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Summary

This note, prepared for the National Advisory Cogmittee for

Aeronautits, contains a discussion of the pressure distribution

over ellipsoids when in translator ~tion through a Perfect fluid-~
,

An easy and convenient way to determine the magnitude of the veloc-

ity and of the pressure at”each point of tie surface of an ellip-

. soid of rotation is described.

The knowledge of such pressure distribution is of great prac-.

tical value for the airship designer~ The pressure distribution ._

over the nose of an air~ip hull is known to

ment with the theoretical distribution as to

putation of the nose stiffening structure on

tribution of pressure.

be in such good agree-

permit basing the com-

the theoretical dis- .._
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“Experiments have shown that the knowledge of the pressure dis-

tribution over the surface of elli~soids, moving trafislationally

through a perfect fluid, is often of conside~able practical inter-

est. This pressure distribution is of a simple description; it

can easily and quickly be determined by analytical methods. TO

the best of my knowledge this has never been brought out clearly

in any publication. The mathematical theo~ of the flow created

by an ellipsoid iS given byH. Lamb in his “Treatise on Hydrody-

namics,“ Chapter V. It requires considerable mathematical train-

● ing b grasp the full meaning of the results as given by Lati.

E. G. Gallop (Ref. 3) has given some comments on the nature of the

resulting distribution of the velocity and pressure, for the spec-
.

ial case of an ellipsoid of revolution. A part of this holds true .

4 for all ellipsoids, including those with three different principal

axes. Mr. Gallop does not, however, for the speoial ease of sphe-

roids make the distribution of the pressure sufficiently plain for

immediate computation or for the practical application of this

interesting analysis.

The knowledge of one simple lemma on the potential flow around

ellipsoids, implicitly contained in Lamb’s result (Third Edition,

Equation (114 (8) ), ) is sufficient for the deduction of all the

following theorems and for the deter@nation of ttiepressure dis-

tribution.

If an

b one of its
.

T~is lemma is:

ellipsoid is moving with uniform velocity parallel to

princip51 axes, say parallel to the x-axis, the velocity
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potential at any point of the surface can be written in the form

Q. Alx (1)

where A’ is constant for a given flow and a given ellipsoid. .——

This theorem is the key to all the relations referring to the dis-

tzibution of velocity aridof pressurex

If

but has

flow is

the velocity of flow is not parallel to a principal axis,-.—

components in the direction of each of them, the resulting

the superposition of three flows analogous to the one just —

considered. Hence, at all points of the surface, tinepotential is

.
a linear function of the Cartesian coordinates x, y, and z again,

and can be written in the form

@ = A~x + Bty -!-G(Z* (2)

4 where the coordinate axes are chosen to coincide with the axes of

the 511ipsoid. Hence the curves of eq~al potential @ axe situated
.

on parallel planes.

Now, suppose first the ellipsoid tn be at rest and the fluid

to be moving relative to it, as in a wind tunnel or as with an

a?rship moozed in a gale. The change from the elli--soidmoving

through the fluid otherwise at rest to the fluid passing by the

~tationary cllipscid does not affect the validity of Equation (2)__’

except giving the constants At, B;, and Ct other values, say

AI1,Br’, and C“. In the latter case (the body at rest) the velocity

of the fluid at all points of the surface is parallel to the sur-
,

> face. Consider first the elements of surface containing a line

P
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element at ri@t angles to the planes of constant pctential~ i.e, . -

at the points cf the ell:ps’~idwl?e~t?the plane At’x+ B“y + Clrz= ()
.

mee~s the mrface. It is a~arent from (2) that at all these points

the velocity Iias the coqmrwnts A1’, B“, and C!”. This is e~ridently

the maximum ‘ielacIty.

At all other points of the ellipsoid the elements of surface

are i.ncline~towards the direction Gf maximii velocity: say by the

angle c . Then the elements Gf distance Gn the surface, As, be-

tween curves of eq~~l notential are increased in the ~atio ~o~ ~ ~

when compared with the actum distances between the planes of eqval

potential. Accord~ir@y, the velocity, I*being equal to -~~ is de- _

creased inversely$ its mgnitude is A“ cos <. 1% will be noted
.

in particular that -theveIocity is equal at surface elements which

are inciined by the same angle c . It is equal to the Frojecticn.

of the maximum velcci.ty at right angles to the su~face element.

Hence the vel.cCity cannot excee-1the one rightly denoted by “maxi-

mum veloc5.ty,” having the components A“, Bm, and W .

