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By charles Ward Hall. 

sur!lrcary 

In this technica,l note various details of design or arrange

ment of the par ts of airplane structures are shown and discussed~ 

the use of these devices having resulted in the production of struc

tures of adequate st.rength, yet of a weight les s than one- half of 

the usual construction. 

Discussion 

The structural design of a ircraf t ma:r be conveniently c .... ivided 

into two general parts: tile de~ermination of the loading conditions, 

a nd the des i gn of a structure to sustain these loads · It is not th e 

pur pose in this note to discu ss the first of these divisions, but 

upon th e assumption that a s8,tisfactory specification for each con

di tion of fli ght or lanc~ing i s 3.v2.ilable, to proceed 6. irectly to a 

discussion of some of the available methods of bui1d.ing a structure 

to sustain these loads TI ith a mi nimum expend iture of weight. 

From ODe point of view - the pay lo~d - that is, the weight 

nh ich is to be transported.~ vlhether it be mail or othe r goods , bombs~ 

or machine gU.n bullets, represenits the only profi t a.ble pa.rt of the 

enterprise. A mi nimum we ight of airplane structure, a minimum 
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weight of power plant consistent with the necessary performance, q. 

minimum weight of fue l, of lub rica.nt, and. of other es sential equip

ment to accompli sh with a proper margin the intended voyage, ll~y be 

cons idered as detrimental but unavoidably so; in a sense an over-

head charge against the enterpri se. Anything more than the minimum 

in these non- profitable loads ma y reasonably be t aken as parasitical 

a.nd should be eli rrLinated. I shaJ.l touch upon only one of the e1 e-

ments of these non- productive loads, that is to say the structura l 

frame of the a irplane . Thi s s tructure may be divided into four 

general group s : 

1. Members subj ect to tension; 

2 . Members subj ec t to b end i ng; 

3 . Merrib ers SUbject to direct compression; 

4. Members subj ec t to comb i n ee. bending a nd 
compress ion . 

Tension me r.lbers a re in genera. l very s i mple in design, and pre-

sent a problem essentially of quality of material, as the shape is 

of small consequence, except where exposed to a n air £101. The 

criteria wh i ch may be folJ.o i.'J ec~ i n th e selection of the most sui table 

materi ;: l a r e the rat io s of yield po int to density , a.nd of modulus 

of elasti c i t y to density . 

Bending loads vr i thou t appreci abJ. e o.i rect tension or compression 

oc cur in various pc,rts of airpl anes - such as the wheel axl es of 

land type ai rplane s 2,nd the tai 1 ski ds. 

For axles , the mos t p r ac t ica l method of keeping down weight 
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lies in the sel ection of a tube having the best ratio of thickness 

to d i amete r fo r t he material u sed . Fr equently the u se of wh eels 

having standard hubs limits the maxi mum o_i ameter of the axle and 

leaves no option except to select a tube of sui t2,b1e thickness , i n 

the case of a continuous horizontal axle. This use of standard 

""7he s ls usually limits t he cho ice of axle r11.aterial to a heat-·treated 

s teel; h01-.'ever, a short section only of such steel tubing may be 

passed through the wheel hub to form t he beoring TIith its inner end 

housed into a lar ger dura1umin tube wh~ch extend s bet.leen the l a nding 

gear struts - this resu l ts some time s in '''e i ght saving. -;[hore the 

h inged axle is sub stituted fo r th e str aight one the bending momen t 

varies ~:!ith the d istance from the strut s; "b'y t apering the thickness 

of the t ube walls, by turning or grinding, there is another means 

of saving we i ght, but with the aver age commerc ial tubes, due to their 

lack of strai ght nes s and o f concentrici ~y there is risk of creat i ng 

thin walls at s ome points . 

s mall tail sk ids o f c ircula r t ube may be conveniently propor

tioned approximately to the bend i ng stre sses by the insertion of one 

or more short er lengths of t ubing therein , so as to affo rd addi t ion

a l wall thickness B,t or near the supporting hinge. Duralumin appar

ently for thi s use is li ghter than steel, and as the air res i stance 

of the a irpl ane i s not materially affected thereby, the diameter of 

the s~.cid illC.Y be l arge enough to permit of the selection ()f an optimum 

r a tio of thickne ss to diame tel' . Of course a ste el shoe would be nec

essary. Shapes other than of hol10vl circular cross-section may b e 

of adva nt2,ge in l a rge sizes ~ and if lIbuil t Upll may be readily t apered 
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along t heir length . The princ i pal load on tail skids is vertical , 
but any side load causes torsional stresses; the cross-section 

selected should be one having torsional strength, preferably a closed 

hollo"" section ra.ther than an I beam, or other open hollow forms . 

