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NATIONAL ADVISORY CCMMITTEE FOR AERONAUTICS.

TECHNICAL NOTE NO. 171.

COMPRESSIVE ST~NG~ OF TAp- AIRPLANE STRUTS.*

BY Viktor Lewe.

Conten&~.- Methods are here given for ascertaining the value

of n in Euler’s sirn~lifiedformula, +, for the com-

pressive strength of tapered airplane struts, by estimating from

curves and by calculation.

I. A~nroximate Method bv Means of a Set of Curves.

The effort to makeall parts of airplanes as light as possi-

ble, and with the minimum air resistance, leads to the employ-

ment of ~sts or struts with their ~xi~m section in the middle :

and tapered toward the ends. The question of the best longitudi-

nal section of such struts has already been discussed.** Design

and material often do not, however, permit reliance on the shapes

therein prescribed and tineassumption there set forth, in accord-

ance with the rules of -thecalculus of variations, that the

weight alone, or the head resistance plus a fraction of the

weig”ntshould reach a minimum, is not completely established and

is certainly controvertible, as may be seen from differences in
* From Technische Berichte, Volume III, No.7 (1918), pp. 279-281.
** Zeitschrift ffirMathem,atikund Physik= Volume 62, No.2, ‘lTr&ger
kleinster Durchbiegung und St&be grosster Knickfestigkeit bei geg-
ebenem Materiel Verbrauchff(lJGirdersof Minimum Deflection ahd
Struts of Maximum Compressive Strength for a Given Amount of Ma- ‘-
‘terra)!’).Zeitschrift f& Flugtechnikund Motorluftschiffahrt,~18,
Nos, 5-6, Kirste: ‘fDas~nstigste L&gsprofil verjungter Flugzeug-
strebenn (“’IheMost Favorable Longituditi Section for Tapered
Airplane Struts~’).
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tjpe papers quOt d. It would, therefore, appear more suitable to

give the method of calculation for an arbitrarily chosen form of

strut. Two methods are here employed.

According to the firs-tmethod, the course of the moments of

inertia, for the cross-sections of the symmetricallybuilt st~ts,

~S determinedfrom the center to the end, then divided by the mO-

ment of inertia (Im) of the cross-section at the center, and the

c’u~e thus obtained is compa~cd with the set of curves in Fig. 1-

~en a cuwe of sini~r form is found, the characteristic number

Of the curve is inse~ted inste~ of n in the -,7e11-hom Euler

formula

. ~=n+ (1}
L

4 for compressive loads and the compressiveload Pk is obtained,

dependingon the variation of the moments of inertia n, the

modulus of elasticity E, the moment of inertia of the cross-

section at the

strut 1. The

the center are

‘centerof linestrut Imj and the length of the

compressive loads for the same cross-sectiotiin

proportional to the numbers5 n. A Compari=n of

the curves shows that the values of the characteristic number n,

for two curves are approximately equal, when they enclose eW@

areas.

The differential equation for the line of flexure of a bent

rod with variable moment of inertia ~(~), in which t=f, -

● 2 = the length of the

I point from the center

rod, and x

of the rod,

= the distance of any given

is



●

-3-

~ I(t) &+ Pz2y=0d ~2

The solution is y = f(t) with the assumption that

(2)

~(g) = - $-f+, e-, (3)
Jll

shape of the line of flexure is taken arbitrarily as

then we obtain, from equation (3),”for any shaue of the

line of fle.xure,the corresponding course of the.moments

ertia. If 1(~) = Im f(~) and f[~) = 1 for t = O, we

of in-

obtain

(3a)

-++
and if we then assume - f: ~ = ~, we obtain a compression for-

,
mula similar to Euler’s formula

,

P~=n E+

The curves shown in Fig. 1 are obtained in this way. The

number on each curve is the value of n which must be inserted, _“

together with the momant of inertia of the central section Imj

in equation (1), in order to obtain the compressive load pk.

