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I. EBorizontal Curvilinear Flight. Sp—

Simultaneously with, but independently of, the foregoing
investigation by Kann, work was in progress on the same subject
and was carried out by the mutual cooperation of Messrs. Hoif, -
Hopf and the writer. The problem was placed on a somewhat wider
basis, without any assumption in regard to the variation of .
engine power with the altitude and only with the assumption that __
this relation is, in fact, empirically known from measurements
taken in altitude tests. If this is the case, the following
method of caleulation is as easily applicable as that of Kann,
which latter assumes a proportionate decrease of engine power . .__
with altitude and is always applied when an approximately cor-
rect theoretical estimate of the ceiling must be made without
knowing the results of engine tests. Since the two methods of
calculation supplement each other, the results of our investiga-
tions are also given here. ) —=-

Our method concerns the same special case of the curvilinear
flight of an airplane, viz.: steady horizontal-flight in a ecir-__

cle in which no side slip occurs. The questions of the most com-

mon steady turning-flight curves (i.e., of such curves as are
* From Technische Berichte, Volume III, No. 7, pp. 367-374.
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traversed without change of acceleration or velocity) would be

considerably broader. This problem might be treated exhaustively,

but the requisite preliminary work is not yet finished. It is
not yet settled as to whether steady turns are of any practical
significance, since it may be that all. turns are o be regarded
as displacements from a position of unstable equilibrium. On
theoretical grounds, Reissner had come to the conclusion before
?he war, that an airplane at that time could not fly in steady
turns. If this were the case, then the practical importance of
experiments in this direction would be greatly limited. The
question cannot be settled as yet since, from the observation
of pilots, such turns appear quite possible. In that case, a
knowledge of steady turning conditions is not superfluous, be-
cause it is by this means, in the first place, that a suitable
idea can be formed on the stability of the actual motions.

The investigations to be considered rest on two basic
assumptions, which restrict the simple statement of the equa-
tions. The first is that the airplane lies correctly in the
turn, so that the resultant of gravity and of the centrifugal
force falls in its plane of symmetry. This stipulation is not
a restriction, since it must be fulfilled in ordinary flight.
The second assumption is more essential. The airplane must soO
lie in the turn that its axis coincides with the direction of
motion, i.e., so that there will be no slipping sidewise, a con-
dition which cannot always be fulfilled in practice. As a matb-

ter of fact, most turns are flown with an outward slip (skidding)
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while any inward slip (side-slipping) is avoided on account of
the danger of falling into a spin. 'Hence, it is not justifiable
to conclude, from the sensibly correct bank of the airplane, that
"its position is tangential to the 1ine of flight, since a dif-
ference of a few degrees alters the bank but very slightly, while
it considerably inéreases or decreases the danger of spinning.
Among the turns calculated from the equations of motion, certain
limiting values are of special interest, since the practical use
of an airplane depends on their magnitude. The turn is of spec—
ial importance in which the airplane changes its direction of
motion wmost quickly, i.e., the turn which it describes with the
greatest angular velocity. The curvature of this turn is a meas—
ure of the turning power, or maneuverability, of the airplane.

On the other hand, it may be important for the airplane to fly
the sharpest possible turns, i.e., those in which the radius of
curvature of the flight path is as small as possible. The two
turns are not identical, since a turn of greater radius can be
described with so much greater velocity, that the time required
to fiy it is shorter than that required to traverse the sharper
turn. The sharpest turn is actually flown with a different angle
of attack than that of the quickest turn. For the range of the
angles of attack under consideration, the change in the radius
of curvature is vanishingly small, while the velocity along the

flight path and the angular velocity change appreciably.

1. Eguations of Motion.— The motion of a body in space 1is
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determined by six equations, which can be written in the form of
equilibrium conditions. Of these, the three equations which ex-
press moments do not at first come into question, since they can
always be satisfied by a suitable rudder deflection. It is,
therefore, only necesgsary to bring the active forces into equi-
librium. According to our assumptions, the air resistance D
always acts in the direction of the tangent to the path of flight
and in the opposite direction to the propeller thrust. T. The
two forces must be in equilibrium with each other. The weight
of the airplane and the centrifugal force Z act in a p}ane
perpendicular to the path. They have a resultant R =ﬂ/’W2+ z°
which is in equilibrium with the 1ift L. Since the resultant
force makes, with the vertical, an angle increasing with the
centrifugal force, the airplane must be banked in the turn in or-
der to maintain equilibrium, the wings forming, with the horizon- .
tal, the angle of bank given by the equation tan?® = % .