compression loads withou t appreciable bending loads, occur in 

many diffe rent paTts of a.n a ir l ane such as the longerons and struts 

of a fusela ge, th e drag s tru ts i n thin wings, interplane struts of 

b i planes , and of some triplanes , tail booms, the web members of 

trussed type r ibs for ~ ings or tail surfaces. 

For these members in 17hich direct compression loading p redomi

nates , two methods of preventing failure by colu~n action may be 

used: either the ends of a strut may be more or less fixe~ by its 

supports, or t he midd.le of the strut may be stiffened by gradually 

varying the cro ss-sectional area so as to diminish it to'rards the 

ends. A special case, particularly available for open hollow sec

tions such as angles , cons ists i n gradually varying the width of the 

flanges v-hil e keeping the apex in a straight line. This results in 

a gradually curved gravity axis of th e column, tending, as load is 

appl ied, to increase th e compression at the apex of t h e section, and 

to r elieve the edges so that they do not buckle. This is exem~)l ified 

by the vleb members of the ring ribs - Fig. I - (I) and (2), vThich , 

as 1JTTi 11 be noted, have the least cross-sectional area near the ends , 

abou t 90 to 92 per cent as great as near the middle. If such mem

bers are of t he sa.me cross- section for their whole length they usu

a lly f a il by buckling or bending of the free edge of one flange near 
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mid length, fo 110Vled by a sid e,:7ise bending of the section. If the 

thic~ne8s is smal l compared to the l.'l.' idth, or diameter, this occur s a t 

a comparat ively 101.17 stre ss > 

The improved design usually f ails by a c ircular tW'isting of the 

entire member, or by bend ing i n such a direction as to put the fre e 

edges in t ens ion, vv ith faiJ.ure occurr i ng at a higher stress. This 

method of re lieving t he edges appea.rs to be comparable with the bene\.-

• ".L d' ~ lng a na. eXtJen 2ng 01 th em ba.ck t o the plane of the neutral axis, as 

is done for t~1e \"reb s of zeppel in t russes. Tl1a t add.s some 40% of 

ma terial to the cross-section, vlhereas the method just described re

sult s in the ca rrying of u:n it loads eqiJ.ally as great, vrith about 5% 

of the rrat eri a l cut away. Thes e rj,bs also exhibit the use of en-

larged fillet ends supporting the vJeb members at their intersections 

~ith the chords, at which points t he upsetting of the web 8toc~ is 

deep enough to center the we'o t 8 g r avi ty axi s 0:'1 the cho I'd flai.1ge; 

wh ich arrangement forms a rigid connection bet'ween the '~jebs and 

chords aD~. affo~ds end fix i t y to both . The chord flanges are rein

forced agai n st buckling by occasional ties from one free edge to the 

other; in a rib such as that illustrated, these ties add. 60% to the 

ultimate strength. 

Examples of f i t tings fa I' fixin g the ends of struts which have 

been employed su cc e ssfully, a re thos e used in attaching web strut s 

to longerons in fuselage const ruction - :r;-'ig. 2 - (4) and ( 5). The 

stays and struts phich form the web system of a '-:-ar ren truss are 

constructed of t ubing, a l i ner of tubing about three diameters long 
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being fir st pressed into each end, the tube ends and liners a re flat-

tened in a, special fo r ming tool which sizes them to a press f it upon 

the flat lugs of the fitting . The struts are fastened to the lugs 

by means of t ,,,,o staggered rivets, thus providing a structuye Vlbi ch 

under t est developed an end fixity factor in the EUler formula of 

about 2 ' f or the 10ngerons and 2.15 to 2 .89 for the struts · The 

end f i x i ty of such a longeron is mainly deterE1 i nsd by the tirrh tness 

of the f it in th e c y1 indr ica l part of t he f itt ing, end second..J y) by 

the leng'ch and stiffnes s of the four stays or struts mee ting at any 

joint . AS a.t least one) and frequentl y t1."IO , of these stays Bust b e 

under tens ion, an addi tional s tiffness is afforded to the combination . 

