TECHIICAL NOTES
NATIONAL ADTYISORY COMMITTEZ FOR AERONAUTICS.

CASE FILE COPY

No. 161

PRELIMINARY STUDY OF THE DAMPING FACTOR IN ROIL.
By Lieut. James M. Shoemaker, U.S.iJ., and Jonn G. Lee, Massachusetts Institute of Technology.

HATIONLL ADUIEORU COMATTEE FOR RERONGUEDE.

- -- - - -

TEGMICAL NOTE NC. IG?.

PRELIMTAEA GTUD: CE THE DMEING DAOTOR IN ROLE. By Lieut. James M. Shoenaker, U.S.T., and John G. Lee.

Sumbery.

The following paper was submitted ou the writers as e fiecis to the Department of Aeionautical Enginourinr, at the Marsecmisettc Institute of Iechology. It oonstitutes a general thooretion discussion of the damping fastor in roli, togetrer mith the results of mind tunnel teste on the contimucus rolling of e U.B.A.30 airfoil. Tro general formulas are derived for the dempine of roll, each of which contains unavoidable indeterninate unctions. Certain of these functions have been evaluated from the test data. Of chief interest is the deduction that the actual damping ar experienced in flight differs from the dampins as theoretically calculated ny a function of the ping-tip pressure aistaibutior, winich is in turn largely influenced by the form of the wing-tip and by the rolling velocity. Finally, it has been shom that in the damping equations $\frac{d C_{I}}{d a}$ may be substituted for $\frac{d C_{Z}}{d a}$, ever under full flight conditions, without serious error.

FARII.

meonenion inssugaion.

Intioduction.

The damping of an airolane in roll is an exceeding y comiex probiem and one which it nay never be possible to solve completely, but if we can form come dea of tho ragnitude of the principel factors involved and of their importance in oractical flying, a mathematically complete solution car be aispensed with. Oux interest in the daming coefficient is mamly as a guide to the determination of stability and as an indication of the forces encountered in maneuvers.

The daming coefficient itself is made un of many components, arising from the several elements concerred: "ings, fuselage, tail, etc. is long, however, as we conifine our tests to the compiete airolane, me have no means of analyzing the source of the mannitucie of the basic elements of daming. The chief contributor to these elements, the ring, is itself afiected by a series of complications. Dinedrel, stagger, tayer and aspect ratio are only a iew of the complicating fastors. In view of the foregoing, therefore, this recort will be confined principally to the straight rectangular wing of constant chord and constant section.

Theory of Dimensions.

Probabiy the simplest method of attacking the nooblem is by the theory of dimensions. We may express the damping coefficient of a rectangular wing of constant section as a function of several
variables, thus:

$$
\begin{aligned}
& L_{m}=\frac{L}{D}=f\left(\frac{d C_{z}}{a}, u, D, c,\right\}, 0, b \\
& I_{T}=\text { the total demping coefioient } \\
& \text { arising from all ceusos taken } \\
& \text { together, as distinguiched from } \\
& \text { Ip, the damping coefficient of } \\
& \text { roll due to roli. } \\
& I=\text { the total rolling torque in lo-it. } \\
& n=\text { engliar velocity of roll in radians } \\
& \text { per second. } \\
& \frac{d_{2}}{d a}=\text { rate of change of the coefficient of } \\
& \text { normsl force with ancle of attack } \\
& \text { (i.e., the slope of the normal force } \\
& \text { curve). } \\
& \text { The units of } d a \text { are radiens. } \\
& u=\text { air speed in feet per second. } \\
& c=\text { wing chord in feet } \text {. } \\
& b=\text { wing span in seet. } \\
& z=\text { perpendicular cistance inom the } \\
& \text { axis of rotation to the mid- } \\
& \text { point of the wing chord, in feet. } \\
& \rho=\text { mass density of the air. }
\end{aligned}
$$