The propeller thrust for a velocity V of the airplane,
output P of the engine in HP and efficiency of the propeller,
is T = Zé_gil} The centrifugal force (for a radius of curvature
r) is Z = %-%2. The resistance and }ift for the air dens?ﬁy_w_
o ; surface area S, of the wings; and the coefficients. Cp and

Cr,» corresconding %0 the profile, are

D=CD8—%SV2
L=CL2—;-SV2
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The conditions for the eguilibrium of the forces are therefore

75 P - P 2
B e @

23
W/1+g—m> =GL§%S'V2 | (2)

while, for . the angle of bank ¢, we have

M)

tan & =

0Q|<1

L}

(3)

If the curve of quickest turning flight is to be obtained,

then the radius of curvature must be replaced in equation (2) by
the angular ﬁelocity w

. Now w

H <

ggsumes the form

3

go that equation (3)

2 1re
‘,T/1+Lg-‘£r—=oL£sv2

= (2)
If Vv

is eliminated from equations (1) and (2), we obtain a re-
lation between the power output and the angular velocity, which,

after introducing the non-dimensional auxiliary quantities

4
5 (4)
2
may be written in the form ’
o, 2 ¥ |
y =~ x - B (6)
Cp X

This is a relation, the coefficients of wbidh are only dependent
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on the polar diagram. The numbers x and y have an easily
recognized physical significance. x increases with the engine
output and with P, but decreases with increasing altitude.

v, on the other hand, increases with the altitude and -angular
velocity and depends only on the loading of the wing surface.
Equation (6) holds good for a perfectly arbitrary turn. For each

angle of attack there is a definite angular velocity, which, at

a given altitude, corresponds to a definite engine output.

2. Curve of Quickest Flight.- For the quickest turn, the an-

gular velocity and also y for a constant engine output must

be a maximum, i.e., we must have

>

o
ot

=0 (7)

|

o

Cp
if Cp 1is considered dependent om Cp, as is the case for the
polar diagram.

The calculation gives

S
) 2.7 3

2 CL CL' CD2/3 _ 2/3 CLB CD _1/3 'S—CD

0= o 2/3 X - <

D
that is,
2/3
. o (8)

—ch(:schL'-cL)

If this value ig substituted in equation (5) we get for the quick-

egt turn

Cy, .
= (2 Cy; - 3 Op Op° 9.
y = (2 ¢y D L),/zcncf'—on _(



Since y from its definition, can only have a positive value,

we must have -

that is,

(%)
(]
o
Q
=
(]
£
|
o
Q
L_|0)
Q
o
A
o

that is, for the quickest turn, only such angles of attack (q)

come into question, as are greater than the angle corresnondlﬁg

to the maximum value of ELg . If the angle a 1is so chosen,
Cr 2 D

that aLg- is a maximum, this corresponds to a zero angular ve-
b

locity, that is, to straight flight. As a increases, x dn-
creases and becomes «, i.e., the engine output would exceed l
211 limite, when

3Cy Cp,t = C,=0

that is, when
<]

Ty

°p

attaing its maxirum value. Hence the limits of the angle of at-
tack between which all curves of quickest turning must lie, are

fixed.

3. SBharpest Curve.— To determine the smallest turn which an

airplane can describe under steady conditions of flight, we start



- 8 -

with the original equations (1) and (2) and eliminate V. By
this means, a relation is obtained between the engine power and
the radius of the turn, which can be written non-dimensionally,

as before, if we use the auxiliary quantities

1/3
3 g P
[(75 P n) - gg] (4)
and E 2 .
” (_ﬁ\ . (10)
er /

We then have the following relation between them:

Q 4/3
X
which (if we make use of the gquantity y defined by equation

(5) can be written in the form

2/3
AL
X

(111)

Equations (11) and (11'), connecting the radius of the turn and
the engine output, hold good for any angle of attack and any
altitude. For the sharpest turn which can be flown under steady

conditions with constant engine power and, therefore, with con-

stant value of x, géD mist equal O; that is,

O=2CLCL“’

The angle of attack must, therefore, be so chosen that

4 1/3 : .
<. / 8/36¢7 (12)
or Cr' __ __
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If this value is substituted in equation (11), we have

_ - 3 N\
z = 0p (0] - 2cpopt ) (13)

The case 2z = 0 occurs at the same time as y = 0, 1if
the airplane cannot make a turn, but can only fly horizontally

in a straight line. In this case, along with equation (13),

Ga/:a 03
C On <
L D

is a maximum.