The end f ixity of such st rut s depends chiefly uPQn t he thickness of 

the f i tting lug, and is therefore v ery r eadily computable in U8U8.1 

ca ses. 

Another method of securing end fixi ty for struts i s particularly 

appropria te to draG struts i n wings , or t o int erp18ne s truts, as it 

allows riggers to set up the struc ture, cons i derably out of J.ine , 

i t hou t s training of t he membe rs. The examples 0 f drag strut sand 

thei r fi ttings - Fig. 3 - VJh ich were used in the HS3 and F4C-l 

1J'Jings , may readily be turned, a s "Jill -be no ted, upon the oal1 hea.d. 

bolts, with 1Nhi ch they a re engaged, and thus adjust themselves t o 

mi saligmnent. The fitting (9) serves as a nchorage for ~~e usual drag 

wires, and is attached t o the spar joint plates by the ball head bolt 

12 and nut 13, as shovn assembled - Fig . 1 - (3). 11' i O' . 3 - ( 8) i s "' t") 

the end fitting for a large d r ag s trut, the tip of which is spheric-
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ally ho l lowed ~ as i s shown i n s ection for th e small er fitting 10. 

As l oad ing i s appli ed to t he structure the ball head of the bolt 

i s pre ss ed into perfec t con t ac t Vii t h the s trut end fi t ting , and fro m 

the r e sultin g f riction a ' f ix i ng ~oment exis t s. Th i s fixi ng moment 

increa ses in direct p r oportion t o the end l oad , and is, in fac t, 

numer ically equal to the continued p r oduc t of the coefficient o f 

st a t ic f rict ion, by t he r ad ius of curva ture, and by the end l oad . 

The fixing moment fo r any end load i s t hus computed definitel y - For 

the F40-1 d r a g s t rut exhibi ted (11), which is 5/8 11 diameter and 2 511 

long , and r 'e,sts upon a ba il head bolt o f 3 / 4 n radiu s, thi s f ric t ion

al f ixing moment wa. s su ff icient t o r eal i ze a K f actor in the Euler 

formu l a of 3 to 3 . 25, t he tub i ng b ei n g only commer Cially s tra i ght. 

This i s a hi gher f a ctor than can u sua l ly be obtained b y test ing Y/i th 

carefu l l y made f l at ends . unde r l oading, such l ong strut s r emain 

practically s trai ght up t o th e f ail i ng l oad , and rh en the fr iction is 

overcome they jump suddenly to a cu r ved fo r m, and continue to sustain 

a Euler facto r of 1 1"lh i le so 'bent. When thi s l oad is removed t he 

strut b ecomes straight a nd may be r e load.ed r epea t edly ' ith the same 

result . 

Another example of t hi s f r i c tiona l typ e of end constraint i s t he 

fuse l age st ay - Fi g . 4 - (18 ) iJhich i s provided with end fitt i ngs t o 

h ear upon t he usua l cl evi s p i n in conne c t ion \:i th such a joint a s 

Fig. 2 - ( 6 ) or (7). In t his ca se the diam eter of the pin i s smal l 

er than t h e d i ameter of the t ube , and so the fix i n g moment here is 

about 1. 5 ti mes the EUler round end value, being less than for t h e 
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drag s t rut above referred to villere the ball radiu s was larger t han 

th e t ube diamet er. 

Vibration, C.s me t wi t h in an a irpl ane, i s of a much slowe r per

i od than the na tural period of such struts , a.nd the mass of the struts 

is so small in compari son t o t he load sustai ned, that t here appears 

to be no risk whatever of t h e f rict i onal bond bei ng broken. 

I n those members or parts of members whi ch a're subject to bot h 

bending and compre ssion, such a s wing spars~ the chords of the t russ 

f orm wing ribs, the st ruts of l andi ng gear, etc.; there are avai l a

ble othe r methods f or not only increasing the effective strength of 

the parts bu t al so for reducing t he maxima of the stresses to be 

sustai ned . consider t he C &S8 8f any upper front spar of a biplane 

unde r n early ~axi mum loadi ng, such as occurs in pulling out of a d ive. 

