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NATIONAL ADVISORY COMMITTEE FOR AERONAUTIOS.

TECHNICAL NOTE NO.121. .

FURTHER INFORMATION ON THE LAWS OF FLUID RESISTANCE.*

By. C. Wi~selsberger.

1
A* In a former ~tiole (Physikalis~Je Zeitschrift, 1921,

vol. 22, pp, 321-8 - For tranalatioh, see N,A.C.A. Techni@J

Note No. 84)4 I desoribed experiments conneoted with the depend-

ence of the drag coefficient o on Reynolds number R.** These

:JWeriments were performed with cylinders of different diameters

in a uniform stream and in a range of Reynolds numbers of

R = 4.2 Up to R = 80000. From these experiments there was found

quite a complex relation of the drag Weffioient to Reynolds nm-

ber, whidh invalidates the quadratio law of drag for

in a stream, Only,in one region, between R = 15000

R= 180000, is the drag meffiaient nearly oonstant

oylinders

and

and there-

fore the pure quadratic law of drag fulfilled. The peouliar

phenomena manifested in connection with the cylinder made it seem

desirable to continue the experiments and include bodies of other

shapes. A report of these experiments is made in the present

artiole. First, the behavior of a ~linder of finite length, in

M large a range as pOSSible of Reynolds numbers, was determined,
* Reprint from Physikaltsche Zeitsohrift, 1922, Vol. 23, pp.
219-224.
** The drag coefficient c is defined by ~ =-% in which

+F .
w= drag, P = air density, V = velooity, an”a F = area of body
projected on a plane perpendiou~r to the direction of the wind.

Reynolds number is R = \d, in which “V= #, p = coefficient of

viscosity and d a linear dimension of the body experimented on,
●
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as =QSO the dependence of the drag coefficient ‘ontk:eratio of tk.”

diameter of the oylinder to its length (for a given Reynolds nun-.

her) and fv.rthert-nee~eriments were extended t~ the case of a

sphere and of a disk perpendicular to the air stream. L~stly,
.

several experiments, the results of which are likevtse given in
1
this article, were performed on the relation of tinedrag coeffi-

cient of rectangular plates, at right angles to the air flow, to

the as~ect ratio of the plates.

2, lt ‘Yasfirst determined in what manner’the drag coeffi-

cient was affected in passing from the infinitely long aylinder

to one of finite length, about both ends of whioh the air flowed-

Six cylinders, of 4 to 300 mm. diameter were tested~ the length

Oz each oylinder ‘acingfive times its diameter. The resistance

or drag of the smaller cylinders (up to 13 mm diameter) was

found according to the pendulum method by weasuring the deflec-

tion under tfieinfluence of the air strem. The resistance of

t:helarger cylir.derswas determined by means of an ordinary aero-

dyn~mic balanoe. Unfortunately, the ex~eriments oould not here

be oarried down t~ such small Reynolds numtiem, as for an infi-

nitely long oylinder. In the latter @se, the steel mire cylin-

der passed through the air stream from above and served both as

the experimental object and as its support, so that secondary re-

sistances of the suspension device did not have to be considered.

For small cylinders of finite length, on the contrary, the resis-’

tance of the suspension wire was very noticeable, Finally, the

resistance of the suspension wire becomes considerably greater
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than that of the object of the experiment, since there is a cert-

ain limit to thes?nallness of the suspension wire. The resis-

tance of the cylinder then appears as the difference between two

numbers of nearly the same magnitude, so that the accuracy of the

experiment finally be=cmmesins~~fiaient, The smallest cylindez

. to give sufficiently aoow~ate results was 4 mm in diameter and

20 mm long. The air velooity was varied between 1.55 and 35.5

Td/sec. The experiments acmrdingly embraced a field of Reynolds

numbers from R = 4~~ to R = ~~~oom The results are shown log- “

‘arithnically in Fig. 1. The drag inefficient c is introduced

ws a function cf the Reynol,dsnumber R = Vd/v. For the sake of

comparison, there is also given the curve for the infinitely long

ol’linder&e&v -publishedin connection with my former article..

The diameters-of the cylinders tested are also given.

The course of the Cu-ve for the finite cylinder is similar.

in its main features to the one for the infinitely long cylinder.

