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Summary.

The laws of curvilinear motion are established and the trans-
verse forcés on elongabted airship hulls moving along a curved

path are investigated.

éeneral Method.

This note deals with the steady motion of a rigid body on a
curvilinear path through a perfecf fluid otherwise at rest, so '
that the ﬁosition of the body relative to the patnh remains con-
stant. The body bturne with constant angular veiocity around a
geometrical axis fixed with respect to space and with respect to
the body. Hence the flow of the fiuid is stationary relative to
the body. The Pproblem stands in close relation to that of the
body moving straight forward, which indeed is a special case of
the present problem. The methods employed with the investigation
of the straight motion can partly be used for the more generel

problem too, but care must be taken that they are applied properly
and only as far as they ars still valid.
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It is to be understood at the outset that the fordes between
the body and the fluid are now by no means the same whether the
real motion is consideréd, or whether the body is supposed to ve
at rest and the entire fluld rotating about the center of rotation.
This latter case would imply the presence of the centrifugal
forces of the rotating fluid, giving rise %o changes in the pres-
sure distribution and of the forces between the body and the fiuid.
No: is the pressure in each point now determined by the slduare of

the veloclty according to the law of Bernoullll, for the motion is

not really stétionary gince the.body is moving. In the case of
non-stationary motion the pressure is the sum of the pressure due
to the Bernoulli (V®p/3) and the product of the change of the
velocity potential per unit of time and the density (Lamb, p.19).
The addifional bressure can be transformed if, as in the preszent
problem, the flow is Quasi-ghtationary and changes only its posi-
tion, each point of the configuraxicn of the flow moving with a
velocity U, Let w be the potential, then the change dw/dt |

of the potential per unit of time is U dw/ds where ds is a
linear element in the direction of U. Therefore the pressuré ad-
 ditiomal to . V2 p/3 equals the product of the density, the veloo-
ity of the configuration in the point considered and the component

of the flow in the samme direction. The pressure is

-~ (V® p/2 -= VU cos @)

where U is the velocity of the configuration of flow and ¢ is

the angle between this velocity and the vélooity of flow.
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The apparent mass, moment and kinetic energy of the body can
be used in the same way as with bodies moving straight. There is
now also an appaTent moment of inertis to which is corresponding
a moment of momentum and a kinetic energy. 'As, however, the angu-
lar velocity is supposed to be constant, this does not give rise
to any resultant force or moment between the fluid and the body.

A body mbving straight forward in a perfect fluid experiences
only.a resaltant moment. A drag; posgitive 6r negative, would not
be compatible with the constancy of energy. From the point of
view of the energy there is no reason why the body should not ex-
perience a 1ift, and indeed this can be the case in a two-dimen-
gional flow. In a three-dimensionsl flow, however, a 1ift can S
cur only when there are free vortices in the fluid, and this is a
flow different from the one under discussion. But the flow around
the body rovating aroundé a gecmstrical axis has constant energy

and hence again only such resulsant forces are possible, which do

. not supply or absorb energy. This cannot be a pure moment for the

body possesses an angu}ar velocity. It can only be a resultant

- force passing through ihe axis of motion. The direction of this

force varies greatly for different shapes. The aerodynamic center
of the body, or better, its central axis, may be that point, with
reference to which the fluid pozsesseg no moment of momentum if
the bocy is moving rectilinearly at right angles to the axis.

This center has a certain tangential velocity V, it moves arocund
the centér of rotation, along a cizcle, with the radius R. The

resultant force between the body and the fluid possesses in gener-
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al a tangential component paéallel to V, a radial component at
right angles to V and a resulbant monent with respect to the‘
aerodynamic center. 'For'symmetrical bodies, the aerodynamioc cen-
ter of course coincides with the center of symmetiy. The angle

of attack may be measured between the tangential velocity V of
the center and a proper axis of the body. The direction of the
body which coincides with the tangential direction at the angle of
attack zero may be called longitudinal, the direction at right
angle to it transverse. Tangentisl and radial refer to the path,
longitudinal and transverse refer to the body.