Usuall y such a spar is desi gned t o be straight bety!een it s supports -

t h e interpla n e st ruts a nd l ift wires, before the loading . Further 

mo r e , it s f l anges or chords vlil1 usually be of the same cross- sec

tiona l a rea t hroughou t t he l ength of 8.ny lift bay. The lift loao.s 

transmitted to t hi s spar by t he r i b s cause it to bend, ~ nd if the 

spe..r i s cont i nuou s over sever e.l suppo r ts, its curv?.ture is sinusoidal, 

s li ghtly modifi ed by the parabolic deflection of the entire wing 

truss- Being an upper spar, a nd under the condition of pulling out 

of a d ive, it is al so subj ect t o compressive load , vThich produced 

further bend ing moment, equiva lent numerically to the product o f the 

end load by the aIY.ount of t he defl ection from a straight line, and a s 

t h is d eflection a t or near the point of failure mey be as great a s 
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111 to 211 for a. 1 001l sp2.n , it will be apprec i ated that this bending 

moment due to end load is l a r ge. 

If, instead of desi gning the spa r to be strai ght, it is cam

bered into a curve of the serne form but in a direction opposite t o 

that in which the loading caus es it to deflect, then under an in

crea sing load its curvature is gradually decreased until under near

ly full load the spa r becomes str aigh t. SUch an arrangement is 

shown d iagrammatically' on Fig . 5 - (1) , which represents a biplane 

in front view. The end moment produces no additional bending moment 

at mid span because t he spar when fu lly loaded is p ractically 

strai ght between its suppor ts . The deflection due to side loading 

has been made to assist the spar to resist an end load simul t ane

ously applied ins tead of add ing to the forces which tend tor!ards 

its failu r e as a colunm. In design- the c ross- sectional area of 

each chord , of such a camber ed spar when sui t ably restrained by a n 

equivalent of the usual r ib s and drag bracing, may safely be p ropor

tioned to res i st the al gebraic sum of the stress maxima produced by 

the side load, p lus the end load considered as uniformly distributed. 

cambering a spar having chords of uniform cross-sectional area ob

viously curves the gravit y axis to conf orm to the curvature of the 

spar . Another method of accomplishing this same result lies in 

changing the cross- sectional area of each of the chords of a truss 

form spar along its length , making th e lower chords smaller than the 

upper over its supports, a.nd the uppe r chord srraller than the lowe r 

over the mid portion betwe en supports. If done in p roportion to the 
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variation of the total comb~:n_e~ _s~.re.~.s._?1-~ng each chord r .e.?pectively, .. .. 

it wi 11 result in a very l a r ge saving of weight as comparcd w i th the 

condi tion in which each chord is desi gned to carry the maximum stress 

'1hich occurs only at the mo st stressed poin~, and that same cross

section is cont i nued throughou t. Fu r thermore, it results in a curv-

ing or yamber o f t he grav i ty ax i s of the spar , preci sely as wa s de-

scrib ed for the bending of a spar of uniform chord area, to a sinu

soidal curve contrary in directio n to the l oad curve. This is shown 

d iagrammatically on Fig . 5 (2) . Therefore under bending lo~d the 

g ravity axis tends to become st r aight, and if the spar has been co r-

rectly p ro portioned it will be quite straight when t he lo~ding has 

reach ed its intended maXi mum , and thus the bending moment 0 therwise 

due to the product of end load by eccentricit y has been eliminated . 

This it will be noted i s accomp li sh ed b y cutting aV1ay unne cessary 

rna terial. 

practicall y a combinat ion of these two methods g ives the best 

results, and Fig . 1 (3 ) sho ws part of a 100 11 length of spar origi

nally cambe r ed to e,bout 1/2 :1 Vii t h i ts gravit y axis shifted in the 

dir ect ion of cambe r about 1/211 b y making the lower chord of three 

tubes t h rough the center one- +hird of its length ) and the upper 

chord of three t ubes as the end of the bay is approached , both 

chords a t a ll oth e r points consi sting of two tubes. This section of 

spar wa s tes ted to destruction by applying an e~d load eccentr ica lly 

so as to produc e an end bendi ng rroment, and by also applying simu l 

taneous ly ei ght s i d e load.s at pOints equivalent to rib spacin g, as 
. '< 

shown d iagr ammat ica lly o n F i g . 5 (2) . 1]ires we re attached to re-
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strain the spar s i dewi se at t he (trag bays, and false ribs VJere at

tached to the spar and ex tend ed to a parallel bar which represented 

another spar . Th e test conditions app roximated very closely those 

of actual fli ght. u ltima te f a ilur e took place after the deflection 

'Jas sl i ghtly over 1 :1 , and the spar then sustained a load equivalent 

to a facto r of 2 in t l e Euler fo r mula) the loner chord alone being 

taken as a column of t he length of a drag bay. The failure shown by 

Fig. 1 (3) i s typical for t his kind of spar, tha t is, a sidevTise de

flection occurred of the lower chord only at a po int near the center 

of the span. 