Retiming to the case when the direction of flow is parallel

to a principal axis, it can be shown that zbe maximum velocity AT’

stands in a very simple relation to the kinetic energy of the flow,

and hence to the apparent additional mass of the ellZpsoid. We

have now to suppose the fluid to be at rest and the elllZSOid to

move, say with the velocity U, paralle”lh a principal axis, —.

e.g,, the x-axis. The kinetic energy of the flow 3et up is equal

to C@-$ P/@tidS, i.:. the volume of fluid displaced by an

,
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element of the surface per unit of time, ~ltiPlied bY the Wten-.... .

tial at the point of displacement and by ~ wliere p denotes the

density of the fluid. l%%-,the volume displaced by a surface ele-

ment per unit time is equal to the projection Gf this elemen+

perpendicular to the direction of x, multiplied by the velocity

u. The potential being A’x the integrand becomes A’;Ux :dy dz.

f xdy dz is the volume of

Volume A*U ~. This is the

Volume kl ~ $ , where kl

the ellipsoid, hence the inte~al gives

kinetic energy, usually expressedby

denotes

It follows that

At
— ~.-
U ‘1”

A1’, referring to the case when the
●

connected with At’ by the equation
*

Afl=Al+

as the latter flow results from the

the constant velocity US Hence it

Atf=k+l=

u 1

the factor of apparent mass.

ellipsoid is stationary, is

former by the superposition of

appea?s that

A.

A is the maximum velocity corresponding to a flow having unit

velocity along ”thex-axis. It is a constant for

It equals the sum of 1 and of the factor of

as is confirmed for two special cases, where the

known. With a sphere, the maximum velocity is 1-5 times the veloc-
●

$ lty of flow,and the additional apparent maSS is one-half the mass
●

a given ellipsoid.

apparent mass kl

factor A is well
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of the displaced fluid.

angles to its axis, the

&
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With a circular cylinder, moving at right

maximumveIGci

flow, and the apparent adiliticnalr.ass

displaced fluid.

A“The ratios A = ~—, B = :1, C =.

by is him the velocity of

is MI:31 to the maas of the.-

glI_

‘iv are

velocities U, V, and W and hence only depend

independent of the

on the ratio of .-

the three semi-axes of the ellipseid. a, b, and C. Lamb gives the

method to computzthem. Gcmpte first tineintegral

a= dxabc~- .-

0 (a2 + x) (;2 + X) (b’ + X),(C’ + X)

and the analogous integrals 13 and Y for the axes b and c. The

factors of apparent wss are then

kl=~a, etc.

There are no tables for A, B, C, or for kl, k2, k~, pub- -

Iished yet. The integrals for a etc., can be numerically evalu- -

ated in each case, and i will

are therefore tiown. For the

ellipsoids of revolution, kl

ies of elongation ratios,’and

assume at present that A, B, and C,

special case b = C, that is, for

and ka have been computed for a ser-

are reprinted in a small table in

Ref. 3. They are connected by the relation kl =
l-ka
2ka”

determination of the velocity at any point is thus reduced

The

ioa

simple geometric problem. The maximum velocity, whose components

are AU, BV, and cW, has to be projected onto the plane tangent
}

.



r

N.A.C.A-*Technical Note
●

to the ellipsold at the
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point considered, i.e. it has to be mlti-

plied by the cosine of the angle between th~ nGrmals to the SUX– _

face at this point and at the point tihe~e:2S -reloc~tyis a maximum.

IQ”the most interesting case of an ell-ipmid of revolution,

this can.be done analytically in a very convenient way. The for-

mula is ~ost easily arrived.at by the applicatim of elementary

vector analysis. F~rst compute the component of the maximum veloc-

ity in a direction normal to the surface at a given point. The

longitudinal component of the maximum velocity is AU, and the

, lateral component of the maximal velocity.is BV.

Let the

n, and let
P

axis and the

4 axis and the

angle between the normal and the longitudiml axis be

the dihedral angle between the plane containing this

line of velocity of flow and the plane containing the

point in questionbe 13- Then cosq is the longi-

tudinal component and sinq cos~ the lateral component of the

no’rmalof unit length. Hence the component of the maximum velocity

in a direction perpendicular to the element of surface is

v-s =(l+kl)Ucosq +(l+k2)Vsinq coS@-

Let VI denote the component parallel to the surface element-

Then

2 + V*2 = Fmx,

: =z=”’ ‘ence= (l+-kl)2U2+(l+lr2)2V2- [ (l+kl)u COST +(l+k2)V sinv ~os~ ]2
.

.
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This is the desired fozwala for the ~-elocityof flow along

the surface, The pressure is compu’$uddirectly fmm the ~elocity .

at the points of the ellipsoid> now suppused ‘= be staticnaz-y.in
.

the flowing fluid. For this is a steady flow, and hence Bemouilli~.s”

equation for the pressure holds true> viz.: p + + P VI= = Const. -

That is, the pressure is equal to an arbitrary constant pressure

P
minus V12 ~, where VI denotes the velocity. The points of

greatest velocity are those of smaliest pressure or of greatest

suction. The curves of equal velocity are also the curves of equal
~

~pressure.

In practice, we are chiefly interested in rather elongated

ellipsoids of rotation, and the angle a between the principal ‘_
t

axis and the direction of motion is
e

ellipsoids, kl is about’1 and k2

about 2 and B is about 1, and the

of the line of maximum velocity and

small. With very elongated

is very small. Hence A is

angle between the direction

the axis is about twice as

kcge as the angle between the direction of motion and the axist ~

me maximum ~elocity is always g~eater than the velocity of ~~tion.

The difference between the largest

sure in the undisturbed atmosphere

V2~{(I + k1)2Cosza + (1+

negative pressure and the pres-

is

k2y sin2 a - 1}

“<. --- -,, - .