If curves with the same n are compared, it is obvious that a

greater thickness at the center ot a strut must be offset by a

corresponding reduction

use of the diagram, the

toward toward

example given

the ends. Regarding the ___

below is referred to. “.

*

.f
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11. CalculationMethod.

If a series of moments of inertia 1=,12, ~ wow of the” ,

strut at the points Cl, ~z, ~~ ... is lmown, it may be consid-

ered as represented by a curve I(g). By dividing equation (3)

by equation(3a),we obtain

we obtain

●

a As the first equation of condition, we obtain

l+a

If +=-k, than

Or, by

1 + a(2k +

~+b~+c~+...s.. =
2

we obtain from equation (4)

f(k) = o

0

.

(4)

(5)

(6)

when

(7)

g’) + b(12k g2 + 54) + c(30k “ + “)+- ““= 0

sub%mcting equation(7) from equation (8),

( ~)a 2k+~2-2 +b(l~k52+~4-&? +

)+C(301C54+ Q= ‘--’=0”

,

(8)

We can now form as many equations (9) as there are moments
●

of inertia 11) 12, ~

..* (7) and (9), a number of

given and we can find, from equations

unlmown quantities(a, b, c ●

..) one more
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than.the @.ven moments of ineztiaj e.g. nith ~ , ~ , and ~ given,

we can find the quantities d, c, b, a and me finally obtai~ an

equation between a and. k, Or, if we insert ~ = - 2a and

k+ &=
n’ we obtain the Telation sought between n and i. If (be-

sides Im) one othez moment of ine~tia is given, me put

c =d =...= O and, in equation (7), from equation (9)

and,.with

4 2

and, from this, n = l-i+24i~2-16L4- /( l-i+24i.g2-165’) -
-~ g4

J’_(~2-4tj4) 32-12ig2

(10)

~
When ~ = q, me obtain

n= 10.67i + 20.0 - 113.8i2 - g5.3i + 400 (11)

If two other moments of inertia, II and 12, are given at the

points ~1 and t; we have, for a, b, c, the equations
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,
.

. . .

The equation defining n therefore becomes ~

=- 1

(12)

The best way to solve equation (12) is by trial: by first insert–

ing two approximate values from the diagram, or ascertai-ningby

means of equation (10) or (11) , the correct value of the root ac-

cording to the rules for approximation, or by reversion (”re@a

falsi1’). It must be observed that here only one particular root

is correct in equations (11) and (12)- Before the square root of ,.,

equations (10) and (11) the minus sign must be placed, since,

otherwise, the corresponding curve f(~) would have negative

values.
e
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7 ~xamle. - Let a Sablatnig’@tzu$,2CI0 cm (78.74 in) lon~, have

a monent of inertia at the center of 70 cm~ (1.68 in~). At a dis-3

tance of 40 cm (15,75 in) from the center the moment of inertia

is 62 cm~ (1.49 in’) and at a distance of 70 cm (27.56 in), it is

33 cm’ (,79 in’). Accordingly, with the above symbols, we have

Im = 70
#

ii’= = 0.885, 51 .= ~ = ().2
70

33
ia = — = 0-4’72j

70

If the points corresponding to the coordinates i and ~ are

plotted in the diagram, the value of n is found to be.approxi-

mately 8.1. If the two points are joined by a curve, it will be
~

a found to intersect the straight line ~ = ~, at i = 0=765 and

we obtain, from equation (11)
>

n= 10.67 X 0.765 + 20 - J
113.8 X 0.7652

n= 8.15. –85.3 X 0.765 i-400

If 8.1 is inserted in equation (12), we obtain:

4.05

0.258 0.0532 0.00532

0.2385 0.1002
I

0.0320 -

10.250 0.0625 o.~156 I

- 0.0085 0-0103

I

= 0-00002.
0.0377 0.0175

The value n = 8.1 may, therefore, be considered sufficiently

exact and we obtain, as the compressive load on the strut,

. ~. 1 120000 ~ 70 = 1700 kg (3747.85 lb).
‘k = 2002

,*

Translated by National Advisory Committee for Aeronautics.
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