7ith increasing x, the angle of attack increases and ap-
proaches a2 limit, for which Cp' = O, +that is, the 1ift reaches
a maxinmum.

The sharpest turn is flown with an angle of a2ttack, which is
determined by the limits (gg;} and O -

max

4. Calculation of an Example.— The calculations hold for the
polar diagram (Fig. 1), vhich belongs to a C type airplane
(Dfw ¢ V). Since O and Op mst be differentiated in a region
where C; varies very little and the graphical determination of
C;," 1s consequently very inaccurate, it appears advisable to
substitute a parabola. The equation for this curve may be found
with sufficient accuracy by the Lagrange interpolation formula.
This is then differentiated and evaluated.

Figure 3 presents, on the basis of equation (8), the relation
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between x and Cp for the quickest turn and also, with the help
of equation (9), the relation between x and y. If x and v,
as functions of the angle of attack, have been found in this way,
we can obtain immediately from equations (4) and (5), for a par-
ticular airplane of given engine power, the quantities determin-
ing the quickest turn at any altitude. For a normal decrease

of air density with altitude, we obtain for an airplane with wing
gurface S = 42.16 m® and weight S = 1540 kg the following

relation between the altitude h and the coefficient =x.

Table 1.

h P o] X S
0 220 1.25 0.462
1000 204 1.139 | 0.425
2000 183 1.016 0.383
3000 165 0.912 0.342
4000 146 0.818 0.306
5000 ! 128 0.731 0.264
8000 106 0.652 0.239

Thereby we have taken an engine, of which the decrease in
power with the altitude is known from experiment, and a propeller

efficiency, m = 70%.
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If the dependence of the angle of attack on.the altitude,
for the case.of the quickest turn, has been determined, the

greatest angular velocity ies calculated from equation (8)

w= /PEYS (14)
2 W .
and the velocity
1/3
v = (5B ¥ (15)
Cnh § ==/ :
D 2g :

From this we can calculate the radius of the curve of

quickest turning

€l

I‘:

as well as the increased loading, which is determined as the

resultant of the weight and centrifugal force

R = W/fl + Vzg;"z (17)

The same process of calculation serves for the determina-
tion of the sharpest turn. From equation (12) we determine the
relation between x and the angle of attack corresponiing to
the sharpest turn. Theun the value of y from equation (13) and
finz1lly, with the help of Table 1, the relation between the al-

titude and the angle of attack corresponding to the sharpest turn.
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Table 3.
Quickest turn. Sharpest turn.

h vy ® v T Z T v

0 -1.28 0.494 29.6 60.0 0.95 €0 28.4
1000 1.17 0.421 29.8 71.0 0.83 71 28.8
2000 0.87 | 0.345 30.1 87.3 0.88 87 29.2
3000 0.862 0.276 30.4 110.0 0.53 110 29.6
4000 0.45 0.2323 30.8 138.8 0.42 138 . 30.2
5000 0.02 0.04% 30.8 800( ?) 0.03 600 30.8
6000 ~0.23 ,

The radius of curvature of the sharpest turn is then given

by equation (10)

(18)

and the velocity is detecrmined, as above, from equation (14), in
which the coefficient of resistance or drag corresponding %o the
angle of attack for the sharpest turn, is to be put and the in-

creased load is determined by the resultant force

_ V2N (LN
R“W/l+ e (g5

The results of the calculations are contained in Table 2

(19)

and Figures 3 and 4.
From these figures it follows that the radius of the sharp-

est turn coincides with that of the quickest turn within +the
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limits of accuracy of the calculation; while the velocity of the

quickest turn is appreciably greatex'than that of the sharpest

turn. This remarkable result is explained by the fact that the

change of the radius of curvature for the angle of attack under

consideration .
(55

‘CDa ;T CLmax]
ma.x

is very small, while the speed changes rapidly with the angle of
attack. In practice, the sharpest turn is always flown when the
angle of attack lies within the given limits. For the quickest
flown turns are characterized by equations (14) to (17). The
difference in speeds, however, is not great, since the speed de-
pends only on the cube root of Cp- In the most extreme case,
it does not exceed 10%. For rough calculations, it is only nec-
essary to choose an angle of attack between the limits mentioned
and there is nosadvantage in choosing the value corresponding to |
the maximum %%r .