Near the po ints of greatest b ending rooment , approximately the 

cente r of span?f the continuously loaded upper spar under consider

ation, ljrhere t he lower chord i s of larger cro ss-section, and is 

nearer to the gravi ty axis than is the up-oer chord, the stress in

tensity i n the lower chord due to s ide load only i s less than in the 

upper chord. ( for stre sses wi thin the yield point). Bov!ever, bending 

p roduce s comp re ssion in the 10vJ er cho rd at thi s po int, and the end 

load i s also comp re ssive, t hu s the total intensity is less than for 

a symmetrical spar. For t he upper chord the bending stress is ten

sile which the compre s sion end load tends to neutralize, and in av

erage cases for single bay a irplanes the net stress in the upper 

chord nea r mi d- span approches zero· 

Simila rl y it ca n be shown that fa r the lower spars of a mul ti

bay airplane in which t he net tensile stresses may be large, with a 

shifting of the grav i tY , axis in such a direction as to relieve the 

spar as a comp re ss ion memb er for the condition of inverted fl i ght, 

also reduces t he tensi le maxi ma for no r mal flight. 

----~------~--------
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It is beyond the GC0ge of tht s note to discu ss the redistribu-

tion of stre ss int ensity in a spar loaded beyond t~e yield Do int of 

the materia l, but it may be remarked t het the yield point is by no 

-m eans coinc i dent vi th ultimate strength as has been sometimes assur.1ed. 

FO r in stance, i n e. spar combini ng camber 17i th shifting of th e grav ity 

axis and_ subj ected si multaneously t o end load a:1C~ s i de loac~ in a COl1-

s t ant proportion , the loads released, and. tlle o8rmanent set , if any, 

noted for eaoh load inc re-Tlent ; i f 2 perman ent set equal to 50,0 of the 

maximum def l ection a t t h e i nsta n t of fei lure i s taken as inc'_ica ting 

that the yi eld point has been passed , it --'i 11 be found tha-~ the corre

sponding loads mu st be increa sed by i.!,01, to 50% befo r e failure occu rs . 

O;!hen l'r i n f; panels a re h inged to each other or to the c2_bane in-

s tea d of being continuous , a nd the connect inr p in is central , or if 

it has any po s i tion 1'!he re no e::1d load exists , the bending moment in 

the spar i s nearl y zero at the p i n ane_ much larger over t::J.e ,,' i d-span 

Dortio_1s . -:'here ttere i s an a-)prec i able e:ld loCto. i t is generaIly ad-

v isable to p lace this connectinq Din in a posi tion eccentric to the - c, .l _ 

gravity axis , and near e r t o t hat chord wh ich is nost stressed by the 

combined load , tl at is , nea rer the upper cho rd of an u 'C';Jer spa" r, or 

nearer the lo y'er chord of the l oner spar of a hiplane. !~C ':'i 11 a t 

once be seen that v, hen such a spar i s cOrJpress cd throllg'h truss a ction 

this posi tion of the pin produces a bending moment of the same kind 

as would have exi s ted -Jere the spar continuou s over the support unde r 

consideration. Usually the a rrount of such a r.:.oment is under conplete 

control, as in the condi tions of greatest stress 7'hen a moment equiv

Cl lent to that due to full continui ty i s usually obtainable by locat-

ing the -ain s om ev:here bctvr een the gravity axi s anc:t the appropria te 
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chord. such an eccentric po "'i tion o f the pin pe rmit s of smaller 

var i a t i ons in the cro s s- sectional a rea of the snar chords in order 

t o e conomi cally propor t i on the-in to su s t a in t he stresses than vIould 

othe r wi s e be po ssible . 

