the results of these

tests and e calculated from the relation

0.6ed=f ~_,
-( )(

CP‘ –PO*
K2 c Po ml )

(9)

Where fc = the compressive elastic limit of the mater-
ial for homogeneous struts and for latticed

- st~ts the limiting unit end stzess on an
individual flange of a length equal to the
lattice spacing,

* From Morley, p.276.
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P*—=
‘A

the obseti~d ultimate end stress as a pin-
ended column.

critical end load calculated from Eulerls
formul@.

the fo~w factor coefficien.t-.mentioned above
{This factor does not appear in the formula.
as given by Morley.)

With latticed columns .additioM1 tests must be made of the

strength of the indiviWal flanges as pin-ended columns to deter-

mine the proper value of f. to be used in the above formula.

The above equation (9) appears somewhat formidable, but it

will be found from experiment in most cases that the eccentricity

e, can be sufficiently expressed as a simple function of the

length~~f the .L/K of the column.

Introducing the above modifications, equation (8) nay be re-

written as“

fc=f+~ ( ‘r
k cP~ -P )( 0“6 ‘e: ‘) ‘) ‘: (CPy: P)’ ’10)

Forces in the Bracing of Latticed Gol~ns~ ~

~The forces which act upon lattice bars have been divided by ‘

EQsWin into three classes:* l~First,those introduced in f~e fabri-

cation of the.column;; second> those due to transverse sheat ca’us-

ed by local bends in the column; and third, those due to trans-

verse shear caused by general inclination of the column.“ The

latter two conditions have ‘beeninvestigated in a series of care-

ful extensometer tests by Talbot and Moore.**” In case of a

column built of two channels latticed togethertith flat bars and

* JOUr~~ W.S.‘C.E. , 1913, P.493.
** llAn

$ i
nves$i~tion of ~i t-Up Columns Under Load,f?University

o Illmols Bulletln 40 of June 10th.
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with an average end

they conclude that:.

ati.vestress in the

end to end and that

&13-

,.. -.

stress of 10,000 pounds pe= square inct~~

llItis evider.tfrom the tests that the rel-

two-c-aannelmembers varies considerably from

the stress in the lattice bars also varies.

ItIseems pzobable that the tr~sverse shear developed may be
*

traced largely to irre@arities in,outline, or at least that

these irregularities may be expected to cover up other causes of

stress in the laoing of centrally-loadedcolumns, if we include

in suoh irregularities all unknown eccentricity. The futility

0$ attempting to determine analytically the stresses in column

lacing, using as a basis either a bending moment ourve which var-

ies from end tO midae ox SJI assumed deflection curve, is appar-

ent from a study of the variation of stress
*

tests ~d in that of the lattice bars.~i

It is nebessary, nevertheless, to find

in the columns”of the

some means of approxi-

rnathigthe loads

in the design of

is loaded with a

in the lattice members. The method most favored

structural columns is to assume that the oolumn

uniformly distributed transverse load w> where

W is the transverse load, which, considering the oolumn as a sim-

ple beam, will produce a maximum fiber stress equal to the diffem-

entiebetween the ,elasticfimit of the material and the end unit

stress allowed by the co”lumnformula. The vertical component of

the load in the lattices at the ends of the column equals W1
T’

which is assumed to be equally distributed between the lattices

cut by a vertical plane normal to the axis of the girder.* .

* Spofford - “The Theory of Structures~ll”1915, p.303.
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Alexander* has investigated the distribution of the shearing

stresses in an ideal column, using equations which involve the

true elastic curve of flexu=e of the column. His ex’pressioi~for

the maximum shear may be put into the form
.

(11)

Where R = the shear at end of coiumn;
z s section modulus;.

z limiting stress on short column;
% Euler,crippling load.

The constant TT in the above equation is increased to 5 for

actual struts to allow for longitudinal irregularities and slight

imperfections in fitting and securing the lattice bars.

. It may be noted that the assumption that the shear may be

determined on the basis?

mentioned above amounts

“flectignof the column.

of
R=

which exoeeds the

is less than that

of the uniformly distributed lateral load

to assuming a parabolic curve for the de-

This latter approximation gives a value ‘

L (’C-A)

shear calculated by the more exact method but

recommended by Alexander for practical columns.