The term $\frac{d C_{Z}}{d a}$ is used instead of the Encie of attack beceuse the same angle of attack does not give the same results for different wing sections, or for the same ming section tested at different values of VL. Thus we eliminate both scale efrect and the efiect of different wing contours. $\frac{d C_{z}}{d a}$ is the slope of the curve of that component of force perpendicular to the line of steady flight, (the trajectory of the center of gravity) and should not be confuced with $\frac{d C}{d} \mathrm{C}$, which is the slope of the lift curve as read from a wind tunnel plot and relates to the force perpendicu-
ler to the relative winc, whatever direction that may take.
It is usually assumed that the torque caused by a force on an elemental area $d S$, is proportional to $C_{2} d S$ or to $\left(d_{z} / d a\right)$ ($\left.\Delta a\right) d s$, and it would therefore seem necessary to introduce a $\Delta \alpha$ term into the foregoing equation. $\Delta \alpha$ is the difference between the real angle of attack at the point in question and that at the plane of symretry. Hovever, since Δa is alwayc snall, $\Delta \alpha \approx \tan (\Delta a)=p y / u, y$ being the distance from the piane of syinmetry along the sran, and since koti p ard u are already expressed in the equation it wilI not be necessary to add any Δa term.

Evaluating the various elenents in the above equation by the theory of dimensions, we get:

$$
L_{T}=k\left[\frac{d C_{z}}{d u} \cdot u b^{4}\right] f^{\prime}\left(\frac{p b}{u}\right) f^{\prime \prime}\left(\frac{0}{c}\right) f^{\prime \prime}\left(\frac{z}{b}\right)
$$

The first of these indeterminate functions contains the ratio of the linear velocity of rotation of tine wing-tip to the wind velocity rhich arounts to a particular value of $\tan (\Delta \alpha)$ or Δc, approximatel.y. The second contains the aspect ratio. The third contains the ratio of the height of the wing above the rotational axis to the span of the wing. Note that all of these functions are dimensionless ratios.

Before we can make any use of this equation it will be necessary to examine the three indeterminate functions more fully, and chec\% the results of our theory with the experimental date. To this end a more elaborate, if less convenient theory has been
developed.
General Theory.
The damping coefficient in roll is usually oalcaloted tieoretically by assuming the aing to ke made up of memy minute elements, the lift on earh of which contributes an eiomert of rolitist moment. Thus in the accompanying sketch,

$$
\begin{aligned}
L^{\prime} & =2 \int_{0}^{b / 2}(\text { Lift })(A T m) \\
& =2 \int_{0}^{b / 2}\left(\Lambda c_{Z}\right) V^{2} y d d^{\prime} s
\end{aligned}
$$

$L^{\prime}=$ the theoretical rolling torque.
$d S=$ element of area $=$ chord $x d y=c(d y)$.
$V=$ resultant wind velocity where

$$
V^{2}=u^{2}+(p R)^{2} \text { or } V^{2}=u^{2}+p^{2} y^{2}+p^{2} z^{2}
$$

$$
C_{z}=\text { normal force coefficient }=\frac{d c z}{d 0}(\Delta 0)
$$

$$
\text { where } \frac{d c_{z}}{d o} \text { is the slope of the normal }
$$

force curve, and is assumed constant,

```
Wlille \Deltaa ̇s the cinnge of ancie or
attack along the wing from the plane
O summetrr. \Deltare in the difforencs
Setwen tho value of }\mp@subsup{\textrm{C}}{2}{}\mathrm{ at tino ving
center line and trat at anr point,
y alons tine span.
```

Therefore:

$$
I^{\prime}=2 \int_{0}^{b / 2} \frac{\partial c z}{d a}(\Delta c)\left(u^{2}+y^{2} y^{2}+b^{2} z^{2}\right)(y)(o d y)
$$

At any point y elong the ring $\Delta a \tan ^{-1} p y / u$, and since $\Delta \alpha$ is necescarily small we may take $\Delta \alpha=p y / u$, where Δa is in radians, without appresiable errnx.