I f t11e tips of a bipl ane I S w,ings are unsyrflmetriccJ,l in plan 

fo r m, one spaT hav i ng a longe r overhang than the other, and it is 

desi red fo r t 1:.e sate of a ppea ranc e to have the outboard bay of the 

same l ength fo r b oth fro nt 'and rear spars, the line of action of 

the l i ft wi res for the spar havin~ the lon~er tip overhan~ should 

inter sect the spar axi s beyond it c meeting nit:1. the line of a ct io n 

of the outb oard l ift strut, a nd for the spar having the shorter tip 

overhang t he I i ft vJi re shou l d i ntersect. the spar axi s '-:i thin its 

int e r section Vi i th the outboard 'lift s t rut , t':us ~aint8.ining the 

same r at io o f end moment t o cent er'mof,1cnt for each of the spar s in 

the out e r bay , prov i ded there i s 8nough load in th:.~ outboard lift 

strut s. 

A somevJhat different bu t consp icuously aevant2 geous apnl ica tion 

of thi s pri nc ipl e of eccentric co nnect ions to balance stresses may 

be fou nd i n the conventional l a.nd type le.nding gear. A common ar-

rangement co n s i s t s o f a pair of struts forr:!ing a V on each side of 

the fusel age or o f the vl i ng roo t s extending therefrom, to the apex 

of \'i h i ch i s at t ached the axle v.rhether of str aight or bent form . 

This i s ShOVlD diagre.mmatically i n s ide v iew by Fi g . 5 - (3) - the 

dotted lines i nd i cat i ng the position of ~heel and axle at rest , and 

the full l i nes thei r posi t ion vlhen the shoc k absorber at S is f u1 l y 

extended . Not infrequ ently the front strut inclines do~n~ardly and 

form r d l y" and so much i n a recent de s i gn that the rear st rut vrheth-

e r i n a 3- po i nt landing, 0 r cat apul t l aunchi ne;, 0 r even in a level 

i 

J 
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landi ng unle ss t he wheel' s resistance to rolling exceeds one-fif th 

of its vert ica l reaction, is under tension and by its connection to 

the front stru t causes bending therein! The rubber shock absorbers 

vrere secured near the apex of the V and vertically under the axle . 

This cau sed fU rthe r bend ing of the f ront strut in the same direc

tion as before, Vii th the r esult that four-fifths of the strut cross

section is requir ed t o r esist b endinE , and only one-fifth to perfo rm 

its really necessary f Unction as a strut. 

BY arranging the axle gu i d es in front of the front strut ~,~and 

the ,;>oi nts of attachment of the shock absorbers somewhat further for

vITa rd , the max i mum bending of the struts under any of the landing 

conditions ma y be redu ced t o 35% or so of the fo r mer arrangement 

wi th a corresp ond ing saving of ';!e i ght in the parts affected (Fig . 5) -

( 4) . 

I n ?ig . 5 - (5) is sho m in front view, and (6) in side view 

another arrangement of the landing gear. In these diagrams the dotted 

l ines shov"J th e po s i tion of the parts at rest, and the full lines 

thei r position "fhen the shock absorbers are extended . The shock ab

sorbe r s at S have been rr.oved to a location at the top of the front 

stru t and wi thin the lower v.ring , this strut being restrained at the 

top only by t he rubber, and at the bottom by a p in connection to a 

simple fitting "[hi ch enclosed t he axle. This fitting is connect ed 

to the rear s tru t by a universal joint of limited movement, while 

"s imilar univ ersal jo ints connect the upper ends -of the rear stru t to 

the rear ~ing spar, and the bent axl e to the fusela~e center. In 



l' . A.C · A. Technical No te NC. 206 15 

this arranp;ement al l bendi ng momen t at the V a;Jex, and at the uy,:J

per end of the rear s trut ., have been elin i nated , except a sma ll fric

tional effect , and ni th 11 li tt le ca re .the rubber shock absorbers 

may b e attached to the u? pe r end of the f ront strut so as to obv i a te 

bendi ng there unde r maximu m loads. 

under such conditions t he landin~ ryear strut s may obviously be 

buil t much li p'ht e r in lTTe i q-ht and of smaller diameter, the latter re-

8ultine:- in a reduction o f head re sist ance. 

FUrther elements of v.re i r:;h t saving a re available through prov i

sion in connec ting the p rincipal mer.1bers to ?ethe r for r ealizinf 

thei r full strene:th , as sho vn in Fi g . 4 . part (16.) of this figu re 

sho Vls a section throup.:h t he j oint of t 70 tubes r'1ade by inserting 

---, 

into the sr.1aJ. ler tube a r ing 1,7i th a.n a nnular dep re s sion s i ::1i }-ar to 

tha t of (14) , and then by telescopin~ it into a lar r er tube outside of 

which is a narrow ring as sh01.in in (15). The outer ring is t ilen com

pressed vi i t h the tHO t'.lbes into the dep reEsion of the inner fi tting . 

