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By

FLIGHT OF AIRPLANES.*

E. Sa120wski. -—

~. Hori.zcsntalCurvilinear Flight. ——

Simultaneously with, but independently of, the foregoing

investigation by Kann,,work was in progress on the same subject

and was carried out by the mutual cooperation of Messrs, Ho$f, —

Hopf and the writer. The problem was placed on a somewhat wider

* basis,”without any assumption in regard to the variation of ._—

. engine power with the altitude and only with the assumption that ___

this relation is, in fact, empirically known from measurements .

taken in altitude tests. If this is the case, the following

method of calculation is as easily applicable as that of Kann,

which latter assumes a proportionate decrease of engine power —.—

with altitude and is always applied when an approximately cor-

rect theoretical estimate of the ceiling must be made without .:=

Wowing the results of engine tests. Since the two methods of __..._

calculation supplement each other, the results of our investiga-

tions are also given here.

Our method concerns the

flight of an airplane, viz.:

same special case of the curviline~

steady horizontal:fl_~ghtin a cir___..——

cle in which no side slip occurs. The questions of.the most com-

S mn steady turning-flight curves (i.e., of such curves as are

* From Technische Berichte, Volume III, No. 7, pp. 267-274.
●
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traversed without change of acceleration or velocity) wouid be

considerably broader. This problem might be treated exhaustively,

but the requisite preliminary work is not yet finished. It is

not yet settled as to whether steady turns are of any practical

significance, since it may be that all-turns are ‘t be regarded

as displacements from a position of unstable equilibrium. On

theoretical grounds, Reissner had come to the conclusion before

the war, that an airpIane at that time could not fly in steady

turns. If this were the case, then the practical importance of

experiments in this direction wouId be greatly limited. The

question cannot be settled as yet since, from the observation*

of pilots, such turns appear quite possible. In that case, a
,

knowledge of steady turning conditions is not supe~fluous, be-

cause it is by this means, in the first place, that a aitable

idea can be formed on the stability of the actual motions.

The investigations to be considered rest on two basic

assumptions, which restrict the simple statement of the equa-

tions. The first is that the airplane lies correctly in the

turn, so that the resultant of gravity and of the centrifugal

force falls in its plane of symmetry. This stipulation is not

a restriction, since.it must be fulfilled in ordinary flight.

The second assumption is more essential. The airplane must so

lie in the turn that its axis coincides with the direction of

rmtion, i.e., so that there will be no sliming sid=f~se~ a con- .

dition which cannot always be fulfilled in practice. As a mat-*

ter of fact, most turns are flown with an outward slip (skidding)
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while any inward slip (side-slipping) is avoided on account of

the danger of falling into a spin. Hence, it is not justifiable

- to conclude, from the sensibly cor~ect bank of the airplane, that

‘its position is tangential to the line of flight, since a,dif- :

ference of a few degrees alters the bank but very slightly, while

it considerably in~reases or decreases the danger of spinning,

Among the turns calculated f~om the equations of motion, certain

limiting values are of special interest, since the practical use

of an airplane depends on their magnitude. The turn is of spec-

ial importance in which the airplane changes its direction of.

mction~st quickly, i.e., the turn which it describes with the
,

greatest angular velocity. The curvature of this turn is a meas-

ure of the turning power, or maneuverability, of the airplane.

On the other hand, it may be important for the airplane to fly

the sharpest possible turns, i.e., those in which the radius of

curvature of the flight path is as small as possible. The two

turns are not identical, since a turn of greater radius can be

described with so much greater velocity, that the time required.

to fly it is shorter than that required to traverse the sharper

turn. The sharpest turn is actually flown with a different angle

of attack than that of the quickest turn. For the range of the

angles of attack under consideration, the change in the radius ...

of currature is vanishingly small, while the velocity along the

flight path and the angular velocity change appreciably.