Then:

$$
L^{\prime}=2 \int_{0}^{b / 2} \frac{d \mathrm{C}_{z}}{\mathrm{da}}\left(\frac{\operatorname{coy}^{2}}{u}\right)\left(u^{2}+p^{2} y^{2}+p^{2} z^{2}\right) d y
$$

Integrating, and collecting terms, we obtain

$$
L^{\prime}=\frac{d C_{2}}{d a}\left(\operatorname{pcb}^{3}\right)\left[\frac{1}{12}\left(u+\frac{p^{2} z^{2}}{u}\right)+\frac{1}{80}\left(\frac{p^{2} b^{2}}{u}\right)\right]
$$

This formula negleots the irregular nressure distribution at the ming-tip, or any chance in that dictribution due to the rolling motion. If we generalize the equation of roll so as to include the tip effects and to inolude the efiects of the other rotary and resistance derivatives as mell, we wet the total rolling torque L, thus

$$
L=L^{\prime}+[f(t)] b+L_{V} v+Y_{V} V Z+Y_{D} p z
$$

Where L^{\prime} is the theoretical rolling moment due to roil obteinea Dy equation $\# 2 ; f(t)$ is an indeterminate function of the tip pressure distribution, and produces roll by acting in the direction of
lift, at a distarce from the axis of rotzion wich is some freotion of the ghen $b ;$ In is the roling moment dua to sice-alin, Wherein the side-slip is introduced by the fact that the wing ic rotating at a norma? distance z from inc axis oi roli; ve is the amount of the aide-sip velocitr; and I and Yo are the latcral forces due to side-slip and to roll respectively, wioh produce roll by asting along the ming sper $2 t$ an urm a with respect to the axis of rotation.

If we substitute $\bar{v}=0 \mathrm{z}$ in equation 73 (mirie n is ir radians per unt time) and divide shrouch by k, pe obtein

$$
\frac{I_{1}}{D}=\frac{I^{\prime}}{p}+[I(t)] \frac{b}{p}+I z z+I_{V} z^{2}+Y_{p} z
$$

and since torque divided by the correrpondiae velooity fives the coefficiont, we heve the gencral coefficient of roll emressed this:

$$
L_{I}=I_{p}+\left[I\left(t_{p}\right] b+\left[I_{V} \dot{I_{p}}\right] z+Y_{V} z^{z}\right.
$$

In this equation the $f(t)$ servcs as a correotion factor for the theoretical demping of roll (L'pi, which might ho exnecter to be too large since it neglects the falining ofs of the lift ot wing-tips. The terns L_{∇}, Y_{∇}, arci Y_{η} are the experimental velues for the wing in question. If nơ me divide equajon w? by p, we get an expression for irp (i.e., I'y) thich may be wbstituted into equation \#3. Collecting teams, we havo the conpletel.y generai equa+ion:

$$
I_{T}=\frac{1}{12}\left(\frac{d C_{2}}{d \alpha}\right) c b^{3} u+\cdot \frac{1}{80}\left(\frac{d C^{2}}{d \alpha}\right) \frac{p^{2} c b^{5}}{u}
$$

$\left[f(t)_{p}\right] b+\left[L_{V}+Y_{p}\right] z+\left[Y_{V}+\frac{1}{12}\left(\frac{d C_{Z}}{d a}\right) \frac{p^{2} c b^{3}}{u} z^{2}\right]$
In this equation the three terms involving $\frac{d C_{2}}{d \alpha}$ and the term $\left[f(t)_{p}\right] b$ together make up what is usually called I_{p}, damping of roll due to roll. The first of these $\frac{1}{12}\left(\frac{d a}{d u}\right) \cos ^{3} u$, represents the damping obtained by the element theory, if the resultant airspeed is everywhere taken equal to the speed of flimht. The second term represents the added damping obtained if no the the airspeed as the resultant of the speed of flight and the normal sneed due to rotation, and, under full flight conditions with the maximum probable velocity of roll, is about 2% of the first term. The last term $\frac{1}{12}\left(\frac{d C_{z}}{d a}\right) p^{2} \mathrm{cb}^{3} z^{2}$ represents the further increment of roll added by considering the transverse component of airspeed across the wing, and amounts at most to approximately 0.25% of the first term. The other terms have already been discussed.