Fi g . 4 (18) shows the e xt erior , and (17) a section tbr~~ gh a 

lup.; fitting a nd t he end o f a "~ube, the fi tt in~ and ring befo re OOr.1-

press i on hav i n~ about the p roport i ons of (14) and (15). such oon

nections p roperly p roportioned, develop the full strength of the· 

tube in compr ession , in tension or in bendinf:; , and " hen failure oc

curs it is definitely r emote f rom the joint . 

BY form i ng t h e inner fi tt ing to a polygonal cross-section as 

shov:n in (20 ) , and by comp re ss i n g a tube and an external ring (19) 

around it to the same polygonal form, e joint is prod.uced '.7hich is 
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as shown i n (21) - 1001c efficient in torsion. 

Joints of this type a re not lin i ted in nroduction to very duc-

ti Ie material> c.s mi ght be supposed ) but are readily 9 roc1uced in 

materi a l having a specified tensi Ie elongation of 4~~ in 211 merely 

through appropr i 2.te relations between the t h ickness of the tube;, the 

curvature of the f ill ets and t he depth of the annular depre s sion, 

a nd between the diamet er of t he tube and the length of the ring . 

The tube inll.e r f itting and r ing of sections 16 and 17 have been 

turned upon ea,ch other before photographing in order that the ir shad

O';lS mi ght shop clea rly the construc tion; actuelly such a cut shows 

no joint unless mcgn i fied to 20 or more diameters. 

The ball heac5. bolt .and drag wi re strap (Fig. 3), in addit ion to 

the points 8,lready mentioned) a:r.:e also of interest in that the d.eep 

cuppi ng of tl18 st r2.p C2..u s es the line of a ction of the ·;' ire to inter

sect the bolt axis a t its bearing on the spar- Tests have shown 

this comb ination c,t ul timate load to fail by sh ear ing of the bolt 

wi thou~ perc ept i ble bend i ng > i nd,icating C.n eliminc.tion of 2, bending 

moment rather frequently found in spars 2t the d r ag wire connections. 

Ref erenc e so far has been made to certa in chnracteristic effects 

of arrangement which in particular case s result in enabling the use 

of l i ghter weigl1t members to su?,port a given l oad, and to other par

ticul::tr cases i n vehich the loading itsel f may be rr.odified to advant

a g e by a suitable design of the parts, and to s till other C2.s es 

'~!h erein b y the e1 i minat ion of rna teri a l both results may be simultane

ously accomplished. 
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These pa r t i cul a r cases are by no means the only ones t.o ~'!hi ch 

such me t h ods may reasonably be appl i ed; they merely illustrate the 

general fact t hat throughout every part and detail of a framed 

s tructure t h ere is oppo r tunity for de s i gn upon the sa.me principles , 

a nd if the d es i gn is so applied through each and every detai l t he 

a ccumulated sa.vings of wei ght may :Leach a surprising total. As an 

illustr a tion, the ba r e structural frames only of the F4C-l ai r p lanes 

nOli approa ch i ng co~)letiol1 ;. exclu.s i ·le of covering, of equipment or 

its containers, of porrer and its a.ccessories, weigh 1 ess than one

ha lf of the corre sponding pa rts of the 18 ai r plane, its protot)Te , 

a nd the TS i s an excellent exampl e of refined light weigl:1t construc

tion 3,long t h e lines consid e r ed pra cticable for r!ooo. . That this 

Vl eight-saving has been accoDpli shect wi thout "'a crifice of necessary 

strength , i s e-J i nced by the fact tha t tl:1 e va rious d etai 1 tests re-

quired b y the Navy have :been suc cessfully ;net. 

The relat ive 'i1e i ght ·s are exh i b i t ed in some details in Table I· 

Wei gh t of S t.ructure 

ri n G; Gr oup 

UP:Q er a nd outboa r d LO liTer '~Vi ng pan els F4C-l TS 
lb . lb. 