1. ~auat~ons of ~otion.- The motion of a body in space is
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determined by six equations, which can be written in the form of

equilibrium conditions. Of these, the three equations which ex-

press moments do rmttat first come into question, since they can

always be satisfied by a suitable rudder deflection. It is,
d

therefore, only necessary to bring the active forces into equi-

librium. According to our assumptions, the air resistance D

always acts in the direction of the tangent to the path of flight

and in the opposite direction to the propeller thrust. T. The

two forces must be in equilibrium with each other. The weight

of the airplane and the centrifugal.force Z act in a plane
,

perpendicular to the path. They have a resultant R = J W2+ Zz.

which is in equilibrium with the lift L. Since the resultant
%

force makes, with the vertical, an angle increasing with the

centrifugal force, the airplane must be banked in the turn in or-

der to maintain equilibrium, the wings forming, with the horizon- ..

tal, the angle of bank given by the equation tan@=#~-

The propeller thrust for a velocity V of the airp~ne,

Output P of the engine in HP and efficiency of the ProPeller>

is T=75PT. The centrifugal force (for a radius of curvatureTT
v

r)is
7{V2z=––,
gr

p ; surface area

CL> corresponding

The resistance and lift for the air density
.

s, of the wings; and the coefficients, & and

to the profile, are

D=c~&sv2

.

.
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The conditions for the equilibrium of the forces are therefore
●

(1)

while, for the angle of bank Q, we have

If the curve of quickest turning flight

then the radius of curvature must

the angular velocity (JI. Now w

essumes the form

(2)

(3) .

is to be obtained,

be replaced in equation (2) by

v=— so that equation (2)
r’

CL&SV2 (2)

If V is eliminated from equations (1) and (2)~ we obtain a re-

lation bet~een the power output and the angular ~elocitY, which, -

after introducing the ncm-dimensional auxiliary quantities

may be written in the form ~

(4)

(5)

(6)

This is a relation, the coefficients of w~~ichare only dependent
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on tinepolar diagram. The numbers x and y have an easily

recognized physical significance. x inczeases with .the engine

output and with p, hut decreases with increasing altitude.

Y, on the other hand, increases with the altitude and angular

velocity and depends only on the loading of the wing surface....

Equation (6) holds good for a perfectly arbitrary turn= For each

angle of attack there is a definite an~lar velocity, which, at

a given altitude, corresponds to a definite engine output.

2. Curve of Quickest Flight.- For the quickest turn, the an-

. gular velocity and also y for a constant engine output must

. be a maxirmm, i.e., we must have

dy_o
dCD

if CL is considered dependent on ~,

polar diagram.

The calculation gives

(7)

as is the case for the

_+
*D

2 CL CL’ CD2’3 - 2/3 CL2 CD ‘1’3 ~ _ ~
o = .-

Cn
4/3

x
J/

that is,

x -u= (8)

If this value is substituted in equation (5) we get for the quick-

. est turn

Y =(2 CL-3 CD CL’)
,~ .(’”
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Since y fzou its definition, can only have a positive value,

me must have .

2 Cr,- 3CD~L’30 -...-

that is,

~~ Da CL2 c~’ – 2 CL3 CD s o.

The expression on the left is
r

that is, for the quickest turn, only such angles of attack
.(a)’
;

corfteinto question, as are greater than the angle corresponding
.

to the maximum value of
~.

If the angle a is so chosen,
c,3 CD2

, that ~ is a maximum,
GD

this corresponds to a zero angular ve-

locity, that is, to straight fliqat. AS a increases,

creases and becomes CU, i.e., the engine output would

x in-.
J,

exceed

all limits, when

that is, when

~

CD2 .

attains its maximum value. Hence the limits of the angle of at–

tack between which all curves of quickest turning must lie, are

fixed.

3, Sharpest Curve.- To determine the smallest turn which an

airplane can describe under steady conditions of flight, we start
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with the original equations (1) and (2) and elircinate V. By

this means, a relation is obtained between the engine pwer and

the radius of the turn, *.fiichcan be Writtennon-dimensimally,

as before, if we use the auxiliary quantities z

and

[ 1
1/3

x = (75 PT)2$9
3 Zg

We then have the following relation between them:

.

●

- w“Z= CD2X

(4)

(10)

(n)

.

which (if we make USe Of the qu~tity y defined by equation

(5) can be written in the form

ycD2/3
z—= x

(11’)

Equations (11) and (11’), connecting the radius of the turn and

the engine output, hold good for any angle of attack and any

altitude. For the sharpest turn which can be flown under steady

conditions with constant engine power and, therefore, with con-

stant value of x, ~ must equal 0; that is,

3/3
%D .

0 3=213Lc~f——
X2 ‘

The angle of attack must, therefore, be so chosen that

~

1 2/3 CDY’3x = (12) ,
CT,CT‘
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If this value is substituted in equation (11), we have

(z=cD\ c;-

The case z = O occurs at tile

the airplane cannot

in P.straight line.