Let now the additional mass of the body, if moving straight
and longitudinal, be k,f and if moving straight and $ransverse,
k_ P Then when moving with the velocity 7V, with the angle of
attack &, at the same time rotating with any angular velocity
zero or greaber, the apparent additional momentum is k, Vo sin o
in the transverse direction and k, Vpcosa in longitudinal di-
rection. Hence the component in tangential direction is
Vo (k; sin® ¢ +k, cos8® o ) and the radial component is
V p/2 (ky - kl)'sinzaq. The former component of the momentum gives
rise to the radial force j;?- (k, sin® d-%-kl cos® «), the latter
is the cause of the tangential force %gi'p/z (k, ~ k,) sin 3 a.
This has to be supposed to act in the center of rotation, or if
acting in the center of the moving body, it is accompanied by a
moment around this center V2¢/3 (k, ~ k) sin «. This is the
same moment as if the bedy were moving rectilinearly with the ve-

locity V and at the same angle of attack.
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The radial force always tends to keep the path straight, it
is a centrifugal force moving the body away from the center of ro-
tation. The téngential forces can be a'positive or negative drag,
according +t0 the angle of attack and to the shape of the nody.

Iy gtraight line, as two-dimensional problem for instance, may ro-
tate under a small angle of attack and the distance between the
leading edge and the center of rotation may be greater then the
same distance to the rear edge. Then the resulting moment absorbs
energy since it is opposite to the angular ﬁeloaity of the line.
Therefore the drag is negative, supplying the energy absorbed by
the moment. .

. T ryili T t3 5

Surface of Revolution,

The case of an airship hull moving along a circular path is
the most important application of the results found in-theilast
paragraph. An airplane is always surrounded by vortices and this
casé is not embraced by the discussion, The air forces acting on
an airship hull are best understood by the consideration of a very
elohgated surface of revolution.

Such body has no longitudinal additional mass and its trans-
verse ad@itional mass is equal to its own mass if consisting of
solidified fluid. This is discussed in the first note of this
series. The resultant forces are therefore given by the formula
at the end of the last paragraph by substituting zero for k, and

the volume of the body for k,. The remaining problem is the dis-
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cussion of the distribution of the transverse air forces as their
knowledge ig irmportant for the computation of the bending moment
in the body.

This distribution is found by the consideration that each
cross section has a transverse additional mass only and its acii--
tional momentum is the same as if it would be surrounded by the
two-dimensional flow with the same transverse relative velooity.
Now the motion of the body can be produced by superﬁosing the mo-
tion along the cirocular path with the axlis remaining parallel and
the rotation of the body around the center with constant angular
velocity. The aerodynamic center coincides with the center of
volume.

At first the body may move in a tangential direction. Then
the additional momentums are produced'by the angular velocity
V/R 'only, and the relative transverse veloclty in each point of
the axis in the distance x from the center is V x/R. Let S
denote the area of the cross section in each point. Then the
transverse momentum for a disk of the body with the length dx is
S V x/R dx. The longitudinal component of velocity of each point
is V. Hence a transvarse moment S V3 p x/R dx 1is produced in
each point, corresponding to the transverse force

Vvip ds )
~ = X ==+ 8 dx
R ( dx

This distribution of transverse forces produces neither a result-

<
ant force nor a resultant moment. The term Vﬁ{D S dx is exactly
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edual to the centrifugal force of that portion of the hull, if
héving the same density as the fluild. Its direction is opposite
to the centiifugal force. The forces represented by the term

v’p xds -
R dx - are in direction of +the centrifugal force.

If the'body is inclined against the tangential direoction,
the fluid gives rise aleo to the unsteble moment, produced by
trangverse forces distributed as ﬁith the straight motion. They
are proportional to the dS/dx, as discussed in the first note of
this series.

The radial force is distributed proportional to the cross
section of the body.