If we follo’wthe ourve from the smallest Reynolds numbers upward,

we first find the depression, already known from the infinitely

long ~-linder, shifted somewhat to the left and, adjoining it,

a long reach ●rith a nearly constant drag coefficient. The crit-

ical Reynolds number, with the sudden diminution of the specific

resistance,.ocours at about the same point. The principal differ-

ence between the two curves lies in the lower values~of the drag

coefficientsfor the finite oylinaer. This is evidently connect-

ed with the fact that, with a cylinder of finite length, the air

can flow around both ends of the oylinder into the vortex region

. . . -—-
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immediately behind the cylinder, thereby considerahl.ymodifying

the pressure distribution about the cylinder. This action, which

has also “beenobserved with differentl-’shaped bodies, sxerts an -

imFortant influence on the drag. The details of this process,

horever, require further investigation. After passing the cri’i-
,

ical ReynoJ.dsnumber, the difference in the drag coefficients

seems to diminish, although definite conclusions cannot be nade~

due to the limited upward range. In any event, however”,these

ex~erizzentsdemonstrate that the drag coefficient of a cylinders

plaoed at right angles ,tothe air stream, not only depends in a

high degree on the Reynolds number, but is also greatly affected

by the ratio of the diameter to the length of the cylinder. lt

is therefore not possible to derive the &-ag of a finite aylinder

directly from the drag of an infinitely long cylinder.

For the more amurate determination of the d~pend.enceof the

drag coefficient;on the ratio of the diameter to the length of

the cylinder (this ratio being here denoted by ~), a special

series of experiments was carried out with 8 cylinders. The

measurements were made for a Reynolds number of 80000, since in

this vicinity the drag coefficient is nearly constant, In Fig. “

2, the drag coefficient c is plotted ~ains-t k and it iq evi-

dent that the drag coefficient of the infinitely long Cylifider

is almost twice as great as t’hatof a cylinder of the ratio “

L= 1. The

rectangular

gles ,tothe

relation was found to be very similar in the =se of “

plates of various aspect ratios placed at right an- .

air stream.
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of expezir.entswas on the law of resis-

‘or the same reason as in the case31s0, .

no such s.mailReynolch uumbers could be

the cylinder in a v>xiformflow. The

diameter of the smalles-tsphere WW 8 T.. aiidthat d the largest

was zgz.~ -’>~,The range of the Re~~noldsnumbers for these diame-

ters is f?om R = 790 to R = 770000. The results of these ex-

yerinezts are shown in Fig. 3, the diamete=of the tested spheres

being algo given, Tke four la~ges~ were of hollow copper; the

two smallest, of solid steel. All the spheres, except the larg-

est one, were.tested in the small air s%Z”SSal(?-iam.1.2 m); the,

largest, in the 2.2 m. air stream. It is wosth mentioning that,

even for tke two largest spheres, the lax of slnili%ude was very

ent air streams. For the three sma?.lest~phcxcs, the measure-

ments .Veremade by the pendulum method. The critical Reynolds -

,number,“whichis here s-nownwith especial clearness, lies at

R= 230090. The range of constant drag coefficient is shorter ‘

here than in the ease of the oylinder. Even after passing the

oritical Reynolds number, the validity of the pure quadratic law

is not assured. In creeping motion, i.e. with very small Rey-
.

nolds numbers, the influence of the forces of inertia decrease

more and more in comparison with the foxces of friction. In the-

oretical hydrodynamics, an expression has been found foz the re-

sistance experienced by’asphere in a viscous fluld. This law

,was formulated by Stokes (H. Lamb, Hydrodynamics) ‘andholds good

-.
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for ReynoMs numbers which are small in