.- —

); CD CL’ ,

same time

make a turn, but can only

In this case, along with

cn=’3 c~.3.“,.s —
CL

or ~

is a maximm.
.

~ith increasing X, the angle of attack

(13)

as y 0, if=

fIy horizontally

equation (12),

increases and ap-

. preaches a limit, for which CL’ = o, that is, the lift reaches

a maximum.

The sharpest turn is flown with an angle of ettack, which is
~3

determined by the limits (+) and CLmax-
CD &

4. Calculation of an Example.- The calculations hold for the

polar diagram (Fig. 1), which belongs to a C type airplane

(Dfw C V). Since CL and CD must be differentiated in a region

where CL varies very little and the graphical determination of

CLt is consequently very inaccurate, it appears advisable to

substitute a parabola. The equation for this curve may be found

with sufficient accuracy by the Lagrange interpolation formula.

This is then differentiated and evaluated.

Figure 2 presents, on the basis of equation (8), the relation
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between X and CD for the quickest

of equation (9), the re~tio~ between

turn and also, with the help

x and y. If x and y,

as functions of the angle of attack, have been found in this way,

we can obtain immediately from equations (4) and (5), for a par-

ticular airplane of given engine power, the quantities determin-

ing the quickest turn at any altitude. For a normal decrease

of air density with altitude, we obtain for an airplane with wing

surface S = 42.16 m2 and weight S + 1540 kg the following

relation between the altitude h and the coefficient X.

h

o

1000

2000

3000

4000

5000

6000

P

220

2(34

183

165

146

126

106

P

1.25

1.129

1.016

o*912

0.818

0.731

0.652

x

0.462

0.425

0.382

0.342

0=306

0.264

0.229

Thereby me have taken an engine, of which the decrease in

power with the altitude is known from experiment, and a propeller

efficiency, q = 70%.
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If the dependence of the angle of attack on.the altitude,

for the case.of the quickest turn, has been determined, the

greatest angular velocity is calculated from equation (6)

w‘r= (.14)

and the velocity

(15)

From this we can calculate the radius of the curve of

quickest turning

vr=;

as well as the increased loading, which is deterr~ned as the

resultant of the weight and centrifugal force
—

(1?)

The same process of calculation serves for the determina-

tion of the sharpest turn. From equation (12) we determine the

relation between x and the angle of attack corresponding to

the sharpest turn. Then the value of y from equation (13) and

fin~.lly,with the help of Table 1, the relation between the al-

titude and the angle of attack corresponding to the sharpest ~rn” .
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Table 2.

h

o

1000

2000

3000

4000

5000

6000

Quickest turn.

Y

“ 1.2E?

1.17

0.87

0.62

0.45

0.02

–0.23 ,

The radius

o-494

0.421

0.345

0.276

0.222

0 ● 044

I

v

2g.6

29.8

30.1

30.4

3098

30.8

r

60.0

71.0

8?.3

110.0

138.8

600(?)

I

Sharpest turn.

z

0.95

0.83

0.68

0.53

0.42

0.02

I

r

60

71

87

110

138,

600

v
—

28.4

28.8

29.2

29.6

30.2 ~

30.8

of mrvature of the sharpest turn is then given .

by equation (10)

~:

T.’=—
Pz 1/2 (18)

and the velocity is determined, as above, from equation (14), in

which the coefficient of resistance OT drag coTresPondinS ~ the _

angle of attack for the shamJest turn, is to be put and the in-

creased load is determined by the resultant foTce

‘=”- ---:
(19)

T.’heresults of the calculations are contained in Table 2

and Figures 3 and 4.

From these figures it follows that the radius of the sharP–

est turn coincides with that of the quickest turn within the



limits of accuracy of the calculation; while the velocity of the

quickest turn is appreciably greater”th~~ that of the sharpest _

turn. This remarkable result is explained by the fact that the

change of the radius of curvature for tineangle of attack under

consideration

[

(~\

1
cLmx, ~D2Ax” ’””

is very small, while the speed changes rapidly with the angle of .