The work necessary for a complete turn of the airplane is
always greater than the kinetic energy and increases with the
altitude. In the preceding example, the work required for re-

versal of direction is

. 0 1000 2000 - 3000 4000 m___
At an altitude of {6 3281 85862 9842 13123 f%
About 20 25 36 43 56 %

greater than the corresponding kinetic energy, when the airplane
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flies in the sharpest turn. This reversel of dirsction requires
much more work than the perfectly inelastic impulse, in which on-
ly the kinetic energy is destroyed. The question of the turn,
for which the work required is least, leads also to the quickest
turn. The work required for a semicircle of radius r is

TUor = 7—5—%—3— nr, 1in vhich T is the propeller thrust. This
expression must be a minimum for the turn sought. This occurs,

for a constant engine power, when r =1 is as small as possi-

v w
ble, i.e., when the value of w is a maximun.
The quickest turn is, therefore, also the turn of smallest

consumption of energy. g

IT. Gliding in a Turn.

The motion of an airnlane descending in a glide may be sim-
wly treated with the aid of a method which is closely connected
with that for horizontal flight. If V, 1is the velocity of de-
scent, i.e., the vertical component of the velocity of the air-
plane along its path, then 6, the inclination of the line of

flight to the horizontal, is given by

= gin® _ (1)

<8

The air resistance is in equilibrium with the component of grav-
ity acting in the direction of the tangent to the path

7 sin® = Op é%vas (2)

The 1ift is the resultant of the centrifugal force and the compo-
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nent of gravity perpendicular to the tangent to the path.

_."/_2 3 72 VPV L P e
~// 7 cos®8 + gg-(r ) Cg, 22 V= S (3)

If 6 is eliminated from equations (2) and (3), by means of

equation (1), we have

@]
V; = Op 53 v E (4)
V,N /YN P _a/8Y
2z YN g2 B A
1- (V / +'(g:c/ L 3z ¥ (W/ (é)

In the following, the steady velocity of descent Vy; ie assumed

and the unknown velocity V can be eliminated from equations

(4) and (5) and the relation between the radius of curvature .-

of the turn and the angle of attack obtained. It is, however,
convenient so to arrange the equations beforehand, that only non-

dimensional quantities appear. If we put for this purpose

O 3.2 _1
E?g_ 7 Va = F (8)
v .
TS = sine =n (7)
v ?
i ® __
n® = %_D (10)
2 Cr 2
v = 1% - n* + —éLa- (11)

After the elimination of n with the aid of eguation (10),

equation (11) can be written -

~ 2 L 2 4/3
C17 TG _CpT7 (11a)

w2 = y;
- 2 +/3
£

£
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1. The Straight Glide.- Equation (11) shows that

is always greater than zero and only vanishes when y = O,
i.e., when the radius of curvature of the path is infinite.

For the straight glide

2/3 C. % + Cn?
¢ =;—L—7—JD—“ (12)

while, for finite r, we must always have £ < £, . In Figure

/
5 202 3

there is shown as a function of Cp for a polar dia-
gram corresponding to the Dfw C V airplgne, 52 ig greatest and
the velocity of desgent least, wheg EL—E§;EP~' attains a @aximum,
i.e., a glide with minimum descent is always straight. It is

flown with an angle of attack which corresponds to a maximunm
0;° + Cp°

GD‘LEB

An essentially different question is that of the flaiftest:

value of

possible glide, but it is easily seen, that the gliding angle
can never be diminished by curved flight. From equations (2)

and (3), in fact, it follows that

2

e}
.25 _ 2(___\
W sin 8 = CD S/ v

3
W? cos?8 = O;° (_3 s) v~ (T ¥
L T

Hence,

cot®g = = (13)
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§ will be a minimum, vhen c¢o%t € is a maximum, or vhen 1 = ©®.
Straight flight is always flatter than a fturn flown with the same_
angle of attack; the flattest glide is a straight line, the in-

clination of which is given by cot6= (S

CDdax

2. The Sharrest Turn.- For the sgharpest turn which the air- .

plane can describe with a given velocity of descent, Vg ,y
attaine its maximum value in equation (11). The corresponding

2l
angle of attack is obtained by putting 9é§51 = 0, so that

0= - 2 CD2/:3 Ee/s

=-% + 0, C," + Cp

whence the relation of £ to Cp is given by

2/3 + Gy Cr!?
£ = CD = L1/3L (14)

= C
3 D

In this, C'y 1is derived from Cy with respect to OCp.

This relation is also given in Figure 5.

3. The Quickest Turn.- For the determination of this turn,

which is characterized by the maxirum angular velocity, equation
(5) or the equivalent equation (11) is first slightly transformed.