Discussion of the General Theory.

Obviously the general equation is too complicated for convenience and will have to be simplified by assumption. If we neglect the two smaller terms in $\frac{d C_{Z}}{d a}$ and thereby introduce an error of not more than $21 / 2 \%$, the equation becomes:

$$
I_{T}=\frac{1}{12}\left(\frac{d C_{z}}{d a}\right) c b^{3} u+\left[f(t)_{p}\right] b+\left[L_{v}+Y_{p}\right] z+Y_{v} z^{2}
$$

Further simplifications will depend upon the specific conditions.

If z is small, both of the last terms disappear; if z is material, Y_{V} is usually negligible; I_{V} and Y_{p} increase with dinedral, but the latter is apt to be unimportant. In the case of the rectangular wing of constant section, all three terms L_{v}, Y_{v} and Y_{p}, can probably be neglected and the equation takes the form

$$
L_{T}=\frac{1}{12} \quad \frac{d C_{z}}{d \alpha} c b^{3} u+\left[f(t)_{p}\right] b
$$

It will be noted in this case that $L_{T}=I_{p}$ since the correction factor $\left[f(t)_{p}\right] b=L_{p}-L^{\prime} p$.

A study of equations Nos. 5, 6 and 7, will shed some light on the variation of L with changes in aspect ratio and wing area. In equation \#5 the first term and the last term involving $\frac{d C_{z}}{d a}$ depend upon cb^{3}, while the second term depends on cb^{5}. The third term $\left[f(t)_{p}\right] b$, is rather difficult to analyze. Being a function of the tip pressure distribution, $f(t)_{p}$ evidently depends upon the chord; also the extent to which this irregular distribution extends invard will presumably be a function of the chord rather than of the span. We might say, then, that $\left[f(t)_{p}\right] b$ depends on $c^{2 b}$. However, the question arises as to whether the form of the tip distribution does not depend upon the normal component of the wing-tip velocity, which, in turn depends directly on the span. In other words, does not $\left[f(t)_{p}\right] b$ depend primarily upon $c^{2}-b^{2}$? The latter seems more reasonable. Of the remaining terms, I_{v} depends upon the area, the amount of the dihedral, and the span, or on $\mathrm{cb}^{2} . Y_{p}$ and Y_{V} do not depend upon the
span to any appreciable extent, but rather on c^{2}. Summing up, therefore, it appears that the most important term devends on cb^{6}; the term $\left[f(t)_{p}\right] b$, which may amount to 30% of the total depends either on $c^{2} b$ or $c^{2} b^{2}$; the term involving $\frac{I}{30}\left(\frac{a C}{d a}\right)$, winch comprises about 2% of the total, depends on $c b^{5}$; and the alrost negligible terms Y_{p} and Y_{V} depend on c^{2}.

Applying the formula

$$
c^{x} b^{y}=\left[(b c)^{\frac{x+y}{2}}\right]\left[\left(\frac{b}{c}\right)^{\frac{y-x}{2}}\right]=\left[S^{\frac{x+y}{2}}\right]\left[\frac{\frac{y-x}{2}}{}\right]
$$

where S and R are area and aspect ratio respectively, it follows that the cb^{3} terms depend on $S^{2} R$; the $c^{2} b^{2}$ term on S^{2} alone; the $c^{2} b$, if we choose to use it, on $s^{3 / 2} R^{-1 / 2}$; the cb^{5} term on $S^{3} R^{2}$; and the two c^{2} terms on $S R^{-1}$. At firct sight the term involving $S^{3} R^{2}$ would assume undue importance. Actually this term also involves p^{2} (the square of the rolling velocity) which obviously decreases at about the same rate, or, perhaps, faster, than S^{3} increases in actual flight, so the proportion of 2% of L_{T} which was obtained for that term for typicel flight conditions on a 2000-pound airplane, will probably not be exceeded for airplanes of any size or proportion.