Ribs , complete 2.5.114 31.69 

s pars, f ront 17.7760 85. 00 

spars , rear 16.6987 24.00 

Fi tt ings, int ernal 1 . 3649 12 . 93 

Leading edge 2 . 1848 2.41 
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~ ei ght of s truc ture (contd.) 

Trailing edge 

outer ends 

Brace vl ires 

Drag st ruts 

Blocks and bracing 

Bo lts, nuts , etc. 

Fittings , external 

Lower center Wing panel 

Ribs, complete 

spars, front 

spars , rear 

Fittings , internal -

Leading edge 

Trailing otigc 

Bolts, nuts, etc. 

struts 

sidewalk 
• 

Wing Group 

F4C-l 
lb. 

1.0589 

.5668 

- 3".772 

3.0123 

-3 . 2051 

1.7662 

.694.5 
- -----67.2142 

6 .315 

.8257 

.7622 

2.625 

. 22-

. 21 

.5444 

.884 

3.1146 - - - -- -15.5009 

TS 
lb. 

. 48 

2.39 

3.34 

4.26 

4.3l 

IB 

1.21 
-·--l12.02 

8.49 

3.28 

3.30 

8.72 

3.75 

13.12 
- - -48 .56 
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wei ght of st ructure (cont.) 

Wing Group 

,:,. ilerons 

Rib s , co:.1p1et e 

Edges 

Blocks 

Fittings 

Brace wi r es 

Int er p1ane strut s and Wi re s 

Wires 

strut s ( wi thou t f a i ring) 

BO 1 t s , nut 8., et c . 

Total Wing Gr oup 

Ta i l Group 

s tabili zer and. El evat or 

Ribs 

spars , f ro nt 

spars , r ear 

Leadi ng edge 

Tr a i ling edge 

Blocks 

Fitt i ngs 

F4C- 1 
l b. 

1 . 3692 

3 .39 18 

3 . 0438 

.8106 

1.8792 

0 . 0 

1. 0 313 

2 0 . 963 

. 5444 ----

1 0 . 4940 

22.5387 

115 .7478 Ib . = 
47. 07% 

3 . 816 

2 . 989 

1 . 259 

1 . 2994 

. 7184 

.7754 

TS 
Ib . 

2.7 

5.6 

1.39 

.916 

1.31 

1.15 

9.48 

58.5 

4 . 3 

19 

13 . 066 

72 . 28 

245.926 Ib . = 
10061, 

3.73 

5.86 

3 . 5 

. 74 

.42 

J..26 

2 . 99 
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~ eight of s truc ture (cont. 

Tail Group 

s t abiliz er and Eleva tor 

Br 2.c e '7ires 

Bo l ts , ::::lUtS., etc. 

::-rorns 

Fi n and Rudd er 

Ribs 

spars , f ront 

s pa,r s , rear 

Lea,d ing ed.ge 

Tra.i l i ng edge 

Blocks and bra.cing 

Fittings 

Brace wires 

BO 1 t s , nuts, et c 

:::0 rns 

Body Group 

Longero hs 

s tays 

Engine su pports 

Fi tt i ngs 

F4C- l 
- l b . 

2 . 044 

. 322 

TS 
lb. 

3 .42 

. 66 

. 344 . 42 
1 3 . 5672= -'-- 23.00 = 

5e . 9~~ . 100~ 

1 . 7918 ~_ . 31 

1. 31 29 1.77 

1. 13 

. 5 18 . 26 

. 4423 .42 

. J_63 . 48 

. 476 5 1. 88 

. 516 . 42 

. 1329 .55 

. 125 . 31 
5 . 4784= -- --8 .53 = 

C, Ll. ?2~ u _. ~ c 100c1o 

7 . 0559 21 . 3 

8 . 9634 8 . 00 

. 9056 23 . 00 

1 . 9086 3.5 

6 .5165 11. 2 
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weigh~ of s t ructure (co n td.) 

Tai l Grouy 

Body Group 

Bol t s , nuts , etc . 

En g i n e bed 

s t er n P0 r:t 

Tot al Fr c,me Ne i ght 

F4C- l 
lb . 

includ ed. 

3 . 9 070 

. 4817 
- ----. 2-9. 7 Z87~ 

36 .8t 

164 . 5322 Ib.= 
46. 210 

TS 
lb. 

4.8 

8 .0 

21 

1. 0 
- - -C O~ 8= 

1001, 

358 . 256 1 b , = 
100010 
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