The drag coefficient,definedby us, is

the lam of Stokes in the simple form c

com-pari”sonwith unity,

expressed aaording to

= 24/R, R being the

Reluolds number corz-esFond.ingto the diameter of the sphere,

The range of vaiidity of Stokes! fomula was subsequently ex-

tended by Oseen, by considering to a certain extent the inertia

aembers of the equation of motion, Ths resistance of the infi-

nitely long cylinder was expressed by H. Lamb in a similar way,

as mentioned in my former article. “The drag aefficient accord-

ing to the law of Oseen, which appiies for Reynolds mmhers below

Unity, is “

In Fig. 3, this law and also that of Stokes are”represented by

dash lines. The representation in the :ield of the small Rey-

nolds nwnbers was further s-ipp~.ernentedb~’experiments, which were

performed by E. 5. Allen in 19C0 (llTh,el~otionof a Sphere in a

Viscous Fluifl,nPhil. Vag. Vol..5O,p.323). Allen calculated the

resistance fzom the ascending speed.of very small air bubbles ‘.-

(0.05 to CL3 ~mm in diameter) in a’liquid and from the descend-

ing speed of amber and steel spheres in water. In the experi-$
Tents :Tithsteel spheres falling in water, the Reynolds numbers

wer~ so large that they come wit-ninthe range investigated by us.

The six points of this series lie, however, some~hat below our

values, There is moreover an easy transition from our curve to

the first two series of Allen and it is seen that the,experimen-

tally found curve of the drag coefficients runs through the wedge-



shaped space formed by the curves of Stokes and Oseen. The re.

sistance of the sphere is accordingly known for any Reynolds zmm

ber below 77COO0,

4. Fbr determining the resistance of disks at right angleti

to the direction of flow, a series of experiments was carried

our, wnich covexed a PLeynoidsrange between R = 3620 and

R= 9620G0 (with refekence to the ~iameter of the dislc). The

ratio of the thickness to the diameter was about l/10.Oforall

the disks. The edges were sha?p~ not rounded. The results,

vhich are also oontained in Fig. 3 show that in the range inves-

tigated the cceffictent of drag has a fairly constant value of

c = 1,1. For a very slow mo+sion,the drag of the disk was also

calculated. Like the drag of a sphere, it is a special case of

the drag of an ellipsoid (H. Lamb, Hydrodynamics). For the drag

coefficient of a disk, we obtain

This law is rep~ese’ntedby a dash line in Fig. 3. Between the,

experimental values and the theoretical, there is here a region

in which the ~th of the curve has not yet been determined. The
.
investigation of this region would necessitate an improvedmethod I

of experimenting. With the apparatushere employed, it was not

possible to measure accurately enough t-hetiag.for Reynolds n~-

hers below 3600. He~e there can be no critical Reynolds number,

as in the oases of the cylinder and sphere, because the separation

‘point, which is cm the edge of the disk, cannot shift. We may

therefore, in this case, a%lculate up to large Reynolds numbers

—
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with a constant ooefficient of drag. According to previous e:<.

Ferience, this holds generally ‘goodfor bociiesin which the se:..-

aration proceeds from a s-harpedge, e.g;.lasfox a pricm.

5, For yla’~e$of any sk.ape~in accordance witz the preceding,

the validity of the quadratic law of drag may be assumed. Here,

however, the shape of the plate exe~ts an influence on the value

of the drag coeffioisnt only -whenthe pezimeter.is greatly ex-

tended in one direction. This was clearly demonstrated by a ser-

ies of experiments performed .~ithrectangular plates of various

aspect ratios ( h) varying between 1 and O. The experiment with

A = O (infinitely long plate) was performed between smooth walls,

irithe same manner as the experiments with infinitely long oylin-

ders (See former arttcle in this publication, 1921, p.-323), The

coefficient of drag was determined at four different speeds (10,

15, 20, and 25 m/see) an~ their mean value taken. In Fig, 4, t~e

drag coefficients are plotted against the.aspeot ratios of the

~lsites. The drag coefficient varies bet%een 1.1 (sqwre Plate)

and 2 (inf=initeiylong Flate). E=re also ocours the phenomenon,

already observed in the aase of the cylinder, ‘thatvith infinite-

ly long plates, hence ~Vithunipianar flow, the coefficient of

drag attains considerably higher values than is the ease when the

flow is in three dimensions, “~nenowing to the side-.iiseflow the

drag is diminished. This tiifferenoeis of.similar magnitude to

that in the case of cylinders of different lengths, the drag coef.

ficient of the infinitely long plate being almost twice as large
,

as that of a square plate. .

Translated by the National Advisory Committee for Aeronautics.
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