Neglecting these less important terms, we come to a study of equation $\frac{\|}{\|} 7$, wherein the first term depends upon $S^{2} R$ and the second upon S^{2} or $S^{3 / 2} R^{-1 / 2}$ depending on how we consider $f(t) p$. It seems most reasonable to take $\left[f(t)_{p}\right] b$ as dependent upon $c^{2} b^{2}$, (or on S^{2}) which has the added advantage of bringing in the area without fractional exponents, and checks the b^{4} term
obtained by the theory of dimensions in equation \#l. It hac been found by the N.A.C.A., * however, that in going from mociel test to full flight, L_{T} increases less rapidly than S^{2}, so there is something to be said for the alternative supposition. In either event, the mean exponent of the aspect ratio is bound to be less than unity, probably around .8 , since about 70% of L_{T} depends upon aspect ratio to the first power. This alco has a bearing on equation $\#$.

The Slope of the Normal Force Curve.

Throughout the discussion we have used the term $\frac{d C_{2}}{d a}$ rather than $\frac{d C_{I}}{d a}$. If we take lift as perpendicular to the relative wind and the " z " force as perpendicular to the line of flight, we have by the familiar transition

$$
C_{Z}=C_{I} \cos \alpha+C_{D} \sin \alpha
$$

Differentiating,

$$
\frac{d C_{z}}{d \alpha}=\frac{d C_{I}}{d \alpha} \cos (\Delta \alpha)-C_{L} \sin (\Delta \alpha)+C_{D} \cos (\Delta \alpha)+\frac{d C_{D}}{d \alpha} \sin (\Delta \alpha)
$$

$(\Delta \alpha)$ here represents the change in angle of attack from the value at the wing center-line. ($\Delta \alpha$) is zero at the center-line. At that point, therefore, $\frac{d C_{z}}{d a}=\frac{d C_{I}}{d \alpha}+C_{D}$.

A full-scale example has been worked out in Fig. 1 , for a U.S.A. -30 wing of $60 \mathrm{ft} . \operatorname{span}$ and 10 ft . chord, turning at 1.5 radians per second, which is certainly an exaggerated case. It will be seen that the $\frac{d C_{2}}{d a}$ curve follows the $\frac{d C_{L}}{d a}$ curve very

[^0]closely. Above $a=-6^{\circ}$ the deviation is less than $31 / 2 \%$ througnout the entire range. This means that for all present-day airplanes under ordinary conditions $\frac{d d_{i}}{d u}=\frac{d G}{d i}$. For auto-rotation the more exact form is required, and a new curve of normal force must be plotted for each ergle of attack considered, and a graphi\checkmark cal solution must be made if the roll is very rapid.

Experimental Results.

As a conclusion to the theoretical discussion, the results of the experiments may be summarized. The indeterminate functions of $\left(\frac{z}{b}\right)$ and $\left(\frac{p b}{u}\right)$ in equation $\# 1$ were investigated for an aspect ratio of 6. It was found, as might be expected, for the plain rectangular wing of constant section, that $\mathrm{L} q$ was independent of ($\frac{z}{b}$), at least within the experimental error. This follows from equation \#6, since L_{V}, Y_{p}, and Y_{V} are known to be smail. The other indeterminate $f^{\prime}\left(\frac{p b}{u}\right)$, takes the form of $k_{1}\left(\frac{p b}{u}\right)^{n}$, where k_{1} and n vary practically as straight line functions with $\frac{d C_{2}}{d a}$. The equation then takes the form $L_{T}=k_{2}\left(\frac{d C_{2}}{d \sigma}\right) u^{4}\left(\frac{p b}{u}\right)^{n}$. Values for k_{1} and n are plotted in Fig. 2. The full lines represent decreasing values of $\frac{\mathrm{dC}_{2}}{\mathrm{da}}$ and cover the range of an average lift curve from maximum steepness up to nearly maximum lift. The dotted lines represent decreasing values of $\frac{d_{2}}{d a}$, which cover the range of the lift curve below maximum steepness (i.e., in general, below $\alpha=0^{\circ}$) where the lift curve tends to bend uprards from a straight line. The point of intersection is at the maximum value of $\frac{d C_{2}}{d \alpha}$. Obviously, with wings having a different maximum
value of $\frac{d C_{n}}{d \alpha}$, the intersection would take place at some other point, and presumably the dotted iine would be displaced vertically to correspond. The fact that these lines intersect at $n=0$, for this particular wing, is probably accidental. However, the full lines, which cover the normal range of flight angles, should apply equally well to any plain rectangular wing of constant section and aspect ratio 6. The curves show very clearly a departure from a linear relation between rolling moment and rolling velocity when the rolling velocity is high.