attack. In practice, the shar~est turn is alt~aysflown when the

angle of attack lies within the given limits. For the quickest

flown turns are characterized by equations (14) to (17). The

difference in speeds, however, is not great, since the speed de-

pends only on the cube root of ~. In the most extrem,ecase,

it does not exceed 10%. For rough calculations, it is only nec-

essary.to choose an angle of attack between the limits mentioned .“

and there is no advantage in choosing the value corresponding ~

the maximum ~ .CD

. The work necessary for a complete turn of the airplane is

always greater.than the kinetic energy and increases with the

altitude. In the preceding example, the uork required for re-

versal of direction is

{

oAt an altitude of ~ 1000 2000 3000 4000 m_____
3281 6562 9842 13123 ft

About 20 25 36 43 56 $

greater than the corresponding kinetic energy, when the airplane
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flies in the sharpest turn. This reversal of direction requires

much more work than the perfectly inelastic impulse, in which on-

ly the kinetic energy is destroyed The question of the turn,

for which the work requiz?d.is least, leads also to tinequickest

turn. The work required for a semici~cle.of radius r is

Tnr= M.#J_ *T, in which T is the propeller thrust. This

expression must be a minimum for the turn sought. This ocours,

for a constsnt engine power, vhen * = ~ is as small as possi-

ble, i.e., when the value of w is a maximum.

The quickest turn is, therefore, also the tirn of smallest

consumption of energy. .

11, Gliding in a Turn.

The motion of an airplane descending in a glide may be sim-

~ly treated with the aid of a method whioh is closely connected

with that for horizontal flight, If Vz is the velocity of de-

scent, i.e., the vertical oomFonent of the velocity of the air-

plane along its path, then 9, the inclination of tineline of

flight to the horizontal, is given by

(1)

The air resistance is in equilibrium with the component of grav- .

ity acting in the direction of the tangent to the path.

Ti sin9 &T2s“D2g (2)

The lift is the resultant of the centrifugal force and the comw-



-15-

nent of gravity perpendicular to the tangent to the path.

If 8 is eliminated from equations (2) and (3), by means

equation (l), we have

In the following, the steady velocity of descent Vz is

(3).—

of

(41

(5)

assumed

and the unknown velocity V can be eliminated from equations .-

(~) and (5) and the relation between the radius Of curvature r5

of the turn ati the an@e of attack obtained. It is, however,

convenient so to arrange the equations beforehmd, that only non-

dimensional quantities appear. If we put for this purpose

After the elimination of q with the aid of equation (10),

equation (11) can be written

2 CL2 + Cf _ ~D4/3
77 =
.

E’ E

4/3

—

(6)

(?) ._

(8) ..——

(10) -

(11)

(ha)
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1A The Straight C$lide,aEquation (11) shows that

C2
f - Tl-++-

is always greater than zero and only vanishes when y = 0,

i.e., when the radius of curvature of the path is in’finite.

For the straight glide

(12) ‘

while, for finite r, we must always have t<”to. In Figure

5 to2’3 there is shown as a function of CD for a polar dia-

gram corresponding to the Dfw C!V airplane, ~ is greatest and
c 2 +.C 2

the velocity of descent least, when + attains a ~axi~mj
CD

i.e., a glide with minimum descent is always straightt It is

flown with an angle of attack which corresponds to a maximum
2+C2

value of + . --
CD

An essentially different question is that of the flattest.

~ssible glide, but it is easily seen, that the gliding angle

can never be diminished by curved flight. From equations (2)

and (3), in fact, it follows that

Hence,

CL2 - p Wa

(
2

z
r S)

cot2e =
CD

(13)
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s will be a minimum, Then cot e is a maximum, or tien r = ~ .

Straight flight is alw?.yqfla.tter than a turn flo~ wit~ the same.

angle of attack; the fIattest glide is a straight line, the in- _

clination of which is given by Cote = @&.

2. The Sharpest Turn.- For the sharpest turn vhich the air- ~

plane can describe with a given.velocity of descent, Vz,y

attains its maximum value in equation (11). The corresponding ,

angle of attack is obtained by putting ti .0 so that
dCD 9

whence the reZation of. ~ to CD is given by

In this, C’L is derived from CL

(14)

This relation is also given

3. The Quickest Turn.-

in Figure 5.

For the determination of this turn,

which is characterized by the maximum an&ular velocity, equation

(~) or the equivalent equation (11) is first slightly transformed.