If the angular velocity*

(15)

w =

H |

* It is to be observed that the angular velocity in the turn is

chosen, not with a view to changing the position of the airplane

in a glide as quickly as possible relatively to the earth, but

with a view to exbricating it as quickly as possible from the ene-

%Y's fire. This ccrresponds, however, to the assumptions in the
ext.
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is put in equation (8), we have

V0 T
y g Vg’
or, if we put
-
2= =z ‘ (16)
so that
Equation (11) now becomes
~ 2
2 =t - o L (18)
£ r°
or, after eliminating
2 2 2/3
- ;" + Cp - Cp {(18a)
ST es L 1/3 773 N
5 UD .

The angular velocity reaches its maximum value at the same time

=2
as 2, that is, when a(z?) - 0, or S

d Cp
. 2 CD.x/a . 4 CD:/a N ZCL GLI 9 CLe
j— S — + - o ___75_...75__
3 ‘ _é7g 3 3 g4,/3 CDela Ee/s z CDS E&-

It follows that, for the quickest turn,

2

_ 3 roC '
i s AR A (19)

3
Cp Cp

The quickest turn coincides with the sharpest turn, only when
E;/s CIE + CDE

= CDys and, at the same time -

(Eig_i;fﬁl_ =0 (20)
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The turn then passes into a straight line corresponding to a
glide with the slowest descent. The calculation of velocity

presents no difficulties in any of the cases considered. Since

1/3 i T
Vs is koown, V=LV, where L= %373— . In Figure 5, this
2/3

exprecsion is shown as & function of ¢ » The figure shows
that the sharpest turn énd the quickest turn do not differ appre-
ciably from each other, but both turns have lost speed consider-
ably as commared with a straight glide. It cannot be said, how-
ever, that a minimum velocity is attained in the sharpest turn.
This minimum velocity occurs again with 2 given rate of descent
in a straight line fligh%, as chown by Figure 5, but in an indi-

rect way.

4, Turn with Constant Excess Load.- In a straight glide,

the load on the wings is always equal to the weight of the air-
plane. It increases when the airplane flies in a turn, since

the resultant of the weight and the centrifugal force mus? be in
equilibrium with the effective air force. Hence, we may define
the increased load by the ratic of the total air force to the
weight. A curve of n-fold loading will then be given by an equa-

2

tion of the form =n® W = (0> + Op°) (—— s\ v This can be

written by introducing the auxiliary quantities &, 7
1/2

= (01® + cp) EJ%Q- (21)

If n is eliminated by the use of equation (10), then



2 1 C + C T -
£rP = 5 D i73 (23)
n Cp
or
2/
S v (322)

in which, according to equation (13), ¢§ /s corresponds to
straight flight.

The curve representing equation (22) geometrically, may also
be obtained from the curve of eguation (12), by reducing the or-
dinates in the ratio 1 : n. All these curves are ortaogonal -
projections of the curve of straight flight, the curve teing at
right angles to the OCp axis.

In Figure 5, equation (33) is represented for n = 3.

5. Relation of Radius of Curvature to Altitude.~ The radius

of the sharpest turn and of the quickest turn varies with the
altitude at which the airplane is flying, since Yy and z depend
on £ a2nd tHerefore on the density of the air. If the airplane
is so controlled that it always describes the smallest turn, the
radius of curvature varies with the altitude and the path of
flight is obviously not a steady turn. In the first approxima—
tion, however, the motion may be considered steady at any in-
stant. The question in what sense the radius of curvature var-
ies with the altitude, if V, remains constant, can be deduced
- from the analysis in the following way. With increasing altitude,
the air density decreases and £ increases. As £ increases, it

is seen from Figure 5 that Cp decreases, as also
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2 4 2 4/3 . -
9%‘I7EED—- and 9?5——- decrease, both for the quickest turn and B
D SR —

the sharpest turn. Conseguently

+/3 2 2 -
y2 _. Cn [CL + GD _ E45,/:3\ (11b)

2 L &£/3 7

£ Cp

decreases with the altitude and incresses with the radius of
curvature. If an airplane descends by gliding in its sharpest
(quickest) turn, it describes a spiral, which becomes narrower
during descent.

This conclusion is not applicable to the curve of constant
excess loading, as soon as the angle of attack begogef segller

'y -

Cp
With the aid of equation (11), the radius of curvature is shown

than that corresponding to the maximum value of

. . . 4/3
in Figure 6 as a function of ¢ . -

Translated by
National Advisory Committee
for Aeronsutics.
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Figs. 3,4,
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Tigs.5,6.
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