A value of k, can be calculated from the element theory on the assumption that n is equal to 0 . Using equation \#2 and neglecting all terms within the bracket except the first, wo have:

$$
L_{p}=\frac{1}{12}\left(\frac{d C_{2}}{d \alpha}\right) c b^{3}
$$

Where the units are homoceneous throughout. In plotting the ourves of Fig. 2, $\frac{d C_{z}}{d a}$ was taken in lb/sq.ft/mile per hour/degree, and u in M.P.H. This introduces a correction factor of $57.3 \times 15 / 22$. A further factor of $1 / 6$ is introduced by the substitution of b^{4} for $c b^{3}$. The total value of the calculated coefficient, on a basis comparable with that used in Fig. 2, is therefore, 57.3 x $15 / 22 \times 1 / 6 \times 1 / 12$, or .52 . The experimental constant will be seen to approach the calculated one closely at small values of $\frac{\mathrm{dC}_{z}}{\mathrm{da}}$, but it falls far below at high values of the slope (corresponding to angles of attack well below that of maximum lift).

FARI II.
EXPRETMETGA DETERMINATION OF THE DAMPIMG OA ROLE.

Methoá of Test.

The tests were carried out in the 4 -foot wind tunnel et the Massachusetts Institute of Technology, on an 18: $\times 3^{\prime \prime}$ wood model of the U.S.A.-30 wing at a wind speed of 40 M. $-\mathrm{F} . \mathrm{F}$. A $13^{\prime \prime}$ spindle $1 / 2^{\prime \prime}$ in diameter was mounted axially of the tunnel botween a pair of conical bearings. Each bearing was supported by ihree wires to the side of the tunnei, so attached as to keep the bearings seated snugly on the ends of the spindle. The spindle was provided with a pair of slots $2^{\prime \prime}$ apart, through which passed two $1 / 8^{\prime \prime}$ diameter rods, the rods being screwed into tine wing model at midspan, one behind the other. Special counter-weights were mounted at the opposite ends of the rods. Thus, by loosening two setscrems opposite the spinale slots, both the angle of attack of the wing and its distance from the axis of rotation could be altered. Finally, a light flexible cord was wrapped three times around the spindle and the ends carried out through the bottom of the tunnel to a pair of meights, which supplied the driving torque to keep the model in continuous rotation. The mounting is showr in Fig. 6.

Funs were made at various torques for five angles of attack $\left(-4.5^{\circ}, 0^{\circ}, 6^{\circ}, 12^{\circ}\right.$, and $\left.18^{\circ}\right)$ and at 0° for four positions of the wing relative to the axis. Each mun was repoated in the reverse direction and the results averaged to remove any error due to warp in the wing. The speed of rotation was observed for each vilue oir
torque by counting the revolutions of the wing against a stop-watch. The net torove was then ootained by subtrecting a friction and windage correction which has been found independently by experiment. Torque in foot-lb divided by angular velocity in radians per second gave the damping coefficient. Tests were also made to determine the usual characteristics of the wing and are given in Fig. 3. From these tests the values of $\frac{d C_{2}}{d \alpha}$ were obtained.

Analysis of Results.