Until this subject has been more thoroughly investigated by exper-

iment, it is recommended that the shear in lattice bars be calcu-

lated by Alexander’s formula,

5Z f _Il
R=y

( c A )
(12)

* Wm. Alexander, ‘lGoNx.msand Struts,” 191Z, Chan. X,
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In view also of the

variations in shear

approximate nature of this methcid,and the

due to local irregularities, etc., no attempt

should be made torvary the strength of the latticing along line

length of the column. Alexander points out that Ilthepoints

where the deflection is a maximum and the slhearingforces nil,

are unknown and certain to be different in each

cludeq,~:eachcase must be

eral formula can be given

tion in shearing stresses.

considered on its own

for even the probable

lr

Strut,!! and con-

merits. No gen-

Mmits of reduc-

.

pl
_—

A )
in equa-It will be noted that the expression . fc

(
tion (12) wculd equal the fiber stress in an ideal strut due to

flexure.. To apply this formula to a practicalstrut, substitute

fir = the fiber stress permitted by the experimental fcrmula.
● * A

The resulting shear in the lattices will be 20 per cent in excess

of that determined by the procedure given by Spofford.
.

To find the shear in the lattice bars of a strut under cob-

bined end and transverse loads, let the sum of the second and

third terms of equation (10) equal. fb

Then R = ~ (fb) (13)

This use of this formula is recommended. J .

Illustrative Problem.

To illustrate the

example mill be worked

proportions IQ be used

.-

application of this method of analysis an

cut. The column chosen is of suitable

as a portion of the wing beam of a large

~.
....
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airplane. Its s~rength about the horizontal axis only will be irl-

vestigated, Fig. 3 is a sketch of the col~n. It will be noted

that the latticing on the top and bottom faces is entirely inside

the flanges. While not the best design from a structural stanc-:

point, it is desirable to facilitate sliding the wing ribs along ‘

$he beam in the assembly of the wing panel.

,LetP =

M=

L =

A =

I =

K=

L/K =

Y =

z =

fc=

p!=

Po=

the total end load including the factor of safetY =
30,000 lbs.
maximum bendi-ngmoment due to the uniformly dis-
tributed tra~verse loads = 81,600 inch pounds.
length of beab between points of inflexion = 144
inches.
area of flanges = 0.88 square inches.

moment of inertia + 6.9 (inches)*

radius of gyration of section about axis XX = 2.8
inches.
144/2.8 = 51.

distance from centroid of section to centroid of
flange = 2.8 inches.
Section modulus = I]y = 2.46 inches cubed.

crippling end stress on one angle of flanges as a
pin-ended column whose length equals the pitch of
the lattices = 105,ooo Ibs. per sq. in.
H2 EI

L2

failing-load as a pin-ended column.

In the absence of experimental data on columns of this type,
CUIW.S A.-Q&.-Fi
curve A of Fig. 4 has been more or less arbitrarily Chosen to rep-

resent the relation between L/K and the failing end stress.

c - the form factor coefficient has been assumed equal
to 0.8.

PoThen ~=0 5“8,000lbs. per sq. in. from Fig. 4.

@\ = 0.8 mz (30,000,000) (0.88 X 2.82)
and = 79,000.

(144)2
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Find the ~~constructionaleccentricity~lof the column e

equation (9).

~d) . 105OOO. ~
( )(

79000 - 58000 (.88
‘) -

= 0.29
(K)= A !59000 79000

and e = 0.606” which is ~, of the length of tinecolumn.

0.6 ed
substituting the above value of ..a into equation

the maximum fiber stress in the flanges

of the lattice equals

~ @r 0~6 ed .
f*=A+~ (CP:-P )( K= )

K

at a point of attachment

+X
(

CP’ ).=
-z Cp r -p) .-

34100.+ 34100 (-) ~o””~g)+ - (- ) =

= 103400 lbs. per sq.in.

Since ft i8 less than 105000 lbs. per sq.in., the area

provided in the flanges is sufficient.

Load in Lattice Members.

By”equation (13) the shear at the

,% (fb).R=

end of the column equals

There fb equals the maximum flexual fiber stress as ex-

pressed by the second and third terms of

R . ~) 69300
,144

equation (~).

= 5920 lbs.

Assuming the above shear distributed equally between the four

lattices cut by a plane perpendicular to the longitudinal axis of

.
—



.

b

the column, the total load in eaoh lattice equals

5920 ~ 7.25— = 1905 lbs.
4 5.62

Strength of Individual Lattioes..

Assume that the lattice in compression is supported at the

center by the adjaoent lattice which is in tension and that the

lattice fails as a pin-ended colunn whose length is equal to one-

half the length of the lattice between centers of flange rtvets.

Area of section = 0.0325 sq.in.

Leas% radius of &rations

.
In the absence of test data on

b. s$~ a column formula somewhat more

has been arbitrarily chosen. using

= 0.075 in.

lattices as used in “this.de-

conservative ~han Rankinls

steel having an elastic limit

of 100,000 lbs. per sq.in., the allowable p/A for an L/K of 45

equals 60,000 lbs. per sq.in. ,,

The strength

which exceeds the

sign is therefore

of the lattice = 60=000 x 0.0325 = 1950 lbs.,

required strength of 1905 lbs. The lattice de-

satisfactory.
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