3. Moderately Elongated Surfaces of Reyolution.

The two additional masses of such bodies can be estimated by

the comparisoﬁ with similér ellipsoids, as dlscussed in the first
note. If the body is not too short it can be supposed, that the
bending moments due to the angular velocity are proportional to

the transverse apparernt mass, and they are to be diminished propor-
tional to it, tﬁouéh in reality the distribution itself changes &
little. Tﬁe bending moments.6f the- rseuliant momsat are to be di-
minished proportional to (k, - k) which also is oniy approxir -
'mately true, but probably exact enough. There remains the radial
force of the fluid. The part due to the angle of aitack may be « .
diminished proportional to the transverse apparent mass, but i%

remains proportional to the cross section of the body. Only the
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seccnd part of the radial force, due to the longitudinal addition-
al mass and existing also af the angle of attack zero reQuires a
somewhat fuller discussion.

This centrifugal force is dus to the faot fthaet the surface of
revolution is not an extremely elongated one. Hence the previous
methods which made use of this assumption must necessarily fail
for the investigation of the distribution of the transverse forces
giving rise to this centrifugal force. The enmtire force is not
very great; with an ellipsoid with the ratio of elongation
L/D = & it is only about 33% of the entire centrifugal force and
with the elongation 9, it is only 24%. However, the bending mom-
ents created by the corresponding trénsverse forces are compara~
tively greater, though they too are not exceedingly great.

These bending moments are favorable for diminishing-the‘resulting
bending moments. The transverse forces change the sikn along the
axis so that the resultant centrifugal foice is smaller %than the
sum of all positive forces and the bending moments are greéter
than expected at first. The reason is that these forces consgtiiwi
tute the centrifugal. force of the fluid accompanying the body on
its longitudinal motion. Now the fluid mear the fromt and the end
has the same direction of velocity as the body. Along.the sides,
héwever, the fluid has a velocity opposite to the direction of mo-
tion. In conseduence of this their centrifugal forcesis negative,
they tend to push the hull towards the centér of rotation, whereas

the transverse forces near the ends tend to push the hull away

from the center of rotation.
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As 1t 1s seen thus that the centrifugal force is an effec! of
a_differenée, the bendinmg moments cannot safely be estimated be-
forehand without a closer examination in one case at least. This
can be done by choosing a surface of revolution corresponding to
one source and one sink., If the diameter is D, the intensity
of the sources is dpproximitply V D°1/4.  The length may be de-
noted by L, +then the velocity near the middle is about %%;

The considerationr of a flow along é moderately elongated surface
of revolution shows now that the velocity along the greatest part
of the length does not greatly change, it is always negative and
not very different from the velocity near the middle. The trans-
vérse component of the velocity can be neglected. The longitudi-
nal velocity of rotation increases by V/R per unit of transverse
length. The transverse gradieﬁt of the pressure is therefore

V¢D%p
2 R L®

Almost the entire volume of the body is surrounded by this pres-

sure gradient. Hence the sum of all negative centrifugal forces

is abouf
Vol V°D® p
2 R L®

that is, the centrifugal force of the entire body (with the densi-
ty of the fluid) times 2£(D/L)? For L/D = 6, for instance, this
gives 1/73 = .14 of the centrifugal force. The sum of all hydro-

dynamical centrifugal forces has the opposite sign and is about
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twice as great. It follows then that the hydrobynamical centrafu-
gal force consists of & negative poriion distributed along the
length and a positive portién about three times as great, acting
on the two ends. ‘ '

As a result of the préceding investigation, it appears that
the transverse forces acting on a moderately elongated surface of
revolution are of four different kinds: (a) due to angular veloc-
ity in connection with tangential velocity; (b) due to the angle
of attack; (@) due to the centrifugal force of the longitudinal
appaTent mass and (d) due to the centrifugal force of the trans-
verse apparent mass if under angle of attack. The magnitudes of
these forces are discussed in the preceding paragraph the forces

(a) and (b) are of chief importance.