In order to determine the unknown function of z / b in the dimensional equation \#1, values of L_{T} were plotted against z / b in Fig. 4 for three values of pb / u. Unfortunately, it was not possible to make pb / u exactly constant, since in making the experiment the speed of rotation for a given torque could not be foretold. However, groups of values were selected in which pb/u is essentially constant and since all values for all groups lay within 5% of the average, which is within the error of the experiment, the evidence seemed sufficient to indicate that L is practically independent of z / b for straight rectangular airfoils. A few tests were made at $\alpha=12^{\circ}$. for various values of z / b to determine the effect of a change in $\frac{d C_{z}}{d \alpha}$ on z, b. These results were slightly more erratic than those at 0°, but nevertheless bore out the fact that L_{T} is independent of z / b. This is what the theory led us to expect, knowing that L_{V}, Y_{p}, and Y_{V} are small.

To evaluate the pb / u term in equation \#1, the runs for each angle of attack were plotted on logarithmic paper, using pb / u as
abscissae and $L_{T} /\left(\mathrm{dC}_{z} / \mathrm{da}\right) \mathrm{ub}^{4}$ as ordinetes. It was found that
 from the intercepts of this line the values of k_{1} and r iven ir Fig. 3 , were obtained. These values rere plotted apainrt the slone of the jift curve instead of the angle of attack so as to be of more general application.

It is interesting to compare the theoretical and cxperimental values of L . Fig. \bar{y} shows a typical comparison. The cottor. line represents the experimental values of I_{T} and the top line the theoretical values of the conventiona? Lo obtaired from equation H2. Bince hoth theory end experirent agree that for the straimht rectanglar wins the extraneous terma iv, Ye, etc., are nerliribie, it folions that the only difference betvecn the theoretical. I_{p} and the actual u_{y} should be the term $\left[f(t)_{p}\right] b$, (i.e., the tip loss correction). With this in mind the central line in Fig. 5 was obtained by solving graphically for I_{p} and assumine the conventional tip pressure distribution of $1 / 2$ the runring losi at the tip, tapering up to full load at.δ of a chord-leneth irboned from the tip. Evidently, then, the tip pressure distribution in altered by the rolling motion. This is not unexpected.

The comparison shown in Fig. 5 gives the greatest deviation which was found. As the angle of attcok is increased, the devieation becomes less, until near maximum lift the exporimental value becomes the greater of the two, as already noted in Part I, in connection with the discussion of Fig. 2. Except for the varying
distortion of the tip loading no adequate explanation accounts for this peculiarity.

Conclusion.
Finally, it must be recalled that the foregoing is in the nature of a theoretical discussion, and that the experimental data represents only a sincle wing on which we cannot afford to enencralize too much. We must have further date. Snecifically, me require wind tunnel tests on wings with dihedral and taper, on biplane combinations, and on different tip forms; we require free flight tests on various airplanes, both large and small, especially monoplanes. Without these additional data very little tangible progress can be made.

Fig. 2

Full lines for decreasing values of $\mathrm{dC}_{\mathcal{Z}} / \mathrm{do}$. Dotted lines for increasing values. dC_{z} in $\mathrm{lb} / \mathrm{sq}$.f $\mathrm{f} / \mathrm{M} . \mathrm{P} . \mathrm{H}$. Units da in degrees. b in feet. u in $M . P_{0} H$. p.in radians/sec k \& n non-dimensicnat.
Fig. 2 Total damping factor in roll, $L_{T}=k_{1}\left(\frac{d C_{2}}{d \alpha}\right) \operatorname{ub}^{4}\left(\frac{\mathrm{pb}^{b}}{\mathrm{u}}\right)^{n}$

Fig. 4

Fj.g. 4 Plot of wind tunnel test L_{T} vs z / b. Wing section, U.S.A., 30. Angle of attack, 0°

$$
\text { Fig- } 5
$$

$\mathrm{dC}_{2} / \mathrm{dr}\left\{=000184 \mathrm{lb} / \mathrm{sq}, \mathrm{ft} / \mathrm{M} . \mathrm{P}_{\mathrm{H}} \mathrm{H} . /\right.$ degree $=.00491 \mathrm{lb} / \mathrm{sq} . \mathrm{ft} /$ f.p.s./radian

Fig. 5 Comparison of theoretical and experimental values of the damping factor in roll.

Fjg. 6

Fig. 6
Set-up of apparatus

[^0]: * N.A.C.A. Report \#167