If the angular velocity*

Ll)=x
r

(15)

* It is to be observed that the angular velocity in the turn is
chosen, not with a view to chanqing the position of the airplane
in a glide as quickly as possible relatively to the earth, but
with a view to extricating it as quickly as possible from the ene-
my’s fire. This corresponds, however, to the assumptions in the
text.
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is put in equation (8), we have

or, if we put

%.z
$3

so that
Y = Zq

Equation (il) now becomes

or, after eliminating

The

as

z’ =

2z=

(16)

(17)

(18)

..-

(18a)

angular velocity reaches its maximum value at the same time

z that is, when Q&l=* o=,s d CD > —

2 ~D-lfi + 4 ~D1/3
o =_—

zk’~t”
+ * -: ,D.,:’;.2/ /

It follows that, for the quickest turn,

(19) ‘.

The quickest turn coincides with the sharpest turn, only when ‘.

t
:/3 CJ,2 i- CD2

= @’3 and, at the same time

o (20)
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The Mrn then passes into a straight line corresponding to a

glide with the slowest descent. The calculation of velocity

presents no difficulties in any of the cases considered. Since

Vz 1 Vz,is known, v’‘ ~ where $=y);’ . In Figure 5, this

2/3
expression is shown as a function of ~ . The figure shows

t?mt the sharpest turn and the quickest turn do not differ appre-

ciably from each other, but both turns have lost speed consider-

s-plyas compared with a straight glide. It cannot be said, how-

ever, that a minimum velocity is attained in the sharpest turn. ,

This minimum velocity occurs again with a given rate of descent

in a straight line flight, as shown by Figure 5, but in an indi-

rect 17ay.

4. Turn with Constant Excess Load.- Iria straight glide,

the load on the wings is always equal to the weight of the air-

plane. It increases when the airplane flies in a turn, since

the resultant of the weight and the centrifugal force must be in

equilibrium with the effective air force. Hence, me may define

the increased load by the ratio of the total air force to the

weight. A curve of n–fold loading will then be given by an equa-

tion of the form na ~ = (c~2+cD2) (:s} v’. This can be

written by introducing the auxiliary quantities ?, q

1/2
n = (CL2 + CD*)

+

If ‘rIis eliminated by the use of equation

(21)

(10), then
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(22)

(22a)

in whiCh~ according to equation (12), ~2’3 corresponds to

straight flight.

The cume representing equation (22) geometrically, may abO

be obtained from the curve of equation (12), by reducing the or-

dinates in the ratio 1 : n. All these curves are orthogonal N

projections of the curve of straight flight, the curve being at

* right angles to the CD axis.

In Figure 5, eq~~ation(2z) is represented for n = 2.
.

5. Relation of Radius of Curvature to Altitude.- The r~dius

of the sharpest turn and of the quickest turn varies with the

altitude at which the airplane is flying, since y and z depend _

If the airplaneon ~ ?-ridtliereforeon the density of the air.

is so controlled that it always describes the smallest turn, the

radius of curvature varies with the altitude and the path of

flight is obviously not a steady turn- In the first approxima:.

a tion, however, the ration may be considered steady at any in-

stant. The question in what sense the radius of curvature var-

ies with the altitude, if Vz remains constant, can be deducd

.from the analysis in the following way. With increasing altitude..

the air density decreases and ~ increases. As 5 increases, it

is seen from Figure 5 that CD decreases, as also

1“
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,

~ and ‘;:’3- decrease, both for the quickest turn ti”d--~

the sharpest turn. Consequently

(llb)

decreases with the altitude and increziseswith the radius of

curvature. If an airplane descends by gliding in its sharpest .

(quickest) turn, it describes a spiral, which

during descent.

This conclusion is not applicable to the

becomes narrower-

curve of constant

r excess loading, as soon as the angle of attack becomes smaller

than that corresponding to the maximum value of ~..

With the aid of equation (11), the radius of curvature is shown
4/3

in Figure 6 as a function of ~ .

Translated by
National Advisory Committee
for Aeronautics,
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Figs.3,4.
A= Velocitv

I

B = (jv~rloa~
= .,Radius of turn,r

:= Po”,7tiroutput,P
E= Period of revolution,t

Overload U 4&3 8C0 1200 16OO r,ft
.8 .6 .4 .2 0 100 200 300 400

5000

E*

~
.* i 1
@

~

/

I 2000
~ I I J o

.

.

.

E.

Overload O 4(30 8(X) 1200 16OO r,ft.
,g .6 ,4 .2 0 100 200 300 400

5000
500 r,m

I

I

4000 -- ..—-

C

3000

~

I

\l
I
I

:
z
4 lo~o . f

/II j i
o 30 V280 #o ~Lo .2$ 32

Fig.1
240 Horsepower,P



A=Straight glide
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